1
|
Seto Y, Iwasaki Y, Ogawa Y, Tamura K, Toda MJ. Skeleton phylogeny reconstructed with transcriptomes for the tribe Drosophilini (Diptera: Drosophilidae). Mol Phylogenet Evol 2024; 191:107978. [PMID: 38013068 DOI: 10.1016/j.ympev.2023.107978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 10/30/2023] [Accepted: 11/23/2023] [Indexed: 11/29/2023]
Abstract
The family Drosophilidae is one of the most important model systems in evolutionary biology. Thanks to advances in high-throughput sequencing technology, a number of molecular phylogenetic analyses have been undertaken by using large data sets of many genes and many species sampled across this family. Especially, recent analyses using genome sequences have depicted the family-wide skeleton phylogeny with high confidence. However, the taxon sampling is still insufficient for minor lineages and non-Drosophila genera. In this study, we carried out phylogenetic analyses using a large number of transcriptome-based nucleotide sequences, focusing on the largest, core tribe Drosophilini in the Drosophilidae. In our analyses, some noise factors against phylogenetic reconstruction were taken into account by removing putative paralogy from the datasets and examining the effects of missing data, i.e. gene occupancy and site coverage, and incomplete lineage sorting. The inferred phylogeny has newly resolved the following phylogenetic positions/relationships at the genomic scale: (i) the monophyly of the subgenus Siphlodora including Zaprionus flavofasciatus to be transferred therein; (ii) the paraphyly of the robusta and melanica species groups within a clade comprised of the robusta, melanica and quadrisetata groups and Z. flavofasciatus; (iii) Drosophila curviceps (representing the curviceps group), D. annulipes (the quadrilineata subgroup of the immigrans group) and D. maculinotata clustered into a clade sister to the Idiomyia + Scaptomyza clade, forming together the expanded Hawaiian drosophilid lineage; (iv) Dichaetophora tenuicauda (representing the lineage comprised of the Zygothrica genus group and Dichaetophora) placed as the sister to the clade of the expanded Hawaiian drosophilid lineage and Siphlodora; and (v) relationships of the subgenus Drosophila and the genus Zaprionus as follows: (Zaprionus, (the quadrilineata subgroup, ((D. sternopleuralis, the immigrans group proper), (the quinaria radiation, the tripunctata radiation)))). These results are to be incorporated into the so-far published phylogenomic tree as a backbone (constraint) tree for grafting much more species based on sequences of a limited number of genes. Such a comprehensive, highly confident phylogenetic tree with extensive and dense taxon sampling will provide an essential framework for comparative studies of the Drosophilidae.
Collapse
Affiliation(s)
- Yosuke Seto
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo, Japan; Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan.
| | - Yuma Iwasaki
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo, Japan.
| | - Yoshitaka Ogawa
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo, Japan.
| | - Koichiro Tamura
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo, Japan; Research Center for Genomics and Bioinformatics, Tokyo Metropolitan University, Tokyo, Japan.
| | - Masanori J Toda
- Hokkaido University Museum, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
2
|
Erlenbach T, Haynes L, Fish O, Beveridge J, Giambrone S, Reed LK, Dyer KA, Scott Chialvo CH. Investigating the phylogenetic history of toxin tolerance in mushroom-feeding Drosophila. Ecol Evol 2023; 13:e10736. [PMID: 38099137 PMCID: PMC10719611 DOI: 10.1002/ece3.10736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 12/17/2023] Open
Abstract
Understanding how and when key novel adaptations evolved is a central goal of evolutionary biology. Within the immigrans-tripunctata radiation of Drosophila, many mushroom-feeding species are tolerant of host toxins, such as cyclopeptides, that are lethal to nearly all other eukaryotes. In this study, we used phylogenetic and functional approaches to investigate the evolution of cyclopeptide tolerance in the immigrans-tripunctata radiation of Drosophila. First, we inferred the evolutionary relationships among 48 species in this radiation using 978 single copy orthologs. Our results resolved previous incongruities within species groups across the phylogeny. Second, we expanded on previous studies of toxin tolerance by assaying 16 of these species for tolerance to α-amanitin and found that six of them could develop on diet with toxin. Finally, we asked how α-amanitin tolerance might have evolved across the immigrans-tripunctata radiation, and inferred that toxin tolerance was ancestral in mushroom-feeding Drosophila and subsequently lost multiple times. Our findings expand our understanding of toxin tolerance across the immigrans-tripunctata radiation and emphasize the uniqueness of toxin tolerance in this adaptive radiation and the complexity of biochemical adaptations.
Collapse
Affiliation(s)
| | - Lauren Haynes
- Department of Biological SciencesUniversity of AlabamaTuscaloosaAlabamaUSA
| | - Olivia Fish
- Department of Biological SciencesUniversity of AlabamaTuscaloosaAlabamaUSA
| | - Jordan Beveridge
- Department of Biological SciencesUniversity of AlabamaTuscaloosaAlabamaUSA
| | | | - Laura K. Reed
- Department of Biological SciencesUniversity of AlabamaTuscaloosaAlabamaUSA
| | - Kelly A. Dyer
- Department of GeneticsUniversity of GeorgiaAthensGeorgiaUSA
| | - Clare H. Scott Chialvo
- Department of Biological SciencesUniversity of AlabamaTuscaloosaAlabamaUSA
- Department of BiologyAppalachian State UniversityBooneNorth CarolinaUSA
| |
Collapse
|
3
|
Maciel VQ, Burlamaqui TCT, Santa-Brgida R, Santos RDECO, Martins MB. A new species of the Drosophila tripunctata group (Diptera: Drosophilidae) associated with fallen flowers of six Lecythidaceae species in the Amazon Rainforest. Zootaxa 2023; 5374:35-50. [PMID: 38220874 DOI: 10.11646/zootaxa.5374.1.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Indexed: 01/16/2024]
Abstract
The tripunctata group falls under the subgenus Drosophila Falln, 1823 of the genus Drosophila Falln, 1823, and is composed of four subgroups and 17 species not assigned to subgroups. This group is widely distributed throughout tropical regions and is predominantly found in preserved forest environments. With a predicted high number of cryptic species, the occurrence of intraspecific morphological polymorphisms made it difficult to establish lines in the laboratory. The capture of males for comparison of the terminalia makes it hard to identify and delimit species; however, these difficulties can be overcome through the use of techniques such as searching for species in naturally occurring places, establishing isofemale lines in the laboratory, or using molecular techniques. In this work, we search for imagoes of species of the tripunctata group over present fallen flowers of the Lecythidaceae on the ground of the Amazon rainforest. The collected individuals were morphologically and molecularly analyzed. This species is described here under the binomial Drosophila lecythus sp. nov.
Collapse
Affiliation(s)
- Vincius Queiroz Maciel
- Programa de Ps-graduao em Biodiversidade e Evoluo; Museu Paraense Emlio Goeldi (MPEG); Belm; PA; Brasil.
| | | | - Rosngela Santa-Brgida
- Programa de Ps-graduao em Biodiversidade e Evoluo; Museu Paraense Emlio Goeldi (MPEG); Belm; PA; Brasil.
| | | | | |
Collapse
|
4
|
Erlenbach T, Haynes L, Fish O, Beveridge J, Bingolo E, Giambrone SA, Kropelin G, Rudisill S, Chialvo P, Reed LK, Dyer KA, Chialvo CS. Investigating the phylogenetic history of toxin tolerance in mushroom-feeding Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.03.551872. [PMID: 37577671 PMCID: PMC10418198 DOI: 10.1101/2023.08.03.551872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Understanding how and when key novel adaptations evolved is a central goal of evolutionary biology. Within the immigrans-tripunctata radiation of Drosophila , many mushroom-feeding species are tolerant of host toxins, such as cyclopeptides, that are lethal to nearly all other eukaryotes. In this study, we used phylogenetic and functional approaches to investigate the evolution of cyclopeptide tolerance in the immigrans-tripunctata radiation of Drosophila . We first inferred the evolutionary relationships among 48 species in this radiation using 978 single copy orthologs. Our results resolved previous incongruities within species groups across the phylogeny. Second, we expanded on previous studies of toxin tolerance by assaying 16 of these species for tolerance to α-amanitin and found that six of these species could develop on diet with toxin. Third, we examined fly development on a diet containing a natural mix of toxins extracted from the Death Cap Amanita phalloides mushroom. Both tolerant and susceptible species developed on diet with this mix, though tolerant species survived at significantly higher concentrations. Finally, we asked how cyclopeptide tolerance might have evolved across the immigrans-tripunctata radiation and inferred that toxin tolerance was ancestral and subsequently lost multiple times. Our results suggest the evolutionary history of cyclopeptide tolerance is complex, and simply describing this trait as present or absent does not fully capture the occurrence or impact on this adaptive radiation. More broadly, the evolution of novelty can be more complex than previously thought, and that accurate descriptions of such novelties are critical in studies examining their evolution.
Collapse
|
5
|
Finet C, Kassner VA, Carvalho AB, Chung H, Day JP, Day S, Delaney EK, De Ré FC, Dufour HD, Dupim E, Izumitani HF, Gautério TB, Justen J, Katoh T, Kopp A, Koshikawa S, Longdon B, Loreto EL, Nunes MDS, Raja KKB, Rebeiz M, Ritchie MG, Saakyan G, Sneddon T, Teramoto M, Tyukmaeva V, Vanderlinde T, Wey EE, Werner T, Williams TM, Robe LJ, Toda MJ, Marlétaz F. DrosoPhyla: Resources for Drosophilid Phylogeny and Systematics. Genome Biol Evol 2021; 13:evab179. [PMID: 34343293 PMCID: PMC8382681 DOI: 10.1093/gbe/evab179] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2021] [Indexed: 02/06/2023] Open
Abstract
The vinegar fly Drosophila melanogaster is a pivotal model for invertebrate development, genetics, physiology, neuroscience, and disease. The whole family Drosophilidae, which contains over 4,400 species, offers a plethora of cases for comparative and evolutionary studies. Despite a long history of phylogenetic inference, many relationships remain unresolved among the genera, subgenera, and species groups in the Drosophilidae. To clarify these relationships, we first developed a set of new genomic markers and assembled a multilocus data set of 17 genes from 704 species of Drosophilidae. We then inferred a species tree with highly supported groups for this family. Additionally, we were able to determine the phylogenetic position of some previously unplaced species. These results establish a new framework for investigating the evolution of traits in fruit flies, as well as valuable resources for systematics.
Collapse
Affiliation(s)
- Cédric Finet
- Howard Hughes Medical Institute and Laboratory of Molecular Biology, University of Wisconsin, Madison, USA
| | - Victoria A Kassner
- Howard Hughes Medical Institute and Laboratory of Molecular Biology, University of Wisconsin, Madison, USA
| | - Antonio B Carvalho
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Brazil
| | - Henry Chung
- Department of Entomology, Michigan State University, USA
| | - Jonathan P Day
- Department of Genetics, University of Cambridge, United Kingdom
| | - Stephanie Day
- Department of Biological Sciences, University of Pittsburgh, USA
| | - Emily K Delaney
- Department of Evolution and Ecology, University of California-Davis, USA
| | - Francine C De Ré
- Programa de Pós-Graduação em Biodiversidade Animal, Universidade Federal de Santa Maria, Rio Grande do Sul, Brazil
| | - Héloïse D Dufour
- Howard Hughes Medical Institute and Laboratory of Molecular Biology, University of Wisconsin, Madison, USA
| | - Eduardo Dupim
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Brazil
| | - Hiroyuki F Izumitani
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Thaísa B Gautério
- Programa de Pós-Graduação em Biologia de Ambientes Aquáticos Continentais, Universidade Federal do Rio Grande, Rio Grande do Sul, Brazil
| | - Jessa Justen
- Howard Hughes Medical Institute and Laboratory of Molecular Biology, University of Wisconsin, Madison, USA
| | - Toru Katoh
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Artyom Kopp
- Department of Evolution and Ecology, University of California-Davis, USA
| | - Shigeyuki Koshikawa
- The Hakubi Center for Advanced Research and Graduate School of Science, Kyoto University, Japan
| | - Ben Longdon
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Elgion L Loreto
- Programa de Pós-Graduação em Biodiversidade Animal, Universidade Federal de Santa Maria, Rio Grande do Sul, Brazil
| | - Maria D S Nunes
- Department of Biological and Medical Sciences, Oxford Brookes University, United Kingdom
- Centre for Functional Genomics, Oxford Brookes University, United Kingdom
| | - Komal K B Raja
- Department of Biological Sciences, Michigan Technological University, USA
| | - Mark Rebeiz
- Department of Biological Sciences, University of Pittsburgh, USA
| | | | - Gayane Saakyan
- Department of Evolution and Ecology, University of California-Davis, USA
| | - Tanya Sneddon
- School of Biology, University of St Andrews, United Kingdom
| | - Machiko Teramoto
- The Hakubi Center for Advanced Research and Graduate School of Science, Kyoto University, Japan
| | | | - Thyago Vanderlinde
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Brazil
| | - Emily E Wey
- Department of Biology, University of Dayton, USA
| | - Thomas Werner
- Department of Biological Sciences, Michigan Technological University, USA
| | | | - Lizandra J Robe
- Programa de Pós-Graduação em Biodiversidade Animal, Universidade Federal de Santa Maria, Rio Grande do Sul, Brazil
- Programa de Pós-Graduação em Biologia de Ambientes Aquáticos Continentais, Universidade Federal do Rio Grande, Rio Grande do Sul, Brazil
| | - Masanori J Toda
- Hokkaido University Museum, Hokkaido University, Sapporo, Japan
| | - Ferdinand Marlétaz
- Centre for Life’s Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, United Kingdom
| |
Collapse
|
6
|
Vela D, Villavicencio E. Karyotype Description of Two Andean Species of the guarani Group of Drosophila (Díptera: Drosophilidae) and Cytological Notes. JOURNAL OF INSECT SCIENCE (ONLINE) 2021; 21:6276208. [PMID: 33991100 PMCID: PMC8122474 DOI: 10.1093/jisesa/ieab032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Indexed: 06/12/2023]
Abstract
The guarani group of Drosophila genus (Diptera: Drosophilidae) is formed by 24 species however the relationship of these species is not clear. In the present study are described the karyotypes of Drosophila sachapuyu Peñafiel and Rafael, 2018 and Drosophila zamorana Peñafiel and Rafael, 2018, two Andean species members of the guarani group. Mitotic chromosomes from cerebral ganglia of third stand larval were obtained by thermal shock and cell suspension techniques. The karyotype of D. sachapuyu, presents 2n = 10 (4R, 1V; X = R, Y = R) while D. zamorana exhibits karyotype 2n = 12 (5R, 1V; X = V, Y = R).
Collapse
Affiliation(s)
- Doris Vela
- Pontificia Universidad Católica del Ecuador, Facultad de Ciencias Exactas y Naturales, Laboratorio de Genética Evolutiva, Avenida 12 de Octubre 1076 y Roca, Quito, Ecuador
| | - Erika Villavicencio
- Pontificia Universidad Católica del Ecuador, Facultad de Ciencias Exactas y Naturales, Laboratorio de Genética Evolutiva, Avenida 12 de Octubre 1076 y Roca, Quito, Ecuador
| |
Collapse
|
7
|
Crews SC, Esposito LA. Towards a synthesis of the Caribbean biogeography of terrestrial arthropods. BMC Evol Biol 2020; 20:12. [PMID: 31980017 PMCID: PMC6979080 DOI: 10.1186/s12862-019-1576-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 12/30/2019] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND The immense geologic and ecological complexity of the Caribbean has created a natural laboratory for interpreting when and how organisms disperse through time and space. However, competing hypotheses compounded with this complexity have resulted in a lack of unifying principles of biogeography for the region. Though new data concerning the timing of geologic events and dispersal events are emerging, powerful new analytical tools now allow for explicit hypothesis testing. Arthropods, with varying dispersal ability and high levels of endemism in the Caribbean, are an important, albeit understudied, biogeographic model system. Herein, we include a comprehensive analysis of every publicly available genetic dataset (at the time of writing) of terrestrial Caribbean arthropod groups using a statistically robust pipeline to explicitly test the current extent of biogeographic hypotheses for the region. RESULTS Our findings indicate several important biogeographic generalizations for the region: the South American continent is the predominant origin of Caribbean arthropod fauna; GAARlandia played a role for some taxa in aiding dispersal from South America to the Greater Antilles; founder event dispersal explains the majority of dispersal events by terrestrial arthropods, and distance between landmasses is important for dispersal; most dispersal events occurred via island hopping; there is evidence of 'reverse' dispersal from islands to the mainland; dispersal across the present-day Isthmus of Panama generally occurred prior to 3 mya; the Greater Antilles harbor more lineage diversity than the Lesser Antilles, and the larger Greater Antilles typically have greater lineage diversity than the smaller islands; basal Caribbean taxa are primarily distributed in the Greater Antilles, the basal-most being from Cuba, and derived taxa are mostly distributed in the Lesser Antilles; Jamaican taxa are usually endemic and monophyletic. CONCLUSIONS Given the diversity and deep history of terrestrial arthropods, incongruence of biogeographic patterns is expected, but focusing on both similarities and differences among divergent taxa with disparate life histories emphasizes the importance of particular qualities responsible for resulting diversification patterns. Furthermore, this study provides an analytical toolkit that can be used to guide researchers interested in answering questions pertaining to Caribbean biogeography using explicit hypothesis testing.
Collapse
Affiliation(s)
- Sarah C Crews
- California Academy of Sciences, Institute for Biodiversity Science and Sustainability, 55 Music Concourse Drive, San Francisco, CA, 94118, USA
| | - Lauren A Esposito
- California Academy of Sciences, Institute for Biodiversity Science and Sustainability, 55 Music Concourse Drive, San Francisco, CA, 94118, USA.
| |
Collapse
|
8
|
Batista MRD, Penha RES, Sofia SH, Klaczko LB. Comparative analysis of adaptive and neutral markers of Drosophila mediopunctata populations dispersed among forest fragments. Ecol Evol 2018; 8:12681-12693. [PMID: 30619573 PMCID: PMC6308856 DOI: 10.1002/ece3.4696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/06/2018] [Accepted: 09/10/2018] [Indexed: 11/26/2022] Open
Abstract
Comparison of adaptive and neutral genetic markers is a valuable approach to characterize the evolutionary consequences of populations living in environments threatened by anthropogenic disturbances, such as forest fragmentation. Shifts in allele frequencies, low genetic variability, and a small effective population size can be considered clear signs of forest fragmentation effects (due to genetic drift) over natural populations, while adaptive responses correlate with environmental variables. Brazilian Atlantic Forest had its landscape drastically reduced and fragmented. Now, several forest remnants are isolated from each other by urban and crop areas. We sampled Drosophila mediopunctata populations from eight forest remnants dispersed on two adjacent geomorphological regions, which are physiognomic and climatically quite distinct. Microsatellite data of inversion-free chromosomes (neutral genetic marker) indicate low structuration among populations suggesting that they were panmictic and greatly influenced by gene flow. Moreover, significant differences in chromosomal inversion frequencies (adaptive genetic marker) among populations and their correlations with climatic and geographical variables indicate that genetic divergence among populations could be an adaptive response to their environment. Nonetheless, we observed a significant difference in inversion frequencies of a population in two consecutive years that may be associated with edge and demographic effects. Also, it may be reflecting seasonal changes of inversion frequencies influenced by great temperature variation due to edge effects. Moreover, the forest fragment size does not affect genetic variation of neutral markers. Our data indicate that despite oscillations in chromosomal inversion frequencies, D. mediopunctata populations from Brazilian Atlantic Forest and their divergence may be driven by adaptive factors to local differences, perhaps because it is a small flying insect easily carried by the wind increasing its migration rates.
Collapse
Affiliation(s)
- Marcos R. D. Batista
- Departamento de Genética, Evolução, Microbiologia e ImunologiaInstituto de Biologia, Universidade Estadual de Campinas – UnicampCampinasSPBrasil
| | - Rafael E. S. Penha
- Departamento de Genética, Evolução, Microbiologia e ImunologiaInstituto de Biologia, Universidade Estadual de Campinas – UnicampCampinasSPBrasil
| | - Silvia H. Sofia
- Departamento de Biologia Geral, Centro de Ciências BiológicasUniversidade Estadual de LondrinaLondrinaPRBrasil
| | - Louis B. Klaczko
- Departamento de Genética, Evolução, Microbiologia e ImunologiaInstituto de Biologia, Universidade Estadual de Campinas – UnicampCampinasSPBrasil
| |
Collapse
|
9
|
Scott Chialvo CH, White BE, Reed LK, Dyer KA. A phylogenetic examination of host use evolution in the quinaria and testacea groups of Drosophila. Mol Phylogenet Evol 2018; 130:233-243. [PMID: 30366088 DOI: 10.1016/j.ympev.2018.10.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/05/2018] [Accepted: 10/20/2018] [Indexed: 12/26/2022]
Abstract
Adaptive radiations provide an opportunity to examine complex evolutionary processes such as ecological specialization and speciation. While a well-resolved phylogenetic hypothesis is critical to completing such studies, the rapid rates of evolution in these groups can impede phylogenetic studies. Here we study the quinaria and testacea species groups of the immigrans-tripunctata radiation of Drosophila, which represent a recent adaptive radiation and are a developing model system for ecological genetics. We were especially interested in understanding host use evolution in these species. In order to infer a phylogenetic hypothesis for this group we sampled loci from both the nuclear genome and the mitochondrial DNA to develop a dataset of 43 protein-coding loci for these two groups along with their close relatives in the immigrans-tripunctata radiation. We used this dataset to examine their evolutionary relationships along with the evolution of feeding behavior. Our analysis recovers strong support for the monophyly of the testacea but not the quinaria group. Results from our ancestral state reconstruction analysis suggests that the ancestor of the testacea and quinaria groups exhibited mushroom-feeding. Within the quinaria group, we infer that transition to vegetative feeding occurred twice, and that this transition did not coincide with a genome-wide change in the rate of protein evolution.
Collapse
Affiliation(s)
- Clare H Scott Chialvo
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA.
| | - Brooke E White
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Laura K Reed
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Kelly A Dyer
- Department of Genetics, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
10
|
Vieira GC, D'Ávila MF, Zanini R, Deprá M, da Silva Valente VL. Evolution of DNMT2 in drosophilids: Evidence for positive and purifying selection and insights into new protein (pathways) interactions. Genet Mol Biol 2018; 41:215-234. [PMID: 29668012 PMCID: PMC5913717 DOI: 10.1590/1678-4685-gmb-2017-0056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 06/18/2017] [Indexed: 12/03/2022] Open
Abstract
The DNA methyltransferase 2 (DNMT2) protein is the most conserved member of the
DNA methyltransferase family. Nevertheless, its substrate specificity is still
controversial and elusive. The genomic role and determinants of DNA methylation
are poorly understood in invertebrates, and several mechanisms and associations
are suggested. In Drosophila, the only known DNMT gene is
Dnmt2. Here we present our findings from a wide search for
Dnmt2 homologs in 68 species of Drosophilidae. We
investigated its molecular evolution, and in our phylogenetic analyses the main
clades of Drosophilidae species were recovered. We tested whether the
Dnmt2 has evolved neutrally or under positive selection
along the subgenera Drosophila and Sophophora
and investigated positive selection in relation to several physicochemical
properties. Despite of a major selective constraint on Dnmt2,
we detected six sites under positive selection. Regarding the DNMT2 protein, 12
sites under positive-destabilizing selection were found, which suggests a
selection that favors structural and functional shifts in the protein. The
search for new potential protein partners with DNMT2 revealed 15 proteins with
high evolutionary rate covariation (ERC), indicating a plurality of DNMT2
functions in different pathways. These events might represent signs of molecular
adaptation, with molecular peculiarities arising from the diversity of
evolutionary histories experienced by drosophilids.
Collapse
Affiliation(s)
- Gilberto Cavalheiro Vieira
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Marícia Fantinel D'Ávila
- Departamento de Zoologia e Ciências Biológicas, Universidade Federal de Santa Maria (UFSM), Palmeira das Missões, RS, Brazil
| | - Rebeca Zanini
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Maríndia Deprá
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Biologia Animal, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Vera Lúcia da Silva Valente
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Departamento de Zoologia e Ciências Biológicas, Universidade Federal de Santa Maria (UFSM), Palmeira das Missões, RS, Brazil.,Programa de Pós-Graduação em Biologia Animal, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| |
Collapse
|
11
|
Batista MRD, Rocha FB, Klaczko LB. Altitudinal distribution of two sibling species of the Drosophila tripunctata group in a preserved tropical forest and their male sterility thermal thresholds. J Therm Biol 2018; 71:69-73. [DOI: 10.1016/j.jtherbio.2017.10.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 10/23/2017] [Accepted: 10/27/2017] [Indexed: 10/18/2022]
|
12
|
Batista MRD, Uno F, Chaves RD, Tidon R, Rosa CA, Klaczko LB. Differential attraction of drosophilids to banana baits inoculated with Saccharomyces cerevisiae and Hanseniaspora uvarum within a Neotropical forest remnant. PeerJ 2017; 5:e3063. [PMID: 28289566 PMCID: PMC5346285 DOI: 10.7717/peerj.3063] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 02/03/2017] [Indexed: 01/29/2023] Open
Abstract
Background Yeasts are a necessary requisite in the diet of most Drosophila species that, in turn, may vector their dispersal in natural environments. Differential attractiveness experiments and the isolation of yeasts consumed by Drosophila may be informative for characterizing this association. Hanseniaspora uvarum is among the most common yeast species isolated from Drosophila crops, with high attractiveness to drosophilids. Saccharomyces cerevisiae has been widely used to collect flies, and it allows broad sampling of almost all local Drosophila species. Pronounced differences in the field concerning Drosophila attractivity to baits seeded with these yeast species have been previously reported. However, few explicit generalizations have been set. Since late fifties, no field experiments of Drosophila attractivity were carried out in the Neotropical region, which is facing shifts in abiotic and biotic factors. Our objective is to characterize preference behavior that mediates the interaction in the wild among Neotropical Drosophila species and yeasts associated with them. We want to set a broad generalization about drosophilids attracted to these yeasts. Here we present the results of a differential attractiveness experiment we carried out in a natural Atlantic Rainforest fragment to assess the preferences of Drosophila species groups to baits inoculated with H. uvarum and S. cerevisiae. Methods Both yeast species were cultured in GYMP broth and separately poured in autoclaved mashed banana that was left fermenting. In the field, we collected drosophilids over five arrays of three different baits: non-inoculated autoclaved banana and banana inoculated with each yeast. In the laboratory the drosophilids were sorted to five sets according to their external morphology and/or genitalia: tripunctata; guarani; willistoni; exotic; and the remaining flies pooled in others. Results and Conclusions Uninoculated banana baits attracted virtually no flies. We found significant departures from random distribution over the other two baits (1:1 proportion) for all sets, except the pooled others. Flies of the sets willistoni and exotic preferred H. uvarum over S. cerevisiae, while the remaining sets were more attracted to S. cerevisiae. Previously, various authors reported similar patterns in attraction experiments with S. cerevisiae and H. uvarum. It is also noteworthy that both yeast species have been isolated from natural substrates and crops of Drosophila species. Taken together, these results suggest that the preferences among Drosophila species groups may be reflecting deep and stable relations with yeast species in natural environments. They can be summarized as: forest dwelling species from subgenus Drosophila (such as tripunctata and guarani groups) are attracted to banana baits seeded with S. cerevisiae; while exotic (as D. melanogaster) and subgenus Sophophora species are preferentially attracted to baits seeded with H. uvarum.
Collapse
Affiliation(s)
- Marcos R D Batista
- Depto. de Genética, Evolução e Bioagentes, Inst. de Biologia, Universidade Estadual de Campinas - UNICAMP , Campinas , São Paulo , Brazil
| | - Fabiana Uno
- Depto. de Genética, Evolução e Bioagentes, Inst. de Biologia, Universidade Estadual de Campinas - UNICAMP , Campinas , São Paulo , Brazil
| | - Rafael D Chaves
- Depto. Ciência de Alimentos, Fac. Engenharia de Alimentos, Universidade Estadual de Campinas - UNICAMP , Campinas , São Paulo , Brazil
| | - Rosana Tidon
- Depto. Genética e Morfologia, Inst. Ciências Biológicas, Universidade de Brasília - UnB , Brasília , DF , Brazil
| | - Carlos A Rosa
- Depto. Microbiologia, ICB, Universidade Federal de Minas Gerais - UFMG , Belo Horizonte , Minas Gerais , Brazil
| | - Louis B Klaczko
- Depto. de Genética, Evolução e Bioagentes, Inst. de Biologia, Universidade Estadual de Campinas - UNICAMP , Campinas , São Paulo , Brazil
| |
Collapse
|
13
|
Ecological insights from assessments of phenotypic plasticity in a Neotropical species of Drosophila. J Therm Biol 2016; 62:7-14. [DOI: 10.1016/j.jtherbio.2016.06.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 06/12/2016] [Accepted: 06/14/2016] [Indexed: 12/18/2022]
|
14
|
Izumitani HF, Kusaka Y, Koshikawa S, Toda MJ, Katoh T. Phylogeography of the Subgenus Drosophila (Diptera: Drosophilidae): Evolutionary History of Faunal Divergence between the Old and the New Worlds. PLoS One 2016; 11:e0160051. [PMID: 27462734 PMCID: PMC4962979 DOI: 10.1371/journal.pone.0160051] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 07/13/2016] [Indexed: 11/19/2022] Open
Abstract
The current subgenus Drosophila (the traditional immigrans-tripunctata radiation) includes major elements of temperate drosophilid faunas in the northern hemisphere. Despite previous molecular phylogenetic analyses, the phylogeny of the subgenus Drosophila has not fully been resolved: the resulting trees have more or less varied in topology. One possible factor for such ambiguous results is taxon-sampling that has been biased towards New World species in previous studies. In this study, taxon sampling was balanced between Old and New World species, and phylogenetic relationships among 45 ingroup species selected from ten core species groups of the subgenus Drosophila were analyzed using nucleotide sequences of three nuclear and two mitochondrial genes. Based on the resulting phylogenetic tree, ancestral distributions and divergence times were estimated for each clade to test Throckmorton’s hypothesis that there was a primary, early-Oligocene disjunction of tropical faunas and a subsequent mid-Miocene disjunction of temperate faunas between the Old and the New Worlds that occurred in parallel in separate lineages of the Drosophilidae. Our results substantially support Throckmorton’s hypothesis of ancestral migrations via the Bering Land Bridge mainly from the Old to the New World, and subsequent vicariant divergence of descendants between the two Worlds occurred in parallel among different lineages of the subgenus Drosophila. However, our results also indicate that these events took place multiple times over a wider time range than Throckmorton proposed, from the late Oligocene to the Pliocene.
Collapse
Affiliation(s)
- Hiroyuki F. Izumitani
- Department of Natural History Science, Graduate school of Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yohei Kusaka
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| | - Shigeyuki Koshikawa
- The Hakubi Center for Advanced Research and Graduate School of Science, Kyoto University, Kyoto, Kyoto, Japan
| | - Masanori J. Toda
- Hokkaido University Museum, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Toru Katoh
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Hokkaido, Japan
- * E-mail:
| |
Collapse
|
15
|
Gustani EC, Oliveira APF, Santos MH, Machado LPB, Mateus RP. Demographic Structure and Evolutionary History of Drosophila ornatifrons (Diptera, Drosophilidae) from Atlantic Forest of Southern Brazil. Zoolog Sci 2016; 32:141-50. [PMID: 25826062 DOI: 10.2108/zs140062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Drosoph1la ornatifrons of the guarani group (Diptera: Drosophilidae) is found mainly in humid areas of the Atlantic Forest biome, especially in the southern region of Brazil. Historical and contemporary fragmentation events influenced species diversity and distribution in this biome, although the role of paleoclimatic and paleogeographic events remain to be verified. The objective of the present study was to evaluate the demographic structure of D. ornatifrons from collection sites that are remnants of Atlantic Forest in southern Brazil, in order to contribute to the understanding of the processes that affected the patterns of genetic variability in this species. To achieve this goal, we sequenced 51 individuals from nine localities and 64 individuals from six localities for the mitochondrial genes Cytochrome Oxidase I and II, respectively. Our results indicate that D. ornatifrons may have experienced a demographic expansion event from the southernmost locations of its distribution, most likely from those located next to the coast and in fragments of Atlantic Forest inserted in the Pampa biome (South 2 group), towards the interior (South 1 group). This expansion probably started after the last glacial maximum, between 20,000 and 18,000 years ago, and was intensified near the Pleistocene-Holocene transition, around 12,000 years ago, when temperature started to rise. In this work we discuss how the haplotypes found barriers to gene flow and dispersal, influenced by the biogeographic pattern of Atlantic Forest.
Collapse
Affiliation(s)
- Emanuele C Gustani
- 1 Laboratório de Genética e Evolução, Departamento de Ciências Biológicas, Universidade Estadual do Centro-Oeste - UNICENTRO - Guarapuava/PR, Brazil
| | | | | | | | | |
Collapse
|
16
|
Machado S, Gottschalk MS, Robe LJ. Historical patterns of niche dynamics in Neotropical species of the Drosophila subgenus (Drosophilidae, Diptera). Evol Ecol 2015. [DOI: 10.1007/s10682-015-9805-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
17
|
Characterization of the complete mitochondrial genome of flower-breeding Drosophila incompta (Diptera, Drosophilidae). Genetica 2014; 142:525-35. [DOI: 10.1007/s10709-014-9799-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 11/18/2014] [Indexed: 10/24/2022]
|
18
|
Chromosomal evolution in the Drosophila cardini group (Diptera: Drosophilidae): photomaps and inversion analysis. Genetica 2014; 142:461-72. [DOI: 10.1007/s10709-014-9791-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 09/02/2014] [Indexed: 11/26/2022]
|
19
|
De Ré FC, Gustani EC, Oliveira APF, Machado LPB, Mateus RP, Loreto ELS, Robe LJ. Brazilian populations ofDrosophila maculifrons(Diptera: Drosophilidae): low diversity levels and signals of a population expansion after the Last Glacial Maximum. Biol J Linn Soc Lond 2014. [DOI: 10.1111/bij.12244] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Francine Cenzi De Ré
- Programa de Pós-Graduação em Biodiversidade Animal (PPGBA); Universidade Federal de Santa Maria (UFSM); Rio Grande do Sul Brazil
| | - Emanuele C. Gustani
- Programa de Pós-Graduação em Biologia Evolutiva (PPGBioEvol); Universidade Estadual do Centro-Oeste (UNICENTRO); Paraná Brazil
- Programa de Pós-Graduação em Genética Evolutiva e Biologia Molecular (PPGGEv); Universidade Federal de São Carlos (UFSCar); São Paulo Brazil
| | - Ana Paula F. Oliveira
- Faculdade de Medicina de Ribeirão Preto, Departamento de Genética; Universidade de São Paulo (USP); Ribeirão Preto São Paulo Brazil
| | - Luciana P. B. Machado
- Programa de Pós-Graduação em Biologia Evolutiva (PPGBioEvol); Universidade Estadual do Centro-Oeste (UNICENTRO); Paraná Brazil
| | - Rogério P. Mateus
- Programa de Pós-Graduação em Biologia Evolutiva (PPGBioEvol); Universidade Estadual do Centro-Oeste (UNICENTRO); Paraná Brazil
| | - Elgion L. S. Loreto
- Programa de Pós-Graduação em Biodiversidade Animal (PPGBA); Universidade Federal de Santa Maria (UFSM); Rio Grande do Sul Brazil
| | - Lizandra J. Robe
- Programa de Pós-Graduação em Biodiversidade Animal (PPGBA); Universidade Federal de Santa Maria (UFSM); Rio Grande do Sul Brazil
- Programa de Pós-Graduação em Biologia de Ambientes Aquáticos Continentais (PPGBAC); Universidade Federal do Rio Grande (FURG); Rio Grande Rio Grande do Sul Brazil
| |
Collapse
|
20
|
Brianti MT, Ananina G, Klaczko LB. Differential occurrence of chromosome inversion polymorphisms among Muller's elements in three species of the tripunctata group of Drosophila, including a species with fast chromosomal evolution. Genome 2013; 56:17-26. [PMID: 23379335 DOI: 10.1139/gen-2012-0074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Detailed chromosome maps with reliable homologies among chromosomes of different species are the first step to study the evolution of the genetic architecture in any set of species. Here, we present detailed photo maps of the polytene chromosomes of three closely related species of the tripunctata group (subgenus Drosophila): Drosophila mediopunctata, D. roehrae, and D. unipunctata. We identified Muller's elements in each species, using FISH, establishing reliable chromosome homologies among species and D. melanogaster. The simultaneous analysis of chromosome inversions revealed a distribution pattern for the inversion polymorphisms among Muller's elements in the three species. Element E is the most polymorphic, with many inversions in each species. Element C follows; while the least polymorphic elements are B and D. While interesting, it remains to be determined how general this pattern is among species of the tripunctata group. Despite previous studies showing that D. mediopunctata and D. unipunctata are phylogenetically closer to each other than to D. roehrae, D. unipunctata shows rare karyotypic changes. It has two chromosome fusions: an additional heterochromatic chromosome pair and a pericentric inversion in the X chromosome. This especial conformation suggests a fast chromosomal evolution that deserves further study.
Collapse
Affiliation(s)
- Mitsue T Brianti
- Department of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas, UNICAMP, P.O. Box 6109, Campinas 13083-970, São Paulo, Brazil
| | | | | |
Collapse
|
21
|
Morales-Hojas R, Vieira J. Phylogenetic patterns of geographical and ecological diversification in the subgenus Drosophila. PLoS One 2012; 7:e49552. [PMID: 23152919 PMCID: PMC3495880 DOI: 10.1371/journal.pone.0049552] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 10/15/2012] [Indexed: 11/18/2022] Open
Abstract
Colonisation of new geographic regions and/or of new ecological resources can result in rapid species diversification into the new ecological niches available. Members of the subgenus Drosophila are distributed across the globe and show a large diversity of ecological niches. Furthermore, taxonomic classification of Drosophila includes the rank radiation, which refers to closely related species groups. Nevertheless, it has never been tested if these taxonomic radiations correspond to evolutionary radiations. Here we present a study of the patterns of diversification of Drosophila to test for increased diversification rates in relation to the geographic and ecological diversification processes. For this, we have estimated and dated a phylogeny of 218 species belonging to the major species groups of the subgenus. The obtained phylogenies are largely consistent with previous studies and indicate that the major groups appeared during the Oligocene/Miocene transition or early Miocene, characterized by a trend of climate warming with brief periods of glaciation. Ancestral reconstruction of geographic ranges and ecological resource use suggest at least two dispersals to the Neotropics from the ancestral Asiatic tropical disribution, and several transitions to specialized ecological resource use (mycophagous and cactophilic). Colonisation of new geographic regions and/or of new ecological resources can result in rapid species diversification into the new ecological niches available. However, diversification analyses show no significant support for adaptive radiations as a result of geographic dispersal or ecological resource shift. Also, cactophily has not resulted in an increase in the diversification rate of the repleta and related groups. It is thus concluded that the taxonomic radiations do not correspond to adaptive radiations.
Collapse
Affiliation(s)
- Ramiro Morales-Hojas
- Molecular Evolution Lab, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.
| | | |
Collapse
|
22
|
Wallau GL, Hua-Van A, Capy P, Loreto ELS. The evolutionary history of mariner-like elements in Neotropical drosophilids. Genetica 2011; 139:327-38. [PMID: 21336962 DOI: 10.1007/s10709-011-9552-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Accepted: 01/17/2011] [Indexed: 11/27/2022]
Abstract
The evolutionary history of mariner-like elements (MLEs) in 49 mainly Neotropical drosophilid species is described. So far, the investigations about the distribution of MLEs were performed mainly using hybridization assays with the Mos1 element (the first mariner active element described) in a widely range of drosophilid species and these sequences were found principally in species that arose in Afrotropical and Sino-Indian regions. Our analysis in mainly Neotropical drosophilid species shows that twenty-three species presented MLEs from three different subfamilies in their genomes: eighteen species had MLEs from subfamily mellifera, fifteen from subfamily mauritiana and three from subfamily irritans. Eleven of these species exhibited elements from more than one subfamily in their genome. In two subfamilies, the analyzed coding region was uninterrupted and contained conserved catalytic motifs. This suggests that these sequences were probably derived from active elements. The species with these putative active elements are Drosophila mediopunctata and D. busckii for the mauritiana subfamily, and D. paramediostriata for the mellifera subfamily. The phylogenetic analysis of MLE, shows a complex evolutionary pattern, exhibiting vertical transfer, stochastic loss and putative events of horizontal transmission occurring between different Drosophilidae species, and even those belonging to more distantly related taxa such as Bactrocera tryoni (Tephritidae family), Sphyracephala europaea (Diopsoidea superfamily) and Buenoa sp. (Hemiptera order). Moreover, our data show that the distribution of MLEs is not restricted to Afrotropical and Sino-Indian species. Conversely, these TEs are also widely distributed in drosophilid species arisen in the Neotropical region.
Collapse
Affiliation(s)
- Gabriel Luz Wallau
- Programa de Pós-Graduação em Biodiversidade Animal, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Rua Roraima, 1000 Santa Maria, RS 97105-900, Brazil
| | | | | | | |
Collapse
|
23
|
Abstract
SummaryThe genus Drosophila is diverse and heterogeneous and contains a large number of easy-to-rear species, so it is an attractive subject for comparative studies. The ability to perform such studies is currently compromised by the lack of a comprehensive phylogeny for Drosophila and related genera. The genus Drosophila as currently defined is known to be paraphyletic with respect to several other genera, but considerable uncertainty remains about other aspects of the phylogeny. Here, we estimate a phylogeny for 176 drosophilid (12 genera) and four non-drosophilid species, using gene sequences for up to 13 different genes per species (average: 4333 bp, five genes per species). This is the most extensive set of molecular data on drosophilids yet analysed. Phylogenetic analyses were conducted with maximum-likelihood (ML) and Bayesian approaches. Our analysis confirms that the genus Drosophila is paraphyletic with 100% support in the Bayesian analysis and 90% bootstrap support in the ML analysis. The subgenus Sophophora, which includes Drosophila melanogaster, is the sister clade of all the other subgenera as well as of most species of six other genera. This sister clade contains two large, well-supported subclades. The first subclade contains the Hawaiian Drosophila, the genus Scaptomyza, and the virilis-repleta radiation. The second contains the immigrans-tripunctata radiation as well as the genera Hirtodrosophila (except Hirtodrosophila duncani), Mycodrosophila, Zaprionus and Liodrosophila. We argue that these results support a taxonomic revision of the genus Drosophila.
Collapse
|
24
|
Robe LJ, Valente VLS, Loreto ELS. Phylogenetic relationships and macro-evolutionary patterns within the Drosophila tripunctata "radiation" (Diptera: Drosophilidae). Genetica 2010; 138:725-35. [PMID: 20376692 DOI: 10.1007/s10709-010-9453-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Accepted: 03/25/2010] [Indexed: 11/28/2022]
Abstract
Despite previous efforts, the evolutionary history of the immigrans-tripunctata clade remains obscure in part due to its hypothesized origin through a rapid radiation. We performed a supermatrix analysis (3,243 base pairs) coupled with richness patterns, environmental phylogenetic signal and radiation tests in order to address phylogenetic relationships and macro-evolutionary hypotheses within this complex group of species. We propose a well-supported evolutionary scenario for the immigrans-tripunctata clade species, in which the tripunctata "radiation" was monophyletic and subdivided into three main lineages: the first including D. pallidipennis (pallidipennis group) imbedded among members of the tripunctata group; the second clustering the cardini and guarani groups; and the third grouping representatives from the tripunctata, calloptera and guaramunu groups. Therefore, we hypothesize that the tripunctata group encompasses a diphyletic taxon, with one clade including the pallidipennis group and the other showing a close affinity to the calloptera and guaramunu groups. Our results also suggest that niche evolution seems to have played a central role in the evolutionary history of the tripunctata species "radiation" allowing effective dispersion and diversification in the Neotropics, possibly in a southwards direction. Although the data as a whole support the notion that this occurred through rapid and successive speciation events, the radiation hypothesis remains to be further corroborated.
Collapse
Affiliation(s)
- Lizandra J Robe
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), CP 15053, Porto Alegre, Rio Grande do Sul, 91501-970, Brazil.
| | | | | |
Collapse
|
25
|
Robe LJ, Loreto ELS, Valente VLS. Radiation of the ,,Drosophila“ subgenus (Drosophilidae, Diptera) in the Neotropics. J ZOOL SYST EVOL RES 2010. [DOI: 10.1111/j.1439-0469.2009.00563.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Laborda PR, Klaczko LB, de Souza AP. Drosophila mediopunctata microsatellites II: cross-species amplification in the tripunctata group and other Drosophila species. CONSERV GENET RESOUR 2009. [DOI: 10.1007/s12686-009-9069-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|