1
|
Terraneo TI, Mariappan KG, Forsman Z, Arrigoni R. Mitochondrial Genome of Nonmodel Marine Metazoans by Next-Generation Sequencing (NGS). Methods Mol Biol 2022; 2498:1-18. [PMID: 35727537 DOI: 10.1007/978-1-0716-2313-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Mitochondrial genomes (mtgenome) represent an important source of information for addressing fundamental evolutionary, phylogeographic, systematic, and ecological questions in marine organisms. In the last two decades the advent of high-throughput next-generation sequencing (NGS) has provided an unprecedented possibility to access large amount of genomic data and, as such, there has been a rapid growth in mtgenome resources and studies. In particular, NGS strategies represent a great advantage for investigating nonmodel marine organisms for which no or limited genomic resources are available. Here, we describe a routinely used standardized protocol to obtain mtgenome of nonmodel marine organisms by NGS. The protocol is composed of five main steps, including DNA extraction, DNA fragmentation, library preparation, high-throughput sequencing, and bioinformatic analyses. Each of the first three steps is followed by size/quality and concentration validations. The advantages of the described protocol rely on the assumption that no a priori information on mtgenome of the studied organism is needed and on its versatility as researchers may choose several kits for DNA extraction and library preparation and adopt different methods for DNA fragmentation depending on their needs, experience, and suppliers.
Collapse
Affiliation(s)
- Tullia I Terraneo
- Red Sea Research Centre, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Kiruthiga G Mariappan
- Red Sea Research Centre, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Zac Forsman
- Hawaii Institute of Marine Biology, Kaneohe, HI, USA
| | - Roberto Arrigoni
- Department of Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, Naples, Italy.
| |
Collapse
|
2
|
Culicidae evolutionary history focusing on the Culicinae subfamily based on mitochondrial phylogenomics. Sci Rep 2020; 10:18823. [PMID: 33139764 PMCID: PMC7606482 DOI: 10.1038/s41598-020-74883-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 08/21/2020] [Indexed: 01/27/2023] Open
Abstract
Mosquitoes are insects of medical importance due their role as vectors of different pathogens to humans. There is a lack of information about the evolutionary history and phylogenetic positioning of the majority of mosquito species. Here we characterized the mitogenomes of mosquito species through low-coverage whole genome sequencing and data mining. A total of 37 draft mitogenomes of different species were assembled from which 16 are newly-sequenced species. We datamined additional 49 mosquito mitogenomes, and together with our 37 mitogenomes, we reconstructed the evolutionary history of 86 species including representatives from 15 genera and 7 tribes. Our results showed that most of the species clustered in clades with other members of their own genus with exception of Aedes genus which was paraphyletic. We confirmed the monophyletic status of the Mansoniini tribe including both Coquillettidia and Mansonia genus. The Aedeomyiini and Uranotaeniini were consistently recovered as basal to other tribes in the subfamily Culicinae, although the exact relationships among these tribes differed between analyses. These results demonstrate that low-coverage sequencing is effective to recover mitogenomes, establish phylogenetic knowledge and hence generate basic fundamental information that will help in the understanding of the role of these species as pathogen vectors.
Collapse
|
3
|
Jing M, Yang H, Li K, Huang L. Characterization of three new mitochondrial genomes of Coraciiformes (Megaceryle lugubris, Alcedo atthis, Halcyon smyrnensis) and insights into their phylogenetics. Genet Mol Biol 2020; 43:e20190392. [PMID: 33026411 PMCID: PMC7539371 DOI: 10.1590/1678-4685-gmb-2019-0392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 07/13/2020] [Indexed: 12/04/2022] Open
Abstract
Coraciiformes contains more than 200 species with great differences on external
morphology and life-style. The evolutionary relationships within Coraciiformes
and the phylogenetic placement of Coraciiformes in Aves are still questioned.
Mitochondrial genome (mitogenome) sequences are popular markers in molecular
phylogenetic studies of birds. This study presented the genome characteristics
of three new mitogenomes in Coraciiformes and explored the phylogenetic
relationships among Coraciiformes and other five related orders with mitogenome
data of 30 species. The sizes of three mitogenomes were 17,383 bp
(Alcedo atthis), 17,892 bp (Halcyon
smyrnensis) and 17,223 bp (Megaceryle lugubris).
Each mitogenome contained one control region and 37 genes that were common in
vertebrate mitogenomes. The organization of three mitogenomes was identical to
the putative ancestral gene order in Aves. Among 13 available Coraciiform
mitogenomes, 12 protein coding genes showed indications of negative selection,
while the MT-ND6 presented sign of positive selection or relaxed purifying
selection. The phylogenetic results supported that Upupidae and Bucerotidae
should be separated from Coraciiformes, and that Coraciiformes is more closely
related to Piciformes than to Strigiformes, Trogoniformes and Cuculiformes. Our
study provide valuable data for further phylogenetic investigation of
Coraciiformes.
Collapse
Affiliation(s)
- Meidong Jing
- Nantong University, School of Life Sciences, Nantong, Jiangsu, P. R. China
| | - Huanhuan Yang
- Ludong University, School of Life Sciences, Yantai, Shandong, P. R. China
| | - Kai Li
- Nantong Xingdong International Airport, Nantong, Jiangsu, P. R. China
| | - Ling Huang
- Nantong University, School of Life Sciences, Nantong, Jiangsu, P. R. China
| |
Collapse
|
4
|
Murtskhvaladze M, Tarkhnishvili D, Anderson CL, Kotorashvili A. Phylogeny of caucasian rock lizards (Darevskia) and other true lizards based on mitogenome analysis: Optimisation of the algorithms and gene selection. PLoS One 2020; 15:e0233680. [PMID: 32511235 PMCID: PMC7279592 DOI: 10.1371/journal.pone.0233680] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 05/11/2020] [Indexed: 11/18/2022] Open
Abstract
We generated a phylogeny for Caucasian rock lizards (Darevskia), and included six other families of true lizards (Lacertini), based on complete mitochondrial genome analysis. Next-generation sequencing (NGS) of genomic DNA was used to obtain 16 new mitogenomes of Darevskia. These, along with 35 sequences downloaded from GenBank: genera Darevskia, Zootoca, Podarcis, Phoenicolacerta, Takydromus, Lacerta, and Eremias-were used in the analysis. All four analytical methods (Bayesian Inference, BI; Maximum Likelihood, ML; Maximum Parsimony, MP; and Neighbor-Joining, NJ) showed almost congruent intra-generic topologies for Darevskia and other lizard genera. However, ML and NJ methods on one side, and BI and MP methods on the other harvested conflicting phylogenies. The ML/NJ topology supports earlier published separation of Darevskia into three mitochondrial clades (Murphy, Fu, Macculloch, Darevsky, and Kupinova, 2000), but BI and MP topologies support that the basal branching occurred between D. parvula from the western Lesser Caucasus and the rest of Darevskia. All topologies altered the phylogenetic position of some individual species, including D. daghestanica, D. derjugini, and D. chlorogaster. Reanalysis after excluding four saturated genes from the data set, and excluding genus Eremias gives fully convergent topologies. The most basal branching for true lizards was between Far Eastern Takydromus and the Western Eurasian genera (BI). Comparing phylogenetic performance of individual genes relative to whole mitogenome data, concatenated 16S RNA (the least saturated gene in our analyses) and Cytochrome b genes generate a robust phylogeny that is fully congruent with that based on the complete mitogenome.
Collapse
Affiliation(s)
- Marine Murtskhvaladze
- School of Natural Sciences and Engineering, Ilia State University, Tbilisi, Georgia
- L. Sakvarelidze National Center for Disease Control and Public Health, Tbilisi, Georgia
| | - David Tarkhnishvili
- School of Natural Sciences and Engineering, Ilia State University, Tbilisi, Georgia
| | - Cort L. Anderson
- School of Natural Sciences and Engineering, Ilia State University, Tbilisi, Georgia
| | - Adam Kotorashvili
- L. Sakvarelidze National Center for Disease Control and Public Health, Tbilisi, Georgia
| |
Collapse
|
5
|
Mackiewicz P, Urantówka AD, Kroczak A, Mackiewicz D. Resolving Phylogenetic Relationships within Passeriformes Based on Mitochondrial Genes and Inferring the Evolution of Their Mitogenomes in Terms of Duplications. Genome Biol Evol 2019; 11:2824-2849. [PMID: 31580435 PMCID: PMC6795242 DOI: 10.1093/gbe/evz209] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2019] [Indexed: 12/29/2022] Open
Abstract
Mitochondrial genes are placed on one molecule, which implies that they should carry consistent phylogenetic information. Following this advantage, we present a well-supported phylogeny based on mitochondrial genomes from almost 300 representatives of Passeriformes, the most numerous and differentiated Aves order. The analyses resolved the phylogenetic position of paraphyletic Basal and Transitional Oscines. Passerida occurred divided into two groups, one containing Paroidea and Sylvioidea, whereas the other, Passeroidea and Muscicapoidea. Analyses of mitogenomes showed four types of rearrangements including a duplicated control region (CR) with adjacent genes. Mapping the presence and absence of duplications onto the phylogenetic tree revealed that the duplication was the ancestral state for passerines and was maintained in early diverged lineages. Next, the duplication could be lost and occurred independently at least four times according to the most parsimonious scenario. In some lineages, two CR copies have been inherited from an ancient duplication and highly diverged, whereas in others, the second copy became similar to the first one due to concerted evolution. The second CR copies accumulated over twice as many substitutions as the first ones. However, the second CRs were not completely eliminated and were retained for a long time, which suggests that both regions can fulfill an important role in mitogenomes. Phylogenetic analyses based on CR sequences subjected to the complex evolution can produce tree topologies inconsistent with real evolutionary relationships between species. Passerines with two CRs showed a higher metabolic rate in relation to their body mass.
Collapse
Affiliation(s)
- Paweł Mackiewicz
- Department of Bioinformatics and Genomics, Faculty of Biotechnology, University of Wrocław, Poland
| | - Adam Dawid Urantówka
- Department of Genetics, Wroclaw University of Environmental and Life Sciences, Poland
| | - Aleksandra Kroczak
- Department of Bioinformatics and Genomics, Faculty of Biotechnology, University of Wrocław, Poland
- Department of Genetics, Wroclaw University of Environmental and Life Sciences, Poland
| | - Dorota Mackiewicz
- Department of Bioinformatics and Genomics, Faculty of Biotechnology, University of Wrocław, Poland
| |
Collapse
|
6
|
Wang Q, Lu W, Yang J, Jiang L, Zhang Q, Kan X, Yang X. Comparative transcriptomics in three Passerida species provides insights into the evolution of avian mitochondrial complex I. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2018; 28:27-36. [DOI: 10.1016/j.cbd.2018.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 06/04/2018] [Accepted: 06/13/2018] [Indexed: 02/02/2023]
|
7
|
The complete mitochondrial genomes of Tarsiger cyanurus and Phoenicurus auroreus: a phylogenetic analysis of Passeriformes. Genes Genomics 2018; 40:151-165. [PMID: 29892923 DOI: 10.1007/s13258-017-0617-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 10/05/2017] [Indexed: 10/18/2022]
Abstract
Passeriformes is the largest group within aves and the phylogenetic relationships between Passeriformes have caused major disagreement in ornithology. Particularly, the phylogenetic relationships between muscicapoidea and sylvioidea are complex, and their taxonomic boundaries have not been clearly defined. Our aim was to study the status of two bird species: Tarsiger cyanurus and Phoenicurus auroreus. Furthermore, we analyzed the phylogenetic relationships of Passeriformes. Complete mitochondrial DNA (mtDNA) sequences of both species were determined and the lengths were 16,803 (T. cyanurus) and 16,772 bp (P. auroreus), respectively. Thirteen protein-coding genes, 22 tRNA genes, two rRNA genes, and one control region were identified in these mtDNAs. The contents of A and T at the base compositions was significantly higher than the content of G and C, and this AT skew was positive, while the GC skew was negative. The monophyly of Passeriformes is divided into four major clades: Corvoidea, Sylvioidea, Passeroidea, and Musicicapoidea. Paridae should be separated from the superfamily Sylvioidea and placed within the superfamily Muscicapoidea. The family Muscicapidae and Corvida were paraphyly, while Carduelis and Emberiza were grouped as a sister taxon. The relationships between some species of the order passeriformes may remain difficult to resolve despite an effort to collect additional characters for phylogenetic analysis. Current research of avian phylogeny should focus on adding characters and taxa and use both effectively to obtain a better resolution for deeper and shallow nodes.
Collapse
|
8
|
Xing W, Gao W, Mao G, Zhang J, Lv X, Wang G, Yan J. Long non-coding RNAs in aging organs and tissues. Clin Exp Pharmacol Physiol 2017; 44 Suppl 1:30-37. [PMID: 28602041 DOI: 10.1111/1440-1681.12795] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 03/27/2017] [Accepted: 05/07/2017] [Indexed: 01/14/2023]
Affiliation(s)
- Wenmin Xing
- Geriatrics Institute of Zhejiang Province & Zhejiang Provincial Key Lab of Geriatrics; Zhejiang Hospital; Hangzhou China
| | - Wenyan Gao
- Institute of Materia Medica; Zhejiang Academy of Medical Sciences; Hangzhou China
| | - Genxiang Mao
- Geriatrics Institute of Zhejiang Province & Zhejiang Provincial Key Lab of Geriatrics; Zhejiang Hospital; Hangzhou China
| | - Jing Zhang
- Geriatrics Institute of Zhejiang Province & Zhejiang Provincial Key Lab of Geriatrics; Zhejiang Hospital; Hangzhou China
| | - Xiaoling Lv
- Geriatrics Institute of Zhejiang Province & Zhejiang Provincial Key Lab of Geriatrics; Zhejiang Hospital; Hangzhou China
| | - Guofu Wang
- Geriatrics Institute of Zhejiang Province & Zhejiang Provincial Key Lab of Geriatrics; Zhejiang Hospital; Hangzhou China
| | - Jing Yan
- Geriatrics Institute of Zhejiang Province & Zhejiang Provincial Key Lab of Geriatrics; Zhejiang Hospital; Hangzhou China
| |
Collapse
|
9
|
Sun Y, Kurisaki M, Hashiguchi Y, Kumazawa Y. Variation and evolution of polyadenylation profiles in sauropsid mitochondrial mRNAs as deduced from the high-throughput RNA sequencing. BMC Genomics 2017; 18:665. [PMID: 28851277 PMCID: PMC5576253 DOI: 10.1186/s12864-017-4080-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 08/21/2017] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Genes encoded in vertebrate mitochondrial DNAs are transcribed as a polycistronic transcript for both strands, which is later processed into individual mRNAs, rRNAs and tRNAs, followed by modifications, such as polyadenylation at the 3' end of mRNAs. Although mechanisms of the mitochondrial transcription and RNA processing have been extensively studied using some model organisms, structural variability of mitochondrial mRNAs across different groups of vertebrates is poorly understood. We conducted the high-throughput RNA sequencing to identify major polyadenylation sites for mitochondrial mRNAs in the Japanese grass lizard, Takydromus tachydromoides and compared the polyadenylation profiles with those identified similarly for 23 tetrapod species, featuring sauropsid taxa (reptiles and birds). RESULTS As compared to the human, a major polyadenylation site for the NADH dehydrogenase subunit 5 mRNA of the grass lizard was located much closer to its stop codon, resulting in considerable truncation of the 3' untranslated region for the mRNA. Among the other sauropsid taxa, several distinct polyadenylation profiles from the human counterpart were found for different mRNAs. They included various truncations of the 3' untranslated region for NADH dehydrogenase subunit 5 mRNA in four taxa, bird-specific polyadenylation of the light-strand-transcribed NADH dehydrogenase subunit 6 mRNA, and the combination of the ATP synthase subunit 8/6 mRNA with a neighboring mRNA into a tricistronic mRNA in the side-necked turtle Pelusios castaneus. In the last case of P. castaneus, as well as another example for NADH dehydrogenase subunit 1 mRNAs of some birds, the association between the polyadenylation site change and the gene overlap was highlighted. The variations in the polyadenylation profile were suggested to have arisen repeatedly in diverse sauropsid lineages. Some of them likely occurred in response to gene rearrangements in the mitochondrial DNA but the others not. CONCLUSIONS These results demonstrate structural variability of mitochondrial mRNAs in sauropsids. The efficient and comprehensive characterization of the mitochondrial mRNAs will contribute to broaden our understanding of their structural and functional evolution.
Collapse
Affiliation(s)
- Yao Sun
- Department of Information and Basic Science and Research Center for Biological Diversity, Graduate School of Natural Sciences, Nagoya City University, 1 Yamanohata, Mizuho-cho, Mizuho-ku, Nagoya, 467-8501, Japan
| | - Masaki Kurisaki
- Department of Information and Basic Science and Research Center for Biological Diversity, Graduate School of Natural Sciences, Nagoya City University, 1 Yamanohata, Mizuho-cho, Mizuho-ku, Nagoya, 467-8501, Japan
| | | | - Yoshinori Kumazawa
- Department of Information and Basic Science and Research Center for Biological Diversity, Graduate School of Natural Sciences, Nagoya City University, 1 Yamanohata, Mizuho-cho, Mizuho-ku, Nagoya, 467-8501, Japan.
| |
Collapse
|
10
|
Song N, An S, Yin X, Cai W, Li H. Application of RNA-seq for mitogenome reconstruction, and reconsideration of long-branch artifacts in Hemiptera phylogeny. Sci Rep 2016; 6:33465. [PMID: 27633117 PMCID: PMC5025853 DOI: 10.1038/srep33465] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 08/31/2016] [Indexed: 11/15/2022] Open
Abstract
Hemiptera make up the largest nonholometabolan insect assemblage. Despite previous efforts to elucidate phylogeny within this group, relationships among the major sub-lineages remain uncertain. In particular, mitochondrial genome (mitogenome) data are still sparse for many important hemipteran insect groups. Recent mitogenomic analyses of Hemiptera have usually included no more than 50 species, with conflicting hypotheses presented. Here, we determined the nearly complete nucleotide sequence of the mitogenome for the aphid species of Rhopalosiphum padi using RNA-seq plus gap filling. The 15,205 bp mitogenome included all mitochondrial genes except for trnF. The mitogenome organization and size for R. padi are similar to previously reported aphid species. In addition, the phylogenetic relationships for Hemiptera were examined using a mitogenomic dataset which included sequences from 103 ingroup species and 19 outgroup species. Our results showed that the seven species representing the Aleyrodidae exhibit extremely long branches, and always cluster with long-branched outgroups. This lead to the failure of recovering a monophyletic Hemiptera in most analyses. The data treatment of Degen-coding for protein-coding genes and the site-heterogeneous CAT model show improved suppression of the long-branch effect. Under these conditions, the Sternorrhyncha was often recovered as the most basal clade in Hemiptera.
Collapse
Affiliation(s)
- Nan Song
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Shiheng An
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Xinming Yin
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Wanzhi Cai
- Department of Entomology, China Agricultural University, Beijing, China
| | - Hu Li
- Department of Entomology, China Agricultural University, Beijing, China
| |
Collapse
|
11
|
Song N, Zhang H, Li H, Cai W. All 37 Mitochondrial Genes of Aphid Aphis craccivora Obtained from Transcriptome Sequencing: Implications for the Evolution of Aphids. PLoS One 2016; 11:e0157857. [PMID: 27314587 PMCID: PMC4912114 DOI: 10.1371/journal.pone.0157857] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 06/06/2016] [Indexed: 11/19/2022] Open
Abstract
The availability of mitochondrial genome data for Aphididae, one of the economically important insect pest families, in public databases is limited. The advent of next generation sequencing technology provides the potential to generate mitochondrial genome data for many species timely and cost-effectively. In this report, we used transcriptome sequencing technology to determine all the 37 mitochondrial genes of the cowpea aphid, Aphis craccivora. This method avoids the necessity of finding suitable primers for long PCRs or primer-walking amplicons, and is proved to be effective in obtaining the whole set of mitochondrial gene data for insects with difficulty in sequencing mitochondrial genome by PCR-based strategies. Phylogenetic analyses of aphid mitochondrial genome data show clustering based on tribe level, and strongly support the monophyly of the family Aphididae. Within the monophyletic Aphidini, three samples from Aphis grouped together. In another major clade of Aphididae, Pterocomma pilosum was recovered as a potential sister-group of Cavariella salicicola, as part of Macrosiphini.
Collapse
Affiliation(s)
- Nan Song
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Hao Zhang
- Henan Vocational and Technological College of Communication, Zhengzhou, China
| | - Hu Li
- Department of Entomology, China Agricultural University, Beijing, China
| | - Wanzhi Cai
- Department of Entomology, China Agricultural University, Beijing, China
| |
Collapse
|
12
|
Gibb GC, England R, Hartig G, McLenachan PAT, Taylor Smith BL, McComish BJ, Cooper A, Penny D. New Zealand Passerines Help Clarify the Diversification of Major Songbird Lineages during the Oligocene. Genome Biol Evol 2015; 7:2983-95. [PMID: 26475316 PMCID: PMC5635589 DOI: 10.1093/gbe/evv196] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Passerines are the largest avian order, and the 6,000 species comprise more than half of all extant bird species. This successful radiation probably had its origin in the Australasian region, but dating this origin has been difficult due to a scarce fossil record and poor biogeographic assumptions. Many of New Zealand’s endemic passerines fall within the deeper branches of the passerine radiation, and a well resolved phylogeny for the modern New Zealand element in the deeper branches of the oscine lineage will help us understand both oscine and passerine biogeography. To this end we present complete mitochondrial genomes representing all families of New Zealand passerines in a phylogenetic framework of over 100 passerine species. Dating analyses of this robust phylogeny suggest Passeriformes originated in the early Paleocene, with the major lineages of oscines “escaping” from Australasia about 30 Ma, and radiating throughout the world during the Oligocene. This independently derived conclusion is consistent with the passerine fossil record.
Collapse
Affiliation(s)
- Gillian C Gibb
- Ecology Group, Institute of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Ryan England
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand Present address: Forensic Business Group, Institute of Environmental Science and Research (ESR Ltd.), Mt Albert Science Centre, Auckland, New Zealand
| | - Gerrit Hartig
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand Present address: Starlims Germany GmbH An Abbott Company, Witten, Germany
| | | | - Briar L Taylor Smith
- Ecology Group, Institute of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Bennet J McComish
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand Present address: School of Physical Sciences, University of Tasmania, Hobart, Australia
| | - Alan Cooper
- Australian Centre for Ancient DNA, School of Earth and Environmental Sciences, University of Adelaide, South Australia, Australia
| | - David Penny
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| |
Collapse
|
13
|
Yang Y, Wang L, Han J, Tang X, Ma M, Wang K, Zhang X, Ren Q, Chen Q, Qiu Q. Comparative transcriptomic analysis revealed adaptation mechanism of Phrynocephalus erythrurus, the highest altitude Lizard living in the Qinghai-Tibet Plateau. BMC Evol Biol 2015; 15:101. [PMID: 26031664 PMCID: PMC4450828 DOI: 10.1186/s12862-015-0371-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 04/29/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Organisms living at high altitudes must overcome three major environmental challenges: hypoxia, cold, and intense UV radiation. The molecular mechanisms that enable these challenges to be overcome have mainly been studied in endothermic organisms; relatively little attention has been paid to poikilothermic species. Here, we present deep transcriptome sequencing in two closely related lizards, the high altitude-dwelling Phrynocephalus erythrurus and the lowland-dwelling P. putjatia, to identify candidate genes under positive selection and to explore the convergent evolutionary adaptation of poikilothermic animals to high altitude life. RESULTS More than 70 million sequence reads were generated for each species via Illumina sequencing. De novo assembly produced 56,845 and 63,140 transcripts for P. erythrurus and P. putjatia, respectively. P. erythrurus had higher Ka/Ks ratios than P. putjatia, implying an accelerated evolutionary rate in the high altitude lizard lineage. 206 gene ontology (GO) categories with accelerated evolutionary rates and 43 candidate positively selected genes were detected along the P. erythrurus lineage. Some of these GO categories have functions associated with responses to hypoxia, energy metabolism and responses to UV damage. We also found that the high-altitude ranid frog R. kukunoris had higher Ka/Ks ratios than the closely related low-altitude frog R. chensinensis, and that the functional categories with accelerated evolutionary rates in R. kukunoris overlapped extensively with those detected along the P. erythrurus lineage. CONCLUSIONS The mechanisms of high altitude adaptation in P. erythrurus were tentatively inferred. By comparing two pairs of low- and high-altitude poikilothermic species, we found that similar functional categories had undergone positive selection in high altitude-dwelling Phrynocephalus and Rana lineages, indicating that similar mechanisms of adaptation to high altitude might have evolved in both genera. Our findings provide important guidance for future functional studies on high altitude adaptation in poikilothermic animals.
Collapse
Affiliation(s)
- Yongzhi Yang
- State Key Laboratory of Grassland Agro-ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China.
| | - Lizhong Wang
- State Key Laboratory of Grassland Agro-ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China.
| | - Jin Han
- State Key Laboratory of Grassland Agro-ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China.
| | - Xiaolong Tang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China.
| | - Ming Ma
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China.
| | - Kun Wang
- State Key Laboratory of Grassland Agro-ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China.
| | - Xiao Zhang
- State Key Laboratory of Grassland Agro-ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China.
| | - Qian Ren
- State Key Laboratory of Grassland Agro-ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China.
| | - Qiang Chen
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China.
| | - Qiang Qiu
- State Key Laboratory of Grassland Agro-ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China.
| |
Collapse
|
14
|
Keith Barker F. Mitogenomic data resolve basal relationships among passeriform and passeridan birds. Mol Phylogenet Evol 2014; 79:313-24. [DOI: 10.1016/j.ympev.2014.06.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 05/31/2014] [Accepted: 06/11/2014] [Indexed: 11/29/2022]
|
15
|
Meiklejohn KA, Danielson MJ, Faircloth BC, Glenn TC, Braun EL, Kimball RT. Incongruence among different mitochondrial regions: A case study using complete mitogenomes. Mol Phylogenet Evol 2014; 78:314-23. [DOI: 10.1016/j.ympev.2014.06.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 05/31/2014] [Accepted: 06/02/2014] [Indexed: 01/22/2023]
|
16
|
Ekblom R, Smeds L, Ellegren H. Patterns of sequencing coverage bias revealed by ultra-deep sequencing of vertebrate mitochondria. BMC Genomics 2014; 15:467. [PMID: 24923674 PMCID: PMC4070552 DOI: 10.1186/1471-2164-15-467] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 06/09/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Genome and transcriptome sequencing applications that rely on variation in sequence depth can be negatively affected if there are systematic biases in coverage. We have investigated patterns of local variation in sequencing coverage by utilising ultra-deep sequencing (>100,000X) of mtDNA obtained during sequencing of two vertebrate genomes, wolverine (Gulo gulo) and collared flycatcher (Ficedula albicollis). With such extreme depth, stochastic variation in coverage should be negligible, which allows us to provide a very detailed, fine-scale picture of sequence dependent coverage variation and sequencing error rates. RESULTS Sequencing coverage showed up to six-fold variation across the complete mtDNA and this variation was highly repeatable in sequencing of multiple individuals of the same species. Moreover, coverage in orthologous regions was correlated between the two species and was negatively correlated with GC content. We also found a negative correlation between the site-specific sequencing error rate and coverage, with certain sequence motifs "CCNGCC" being particularly prone to high rates of error and low coverage. CONCLUSIONS Our results demonstrate that inherent sequence characteristics govern variation in coverage and suggest that some of this variation, like GC content, should be controlled for in, for example, RNA-Seq and detection of copy number variation.
Collapse
Affiliation(s)
- Robert Ekblom
- Department of Ecology and Genetics, Uppsala University, Uppsala SE-75236, Sweden.
| | | | | |
Collapse
|
17
|
Keith Barker F, Oyler-McCance S, Tomback DF. Blood from a turnip: tissue origin of low-coverage shotgun sequencing libraries affects recovery of mitogenome sequences. ACTA ACUST UNITED AC 2013; 26:384-8. [DOI: 10.3109/19401736.2013.840588] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
18
|
Fabre PH, Jønsson KA, Douzery EJP. Jumping and gliding rodents: mitogenomic affinities of Pedetidae and Anomaluridae deduced from an RNA-Seq approach. Gene 2013; 531:388-97. [PMID: 23973722 DOI: 10.1016/j.gene.2013.07.059] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 07/10/2013] [Accepted: 07/16/2013] [Indexed: 10/26/2022]
Abstract
An RNA-Seq strategy was used to obtain the complete set of protein-coding mitochondrial genes from two rodent taxa. Thanks to the next generation sequencing (NGS) 454 approach, we determined the complete mitochondrial DNA genome from Graphiurus kelleni (Mammalia: Rodentia: Gliridae) and partial mitogenome from Pedetes capensis (Pedetidae), and compared them with published rodent and outgroup mitogenomes. We finished the mitogenome sequencing by a series of amplicons using conserved PCR primers to fill the gaps corresponding to tRNA, rRNA and control regions. Phylogenetic analyses of the mitogenomes suggest a well-supported rodent phylogeny in agreement with nuclear gene trees. Pedetes groups with Anomalurus into the clade Anomaluromorpha, while Graphiurus branches within the squirrel-related clade. Moreover, Pedetes+Anomalurus branch with Castor into the mouse-related clade. Our study demonstrates the utility of NGS for obtaining new mitochondrial genomes as well as the importance of choosing adequate models of sequence evolution to infer the phylogeny of rodents.
Collapse
Affiliation(s)
- Pierre-Henri Fabre
- Institut des Sciences de l'Evolution (ISEM, UMR 5554 UM2-CNRS-IRD), Université Montpellier II, Place Eugène Bataillon - CC 064 - 34095 Montpellier Cedex 5, France; Center for Macroecology Evolution and Climate at the Natural History Museum of Denmark, University of Copenhagen, Universitetsparken, 15, DK-2100 Copenhagen Ø, Denmark
| | | | | |
Collapse
|
19
|
Wang HL, Yang J, Boykin LM, Zhao QY, Li Q, Wang XW, Liu SS. The characteristics and expression profiles of the mitochondrial genome for the Mediterranean species of the Bemisia tabaci complex. BMC Genomics 2013; 14:401. [PMID: 23768425 PMCID: PMC3691742 DOI: 10.1186/1471-2164-14-401] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 06/12/2013] [Indexed: 01/22/2023] Open
Abstract
Background The whiteflies under the name Bemisia tabaci (Gennadius) (Aleyrodidae: Hemiptera) are species complex of at least 31 cryptic species some of which are globally invasive agricultural pests. Previously, the mitochondrial genome (mitogenome) of the indigenous New World B. tabaci species was sequenced and major differences of gene order from the postulated whitefly ancestral gene order were found. However, the sequence and gene order of mitogenomes in other B. tabaci species are unknown. In addition, the sequence divergences and gene expression profiles of mitogenomes in the B. tabaci species complex remain completely unexplored. Results In this study, we obtained the complete mitogenome (15,632 bp) of the invasive Mediterranean (MED), which has been identified as the type species of the B. tabaci complex. It encodes 37 genes, including 13 protein-coding genes (PCGs), 2 ribosomal RNAs and 22 transfer RNAs (tRNA). Comparative analyses of the mitogenomes from MED and New World (previously published) species reveal that there are no gene arrangements. Based on the Illumina sequencing data, the gene expression profile of the MED mitogenome was analyzed. We found that a number of genes were polyadenylated and the partial stop codons in cox1, cox2 and nd5 are completed via polyadenylation that changed T to the TAA stop codon. In addition, combining the transcriptome with the sequence alignment data, the possible termination site of some PCGs were defined. Our analyses also revealed that atp6 and atp8, nd4 and nd4l, nd6 and cytb were found on the same cistronic transcripts, whereas the other mature mitochondrial transcripts were monocistronic. Furthermore, RT-PCR analyses of the mitochondrial PCGs expression in different developmental stages revealed that the expression level of individual mitochondrial genes varied in each developmental stage of nymph, pupa and adult. Interestingly, mRNA levels showed significant differences among genes located in the same transcription unit suggesting that mitochondrial mRNA abundance is heavily modulated by post-transcriptional regulation. Conclusions This work provides novel insights into the mitogenome evolution of B. tabaci species and demonstrates that utilizing RNA-seq data to obtain the mitogenome and analyze mitochondrial gene expression characteristics is practical.
Collapse
Affiliation(s)
- Hua-Ling Wang
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | | | | | | | | | | | | |
Collapse
|
20
|
Alexander A, Steel D, Slikas B, Hoekzema K, Carraher C, Parks M, Cronn R, Baker CS. Low diversity in the mitogenome of sperm whales revealed by next-generation sequencing. Genome Biol Evol 2013; 5:113-29. [PMID: 23254394 PMCID: PMC3595033 DOI: 10.1093/gbe/evs126] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Large population sizes and global distributions generally associate with high mitochondrial DNA control region (CR) diversity. The sperm whale (Physeter macrocephalus) is an exception, showing low CR diversity relative to other cetaceans; however, diversity levels throughout the remainder of the sperm whale mitogenome are unknown. We sequenced 20 mitogenomes from 17 sperm whales representative of worldwide diversity using Next Generation Sequencing (NGS) technologies (Illumina GAIIx, Roche 454 GS Junior). Resequencing of three individuals with both NGS platforms and partial Sanger sequencing showed low discrepancy rates (454-Illumina: 0.0071%; Sanger-Illumina: 0.0034%; and Sanger-454: 0.0023%) confirming suitability of both NGS platforms for investigating low mitogenomic diversity. Using the 17 sperm whale mitogenomes in a phylogenetic reconstruction with 41 other species, including 11 new dolphin mitogenomes, we tested two hypotheses for the low CR diversity. First, the hypothesis that CR-specific constraints have reduced diversity solely in the CR was rejected as diversity was low throughout the mitogenome, not just in the CR (overall diversity π = 0.096%; protein-coding 3rd codon = 0.22%; CR = 0.35%), and CR phylogenetic signal was congruent with protein-coding regions. Second, the hypothesis that slow substitution rates reduced diversity throughout the sperm whale mitogenome was rejected as sperm whales had significantly higher rates of CR evolution and no evidence of slow coding region evolution relative to other cetaceans. The estimated time to most recent common ancestor for sperm whale mitogenomes was 72,800 to 137,400 years ago (95% highest probability density interval), consistent with previous hypotheses of a bottleneck or selective sweep as likely causes of low mitogenome diversity.
Collapse
Affiliation(s)
- Alana Alexander
- Marine Mammal Institute, Hatfield Marine Science Center, Oregon State University, OR, USA.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Marshall HD, Baker AJ, Grant AR. Complete mitochondrial genomes from four subspecies of common chaffinch (Fringilla coelebs): new inferences about mitochondrial rate heterogeneity, neutral theory, and phylogenetic relationships within the order Passeriformes. Gene 2013; 517:37-45. [PMID: 23313296 DOI: 10.1016/j.gene.2012.12.093] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 12/20/2012] [Accepted: 12/21/2012] [Indexed: 10/27/2022]
Abstract
We describe whole mitochondrial genome sequences from four subspecies of the common chaffinch (Fringilla coelebs), and compare them to 31 publicly available mitochondrial genome sequences from other Passeriformes. Rates and patterns of mitochondrial gene evolution are analyzed at different taxonomic levels within this avian order, and evidence is adduced for and against the nearly neutral theory of molecular evolution and the role of positive selection in shaping genetic variation of this small but critical genome. We find evidence of mitochondrial rate heterogeneity in birds as in other vertebrates, likely due to differences in mutational pressure across the genome. Unlike in gadine fish and some of the human mitochondrial work we do not observe strong support for the nearly neutral theory of molecular evolution; instead evidence from molecular clocks, distribution of dN/dS ratios at different levels of the taxonomic hierarchy and in different lineages, McDonald-Kreitman tests within Fringillidae, and site-specific tests of selection within Passeriformes, all point to a role for positive selection, especially for the complex I NADH dehydrogenase genes. The protein-coding mitogenome phylogeny of the order Passeriformes is broadly consistent with previously-reported molecular findings, but provides support for a sister relationship between the superfamilies Muscicapoidea and Passeroidea on a short basal internode of the Passerida where relationships have been difficult to resolve. An unexpected placement of the Paridae (represented by Hume's groundpecker) within the Muscicapoidea was observed. Consistent with other molecular studies the mtDNA phylogeny reveals paraphyly within the Muscicapoidea and a sister relationship of Fringilla with Carduelis rather than Emberiza.
Collapse
Affiliation(s)
- H Dawn Marshall
- Wildlife Genetics and Genomics Laboratory, Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada.
| | | | | |
Collapse
|
22
|
Nabholz B, Uwimana N, Lartillot N. Reconstructing the phylogenetic history of long-term effective population size and life-history traits using patterns of amino acid replacement in mitochondrial genomes of mammals and birds. Genome Biol Evol 2013; 5:1273-90. [PMID: 23711670 PMCID: PMC3730341 DOI: 10.1093/gbe/evt083] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2013] [Indexed: 12/22/2022] Open
Abstract
The nearly neutral theory, which proposes that most mutations are deleterious or close to neutral, predicts that the ratio of nonsynonymous over synonymous substitution rates (dN/dS), and potentially also the ratio of radical over conservative amino acid replacement rates (Kr/Kc), are negatively correlated with effective population size. Previous empirical tests, using life-history traits (LHT) such as body-size or generation-time as proxies for population size, have been consistent with these predictions. This suggests that large-scale phylogenetic reconstructions of dN/dS or Kr/Kc might reveal interesting macroevolutionary patterns in the variation in effective population size among lineages. In this work, we further develop an integrative probabilistic framework for phylogenetic covariance analysis introduced previously, so as to estimate the correlation patterns between dN/dS, Kr/Kc, and three LHT, in mitochondrial genomes of birds and mammals. Kr/Kc displays stronger and more stable correlations with LHT than does dN/dS, which we interpret as a greater robustness of Kr/Kc, compared with dN/dS, the latter being confounded by the high saturation of the synonymous substitution rate in mitochondrial genomes. The correlation of Kr/Kc with LHT was robust when controlling for the potentially confounding effects of nucleotide compositional variation between taxa. The positive correlation of the mitochondrial Kr/Kc with LHT is compatible with previous reports, and with a nearly neutral interpretation, although alternative explanations are also possible. The Kr/Kc model was finally used for reconstructing life-history evolution in birds and mammals. This analysis suggests a fairly large-bodied ancestor in both groups. In birds, life-history evolution seems to have occurred mainly through size reduction in Neoavian birds, whereas in placental mammals, body mass evolution shows disparate trends across subclades. Altogether, our work represents a further step toward a more comprehensive phylogenetic reconstruction of the evolution of life-history and of the population-genetics environment.
Collapse
Affiliation(s)
- Benoit Nabholz
- Institut des Sciences de l’Evolution, UMR 5554 CNRS, Universite Montpellier II, France
| | - Nicole Uwimana
- Département de Biochimie, Centre Robert Cedergren, Université de Montréal, Québec, Canada
| | - Nicolas Lartillot
- Département de Biochimie, Centre Robert Cedergren, Université de Montréal, Québec, Canada
- Laboratoire d'Informatique, de Robotique et de Microélectronique de Montpellier, UMR 5506, CNRS-Université de Montpellier 2, France
| |
Collapse
|
23
|
Powell AF, Barker FK, Lanyon SM. Empirical evaluation of partitioning schemes for phylogenetic analyses of mitogenomic data: An avian case study. Mol Phylogenet Evol 2013; 66:69-79. [DOI: 10.1016/j.ympev.2012.09.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 09/08/2012] [Accepted: 09/08/2012] [Indexed: 10/27/2022]
|
24
|
Specialized motor-driven dusp1 expression in the song systems of multiple lineages of vocal learning birds. PLoS One 2012; 7:e42173. [PMID: 22876306 PMCID: PMC3410896 DOI: 10.1371/journal.pone.0042173] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 07/04/2012] [Indexed: 11/19/2022] Open
Abstract
Mechanisms for the evolution of convergent behavioral traits are largely unknown. Vocal learning is one such trait that evolved multiple times and is necessary in humans for the acquisition of spoken language. Among birds, vocal learning is evolved in songbirds, parrots, and hummingbirds. Each time similar forebrain song nuclei specialized for vocal learning and production have evolved. This finding led to the hypothesis that the behavioral and neuroanatomical convergences for vocal learning could be associated with molecular convergence. We previously found that the neural activity-induced gene dual specificity phosphatase 1 (dusp1) was up-regulated in non-vocal circuits, specifically in sensory-input neurons of the thalamus and telencephalon; however, dusp1 was not up-regulated in higher order sensory neurons or motor circuits. Here we show that song motor nuclei are an exception to this pattern. The song nuclei of species from all known vocal learning avian lineages showed motor-driven up-regulation of dusp1 expression induced by singing. There was no detectable motor-driven dusp1 expression throughout the rest of the forebrain after non-vocal motor performance. This pattern contrasts with expression of the commonly studied activity-induced gene egr1, which shows motor-driven expression in song nuclei induced by singing, but also motor-driven expression in adjacent brain regions after non-vocal motor behaviors. In the vocal non-learning avian species, we found no detectable vocalizing-driven dusp1 expression in the forebrain. These findings suggest that independent evolutions of neural systems for vocal learning were accompanied by selection for specialized motor-driven expression of the dusp1 gene in those circuits. This specialized expression of dusp1 could potentially lead to differential regulation of dusp1-modulated molecular cascades in vocal learning circuits.
Collapse
|
25
|
Shen X, Tian M, Meng X, Liu H, Cheng H, Zhu C, Zhao F. Complete mitochondrial genome of Membranipora grandicella (Bryozoa: Cheilostomatida) determined with next-generation sequencing: the first representative of the suborder Malacostegina. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2012; 7:248-53. [PMID: 22503287 DOI: 10.1016/j.cbd.2012.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 03/22/2012] [Accepted: 03/22/2012] [Indexed: 11/28/2022]
Abstract
Next-generation sequencing (NGS) has proven a valuable platform for fast and easy obtaining of large numbers of sequences at relatively low cost. In this study we use shot-gun sequencing method on Illumina HiSeq 2000, to obtain enough sequences for the assembly of the bryozoan Membranipora grandicella (Bryozoa: Cheilostomatida) mitochondrial genome, which is the first representative of the suborder Malacostegina. The complete mitochondrial genome is 15,861 bp in length, which is relatively larger than other studied bryozoans. The mitochondrial genome contains 13 protein-coding genes, 2 ribosomal RNAs and 20 transfer RNAs. To investigate the phylogenetic position and the inner relationships of the phylum Bryozoa, phylogenetic trees were constructed with amino acid sequences of 11 PCGs from 30 metazoans. Two superclades of protostomes, namely Lophotrochozoa and Ecdysozoa, are recovered as monophyletic with strong support in both ML and Bayesian analyses. Somewhat to surprise, Bryozoa appears as the sister group of Chaetognatha with moderate or high support. The relationship among five bryozoans is Tubulipora flabellaris + (M. grandicella + (Flustrellidra hispida + (Bugula neritina + Watersipora subtorquata))), which supports for the view that Cheilostomatida is not a natural, monophyletic clade. NGS proved to be a quick and easy method for sequencing a complete mitochondrial genome.
Collapse
Affiliation(s)
- Xin Shen
- Jiangsu Key Laboratory of Marine Biotechnology/College of Marine Science, Huaihai Institute of Technology, Lianyungang, 222005, China.
| | | | | | | | | | | | | |
Collapse
|
26
|
Kômoto N, Yukuhiro K, Tomita S. Novel gene rearrangements in the mitochondrial genome of a webspinner, Aposthonia japonica (Insecta: Embioptera). Genome 2012; 55:222-33. [DOI: 10.1139/g2012-007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Webspinners (order Embioptera) are polyneopteran insects characterized by enlarged foretarsi with silk glands, whose silk is used to produce galleries in which the insects live gregariously. The phylogenetic position of webspinners has been debated. In the present study, an almost complete mitochondrial DNA (mtDNA) sequence of Embioptera is reported for the first time. The mtDNA of a webspinner, Aposthonia japonica , has the 13 protein-coding genes (PCGs) generally found in metazoan mtDNA sequences. There is a translocation of a large region including atp6, atp8, cox3, nad3, and nad5 as well as a duplication of the 12S rRNA gene. The rearrangement does not seem to affect nucleotide composition, although amino acid composition in some parts of the mtDNA is biased compared with other Polyneoptera species. Based on phylogenetic analyses using nucleotide sequences of all PCGs concatenated with two rRNA genes and the amino acid sequences of all PCGs, A. japonica is sister to Verophasmatodea, a suborder of typical stick and leaf insects.
Collapse
Affiliation(s)
- Natuo Kômoto
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8634, Japan
| | - Kenji Yukuhiro
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8634, Japan
| | - Shuichiro Tomita
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8634, Japan
| |
Collapse
|
27
|
Miller JM, Malenfant RM, Moore SS, Coltman DW. Short reads, circular genome: skimming solid sequence to construct the bighorn sheep mitochondrial genome. ACTA ACUST UNITED AC 2011; 103:140-6. [PMID: 21948953 DOI: 10.1093/jhered/esr104] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
As sequencing technology improves, an increasing number of projects aim to generate full genome sequence, even for nonmodel taxa. These projects may be feasibly conducted at lower read depths if the alignment can be aided by previously developed genomic resources from a closely related species. We investigated the feasibility of constructing a complete mitochondrial (mt) genome without preamplification or other targeting of the sequence. Here we present a full mt genome sequence (16,463 nucleotides) for the bighorn sheep (Ovis canadensis) generated though alignment of SOLiD short-read sequences to a reference genome. Average read depth was 1240, and each base was covered by at least 36 reads. We then conducted a phylogenomic analysis with 27 other bovid mitogenomes, which placed bighorn sheep firmly in the Ovis clade. These results show that it is possible to generate a complete mitogenome by skimming a low-coverage genomic sequencing library. This technique will become increasingly applicable as the number of taxa with some level of genome sequence rises.
Collapse
Affiliation(s)
- Joshua M Miller
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada.
| | | | | | | |
Collapse
|
28
|
Gayral P, Weinert L, Chiari Y, Tsagkogeorga G, Ballenghien M, Galtier N. Next-generation sequencing of transcriptomes: a guide to RNA isolation in nonmodel animals. Mol Ecol Resour 2011; 11:650-61. [PMID: 21481219 DOI: 10.1111/j.1755-0998.2011.03010.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Next Generation Sequencing technologies (NGS) are rapidly invading many evolutionary and ecological fields, such as phylogenomics, molecular evolution, population genomics and molecular ecology. Among the potential targets of NGS is transcriptome sequencing, a fast and relatively cheap way to generate massive amounts of coding sequence data, offering promising perspectives for the analysis of molecular diversity in the wild. A number of molecular ecology research groups therefore may switch from DNA-based to RNA-based typing in the near future. Sample preparation from natural populations, however, requires specific care and protocols when RNA is the target. Furthermore, NGS sequencing of transcriptome requires high amount of good-quality RNA. Here we present the results of RNA extraction experiments from various samples of 39 animal species caught in the wild. We compared tissue preparation and storage conditions, evaluated and improved standard RNA extraction protocols, and achieved RNA yield and quality suitable for NGS in all cases. We derive general guidelines for the production of ready-to-sequence RNA in nonmodel animals sampled in the field.
Collapse
Affiliation(s)
- Philippe Gayral
- Institut des Sciences de l'Evolution, CNRS UMR 5554, Université Montpellier 2, Place E Bataillon, 34095 Montpellier, France.
| | | | | | | | | | | |
Collapse
|