1
|
Norekian TP, Moroz LL. The distribution and evolutionary dynamics of dopaminergic neurons in molluscs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.26.600886. [PMID: 38979169 PMCID: PMC11230423 DOI: 10.1101/2024.06.26.600886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Dopamine is one of the most versatile neurotransmitters in invertebrates. It's distribution and plethora of functions is likely coupled to feeding ecology, especially in Euthyneura (the largest clade of molluscs), which presents the broadest spectrum of environmental adaptations. Still, the analyses of dopamine-mediated signaling were dominated by studies of grazers. Here, we characterize the distribution of dopaminergic neurons in representatives of two distinct ecological groups: the sea angel - obligate predatory pelagic mollusc Clione limacina (Pteropoda, Gymnosomata) and its prey - the sea devil Limacina helicina (Pteropoda, Thecosomata) as well as the plankton eater Melibe leonina (Nudipleura, Nudibranchia). By using tyrosine hydroxylase-immunoreactivity (TH-ir) as a reporter, we showed that the dopaminergic system is moderately conservative among euthyneurans. Across all studied species, small numbers of dopaminergic neurons in the central ganglia contrast to significant diversification of TH-ir neurons in the peripheral nervous system, primarily representing sensory-like cells, which predominantly concentrated in the chemotactic areas and projecting afferent axons to the central nervous system. Combined with α-tubulin immunoreactivity, this study illuminates the unprecedented complexity of peripheral neural systems in gastropod molluscs, with lineage-specific diversification of sensory and modulatory functions.
Collapse
Affiliation(s)
| | - Leonid L. Moroz
- Whitney Laboratory, University of Florida, St. Augustine, FL, USA
- Departments of Neuroscience and McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
2
|
Lin Z, Li F, Krug PJ, Schmidt EW. The polyketide to fatty acid transition in the evolution of animal lipid metabolism. Nat Commun 2024; 15:236. [PMID: 38172109 PMCID: PMC10764717 DOI: 10.1038/s41467-023-44497-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024] Open
Abstract
Animals synthesize simple lipids using a distinct fatty acid synthase (FAS) related to the type I polyketide synthase (PKS) enzymes that produce complex specialized metabolites. The evolutionary origin of the animal FAS and its relationship to the diversity of PKSs remain unclear despite the critical role of lipid synthesis in cellular metabolism. Recently, an animal FAS-like PKS (AFPK) was identified in sacoglossan molluscs. Here, we explore the phylogenetic distribution of AFPKs and other PKS and FAS enzymes across the tree of life. We found AFPKs widely distributed in arthropods and molluscs (>6300 newly described AFPK sequences). The AFPKs form a clade with the animal FAS, providing an evolutionary link bridging the type I PKSs and the animal FAS. We found molluscan AFPK diversification correlated with shell loss, suggesting AFPKs provide a chemical defense. Arthropods have few or no PKSs, but our results indicate AFPKs contributed to their ecological and evolutionary success by facilitating branched hydrocarbon and pheromone biosynthesis. Although animal metabolism is well studied, surprising new metabolic enzyme classes such as AFPKs await discovery.
Collapse
Affiliation(s)
- Zhenjian Lin
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT, 84112, USA
| | - Feng Li
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT, 84112, USA
| | - Patrick J Krug
- Department of Biological Sciences, California State University, Los Angeles, CA, 90032, USA
| | - Eric W Schmidt
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
3
|
The Taming of Smeagol? A New Population and an Assessment of the Known Population of the Critically Endangered Pulmonate Gastropod Smeagol hilaris (Heterobranchia, Otinidae). DIVERSITY 2023. [DOI: 10.3390/d15010086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The genus Smeagol consists of five named species of air-breathing marine slugs (restricted to southern Australia and New Zealand) and three undescribed taxa from southern Japan. Only one species, S. hilaris, is known to be from New South Wales (NSW), and it previously had a known distribution limited to one site, Merry Beach on the south coast. This diminutive invertebrate is classified as critically endangered in NSW due to its extremely restricted distribution and concern about its historically declining numbers. Accordingly, the aims of this study were to survey the known population of S. hilaris at Merry Beach and to explore other potentially suitable sites, using a visual census method, to determine if further populations or species exist in NSW. The resulting quantitative surveys of the known population and a new population at Storm Bay, Kiama, NSW, are reported here. DNA barcoding of a ~650 bp segment of the mitochondrial cytochrome c oxidase I (COI) gene for several individuals from each population confirmed the conspecificity among the two populations. The population at Merry Beach was found to remain viable, while the discovery of the new population of S. hilaris represents a doubling of the known global populations of this species. Details of the highly-specialised niche habitat occupied by Smeagol in New South Wales and recommendations for ongoing management are documented.
Collapse
|
4
|
Ferrari M, Hautmann M. Gastropods underwent a major taxonomic turnover during the end-Triassic marine mass extinction event. PLoS One 2022; 17:e0276329. [PMID: 36322518 PMCID: PMC9629647 DOI: 10.1371/journal.pone.0276329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 10/04/2022] [Indexed: 01/24/2023] Open
Abstract
Based on an exhaustive database of gastropod genera and subgenera during the Triassic-Jurassic transition, origination and extinction percentages and resulting diversity changes are calculated, with a particular focus on the end-Triassic mass extinction event. We show that gastropods suffered a loss of 56% of genera and subgenera during this event, which was higher than the average of marine life (46.8%). Among molluscs, gastropods were more strongly affected than bivalves (43.4%) but less than ammonoids, which were nearly annihilated. However, there were also pronounced differences among gastropod subclasses. The most strongly affected subclass was the Neritimorphia, which lost 72.7% of their Rhaetian genera; on the other extreme, the Heterobranchia remained nearly unaffected (11% loss). We analysed this extinction pattern with respect to larval development, palaeobiogeography, shell size, and anatomy and found that putative feeding of the pelagic larval stage, adaptation to tropical-temperate water temperatures, and flexibility of the mantle attachment were among the factors that might explain extinction resilience of heterobranchs during the end-Triassic crisis. Among molluscs, extinction magnitude roughly correlates with locomotion activity and thus metabolic rates. We suggest three potential kill mechanisms that could account for these observations: global warming, ocean acidification, and extinction of marine plankton. The end-Triassic extinction of gastropods therefore fits to proposed extinction scenarios for this event, which invoke the magmatic activity of the Central Atlantic Magmatic Province as the ultimate cause of death. With respect to gastropods, the effect of the end-Triassic mass extinction was comparable to that of the end-Permian mass extinction. Notably, Heterobranchia was relatively little affected by both events; the extinction resilience of this subclass during times of global environmental changes was therefore possibly a key aspect of their subsequent evolutionary success.
Collapse
Affiliation(s)
- Mariel Ferrari
- Instituto Patagónico de Geología y Paleontología, IPGP (CCT CONICET-CENPAT), Puerto Madryn, Provincia de Chubut, Argentina
| | - Michael Hautmann
- Paläontologisches Institut und Museum, Universität Zürich, Zürich, Switzerland
| |
Collapse
|
5
|
Krug PJ, Caplins SA, Algoso K, Thomas K, Valdés ÁA, Wade R, Wong NLWS, Eernisse DJ, Kocot KM. Phylogenomic resolution of the root of Panpulmonata, a hyperdiverse radiation of gastropods: new insight into the evolution of air breathing. Proc Biol Sci 2022; 289:20211855. [PMID: 35382597 PMCID: PMC8984808 DOI: 10.1098/rspb.2021.1855] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 02/21/2022] [Indexed: 11/12/2022] Open
Abstract
Transitions to terrestriality have been associated with major animal radiations including land snails and slugs in Stylommatophora (>20 000 described species), the most successful lineage of 'pulmonates' (a non-monophyletic assemblage of air-breathing gastropods). However, phylogenomic studies have failed to robustly resolve relationships among traditional pulmonates and affiliated marine lineages that comprise clade Panpulmonata (Mollusca, Gastropoda), especially two key taxa: Sacoglossa, a group including photosynthetic sea slugs, and Siphonarioidea, intertidal limpet-like snails with a non-contractile pneumostome (narrow opening to a vascularized pallial cavity). To clarify the evolutionary history of the panpulmonate radiation, we performed phylogenomic analyses on datasets of up to 1160 nuclear protein-coding genes for 110 gastropods, including 40 new transcriptomes for Sacoglossa and Siphonarioidea. All 18 analyses recovered Sacoglossa as the sister group to a clade we named Pneumopulmonata, within which Siphonarioidea was sister to the remaining lineages in most analyses. Comparative modelling indicated shifts to marginal habitat (estuarine, mangrove and intertidal zones) preceded and accelerated the evolution of a pneumostome, present in the pneumopulmonate ancestor along with a one-sided plicate gill. These findings highlight key intermediate stages in the evolution of air-breathing snails, supporting the hypothesis that adaptation to marginal zones played an important role in major sea-to-land transitions.
Collapse
Affiliation(s)
- Patrick J. Krug
- Department of Biological Sciences, California State University, Los Angeles, CA 90032-8201, USA
| | | | - Krisha Algoso
- Department of Biological Sciences, California State University, Los Angeles, CA 90032-8201, USA
| | - Kanique Thomas
- Department of Biological Sciences, California State University, Los Angeles, CA 90032-8201, USA
| | - Ángel A. Valdés
- Department of Biological Sciences, California State Polytechnic University, Pomona, CA 91768, USA
| | - Rachael Wade
- Department of Botany, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | - Nur Leena W. S. Wong
- International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Douglas J. Eernisse
- Department of Biological Science, California State University, Fullerton, CA 92834, USA
| | - Kevin M. Kocot
- Department of Biological Sciences and Alabama Museum of Natural History, The University of Alabama, Tuscaloosa, AL 35487, USA
| |
Collapse
|
6
|
Goulding TC, Khalil M, Tan SH, Cumming RA, Dayrat B. Global diversification and evolutionary history of onchidiid slugs (Gastropoda, Pulmonata). Mol Phylogenet Evol 2021; 168:107360. [PMID: 34793980 DOI: 10.1016/j.ympev.2021.107360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 09/29/2021] [Accepted: 11/09/2021] [Indexed: 12/24/2022]
Abstract
Many marine species are specialized to specific parts of a habitat. In a mangrove forest, for instance, species may be restricted to the mud surface, the roots and trunks of mangrove trees, or rotting logs, which can be regarded as distinct microhabitats. Shifts to new microhabitats may be an important driver of sympatric speciation. However, the evolutionary history of these shifts is still poorly understood in most groups of marine organisms, because it requires a well-supported phylogeny with relatively complete taxon sampling. Onchidiid slugs are an ideal case study for the evolutionary history of habitat and microhabitat shifts because onchidiid species are specialized to different tidal zones and microhabitats in mangrove forests and rocky shores, and the taxonomy of the family in the Indo-West Pacific has been recently revised in a series of monographs. Here, DNA sequences for onchidiid species from the North and East Pacific, the Caribbean, and the Atlantic are used to reconstruct phylogenetic relationships among Onchidella species, and are combined with new data for Indo-West Pacific species to reconstruct a global phylogeny of the family. The phylogenetic relationships of onchidiid slugs are reconstructed based on three mitochondrial markers (COI, 12S, 16S) and three nuclear markers (28S, ITS2, H3) and nearly complete taxon sampling (all 13 genera and 62 of the 67 species). The highly-supported phylogeny presented here suggests that ancestral onchidiids most likely lived in the rocky intertidal, and that a lineage restricted to the tropical Indo-West Pacific colonized new habitats, including mudflats, mangrove forests, and high-elevation rainforests. Many onchidiid species in the Indo-West Pacific diverged during the Miocene, around the same time that a high diversity of mangrove plants appears in the fossil record, while divergence among Onchidella species occurred earlier, likely beginning in the Eocene. It is demonstrated that ecological specialization to microhabitats underlies the divergence between onchidiid genera, as well as the diversification through sympatric speciation in the genera Wallaconchis and Platevindex. The geographic distributions of onchidiid species also indicate that allopatric speciation played a key role in the diversification of several genera, especially Onchidella and Peronia. The evolutionary history of several morphological traits (penial gland, rectal gland, dorsal eyes, intestinal loops) is examined in relation to habitat and microhabitat evolutionary transitions and that the rectal gland of onchidiids is an adaptation to high intertidal and terrestrial habitats.
Collapse
Affiliation(s)
- Tricia C Goulding
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA.
| | - Munawar Khalil
- Department of Marine Science, Universitas Malikussaleh, Reuleut Main Campus, Kecamatan Muara Batu, North Aceh, Aceh 24355, Indonesia
| | - Shau Hwai Tan
- Centre for Marine and Coastal Studies, Universiti Sains Malaysia, 11800 Minden Penang, Malaysia; Marine Science Laboratory, School of Biological Sciences, Universiti Sains Malaysia, 11800 Minden Penang, Malaysia
| | - Rebecca A Cumming
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Benoît Dayrat
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
7
|
Schäfer GG, Grebe LJ, Schinkel R, Lieb B. The Evolution of Hemocyanin Genes in Caenogastropoda: Gene Duplications and Intron Accumulation in Highly Diverse Gastropods. J Mol Evol 2021; 89:639-655. [PMID: 34757470 PMCID: PMC8599328 DOI: 10.1007/s00239-021-10036-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 10/15/2021] [Indexed: 11/30/2022]
Abstract
Hemocyanin is the oxygen transport protein of most molluscs and represents an important physiological factor that has to be well-adapted to their environments because of the strong influences of abiotic factors on its oxygen affinity. Multiple independent gene duplications and intron gains have been reported for hemocyanin genes of Tectipleura (Heterobranchia) and the caenogastropod species Pomacea canaliculata, which contrast with the uniform gene architectures of hemocyanins in Vetigastropoda. The goal of this study was to analyze hemocyanin gene evolution within the diverse group of Caenogastropoda in more detail. Our findings reveal multiple gene duplications and intron gains and imply that these represent general features of Apogastropoda hemocyanins. Whereas hemocyanin exon–intron structures are identical within different Tectipleura lineages, they differ strongly within Caenogastropoda among phylogenetic groups as well as between paralogous hemocyanin genes of the same species. Thus, intron accumulation took place more gradually within Caenogastropoda but finally led to a similar consequence, namely, a multitude of introns. Since both phenomena occurred independently within Heterobranchia and Caenogastropoda, the results support the hypothesis that introns may contribute to adaptive radiation by offering new opportunities for genetic variability (multiple paralogs that may evolve differently) and regulation (multiple introns). Our study indicates that adaptation of hemocyanin genes may be one of several factors that contributed to the evolution of the large diversity of Apogastropoda. While questions remain, this hypothesis is presented as a starting point for the further study of hemocyanin genes and possible correlations between hemocyanin diversity and adaptive radiation.
Collapse
Affiliation(s)
- Gabriela Giannina Schäfer
- Institute of Molecular Physiology, Johannes Gutenberg-University of Mainz, Johann-Joachim-Becher-Weg 7, 55128, Mainz, Germany
| | - Lukas Jörg Grebe
- Institute of Molecular Physiology, Johannes Gutenberg-University of Mainz, Johann-Joachim-Becher-Weg 7, 55128, Mainz, Germany
| | - Robin Schinkel
- Institute of Molecular Physiology, Johannes Gutenberg-University of Mainz, Johann-Joachim-Becher-Weg 7, 55128, Mainz, Germany
| | - Bernhard Lieb
- Institute of Molecular Physiology, Johannes Gutenberg-University of Mainz, Johann-Joachim-Becher-Weg 7, 55128, Mainz, Germany.
| |
Collapse
|
8
|
Brenzinger B, Schrödl M, Kano Y. Origin and significance of two pairs of head tentacles in the radiation of euthyneuran sea slugs and land snails. Sci Rep 2021; 11:21016. [PMID: 34697382 PMCID: PMC8545979 DOI: 10.1038/s41598-021-99172-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/31/2021] [Indexed: 11/09/2022] Open
Abstract
The gastropod infraclass Euthyneura comprises at least 30,000 species of snails and slugs, including nudibranch sea slugs, sea hares and garden snails, that flourish in various environments on earth. A unique morphological feature of Euthyneura is the presence of two pairs of sensory head tentacles with different shapes and functions: the anterior labial tentacles and the posterior rhinophores or eyestalks. Here we combine molecular phylogenetic and microanatomical evidence that suggests the two pairs of head tentacles have originated by splitting of the original single tentacle pair (with two parallel nerve cords in each tentacle) as seen in many other gastropods. Minute deep-sea snails of Tjaernoeia and Parvaplustrum, which in our phylogeny belonged to the euthyneurans’ sister group (new infraclass Mesoneura), have tentacles that are split along much of their lengths but associated nerves and epidermal sense organs are not as specialized as in Euthyneura. We suggest that further elaboration of cephalic sense organs in Euthyneura closely coincided with their ecological radiation and drastic modification of body plans. The monotypic family Parvaplustridae nov., superfamily Tjaernoeioidea nov. (Tjaernoeiidae + Parvaplustridae), and new major clade Tetratentaculata nov. (Mesoneura nov. + Euthyneura) are also proposed based on their phylogenetic relationships and shared morphological traits.
Collapse
Affiliation(s)
- Bastian Brenzinger
- SNSB-Bavarian State Collection of Zoology, Münchhausenstr. 21, 81247, Munich, Germany. .,Department of Marine Ecosystems Dynamics, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8564, Japan.
| | - Michael Schrödl
- SNSB-Bavarian State Collection of Zoology, Münchhausenstr. 21, 81247, Munich, Germany.,Department Biology II, BioZentrum, Ludwig-Maximilians-Universität, Großhadernerstr. 2, 82152, Planegg-Martinsried, Germany.,SNSB-Bavarian State Collection of Paleontology and Geology, GeoBioCenter LMU, Richard-Wagner-Str. 10, 80333, Munich, Germany
| | - Yasunori Kano
- Department of Marine Ecosystems Dynamics, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8564, Japan.
| |
Collapse
|
9
|
Salvador RB. A new species of Solaropsis Beck, 1837 (Gastropoda: Stylommatophora: Solaropsidae) from the Brazilian Amazon. FOLIA MALACOLOGICA 2021. [DOI: 10.12657/folmal.029.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
A specimen of Solaropsidae from the collection of the Academy of Natural Sciences of Drexel University (Philadelphia, USA) was recognised as a potential new species based on shell morphology. With support from a multi-locus molecular phylogenetic analysis, a new species is described here: Solaropsis penthesileae sp. nov. It is native to the Amazon Rainforest in Pará state, northern Brazil, and it is closely related to S. nimbus (Simone). It differs in its more discoid shell, with a wider body whorl that bears a stronger median angulation in its lower spire. The specimen was collected in 1998 and is an example of the long shelf-life invertebrates may have in museum collections before they are identified and formally described. It is also a reminder of the importance of those collections for biodiversity studies.
Collapse
|
10
|
Varney RM, Brenzinger B, Malaquias MAE, Meyer CP, Schrödl M, Kocot KM. Assessment of mitochondrial genomes for heterobranch gastropod phylogenetics. BMC Ecol Evol 2021; 21:6. [PMID: 33514315 PMCID: PMC7853304 DOI: 10.1186/s12862-020-01728-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 11/26/2020] [Indexed: 01/07/2023] Open
Abstract
Background Heterobranchia is a diverse clade of marine, freshwater, and terrestrial gastropod molluscs. It includes such disparate taxa as nudibranchs, sea hares, bubble snails, pulmonate land snails and slugs, and a number of (mostly small-bodied) poorly known snails and slugs collectively referred to as the “lower heterobranchs”. Evolutionary relationships within Heterobranchia have been challenging to resolve and the group has been subject to frequent and significant taxonomic revision. Mitochondrial (mt) genomes can be a useful molecular marker for phylogenetics but, to date, sequences have been available for only a relatively small subset of Heterobranchia. Results To assess the utility of mitochondrial genomes for resolving evolutionary relationships within this clade, eleven new mt genomes were sequenced including representatives of several groups of “lower heterobranchs”. Maximum likelihood analyses of concatenated matrices of the thirteen protein coding genes found weak support for most higher-level relationships even after several taxa with extremely high rates of evolution were excluded. Bayesian inference with the CAT + GTR model resulted in a reconstruction that is much more consistent with the current understanding of heterobranch phylogeny. Notably, this analysis recovered Valvatoidea and Orbitestelloidea in a polytomy with a clade including all other heterobranchs, highlighting these taxa as important to understanding early heterobranch evolution. Also, dramatic gene rearrangements were detected within and between multiple clades. However, a single gene order is conserved across the majority of heterobranch clades. Conclusions Analysis of mitochondrial genomes in a Bayesian framework with the site heterogeneous CAT + GTR model resulted in a topology largely consistent with the current understanding of heterobranch phylogeny. However, mitochondrial genomes appear to be too variable to serve as good phylogenetic markers for robustly resolving a number of deeper splits within this clade.
Collapse
Affiliation(s)
- Rebecca M Varney
- Department of Biological Sciences, The University of Alabama, Campus Box 870344, Tuscaloosa, AL, 35487, USA
| | - Bastian Brenzinger
- SNSB-Bavarian State Collection of Zoology, Münchhausenstr. 21, 81247, München, Germany
| | | | - Christopher P Meyer
- National Museum of Natural History, Smithsonian Institution, 10th St. & Constitution Ave. NW, Washington, D.C., 20560, USA
| | - Michael Schrödl
- SNSB-Bavarian State Collection of Zoology, Münchhausenstr. 21, 81247, München, Germany.,BioGeoCenter LMU (Ludwig Maximillion University Munich), University of Munich, Biozentrum, Großhaderner Str. 2, 82152, Planegg-Martinsried, Germany
| | - Kevin M Kocot
- Department of Biological Sciences, The University of Alabama, Campus Box 870344, Tuscaloosa, AL, 35487, USA. .,Alabama Museum of Natural History, Campus Box 870344, Tuscaloosa, AL, 35487, USA.
| |
Collapse
|
11
|
Knutson VL, Brenzinger B, Schrödl M, Wilson NG, Giribet G. Most Cephalaspidea have a shell, but transcriptomes can provide them with a backbone (Gastropoda: Heterobranchia). Mol Phylogenet Evol 2020; 153:106943. [DOI: 10.1016/j.ympev.2020.106943] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/21/2020] [Indexed: 01/14/2023]
|
12
|
Soldatenko EV, Shatrov AB, Petrov AA, Shirokaya AA. Sperm ultrastructure in
Acroloxus lacustris
(Linnaeus, 1758) (Gastropoda: Panpulmonata). ACTA ZOOL-STOCKHOLM 2020. [DOI: 10.1111/azo.12364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Andrey B. Shatrov
- Zoological Institute Russian Academy of Sciences St. Petersburg Russia
| | - Anatoly A. Petrov
- Zoological Institute Russian Academy of Sciences St. Petersburg Russia
| | - Alena A. Shirokaya
- Limnological Institute, Siberian Branch Russian Academy of Sciences Irkutsk Russia
| |
Collapse
|
13
|
Moles J, Giribet G. A polyvalent and universal tool for genomic studies in gastropod molluscs (Heterobranchia). Mol Phylogenet Evol 2020; 155:106996. [PMID: 33148425 DOI: 10.1016/j.ympev.2020.106996] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 10/20/2020] [Accepted: 10/20/2020] [Indexed: 10/23/2022]
Abstract
Molluscs are the second most diverse animal phylum and heterobranch gastropods present ~ 44,000 species. These comprise fascinating creatures with huge morphological and ecological disparity. Such great diversity comes with even larger phylogenetic uncertainty and many taxa have been largely neglected in molecular assessments. Genomic tools have provided resolution to deep cladogenic events but generating large numbers of transcriptomes/genomes is expensive and usually requires fresh material. Here we leverage a target enrichment approach to design and synthesize a probe set based on available genomes and transcriptomes across Heterobranchia. Our probe set contains 57,606 70mer baits and targets a total of 2,259 ultra-conserved elements (UCEs). Post-sequencing capture efficiency was tested against 31 marine heterobranchs from major groups, including Acochlidia, Acteonoidea, Aplysiida, Cephalaspidea, Pleurobranchida, Pteropoda, Runcinida, Sacoglossa, and Umbraculida. The combined Trinity and Velvet assemblies recovered up to 2,211 UCEs in Tectipleura, up to 1,978 in Nudipleura, and up to 1,927 in Acteonoidea, the latter two being the most distantly related taxa to our core study group. Total alignment length was 525,599 bp and contained 52% informative sites and 21% missing data. Maximum-likelihood and Bayesian inference approaches recovered the monophyly of all orders tested as well as the larger clades Nudipleura, Panpulmonata, and Euopisthobranchia. The successful enrichment of diversely preserved material and DNA concentrations demonstrate the polyvalent nature of UCEs, and the universality of the probe set designed. We believe this probe set will enable multiple, interesting lines of research, that will benefit from an inexpensive and largely informative tool that will, additionally, benefit from the access to museum collections to gather genomic data.
Collapse
Affiliation(s)
- Juan Moles
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA.
| | - Gonzalo Giribet
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA.
| |
Collapse
|
14
|
Doğan Ö, Schrödl M, Chen Z. The complete mitogenome of Arion vulgaris Moquin-Tandon, 1855 (Gastropoda: Stylommatophora): mitochondrial genome architecture, evolution and phylogenetic considerations within Stylommatophora. PeerJ 2020; 8:e8603. [PMID: 32117634 PMCID: PMC7039129 DOI: 10.7717/peerj.8603] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/19/2020] [Indexed: 11/27/2022] Open
Abstract
Stylommatophora is one of the most speciose orders of Gastropoda, including terrestrial snails and slugs, some of which are economically important as human food, agricultural pests, vectors of parasites or due to invasiveness. Despite their great diversity and relevance, the internal phylogeny of Stylommatophora has been debated. To date, only 34 stylommatophoran mitogenomes were sequenced. Here, the complete mitogenome of an invasive pest slug, Arion vulgaris Moquin-Tandon, 1855 (Stylommatophora: Arionidae), was sequenced using next generation sequencing, analysed and compared with other stylommatophorans. The mitogenome of A. vulgaris measures 14,547 bp and contains 13 protein-coding, two rRNA, 22 tRNA genes, and one control region, with an A + T content of 70.20%. All protein coding genes (PCGs) are initiated with ATN codons except for COX1, ND5 and ATP8 and all are ended with TAR or T-stop codons. All tRNAs were folded into a clover-leaf secondary structure except for trnC and trnS1 (AGN). Phylogenetic analyses confirmed the position of A. vulgaris within the superfamily Arionoidea, recovered a sister group relationship between Arionoidea and Orthalicoidea, and supported monophyly of all currently recognized superfamilies within Stylommatophora except for the superfamily Helicoidea. Initial diversification time of the Stylommatophora was estimated as 138.55 million years ago corresponding to Early Cretaceous. The divergence time of A. vulgaris and Arion rufus (Linnaeus, 1758) was estimated as 15.24 million years ago corresponding to one of Earth's most recent, global warming events, the Mid-Miocene Climatic Optimum. Furthermore, selection analyses were performed to investigate the role of different selective forces shaping stylommatophoran mitogenomes. Although purifying selection is the predominant selective force shaping stylommatophoran mitogenomes, six genes (ATP8, COX1, COX3, ND3, ND4 and ND6) detected by the branch-specific aBSREL approach and three genes (ATP8, CYTB and ND4L) detected by codon-based BEB, FUBAR and MEME approaches were exposed to diversifying selection. The positively selected substitutions at the mitochondrial PCGs of stylommatophoran species seems to be adaptive to environmental conditions and affecting mitochondrial ATP production or protection from reactive oxygen species effects. Comparative analysis of stylommatophoran mitogenome rearrangements using MLGO revealed conservatism in Stylommatophora; exceptions refer to potential apomorphies for several clades including rearranged orders of trnW-trnY and of trnE-trnQ-rrnS-trnM-trnL2-ATP8-trnN-ATP6-trnR clusters for the genus Arion. Generally, tRNA genes tend to be rearranged and tandem duplication random loss, transitions and inversions are the most basic mechanisms shaping stylommatophoran mitogenomes.
Collapse
Affiliation(s)
- Özgül Doğan
- Department of Molecular Biology and Genetics, Faculty of Science, Sivas Cumhuriyet University, Sivas, Turkey
- SNSB-Bavarian State Collection of Zoology, Munich, Germany
| | - Michael Schrödl
- SNSB-Bavarian State Collection of Zoology, Munich, Germany
- Department Biology II, Ludwig-Maximilians-Universität, Munich, Germany
- GeoBio-Center LMU, Munich, Germany
| | - Zeyuan Chen
- SNSB-Bavarian State Collection of Zoology, Munich, Germany
- Department Biology II, Ludwig-Maximilians-Universität, Munich, Germany
| |
Collapse
|
15
|
Ayyagari VS, Sreerama K. Molecular phylogeny and evolution of Pulmonata (Mollusca: Gastropoda) on the basis of mitochondrial (16S, COI) and nuclear markers (18S, 28S): an overview. J Genet 2020. [DOI: 10.1007/s12041-020-1177-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Dallinger R, Zerbe O, Baumann C, Egger B, Capdevila M, Palacios Ò, Albalat R, Calatayud S, Ladurner P, Schlick-Steiner BC, Steiner FM, Pedrini-Martha V, Lackner R, Lindner H, Dvorak M, Niederwanger M, Schnegg R, Atrian S. Metallomics reveals a persisting impact of cadmium on the evolution of metal-selective snail metallothioneins. Metallomics 2020; 12:702-720. [DOI: 10.1039/c9mt00259f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The tiny contribution of cadmium (Cd) to the composition of the earth's crust contrasts with its high biological significance. We suggest that in gastropod clades, the protein family of metallothioneins (MTs) has evolved to specifically detoxify Cd.
Collapse
Affiliation(s)
- Reinhard Dallinger
- Department of Zoology
- University of Innsbruck
- Austria
- Center for Molecular Biosciences Innsbruck
- Austria
| | - Oliver Zerbe
- Department of Chemistry
- University of Zürich
- Switzerland
| | | | | | - Mercé Capdevila
- Departament de Química
- Universitat Autònoma de Barcelona
- Spain
| | - Òscar Palacios
- Departament de Química
- Universitat Autònoma de Barcelona
- Spain
| | | | | | - Peter Ladurner
- Department of Zoology
- University of Innsbruck
- Austria
- Center for Molecular Biosciences Innsbruck
- Austria
| | | | | | | | | | - Herbert Lindner
- Division of Clinical Biochemistry
- Innsbruck Medical University
- Austria
| | | | | | | | | |
Collapse
|
17
|
Harms KS, Hesketh AV, Page LR. Foregut Development and Metamorphosis in a Pyramidellid Gastropod: Modularity and Constraint within a Complex Life Cycle. THE BIOLOGICAL BULLETIN 2019; 237:254-269. [PMID: 31922910 DOI: 10.1086/705357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Pyramidellids are tiny ectoparasitic gastropods with highly derived feeding structures for piercing and sucking. We attempted to resolve homology controversies about unique pyramidellid feeding structures by examining foregut development through larval and metamorphic stages, using sections for light and electron microscopy. We anticipated that, like many marine invertebrate larvae, post-metamorphic structures would differentiate extensively in late larvae to speed metamorphic transition. Previous studies of gastropods suggested that development of juvenile feeding structures in larvae was facilitated by foregut subdivision into dorsal and ventral developmental modules, and spatial uncoupling of these modules may have facilitated adaptive radiation in neogastropods. Observations of Odostomia tenuisculpta suggested that the stylet may be derived from cuticle-secreting buccal epithelium surrounding the proximal end of the salivary duct, whereas the stylet sheath could be either a derived jaw or a radular tooth. The anterior half of the remarkable buccal pump of these euthyneuran gastropods develops from the larval esophagus, which is unorthodox compared to caenogastropods, where extensive post-metamorphic specialization of a dorsal module component has not been previously described. The introvert tube develops from pouches of the distal larval esophagus and may actually be an eversible oral tube rather than an acrembolic proboscis. Minimal differentiation of presumptive juvenile foregut structures occurred during the larval stage of O. tenuisculpta, when compared to other gastropods. The stylet, stylet sheath, and buccal pump may be incompatible with functioning of the larval esophagus; thus, an explosive period of morphogenesis is necessary at metamorphosis. Although dorsal and ventral modules were recognizable during the development of O. tenuisculpta, we failed to find evidence that this modularity facilitated the extreme evolutionary remodeling of post-metamorphic feeding structures.
Collapse
|
18
|
Ayyagari VS, Sreerama K. Molecular phylogenetic analysis of Pulmonata (Mollusca:
Gastropoda) on the basis of Histone-3 gene. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2019. [DOI: 10.1186/s43088-019-0014-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
In the present study, phylogenetic relationships within
Heterobranchia in particular to Pulmonata were evaluated by means of Histone-3
(H3) gene sequence information. H3 gene is a slow evolving marker and is useful
in resolving the deep level relationships. This is the first study to report the
phylogeny of Pulmonata with more number of representatives from the group on the
basis of H3 gene.
Results
The major groups within Heterobranchia viz. Lower Heterobranchia,
Opisthobranchia, and Pulmonata were non-monophyletic. A few of the pulmonate
groups’ viz. Planorbidae, Lymnaeidae, Siphonariidae, Veronicellidae, and
Stylommatophora were recovered as monophyletic. The concepts of Eupulmonata and
Geophila were not observed in the present study.
Conclusions
The present study was undertaken with an objective to study the
phylogeny of Pulmonata reconstructed on the basis of H3 gene and its ability to
resolve the deeper divergences in Pulmonata. However, the resolution at the
deeper nodes is limited. There is a good resolution at the level of genera. In
the future, inclusion of more number of taxa with increased sequence length of
H3 marker may yield resolved topologies that may shed more insights into the
phylogeny of Pulmonata.
Collapse
|
19
|
Hirano T, Asato K, Yamamoto S, Takahashi Y, Chiba S. Cretaceous amber fossils highlight the evolutionary history and morphological conservatism of land snails. Sci Rep 2019; 9:15886. [PMID: 31685840 PMCID: PMC6828811 DOI: 10.1038/s41598-019-51840-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/08/2019] [Indexed: 11/09/2022] Open
Abstract
Other than hard bones and shells, it is rare for soft tissues to fossilize, but occasionally they are well-preserved in amber. Here, we focus on both modern and fossilized species of the land snail superfamily Cyclophoroidea. Phylogenetic relationships within the Cyclophoroidea were previously studied using extant species, but timing of divergence within the group remains unclear. In addition, it is difficult to observe morphological traits such as the chitinous operculum and periostracum of fossil snails due to their poor preservation potential. Here we describe nine species including a new genus and five new species of well-preserved fossil cyclophoroideans from the mid-Cretaceous Burmese amber. These fossils include not only the shell, but also the chitinous operculum and periostracum, soft body, and excrements. We present the first estimation of divergence time among cyclophoroidean families using fossil records and molecular data, suggesting extreme morphological conservatism of the Cyclophoroidea for nearly 100 million years.
Collapse
Affiliation(s)
- Takahiro Hirano
- Department of Biological Sciences, University of Idaho, Moscow, USA.
| | - Kaito Asato
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | - Shûhei Yamamoto
- Integrative Research Center, Field Museum of Natural History, Chicago, USA
| | - Yui Takahashi
- Muroto Geopark Promotion Committee, Muroto Global Geopark Center, Kochi, Japan
| | - Satoshi Chiba
- Center for Northeast Asian Studies, Tohoku University, Miyagi, Japan.,Graduate school of Life Sciences, Tohoku University, Miyagi, Japan
| |
Collapse
|
20
|
Gavagnin M, Carbone M, Ciavatta ML, Mollo E. Natural Products from Marine Heterobranchs: an Overview of Recent Results. CHEMISTRY JOURNAL OF MOLDOVA 2019. [DOI: 10.19261/cjm.2019.617] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
21
|
Page LR, Hildebrand IM, Kempf SC. Siphonariid development: Quintessential euthyneuran larva with a mantle fold innovation (Gastropoda; Panpulmonata). J Morphol 2019; 280:634-653. [DOI: 10.1002/jmor.20971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/04/2019] [Accepted: 02/06/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Louise R. Page
- Department of BiologyUniversity of Victoria P.O. Box 3020 STN CSC, Victoria British Columbia Canada
| | - Ilsa M. Hildebrand
- Department of BiologyUniversity of Victoria P.O. Box 3020 STN CSC, Victoria British Columbia Canada
| | - Stephen C. Kempf
- Department of Biological Sciences 331 Funchess Hall, University of Auburn, Auburn Alabama
| |
Collapse
|
22
|
Abstract
Gastropod diversity is substantial in marine and freshwater habitats, and many aquatic slugs and snails use olfactory cues to guide their navigation behaviour. Examples include finding prey or avoiding predators based on kairomones, or finding potential mates using pheromones. Here, I review the diversity of navigational behaviours studied across the major aquatic taxa of gastropods. I then synthesize evidence for the different theoretical navigation strategies the animals may use. It is likely that gastropods regularly use either chemotaxis or odour-gated rheotaxis (or both) during olfactory-based navigation. Finally, I collate the patchwork of research conducted on relevant proximate mechanisms that could produce navigation behaviours. Although the tractability of several gastropod species for neurophysiological experimentation has generated some valuable insight into how turning behaviour is triggered by contact chemoreception, there remain many substantial gaps in our understanding for how navigation relative to more distant odour sources is controlled in gastropods. These gaps include little information on the chemoreceptors and mechanoreceptors (for detecting flow) found in the peripheral nervous system and the central (or peripheral) processing circuits that integrate that sensory input. In contrast, past studies do provide information on motor neurons that control the effectors that produce crawling (both forward locomotion and turning). Thus, there is plenty of scope for further research on olfactory-based navigation, exploiting the tractability of gastropods for neuroethology to better understand how the nervous system processes chemosensory input to generate movement towards or away from distant odour sources.
Collapse
Affiliation(s)
- Russell C Wyeth
- Biology Department, St Francis Xavier University, 2321 Notre Dame Avenue, Antigonish, NS, Canada B2G 2W5
| |
Collapse
|
23
|
Pimenta AD, Santos FN, Cunha CM. Redescription and reassignment of Ondina semicingulata to the Pyramidellidae, with review of the occurrence of genus Evalea in the Western Atlantic (Gastropoda). ZOOSYST EVOL 2018. [DOI: 10.3897/zse.94.28765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
ActeonsemicingulatusDall, 1927, previously known only by its original description is reassigned to the Pyramidellidae, inOndina, based on the collecting of several new specimens along the coast of Brazil, in the same bathymetry as the type locality. Its shell shape variation is discussed and Odostomia (Evalea) ryclea Dall, 1927 is considered a synonymy. Other Western Atlantic species, previously allocated to other genera are transferred toOndina:AclisstriataVerrill, 1880, Odostomia (Iolaea) hendersoni Bartsch, 1909,EvaleastockiDe Jong & Coomans, 1988 and Odostomia (Evalea) emeryi Bartsch, 1955 based on conchlogical comparison to the revison by Høisæter (2014), from Northeastern Atlantic. The genusEvaleais considered to be absent in the Atlantic Ocean.
Collapse
|
24
|
Schäfer GG, Pedrini-Martha V, Schnegg R, Dallinger R, Jackson DJ, Lieb B. Hemocyanin genes as indicators of habitat shifts in Panpulmonata? Mol Phylogenet Evol 2018; 130:99-103. [PMID: 30326285 DOI: 10.1016/j.ympev.2018.10.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/10/2018] [Accepted: 10/10/2018] [Indexed: 01/11/2023]
Abstract
Hemocyanin is the primary respiratory protein for the majority of the Mollusca and therefore directly interfaces with the physiological requirements of each species and the environments to which they are adapted. Hemocyanin is therefore likely to have been evolutionarily imprinted by significant habitat shifts. In the gastropod clade Panpulmonata (>30,000 species) major realm transitions have occurred multiple times independently and may have contributed to the diversification of this group. Yet, little is known about the adaptive changes linked to these habitat shifts. In order to gain deeper insight into the evolution of panpulmonate hemocyanins and to infer possible impacts associated with those scenarios, we have assembled and analysed hemocyanin isoforms from 4 panpulmonate species: (i) Helix pomatia, (ii) Cantareus aspersus (both Helicidae, Stylommatophora), (iii) Arion vulgaris (Arionidae, Stylommatophora) and (iv) Lymnaea stagnalis (Lymnaeidae, Hygrophila). Additionally, we describe a new hemocyanin isoform within the genome of the euopisthobranch Aplysia californica. Using these newly acquired hemocyanin data, we performed a phylogenetic analysis that reveals independent duplication events of hemocyanin within lineages that correlate with significant habitat shifts.
Collapse
Affiliation(s)
- Gabriela Giannina Schäfer
- Johannes Gutenberg-University of Mainz, Institute of Molecular Physiology, Johann-Joachim-Becher-Weg 7, D-55128 Mainz, Germany
| | - Veronika Pedrini-Martha
- Institute of Zoology and Center of Molecular Biosciences, University of Innsbruck, Technikerstraße 25, A-6020 Innsbruck, Austria
| | - Raimund Schnegg
- Institute of Zoology and Center of Molecular Biosciences, University of Innsbruck, Technikerstraße 25, A-6020 Innsbruck, Austria
| | - Reinhard Dallinger
- Institute of Zoology and Center of Molecular Biosciences, University of Innsbruck, Technikerstraße 25, A-6020 Innsbruck, Austria
| | - Daniel John Jackson
- Georg-August University of Göttingen, Department of Geobiology, Goldschmidtstr. 3, 37077 Göttingen, Germany
| | - Bernhard Lieb
- Johannes Gutenberg-University of Mainz, Institute of Molecular Physiology, Johann-Joachim-Becher-Weg 7, D-55128 Mainz, Germany.
| |
Collapse
|
25
|
Bouchet P, Rocroi JP, Hausdorf B, Kaim A, Kano Y, Nützel A, Parkhaev P, Schrödl M, Strong EE. Revised Classification, Nomenclator and Typification of Gastropod and Monoplacophoran Families. MALACOLOGIA 2017. [DOI: 10.4002/040.061.0201] [Citation(s) in RCA: 303] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Philippe Bouchet
- Institut de Systématique, Evolution, Biodiversité ISYEB — UMR7205 — CNRS, MNHN, UPMC, EPHE Muséum National d'Histoire Naturelle Sorbonne Universités, 55 Rue Buffon, F-75231 Paris, France;
| | - Jean-Pierre Rocroi
- Institut de Systématique, Evolution, Biodiversité ISYEB — UMR7205 — CNRS, MNHN, UPMC, EPHE Muséum National d'Histoire Naturelle Sorbonne Universités, 55 Rue Buffon, F-75231 Paris, France;
| | - Bernhard Hausdorf
- Zoological Museum, Center of Natural History, Universität Hamburg, Germany
| | - Andrzej Kaim
- Institute of Paleobiology, Polish Academy of Sciences, Warszawa, Poland
| | - Yasunori Kano
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, Japan
| | - Alexander Nützel
- Bavarian State Collection of Palaeontology and Geology, Faculty of Earth Sciences and GeoBio-Center LMU, München, Germany
| | - Pavel Parkhaev
- Borissiak Paleontological Institute, Russian Academy of Sciences, Moscow, Russia
| | - Michael Schrödl
- Bavarian State Collection of Zoology, Faculty of Biology and GeoBio-Center LMU, München, Germany
| | - Ellen E. Strong
- National Museum of Natural History, Smithsonian Institution, Washington D.C., U.S.A
| |
Collapse
|
26
|
Hallas JM, Chichvarkhin A, Gosliner TM. Aligning evidence: concerns regarding multiple sequence alignments in estimating the phylogeny of the Nudibranchia suborder Doridina. ROYAL SOCIETY OPEN SCIENCE 2017; 4:171095. [PMID: 29134101 PMCID: PMC5666284 DOI: 10.1098/rsos.171095] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 09/20/2017] [Indexed: 06/07/2023]
Abstract
Molecular estimates of phylogenetic relationships rely heavily on multiple sequence alignment construction. There has been little consensus, however, on how to properly address issues pertaining to the alignment of variable regions. Here, we construct alignments from four commonly sequenced molecular markers (16S, 18S, 28S and cytochrome c oxidase subunit I) for the Nudibranchia using three different methodologies: (i) strict mathematical algorithm; (ii) exclusion of variable or divergent regions and (iii) manually curated, and examine how different alignment construction methods can affect phylogenetic signal and phylogenetic estimates for the suborder Doridina. Phylogenetic informativeness (PI) profiles suggest that the molecular markers tested lack the power to resolve relationships at the base of the Doridina, while being more robust at family-level classifications. This supports the lack of consistent resolution between the 19 families within the Doridina across all three alignments. Most of the 19 families were recovered as monophyletic, and instances of non-monophyletic families were consistently recovered between analyses. We conclude that the alignment of variable regions has some effect on phylogenetic estimates of the Doridina, but these effects can vary depending on the size and scope of the phylogenetic query and PI of molecular markers.
Collapse
Affiliation(s)
- Joshua M. Hallas
- Department of Biology, University of Nevada, Reno. 1664 N. Virginia St, Reno, NV 89557, USA
- Department of Invertebrate Zoology and Geology, California Academy of Sciences, 55 Music Concourse Dr Golden Gate Park, San Francisco, CA 94118, USA
| | - Anton Chichvarkhin
- National Scientific Center of Marine Biology, Far East Branch of Russian Academy of Sciences, Palchevskogo 17, Vladivostok 690041, Russia
- Far Eastern Federal University, Sukhanova 8, Vladivostok 690950, Russia
| | - Terrence M. Gosliner
- Department of Invertebrate Zoology and Geology, California Academy of Sciences, 55 Music Concourse Dr Golden Gate Park, San Francisco, CA 94118, USA
| |
Collapse
|
27
|
Molecular phylogeny and biogeography of the land snail family Hygromiidae (Gastropoda: Helicoidea). Mol Phylogenet Evol 2017; 111:169-184. [DOI: 10.1016/j.ympev.2017.04.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 03/28/2017] [Accepted: 04/03/2017] [Indexed: 11/18/2022]
|
28
|
Plazzi F, Puccio G, Passamonti M. Burrowers from the Past: Mitochondrial Signatures of Ordovician Bivalve Infaunalization. Genome Biol Evol 2017; 9:956-967. [PMID: 28338965 PMCID: PMC5393379 DOI: 10.1093/gbe/evx051] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2017] [Indexed: 12/20/2022] Open
Abstract
Bivalves and gastropods are the two largest classes of extant molluscs. Despite sharing a huge number of features, they do not share a key ecological one: gastropods are essentially epibenthic, although most bivalves are infaunal. However, this is not the ancestral bivalve condition; Cambrian forms were surface crawlers and only during the Ordovician a fundamental infaunalization process took place, leading to bivalves as we currently know them. This major ecological shift is linked to the exposure to a different redox environoments (hypoxic or anoxic) and with the Lower Devonian oxygenation event. We investigated selective signatures on bivalve and gastropod mitochondrial genomes with respect to a time calibrated mitochondrial phylogeny by means of dN/dS ratios. We were able to detect 1) a major signal of directional selection between the Ordovician and the Lower Devonian for bivalve mitochondrial Complex I, and 2) an overall higher directional selective pressure on bivalve Complex V with respect to gastropods. These and other minor dN/dS patterns and timings are discussed, showing that the Ordovician infaunalization event left heavy traces in bivalve mitochondrial genomes.
Collapse
Affiliation(s)
- Federico Plazzi
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Italy
| | - Guglielmo Puccio
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Italy
| | - Marco Passamonti
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Italy
| |
Collapse
|
29
|
Kano Y, Brenzinger B, Nützel A, Wilson NG, Schrödl M. Ringiculid bubble snails recovered as the sister group to sea slugs (Nudipleura). Sci Rep 2016; 6:30908. [PMID: 27498754 PMCID: PMC4976385 DOI: 10.1038/srep30908] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/08/2016] [Indexed: 01/09/2023] Open
Abstract
Euthyneuran gastropods represent one of the most diverse lineages in Mollusca (with over 30,000 species), play significant ecological roles in aquatic and terrestrial environments and affect many aspects of human life. However, our understanding of their evolutionary relationships remains incomplete due to missing data for key phylogenetic lineages. The present study integrates such a neglected, ancient snail family Ringiculidae into a molecular systematics of Euthyneura for the first time, and is supplemented by the first microanatomical data. Surprisingly, both molecular and morphological features present compelling evidence for the common ancestry of ringiculid snails with the highly dissimilar Nudipleura-the most species-rich and well-known taxon of sea slugs (nudibranchs and pleurobranchoids). A new taxon name Ringipleura is proposed here for these long-lost sisters, as one of three major euthyneuran clades with late Palaeozoic origins, along with Acteonacea (Acteonoidea + Rissoelloidea) and Tectipleura (Euopisthobranchia + Panpulmonata). The early Euthyneura are suggested to be at least temporary burrowers with a characteristic 'bubble' shell, hypertrophied foot and headshield as exemplified by many extant subtaxa with an infaunal mode of life, while the expansion of the mantle might have triggered the explosive Mesozoic radiation of the clade into diverse ecological niches.
Collapse
Affiliation(s)
- Yasunori Kano
- Department of Marine Ecosystems Dynamics, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan
| | - Bastian Brenzinger
- SNSB-Bavarian State Collection of Zoology, Münchhausenstr. 21, 81247 München, Germany.,Department Biology II, BioZentrum, Ludwig-Maximilians-Universität, Großhadernerstr. 2, 82152 Planegg-Martinsried, Germany
| | - Alexander Nützel
- SNSB-Bavarian State Collection of Paleontology and Geology, Geobio Center LMU, Richard-Wagner-Str. 10, 80333 München, Germany
| | - Nerida G Wilson
- Western Australian Museum, Locked Bag 49, Welshpool DC, Perth, WA 6986, Australia
| | - Michael Schrödl
- SNSB-Bavarian State Collection of Zoology, Münchhausenstr. 21, 81247 München, Germany.,Department Biology II, BioZentrum, Ludwig-Maximilians-Universität, Großhadernerstr. 2, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
30
|
Teasdale LC, Köhler F, Murray KD, O'Hara T, Moussalli A. Identification and qualification of 500 nuclear, single-copy, orthologous genes for the Eupulmonata (Gastropoda) using transcriptome sequencing and exon capture. Mol Ecol Resour 2016; 16:1107-23. [DOI: 10.1111/1755-0998.12552] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 03/30/2016] [Accepted: 05/19/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Luisa C. Teasdale
- Sciences Department; Museum Victoria; 11 Nicholson Street Carlton Vic. 3053 Australia
- School of BioSciences; The University of Melbourne; Parkville Vic. 3010 Australia
| | - Frank Köhler
- Australian Museum; 6 College Street Sydney NSW 2010 Australia
| | - Kevin D. Murray
- Division of Plant Sciences; Research School of Biology; Australian National University; Canberra ACT 0200 Australia
| | - Tim O'Hara
- Sciences Department; Museum Victoria; 11 Nicholson Street Carlton Vic. 3053 Australia
| | - Adnan Moussalli
- Sciences Department; Museum Victoria; 11 Nicholson Street Carlton Vic. 3053 Australia
| |
Collapse
|
31
|
Dating and biogeographical patterns in the sea slug genus Acanthodoris Gray, 1850 (Mollusca, Gastropoda, Nudibranchia). Mol Phylogenet Evol 2016; 97:19-31. [DOI: 10.1016/j.ympev.2015.12.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Revised: 12/25/2015] [Accepted: 12/27/2015] [Indexed: 01/23/2023]
|
32
|
Romero PE, Pfenninger M, Kano Y, Klussmann-Kolb A. Molecular phylogeny of the Ellobiidae (Gastropoda: Panpulmonata) supports independent terrestrial invasions. Mol Phylogenet Evol 2016; 97:43-54. [DOI: 10.1016/j.ympev.2015.12.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 11/20/2015] [Accepted: 12/21/2015] [Indexed: 01/30/2023]
|
33
|
Gunaratne CA, Katz PS. Comparative Mapping of GABA-Immunoreactive Neurons in the Buccal Ganglia of Nudipleura Molluscs. J Comp Neurol 2015; 524:1181-92. [DOI: 10.1002/cne.23895] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 09/01/2015] [Accepted: 09/08/2015] [Indexed: 11/08/2022]
Affiliation(s)
| | - Paul S. Katz
- Neuroscience Institute; Georgia State University; Atlanta Georgia 30302-5030
| |
Collapse
|
34
|
Oskars TR, Bouchet P, Malaquias MAE. A new phylogeny of the Cephalaspidea (Gastropoda: Heterobranchia) based on expanded taxon sampling and gene markers. Mol Phylogenet Evol 2015; 89:130-50. [DOI: 10.1016/j.ympev.2015.04.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 03/14/2015] [Accepted: 04/08/2015] [Indexed: 11/28/2022]
|
35
|
Hallas JM, Gosliner TM. Family matters: The first molecular phylogeny of the Onchidorididae Gray, 1827 (Mollusca, Gastropoda, Nudibranchia). Mol Phylogenet Evol 2015; 88:16-27. [DOI: 10.1016/j.ympev.2015.03.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 02/24/2015] [Accepted: 03/16/2015] [Indexed: 10/23/2022]
|
36
|
Rumi A, Gutiérrez Gregoric DE, Landoni N, Cárdenas Mancilla J, Gordillo S, Gonzalez J, Alvarez D. Glacidorbidae (Gastropoda: Heterobranchia) in South America: revision and description of a new genus and three new species from Patagonia. MOLLUSCAN RESEARCH 2015. [DOI: 10.1080/13235818.2015.1030094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
37
|
Zapata F, Wilson NG, Howison M, Andrade SCS, Jörger KM, Schrödl M, Goetz FE, Giribet G, Dunn CW. Phylogenomic analyses of deep gastropod relationships reject Orthogastropoda. Proc Biol Sci 2015; 281:20141739. [PMID: 25232139 DOI: 10.1098/rspb.2014.1739] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Gastropods are a highly diverse clade of molluscs that includes many familiar animals, such as limpets, snails, slugs and sea slugs. It is one of the most abundant groups of animals in the sea and the only molluscan lineage that has successfully colonized land. Yet the relationships among and within its constituent clades have remained in flux for over a century of morphological, anatomical and molecular study. Here, we re-evaluate gastropod phylogenetic relationships by collecting new transcriptome data for 40 species and analysing them in combination with publicly available genomes and transcriptomes. Our datasets include all five main gastropod clades: Patellogastropoda, Vetigastropoda, Neritimorpha, Caenogastropoda and Heterobranchia. We use two different methods to assign orthology, subsample each of these matrices into three increasingly dense subsets, and analyse all six of these supermatrices with two different models of molecular evolution. All 12 analyses yield the same unrooted network connecting the five major gastropod lineages. This reduces deep gastropod phylogeny to three alternative rooting hypotheses. These results reject the prevalent hypothesis of gastropod phylogeny, Orthogastropoda. Our dated tree is congruent with a possible end-Permian recovery of some gastropod clades, namely Caenogastropoda and some Heterobranchia subclades.
Collapse
Affiliation(s)
- Felipe Zapata
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02906, USA
| | | | - Mark Howison
- Center for Computation and Visualization, Brown University, Providence, RI 02906, USA
| | - Sónia C S Andrade
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Katharina M Jörger
- SNSB-Bavarian State Collection of Zoology, Munich 81247, Germany Department Biology II, BioZentrum, Ludwig-Maximilians-Universität, Planegg-Martinsried 82152, Germany
| | - Michael Schrödl
- SNSB-Bavarian State Collection of Zoology, Munich 81247, Germany Department Biology II, BioZentrum, Ludwig-Maximilians-Universität, Planegg-Martinsried 82152, Germany
| | - Freya E Goetz
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02906, USA
| | - Gonzalo Giribet
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Casey W Dunn
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02906, USA
| |
Collapse
|
38
|
Kück P, Longo GC. FASconCAT-G: extensive functions for multiple sequence alignment preparations concerning phylogenetic studies. Front Zool 2014; 11:81. [PMID: 25426157 PMCID: PMC4243772 DOI: 10.1186/s12983-014-0081-x] [Citation(s) in RCA: 280] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 10/21/2014] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Phylogenetic and population genetic studies often deal with multiple sequence alignments that require manipulation or processing steps such as sequence concatenation, sequence renaming, sequence translation or consensus sequence generation. In recent years phylogenetic data sets have expanded from single genes to genome wide markers comprising hundreds to thousands of loci. Processing of these large phylogenomic data sets is impracticable without using automated process pipelines. Currently no stand-alone or pipeline compatible program exists that offers a broad range of manipulation and processing steps for multiple sequence alignments in a single process run. RESULTS Here we present FASconCAT-G, a system independent editor, which offers various processing options for multiple sequence alignments. The software provides a wide range of possibilities to edit and concatenate multiple nucleotide, amino acid, and structure sequence alignment files for phylogenetic and population genetic purposes. The main options include sequence renaming, file format conversion, sequence translation between nucleotide and amino acid states, consensus generation of specific sequence blocks, sequence concatenation, model selection of amino acid replacement with ProtTest, two types of RY coding as well as site exclusions and extraction of parsimony informative sites. Convieniently, most options can be invoked in combination and performed during a single process run. Additionally, FASconCAT-G prints useful information regarding alignment characteristics and editing processes such as base compositions of single in- and outfiles, sequence areas in a concatenated supermatrix, as well as paired stem and loop regions in secondary structure sequence strings. CONCLUSIONS FASconCAT-G is a command-line driven Perl program that delivers computationally fast and user-friendly processing of multiple sequence alignments for phylogenetic and population genetic applications and is well suited for incorporation into analysis pipelines.
Collapse
Affiliation(s)
- Patrick Kück
- />Zoologisches Forschungsmuseum A. Koenig, Adenauerallee 160-163, Bonn, 53113 Germany
| | - Gary C Longo
- />Center for Ocean Health, 100 Shaffer Road, Santa Cruz, 95060 CA USA
| |
Collapse
|
39
|
Lobo-da-Cunha A, Pereira-Sousa J, Oliveira E, Alves Â, Guimarães F, Calado G. Calcium Detection and Other Cellular Studies in the Esophagus and Crop of the Marine SlugAglaja tricolorata(Euopisthobranchia, Cephalaspidea). MALACOLOGIA 2014. [DOI: 10.4002/040.057.0209] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
40
|
Takano T, Kano Y. Molecular phylogenetic investigations of the relationships of the echinoderm-parasite family Eulimidae within Hypsogastropoda (Mollusca). Mol Phylogenet Evol 2014; 79:258-69. [DOI: 10.1016/j.ympev.2014.06.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 06/16/2014] [Accepted: 06/21/2014] [Indexed: 10/25/2022]
|
41
|
Havird JC, Santos SR. Performance of single and concatenated sets of mitochondrial genes at inferring metazoan relationships relative to full mitogenome data. PLoS One 2014; 9:e84080. [PMID: 24454717 PMCID: PMC3891902 DOI: 10.1371/journal.pone.0084080] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 11/11/2013] [Indexed: 12/04/2022] Open
Abstract
Mitochondrial (mt) genes are some of the most popular and widely-utilized genetic loci in phylogenetic studies of metazoan taxa. However, their linked nature has raised questions on whether using the entire mitogenome for phylogenetics is overkill (at best) or pseudoreplication (at worst). Moreover, no studies have addressed the comparative phylogenetic utility of mitochondrial genes across individual lineages within the entire Metazoa. To comment on the phylogenetic utility of individual mt genes as well as concatenated subsets of genes, we analyzed mitogenomic data from 1865 metazoan taxa in 372 separate lineages spanning genera to subphyla. Specifically, phylogenies inferred from these datasets were statistically compared to ones generated from all 13 mt protein-coding (PC) genes (i.e., the “supergene” set) to determine which single genes performed “best” at, and the minimum number of genes required to, recover the “supergene” topology. Surprisingly, the popular marker COX1 performed poorest, while ND5, ND4, and ND2 were most likely to reproduce the “supergene” topology. Averaged across all lineages, the longest ∼2 mt PC genes were sufficient to recreate the “supergene” topology, although this average increased to ∼5 genes for datasets with 40 or more taxa. Furthermore, concatenation of the three “best” performing mt PC genes outperformed that of the three longest mt PC genes (i.e, ND5, COX1, and ND4). Taken together, while not all mt PC genes are equally interchangeable in phylogenetic studies of the metazoans, some subset can serve as a proxy for the 13 mt PC genes. However, the exact number and identity of these genes is specific to the lineage in question and cannot be applied indiscriminately across the Metazoa.
Collapse
Affiliation(s)
- Justin C. Havird
- Department of Biological Sciences, Molette Biology Laboratory for Environmental and Climate Change Studies, Auburn University, Auburn, Alabama, United States of America
- Cellular and Molecular Biosciences Program, Auburn University, Auburn, Alabama, United States of America
- * E-mail:
| | - Scott R. Santos
- Department of Biological Sciences, Molette Biology Laboratory for Environmental and Climate Change Studies, Auburn University, Auburn, Alabama, United States of America
- Cellular and Molecular Biosciences Program, Auburn University, Auburn, Alabama, United States of America
| |
Collapse
|
42
|
Kocot KM, Halanych KM, Krug PJ. Phylogenomics supports Panpulmonata: Opisthobranch paraphyly and key evolutionary steps in a major radiation of gastropod molluscs. Mol Phylogenet Evol 2013; 69:764-71. [DOI: 10.1016/j.ympev.2013.07.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Revised: 06/11/2013] [Accepted: 07/01/2013] [Indexed: 12/17/2022]
|
43
|
The complete mitochondrial genome of a turbinid vetigastropod from MiSeq Illumina sequencing of genomic DNA and steps towards a resolved gastropod phylogeny. Gene 2013; 533:38-47. [PMID: 24120625 DOI: 10.1016/j.gene.2013.10.005] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 09/26/2013] [Accepted: 10/02/2013] [Indexed: 01/21/2023]
Abstract
A need to increase sampling of mitochondrial genomes for Vetigastropoda has been identified as an important step towards resolving relationships within the Gastropoda. We used shotgun sequencing of genomic DNA, using an Illumina MiSeq, to obtain the first mitochondrial genome for the vetigastropod family Turbinidae, doubling the number of genomes for the species-rich superfamily Trochoidea. This method avoids the necessity of finding suitable primers for long PCRs or primer-walking amplicons, resulting in a timely and cost-effective method for obtaining whole mitochondrial genomes from ethanol-preserved tissue samples. Bayesian analysis of amino acid variation for all available gastropod genomes including the new turbinid mtgenome produced a well resolved tree with high nodal support for most nodes. Major clades within Gastropoda were recovered with strong support, with the exception of Littorinimorpha, which was polyphyletic. We confirm here that mitogenomics is a useful tool for molluscan phylogenetics, especially when using powerful new models of amino acid evolution, but recognise that increased taxon sampling is still required to resolve existing differences between nuclear and mitochondrial gene trees.
Collapse
|
44
|
3D-microanatomy and histology of the hydrothermal vent gastropod Lurifax vitreus Warén & Bouchet, 2001 (Heterobranchia: Orbitestellidae) and comparisons with Ectobranchia. ORG DIVERS EVOL 2013. [DOI: 10.1007/s13127-013-0155-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
45
|
|
46
|
Brenzinger B, Haszprunar G, Schrödl M. At the limits of a successful body plan - 3D microanatomy, histology and evolution of Helminthope (Mollusca: Heterobranchia: Rhodopemorpha), the most worm-like gastropod. Front Zool 2013; 10:37. [PMID: 23809165 PMCID: PMC3704743 DOI: 10.1186/1742-9994-10-37] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 04/24/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gastropods are among the most diverse animal clades, and have successfully colonized special habitats such as the marine sand interstitial. Specialized meiofaunal snails and slugs are tiny and worm-shaped. They combine regressive features - argued to be due to progenetic tendencies - with convergent adaptations. Microscopic size and concerted convergences make morphological examination non-trivial and hamper phylogenetic reconstructions. The enigmatic turbellarian-like Rhodopemorpha are a small group that has puzzled systematists for over a century. A preliminary molecular framework places the group far closer to the root of Heterobranchia - one of the major gastropod groups - than previously suggested. The poorly known meiofaunal Helminthope psammobionta Salvini-Plawen, 1991 from Bermuda is the most worm-shaped free-living gastropod and shows apparently aberrant aspects of anatomy. Its study may give important clues to understand the evolution of rhodopemorphs among basal heterobranchs versus their previously thought origin among 'higher' euthyneuran taxa. RESULTS We describe the 3D-microanatomy of H. psammobionta using three-dimensional digital reconstruction based on serial semithin histological sections. The new dataset expands upon the original description and corrects several aspects. Helminthope shows a set of typical adaptations and regressive characters present in other mesopsammic slugs (called 'meiofaunal syndrome' herein). The taxonomically important presence of five separate visceral loop ganglia is confirmed, but considerable further detail of the complex nervous system are corrected and revealed. The digestive and reproductive systems are simple and modified to the thread-like morphology of the animal; the anus is far posterior. There is no heart; the kidney resembles a protonephridium. Data on all organ systems are compiled and compared to Rhodope. CONCLUSIONS Helminthope is related to Rhodope sharing unique apomorphies. We argue that the peculiar kidney, configuration of the visceral loop and simplicity or lack of other organs in Rhodopemorpha are results of progenesis. The posterior shift of the anus in Helminthope is interpreted as a peramorphy, i.e. hypertrophy of body length early in ontogeny. Our review of morphological and molecular evidence is consistent with an origin of Rhodopemorpha slugs among shelled 'lower Heterobranchia'. Previously thought shared 'diagnostic' features such as five visceral ganglia are either plesiomorphic or convergent, while euthyneury and a double-rooted cerebral nerve likely evolved independently in Rhodopemorpha and Euthyneura.
Collapse
Affiliation(s)
- Bastian Brenzinger
- SNSB - Bavarian State Collection of Zoology, Münchhausenstr, 21, Munich 81247, Germany.
| | | | | |
Collapse
|
47
|
3D- microanatomy of the semiterrestrial slug Gascoignella aprica Jensen, 1985—a basal plakobranchacean sacoglossan (Gastropoda, Panpulmonata). ORG DIVERS EVOL 2013. [DOI: 10.1007/s13127-013-0142-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
48
|
Klussmann-Kolb A, Croll RP, Staubach S. Use of axonal projection patterns for the homologisation of cerebral nerves in Opisthobranchia, Mollusca and Gastropoda. Front Zool 2013; 10:20. [PMID: 23597272 PMCID: PMC3637218 DOI: 10.1186/1742-9994-10-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 03/18/2013] [Indexed: 11/29/2022] Open
Abstract
Introduction Gastropoda are guided by several sensory organs in the head region, referred to as cephalic sensory organs (CSOs). These CSOs are innervated by distinct nerves. This study proposes a unified terminology for the cerebral nerves and the categories of CSOs and then investigates the neuroanatomy and cellular innervation patterns of these cerebral nerves, in order to homologise them. The homologisation of the cerebral nerves in conjunction with other data, e.g. ontogenetic development or functional morphology, may then provide insights into the homology of the CSOs themselves. Results Nickel-lysine axonal tracing (“backfilling”) was used to stain the somata projecting into specific nerves in representatives of opisthobranch Gastropoda. Tracing patterns revealed the occurrence, size and relative position of somata and their axons and enabled these somata to be mapped to specific cell clusters. Assignment of cells to clusters followed a conservative approach based primarily on relative location of the cells. Each of the four investigated cerebral nerves could be uniquely identified due to a characteristic set of soma clusters projecting into the respective nerves via their axonal pathways. Conclusions As the described tracing patterns are highly conserved morphological characters, they can be used to homologise nerves within the investigated group of gastropods. The combination of adequate number of replicates and a comparative approach allows us to provide preliminary hypotheses on homologies for the cerebral nerves. Based on the hypotheses regarding cerebral nerve homology together with further data on ultrastructure and immunohistochemistry of CSOs published elsewhere, we can propose preliminary hypotheses regarding homology for the CSOs of the Opisthobranchia themselves.
Collapse
Affiliation(s)
- Annette Klussmann-Kolb
- Biosciences, Institute of Ecology, Evolution and Diversity, Phylogeny and Systematics group, Goethe University, Max-von-Laue-Straße 13, Frankfurt am Main, 60438, Germany.
| | | | | |
Collapse
|
49
|
Anton RF, Schrödl M. The gastropod-crustacean connection: towards the phylogeny and evolution of the parasitic copepod family Splanchnotrophidae. Zool J Linn Soc 2013. [DOI: 10.1111/zoj.12008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Roland F. Anton
- Bavarian State Collection of Zoology Munich; Münchhausenstraße 21 D-81247 München Germany
| | - Michael Schrödl
- Bavarian State Collection of Zoology Munich; Münchhausenstraße 21 D-81247 München Germany
| |
Collapse
|
50
|
Abstract
Invertebrates comprise approximately 34 phyla, while vertebrates represent one subphylum and insects a (very large) class. Thus, the clades excepting vertebrates and insects encompass almost all of animal diversity. Consequently, the barcoding challenge in invertebrates is that of barcoding animals in general. While standard extraction, cleaning, PCR methods, and universal primers work for many taxa, taxon-specific challenges arise because of the shear genetic and biochemical diversity present across the kingdom, and because problems arising as a result of this diversity, and solutions to them, are still poorly characterized for many metazoan clades. The objective of this chapter is to emphasize general approaches, and give practical advice for overcoming the diverse challenges that may be encountered across animal taxa, but we stop short of providing an exhaustive inventory. Rather, we encourage researchers, especially those working on poorly studied taxa, to carefully consider methodological issues presented below, when standard approaches perform poorly.
Collapse
Affiliation(s)
- Nathaniel Evans
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | | |
Collapse
|