1
|
Susek K, Bielski W, Czyż KB, Hasterok R, Jackson SA, Wolko B, Naganowska B. Impact of Chromosomal Rearrangements on the Interpretation of Lupin Karyotype Evolution. Genes (Basel) 2019; 10:genes10040259. [PMID: 30939837 PMCID: PMC6523792 DOI: 10.3390/genes10040259] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 03/27/2019] [Accepted: 03/27/2019] [Indexed: 02/06/2023] Open
Abstract
Plant genome evolution can be very complex and challenging to describe, even within a genus. Mechanisms that underlie genome variation are complex and can include whole-genome duplications, gene duplication and/or loss, and, importantly, multiple chromosomal rearrangements. Lupins (Lupinus) diverged from other legumes approximately 60 mya. In contrast to New World lupins, Old World lupins show high variability not only for chromosome numbers (2n = 32–52), but also for the basic chromosome number (x = 5–9, 13) and genome size. The evolutionary basis that underlies the karyotype evolution in lupins remains unknown, as it has so far been impossible to identify individual chromosomes. To shed light on chromosome changes and evolution, we used comparative chromosome mapping among 11 Old World lupins, with Lupinus angustifolius as the reference species. We applied set of L. angustifolius-derived bacterial artificial chromosome clones for fluorescence in situ hybridization. We demonstrate that chromosome variations in the species analyzed might have arisen from multiple changes in chromosome structure and number. We hypothesize about lupin karyotype evolution through polyploidy and subsequent aneuploidy. Additionally, we have established a cytogenomic map of L. angustifolius along with chromosome markers that can be used for related species to further improve comparative studies of crops and wild lupins.
Collapse
Affiliation(s)
- Karolina Susek
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland.
| | - Wojciech Bielski
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland.
| | - Katarzyna B Czyż
- Department of Biometry and Bioinformatics, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland.
| | - Robert Hasterok
- Department of Plant Anatomy and Cytology, University of Silesia in Katowice, 40-032 Katowice, Poland.
| | - Scott A Jackson
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA 30602, USA.
| | - Bogdan Wolko
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland.
| | - Barbara Naganowska
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland.
| |
Collapse
|
2
|
Szczepaniak A, Książkiewicz M, Podkowiński J, Czyż KB, Figlerowicz M, Naganowska B. Legume Cytosolic and Plastid Acetyl-Coenzyme-A Carboxylase Genes Differ by Evolutionary Patterns and Selection Pressure Schemes Acting before and after Whole-Genome Duplications. Genes (Basel) 2018; 9:genes9110563. [PMID: 30469317 PMCID: PMC6265850 DOI: 10.3390/genes9110563] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/09/2018] [Accepted: 11/15/2018] [Indexed: 01/01/2023] Open
Abstract
Acetyl-coenzyme A carboxylase (ACCase, E.C.6.4.1.2) catalyzes acetyl-coenzyme A carboxylation to malonyl coenzyme A. Plants possess two distinct ACCases differing by cellular compartment and function. Plastid ACCase contributes to de novo fatty acid synthesis, whereas cytosolic enzyme to the synthesis of very long chain fatty acids, phytoalexins, flavonoids, and anthocyanins. The narrow leafed lupin (Lupinus angustifolius L.) represents legumes, a plant family which evolved by whole-genome duplications (WGDs). The study aimed on the contribution of these WGDs to the multiplication of ACCase genes and their further evolutionary patterns. The molecular approach involved bacterial artificial chromosome (BAC) library screening, fluorescent in situ hybridization, linkage mapping, and BAC sequencing. In silico analysis encompassed sequence annotation, comparative mapping, selection pressure calculation, phylogenetic inference, and gene expression profiling. Among sequenced legumes, the highest number of ACCase genes was identified in lupin and soybean. The most abundant plastid ACCase subunit genes were accB. ACCase genes in legumes evolved by WGDs, evidenced by shared synteny and Bayesian phylogenetic inference. Transcriptional activity of almost all copies was confirmed. Gene duplicates were conserved by strong purifying selection, however, positive selection occurred in Arachis (accB2) and Lupinus (accC) lineages, putatively predating the WGD event(s). Early duplicated accA and accB genes underwent transcriptional sub-functionalization.
Collapse
Affiliation(s)
- Anna Szczepaniak
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznań, Poland.
| | - Michał Książkiewicz
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznań, Poland.
| | - Jan Podkowiński
- Department of Genomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznań, Poland.
| | - Katarzyna B Czyż
- Department of Biometry and Bioinformatics, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznań, Poland.
| | - Marek Figlerowicz
- Department of Genomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznań, Poland.
| | - Barbara Naganowska
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznań, Poland.
| |
Collapse
|
3
|
Keller J, Rousseau-Gueutin M, Martin GE, Morice J, Boutte J, Coissac E, Ourari M, Aïnouche M, Salmon A, Cabello-Hurtado F, Aïnouche A. The evolutionary fate of the chloroplast and nuclear rps16 genes as revealed through the sequencing and comparative analyses of four novel legume chloroplast genomes from Lupinus. DNA Res 2017; 24:343-358. [PMID: 28338826 PMCID: PMC5737547 DOI: 10.1093/dnares/dsx006] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 02/02/2017] [Indexed: 01/21/2023] Open
Abstract
The Fabaceae family is considered as a model system for understanding chloroplast genome evolution due to the presence of extensive structural rearrangements, gene losses and localized hypermutable regions. Here, we provide sequences of four chloroplast genomes from the Lupinus genus, belonging to the underinvestigated Genistoid clade. Notably, we found in Lupinus species the functional loss of the essential rps16 gene, which was most likely replaced by the nuclear rps16 gene that encodes chloroplast and mitochondrion targeted RPS16 proteins. To study the evolutionary fate of the rps16 gene, we explored all available plant chloroplast, mitochondrial and nuclear genomes. Whereas no plant mitochondrial genomes carry an rps16 gene, many plants still have a functional nuclear and chloroplast rps16 gene. Ka/Ks ratios revealed that both chloroplast and nuclear rps16 copies were under purifying selection. However, due to the dual targeting of the nuclear rps16 gene product and the absence of a mitochondrial copy, the chloroplast gene may be lost. We also performed comparative analyses of lupine plastomes (SNPs, indels and repeat elements), identified the most variable regions and examined their phylogenetic utility. The markers identified here will help to reveal the evolutionary history of lupines, Genistoids and closely related clades.
Collapse
Affiliation(s)
- J Keller
- UMR CNRS 6553 Ecobio, OSUR (Observatoire des Sciences de l'Univers de Rennes), Université de Rennes 1, 35042 Rennes, France
| | - M Rousseau-Gueutin
- UMR CNRS 6553 Ecobio, OSUR (Observatoire des Sciences de l'Univers de Rennes), Université de Rennes 1, 35042 Rennes, France.,IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, BP35327, 35653 Le Rheu Cedex, France
| | - G E Martin
- CIRAD (Centre de coopération Internationale en Recherche Agronomique pour le Développement), UMR AGAP, F-34398 Montpellier, France
| | - J Morice
- IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, BP35327, 35653 Le Rheu Cedex, France
| | - J Boutte
- UMR CNRS 6553 Ecobio, OSUR (Observatoire des Sciences de l'Univers de Rennes), Université de Rennes 1, 35042 Rennes, France
| | - E Coissac
- Laboratoire d'Ecologie Alpine, CNRS - Université de Grenoble 1 - Université de Savoie, 38041 Grenoble, France
| | - M Ourari
- Département des Sciences Biologiques, Faculté des Sciences de la Nature et de la Vie, Université Abderrahmane Mira, 06000 Bejaia, Algeria
| | - M Aïnouche
- UMR CNRS 6553 Ecobio, OSUR (Observatoire des Sciences de l'Univers de Rennes), Université de Rennes 1, 35042 Rennes, France
| | - A Salmon
- UMR CNRS 6553 Ecobio, OSUR (Observatoire des Sciences de l'Univers de Rennes), Université de Rennes 1, 35042 Rennes, France
| | - F Cabello-Hurtado
- UMR CNRS 6553 Ecobio, OSUR (Observatoire des Sciences de l'Univers de Rennes), Université de Rennes 1, 35042 Rennes, France
| | - A Aïnouche
- UMR CNRS 6553 Ecobio, OSUR (Observatoire des Sciences de l'Univers de Rennes), Université de Rennes 1, 35042 Rennes, France
| |
Collapse
|
4
|
Cabello-Hurtado F, Keller J, Ley J, Sanchez-Lucas R, Jorrín-Novo JV, Aïnouche A. Proteomics for exploiting diversity of lupin seed storage proteins and their use as nutraceuticals for health and welfare. J Proteomics 2016; 143:57-68. [PMID: 26996462 DOI: 10.1016/j.jprot.2016.03.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/07/2016] [Accepted: 03/09/2016] [Indexed: 02/07/2023]
Abstract
UNLABELLED Lupins have a variety of both traditional and modern uses. In the last decade, reports assessing the benefits of lupin seed proteins have proliferated and, nowadays, the pharmaceutical industry is interested in lupin proteins for human health. Modern genomics and proteomics have hugely contributed to describing the diversity of lupin storage genes and, above all, proteins. Most of these studies have been centered on few edible lupin species. However, Lupinus genus comprises hundreds of species spread throughout the Old and New Worlds, and these resources have been scarcely explored and exploited. We present here a detailed review of the literature on the potential of lupin seed proteins as nutraceuticals, and the use of -omic tools to analyze seed storage polypeptides in main edible lupins and their diversity at the Lupinus inter- and intra-species level. In this sense, proteomics, more than any other, has been a key approach. Proteomics has shown that lupin seed protein diversity, where post-translational modifications yield a large number of peptide variants with a potential concern in bioactivity, goes far beyond gene diversity. The future extended use of second and third generation proteomics should definitely help to go deeper into coverage and characterization of lupin seed proteome. BIOLOGICAL SIGNIFICANCE Some important topics concerning storage proteins from lupin seeds are presented and analyzed in an integrated way in this review. Proteomic approaches have been essential in characterizing lupin seed protein diversity, which goes far beyond gene diversity since the protein level adds to the latter differential proteolytic cleavage of conglutin pro-proteins and a diverse array of glycosylation forms and sites. Proteomics has also proved helpful for screening and studying Lupinus germplasm with the future aim of exploiting and improving food production, quality, and nutritional values.
Collapse
Affiliation(s)
- Francisco Cabello-Hurtado
- UMR CNRS 6553 Ecobio, OSUR (Observatoire des Sciences de l'Univers de Rennes), University of Rennes 1, 263 av. du Général Leclerc, 35042 Rennes, France.
| | - Jean Keller
- UMR CNRS 6553 Ecobio, OSUR (Observatoire des Sciences de l'Univers de Rennes), University of Rennes 1, 263 av. du Général Leclerc, 35042 Rennes, France
| | - José Ley
- UMR CNRS 6553 Ecobio, OSUR (Observatoire des Sciences de l'Univers de Rennes), University of Rennes 1, 263 av. du Général Leclerc, 35042 Rennes, France
| | - Rosa Sanchez-Lucas
- Agroforestry and Plant Biochemistry and Proteomics Research Group, Dpt. Biochemistry and Molecular Biology, University of Cordoba-CeiA3, Cordoba, Spain
| | - Jesús V Jorrín-Novo
- Agroforestry and Plant Biochemistry and Proteomics Research Group, Dpt. Biochemistry and Molecular Biology, University of Cordoba-CeiA3, Cordoba, Spain
| | - Abdelkader Aïnouche
- UMR CNRS 6553 Ecobio, OSUR (Observatoire des Sciences de l'Univers de Rennes), University of Rennes 1, 263 av. du Général Leclerc, 35042 Rennes, France
| |
Collapse
|
5
|
Mao Y, Zhang Y, Xu C, Qiu Y. Comparative transcriptome resources of two Dysosma species (Berberidaceae) and molecular evolution of the CYP719A gene in Podophylloideae. Mol Ecol Resour 2015; 16:228-41. [PMID: 25879377 DOI: 10.1111/1755-0998.12415] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 04/09/2015] [Accepted: 04/14/2015] [Indexed: 12/13/2022]
Abstract
Dysosma species (Berberidaceae, Podophylloideae) are of great medicinal pharmacogenetic importance and used as model systems to study the drivers and mechanisms of species diversification of temperate plants in East Asia. Recently, we have sequenced the transcriptome of the low-elevation D. versipellis. In this study, we sequenced the transcriptome of the high-elevation D. aurantiocaulis and used comparative genomic approaches to investigate the transcriptome evolution of the two species. We retrieved 53,929 unigenes from D. aurantiocaulis by de novo transcriptome assemblies using the Illumina HiSeq 2000 platform. Comparing the transcriptomes of both species, we identified 4593 orthologs. Estimation of Ka/Ks ratios for 3126 orthologs revealed that none had a Ka/Ks significantly greater than 1, whereas 1273 (Ka/Ks < 0.5, P < 0.05) were inferred to be under purifying selection. A total of 51 primer pairs were successfully designed from 461 EST-SSRs contained in 4593 orthologs. Marker validation assay revealed that 26 (51%) and 41 (80.4%) produced clear fragments with the expected sizes in all Podophylloideae species. Specifically, 19 different sequences of CYP719A were identified from PCR-amplified genomic DNA of all 12 species of Podophylloideae using primers designed from the assembled transcripts. The data further indicated that CYP719A was likely subject to strong selective constraints maintaining only one copy per genome. In Dysosma, there was relaxed purifying selection or more positive selection for high-elevation species. Overall, this study has generated a wealth of molecular resources potentially useful for pharmacogenetic and evolutionary studies in Dysosma and allied taxa.
Collapse
Affiliation(s)
- Yunrui Mao
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, and Laboratory of Systematic & Evolutionary Botany and Biodiversity, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yonghua Zhang
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, and Laboratory of Systematic & Evolutionary Botany and Biodiversity, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chuan Xu
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yingxiong Qiu
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, and Laboratory of Systematic & Evolutionary Botany and Biodiversity, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
6
|
Ricono A, Bupp G, Peterson C, Nunziata SO, Lance SL, Pruett CL. Development and characterization of microsatellite loci for the endangered scrub lupine, Lupinus aridorum (Fabaceae). APPLICATIONS IN PLANT SCIENCES 2015; 3:apps1500013. [PMID: 25909046 PMCID: PMC4406839 DOI: 10.3732/apps.1500013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 03/05/2015] [Indexed: 06/04/2023]
Abstract
PREMISE OF THE STUDY Microsatellite primers were developed in scrub lupine (Lupinus aridorum, Fabaceae), an endemic species to Florida that is listed as endangered in the United States, to assess connectivity among populations, identify hybrids, and examine genetic diversity. METHODS AND RESULTS We isolated and characterized 12 microsatellite loci polymorphic in scrub lupine or in closely related species (i.e., sky-blue lupine [L. diffusus] and Gulf Coast lupine [L. westianus]). Loci showed low to moderate polymorphism, ranging from two to 14 alleles per locus and 0.01 to 0.86 observed heterozygosity. CONCLUSIONS These loci are the first developed for Florida species of lupine and will be used to determine differentiation among species and to aid in conservation of the endangered scrub lupine.
Collapse
Affiliation(s)
- Angela Ricono
- Department of Biological Sciences, Florida Institute of Technology, Melbourne, Florida 32901 USA
| | - Glen Bupp
- Rare Plant Conservation Program, Bok Tower Gardens, Lake Wales, Florida 33853 USA
| | - Cheryl Peterson
- Rare Plant Conservation Program, Bok Tower Gardens, Lake Wales, Florida 33853 USA
| | - Schyler O. Nunziata
- Savannah River Ecology Laboratory, University of Georgia, Aiken, South Carolina 29802 USA
| | - Stacey L. Lance
- Savannah River Ecology Laboratory, University of Georgia, Aiken, South Carolina 29802 USA
| | - Christin L. Pruett
- Department of Biological Sciences, Florida Institute of Technology, Melbourne, Florida 32901 USA
| |
Collapse
|
7
|
Martin GE, Rousseau-Gueutin M, Cordonnier S, Lima O, Michon-Coudouel S, Naquin D, de Carvalho JF, Aïnouche M, Salmon A, Aïnouche A. The first complete chloroplast genome of the Genistoid legume Lupinus luteus: evidence for a novel major lineage-specific rearrangement and new insights regarding plastome evolution in the legume family. ANNALS OF BOTANY 2014; 113:1197-210. [PMID: 24769537 PMCID: PMC4030815 DOI: 10.1093/aob/mcu050] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
BACKGROUND AND AIMS To date chloroplast genomes are available only for members of the non-protein amino acid-accumulating clade (NPAAA) Papilionoid lineages in the legume family (i.e. Millettioids, Robinoids and the 'inverted repeat-lacking clade', IRLC). It is thus very important to sequence plastomes from other lineages in order to better understand the unusual evolution observed in this model flowering plant family. To this end, the plastome of a lupine species, Lupinus luteus, was sequenced to represent the Genistoid lineage, a noteworthy but poorly studied legume group. METHODS The plastome of L. luteus was reconstructed using Roche-454 and Illumina next-generation sequencing. Its structure, repetitive sequences, gene content and sequence divergence were compared with those of other Fabaceae plastomes. PCR screening and sequencing were performed in other allied legumes in order to determine the origin of a large inversion identified in L. luteus. KEY RESULTS The first sequenced Genistoid plastome (L. luteus: 155 894 bp) resulted in the discovery of a 36-kb inversion, embedded within the already known 50-kb inversion in the large single-copy (LSC) region of the Papilionoideae. This inversion occurs at the base or soon after the Genistoid emergence, and most probably resulted from a flip-flop recombination between identical 29-bp inverted repeats within two trnS genes. Comparative analyses of the chloroplast gene content of L. luteus vs. Fabaceae and extra-Fabales plastomes revealed the loss of the plastid rpl22 gene, and its functional relocation to the nucleus was verified using lupine transcriptomic data. An investigation into the evolutionary rate of coding and non-coding sequences among legume plastomes resulted in the identification of remarkably variable regions. CONCLUSIONS This study resulted in the discovery of a novel, major 36-kb inversion, specific to the Genistoids. Chloroplast mutational hotspots were also identified, which contain novel and potentially informative regions for molecular evolutionary studies at various taxonomic levels in the legumes. Taken together, the results provide new insights into the evolutionary landscape of the legume plastome.
Collapse
Affiliation(s)
- Guillaume E Martin
- UMR CNRS 6553 Ecobio, OSUR (Observatoire des Sciences de l'Univers de Rennes), Université de Rennes 1/Université Européenne de Bretagne, 35 042 Rennes, France
| | - Mathieu Rousseau-Gueutin
- UMR CNRS 6553 Ecobio, OSUR (Observatoire des Sciences de l'Univers de Rennes), Université de Rennes 1/Université Européenne de Bretagne, 35 042 Rennes, France
| | - Solenn Cordonnier
- UMR CNRS 6553 Ecobio, OSUR (Observatoire des Sciences de l'Univers de Rennes), Université de Rennes 1/Université Européenne de Bretagne, 35 042 Rennes, France
| | - Oscar Lima
- UMR CNRS 6553 Ecobio, OSUR (Observatoire des Sciences de l'Univers de Rennes), Université de Rennes 1/Université Européenne de Bretagne, 35 042 Rennes, France
| | - Sophie Michon-Coudouel
- Plate-forme Génomique Environnementale et Fonctionnelle, OSUR-CNRS, Université de Rennes 1, 35042 Rennes, France
| | - Delphine Naquin
- UMR CNRS 6553 Ecobio, OSUR (Observatoire des Sciences de l'Univers de Rennes), Université de Rennes 1/Université Européenne de Bretagne, 35 042 Rennes, France
| | - Julie Ferreira de Carvalho
- UMR CNRS 6553 Ecobio, OSUR (Observatoire des Sciences de l'Univers de Rennes), Université de Rennes 1/Université Européenne de Bretagne, 35 042 Rennes, France
| | - Malika Aïnouche
- UMR CNRS 6553 Ecobio, OSUR (Observatoire des Sciences de l'Univers de Rennes), Université de Rennes 1/Université Européenne de Bretagne, 35 042 Rennes, France
| | - Armel Salmon
- UMR CNRS 6553 Ecobio, OSUR (Observatoire des Sciences de l'Univers de Rennes), Université de Rennes 1/Université Européenne de Bretagne, 35 042 Rennes, France
| | - Abdelkader Aïnouche
- UMR CNRS 6553 Ecobio, OSUR (Observatoire des Sciences de l'Univers de Rennes), Université de Rennes 1/Université Européenne de Bretagne, 35 042 Rennes, France
| |
Collapse
|
8
|
Lambers H, Clements JC, Nelson MN. How a phosphorus-acquisition strategy based on carboxylate exudation powers the success and agronomic potential of lupines (Lupinus, Fabaceae). AMERICAN JOURNAL OF BOTANY 2013; 100:263-88. [PMID: 23347972 DOI: 10.3732/ajb.1200474] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Lupines (Lupinus species; Fabaceae) are an ancient crop with great potential to be developed further for high-protein feed and food, cover crops, and phytoremediation. Being legumes, they are capable of symbiotically fixing atmospheric nitrogen. However, Lupinus species appear to be nonmycorrhizal or weakly mycorrhizal at most; instead some produce cluster roots, which release vast amounts of phosphate-mobilizing carboxylates (inorganic anions). Other lupines produce cluster-like roots, which function in a similar manner, and some release large amounts of carboxylates without specialized roots. These traits associated with nutrient acquisition make lupines ideally suited for either impoverished soils or soils with large amounts of phosphorus that is poorly available for most plants, e.g., acidic or alkaline soils. Here we explore how common the nonmycorrhizal phosphorus-acquisition strategy based on exudation of carboxylates is in the genus Lupinus, concluding it is very likely more widespread than generally acknowledged. This trait may partly account for the role of lupines as pioneers or invasive species, but also makes them suitable crop plants while we reach "peak phosphorus".
Collapse
Affiliation(s)
- Hans Lambers
- School of Plant Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia.
| | | | | |
Collapse
|