1
|
Fonseca PM, Robe LJ, Carvalho TL, Loreto ELS. Characterization of the chemoreceptor repertoire of a highly specialized fly with comparisons to other Drosophila species. Genet Mol Biol 2024; 47:e20220383. [PMID: 38885260 PMCID: PMC11182316 DOI: 10.1590/1678-4685-gmb-2022-0383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/07/2024] [Indexed: 06/20/2024] Open
Abstract
To explore the diversity of scenarios in nature, animals have evolved tools to interact with different environmental conditions. Chemoreceptors are an important interface component and among them, olfactory receptors (ORs) and gustatory receptors (GRs) can be used to find food and detect healthy resources. Drosophila is a model organism in many scientific fields, in part due to the diversity of species and niches they occupy. The contrast between generalists and specialists Drosophila species provides an important model for studying the evolution of chemoreception. Here, we compare the repertoire of chemoreceptors of different species of Drosophila with that of D. incompta, a highly specialized species whose ecology is restricted to Cestrum flowers, after reporting the preferences of D. incompta to the odor of Cestrum flowers in olfactory tests. We found evidence that the chemoreceptor repertoire in D. incompta is smaller than that presented by species in the Sophophora subgenus. Similar patterns were found in other non-Sophophora species, suggesting the presence of underlying phylogenetic trends. Nevertheless, we also found autapomorphic gene losses and detected some genes that appear to be under positive selection in D. incompta, suggesting that the specific lifestyle of these flies may have shaped the evolution of individual genes in each of these gene families.
Collapse
Affiliation(s)
- Pedro Mesquita Fonseca
- Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
| | - Lizandra Jaqueline Robe
- Universidade Federal de Santa Maria, Centro de Ciências Naturais e Exatas, Programa de Pós-Graduação em Biodiversidade Animal, Santa Maria, RS, Brazil
| | - Tuane Letícia Carvalho
- Universidade Federal de Santa Maria, Centro de Ciências Naturais e Exatas, Programa de Pós-Graduação em Biodiversidade Animal, Santa Maria, RS, Brazil
| | - Elgion Lucio Silva Loreto
- Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
- Universidade Federal de Santa Maria, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Santa Maria, RS, Brazil
| |
Collapse
|
2
|
Li F, Rane RV, Luria V, Xiong Z, Chen J, Li Z, Catullo RA, Griffin PC, Schiffer M, Pearce S, Lee SF, McElroy K, Stocker A, Shirriffs J, Cockerell F, Coppin C, Sgrò CM, Karger A, Cain JW, Weber JA, Santpere G, Kirschner MW, Hoffmann AA, Oakeshott JG, Zhang G. Phylogenomic analyses of the genus Drosophila reveals genomic signals of climate adaptation. Mol Ecol Resour 2022; 22:1559-1581. [PMID: 34839580 PMCID: PMC9299920 DOI: 10.1111/1755-0998.13561] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/10/2021] [Indexed: 01/13/2023]
Abstract
Many Drosophila species differ widely in their distributions and climate niches, making them excellent subjects for evolutionary genomic studies. Here, we have developed a database of high-quality assemblies for 46 Drosophila species and one closely related Zaprionus. Fifteen of the genomes were newly sequenced, and 20 were improved with additional sequencing. New or improved annotations were generated for all 47 species, assisted by new transcriptomes for 19. Phylogenomic analyses of these data resolved several previously ambiguous relationships, especially in the melanogaster species group. However, it also revealed significant phylogenetic incongruence among genes, mainly in the form of incomplete lineage sorting in the subgenus Sophophora but also including asymmetric introgression in the subgenus Drosophila. Using the phylogeny as a framework and taking into account these incongruences, we then screened the data for genome-wide signals of adaptation to different climatic niches. First, phylostratigraphy revealed relatively high rates of recent novel gene gain in three temperate pseudoobscura and five desert-adapted cactophilic mulleri subgroup species. Second, we found differing ratios of nonsynonymous to synonymous substitutions in several hundred orthologues between climate generalists and specialists, with trends for significantly higher ratios for those in tropical and lower ratios for those in temperate-continental specialists respectively than those in the climate generalists. Finally, resequencing natural populations of 13 species revealed tropics-restricted species generally had smaller population sizes, lower genome diversity and more deleterious mutations than the more widespread species. We conclude that adaptation to different climates in the genus Drosophila has been associated with large-scale and multifaceted genomic changes.
Collapse
Affiliation(s)
- Fang Li
- BGI‐ShenzhenShenzhenChina
- Section for Ecology and EvolutionDepartment of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Rahul V. Rane
- Commonwealth Scientific and Industrial Research OrganisationActonACTAustralia
- Bio21 InstituteSchool of BioSciencesUniversity of MelbourneParkvilleVic.Australia
| | - Victor Luria
- Department of Systems BiologyHarvard Medical SchoolBostonMassachusettsUSA
| | - Zijun Xiong
- BGI‐ShenzhenShenzhenChina
- State Key Laboratory of Genetic Resources and EvolutionKunming Institute of ZoologyChinese Academy of Sciences (CAS)KunmingYunnanChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | | | | | - Renee A. Catullo
- Commonwealth Scientific and Industrial Research OrganisationActonACTAustralia
- Division of Ecology and EvolutionCentre for Biodiversity AnalysisThe Australian National UniversityActonACTAustralia
| | - Philippa C. Griffin
- Bio21 InstituteSchool of BioSciencesUniversity of MelbourneParkvilleVic.Australia
| | - Michele Schiffer
- Bio21 InstituteSchool of BioSciencesUniversity of MelbourneParkvilleVic.Australia
- Daintree Rainforest ObservatoryJames Cook UniversityCape TribulationQldAustralia
| | - Stephen Pearce
- Commonwealth Scientific and Industrial Research OrganisationActonACTAustralia
| | - Siu Fai Lee
- Commonwealth Scientific and Industrial Research OrganisationActonACTAustralia
- Applied BioSciencesMacquarie UniversityNorth RydeNSWAustralia
| | - Kerensa McElroy
- Commonwealth Scientific and Industrial Research OrganisationActonACTAustralia
| | - Ann Stocker
- Bio21 InstituteSchool of BioSciencesUniversity of MelbourneParkvilleVic.Australia
| | - Jennifer Shirriffs
- Bio21 InstituteSchool of BioSciencesUniversity of MelbourneParkvilleVic.Australia
| | - Fiona Cockerell
- School of Biological SciencesMonash UniversityClaytonVic.Australia
| | - Chris Coppin
- Commonwealth Scientific and Industrial Research OrganisationActonACTAustralia
| | - Carla M. Sgrò
- School of Biological SciencesMonash UniversityClaytonVic.Australia
| | - Amir Karger
- IT ‐ Research ComputingHarvard Medical SchoolBostonMassachusettsUSA
| | - John W. Cain
- Department of MathematicsHarvard UniversityCambridgeMassachusettsUSA
| | - Jessica A. Weber
- Department of GeneticsHarvard Medical SchoolBostonMassachusettsUSA
| | - Gabriel Santpere
- Neurogenomics Group, Research Programme on Biomedical Informatics (GRIB)Department of Experimental and Health Sciences (DCEXS)Hospital del Mar Medical Research Institute (IMIM)Universitat Pompeu FabraBarcelonaCataloniaSpain
| | - Marc W. Kirschner
- Department of Systems BiologyHarvard Medical SchoolBostonMassachusettsUSA
| | - Ary A. Hoffmann
- Bio21 InstituteSchool of BioSciencesUniversity of MelbourneParkvilleVic.Australia
| | - John G. Oakeshott
- Commonwealth Scientific and Industrial Research OrganisationActonACTAustralia
- Applied BioSciencesMacquarie UniversityNorth RydeNSWAustralia
| | - Guojie Zhang
- BGI‐ShenzhenShenzhenChina
- Section for Ecology and EvolutionDepartment of BiologyUniversity of CopenhagenCopenhagenDenmark
- State Key Laboratory of Genetic Resources and EvolutionKunming Institute of ZoologyChinese Academy of Sciences (CAS)KunmingYunnanChina
- Center for Excellence in Animal Evolution and GeneticsChinese Academy of SciencesKunmingChina
| |
Collapse
|
3
|
Conner WR, Delaney EK, Bronski MJ, Ginsberg PS, Wheeler TB, Richardson KM, Peckenpaugh B, Kim KJ, Watada M, Hoffmann AA, Eisen MB, Kopp A, Cooper BS, Turelli M. A phylogeny for the Drosophila montium species group: A model clade for comparative analyses. Mol Phylogenet Evol 2021; 158:107061. [PMID: 33387647 PMCID: PMC7946709 DOI: 10.1016/j.ympev.2020.107061] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 12/18/2020] [Accepted: 12/24/2020] [Indexed: 12/22/2022]
Abstract
The Drosophila montium species group is a clade of 94 named species, closely related to the model species D. melanogaster. The montium species group is distributed over a broad geographic range throughout Asia, Africa, and Australasia. Species of this group possess a wide range of morphologies, mating behaviors, and endosymbiont associations, making this clade useful for comparative analyses. We use genomic data from 42 available species to estimate the phylogeny and relative divergence times within the montium species group, and its relative divergence time from D. melanogaster. To assess the robustness of our phylogenetic inferences, we use 3 non-overlapping sets of 20 single-copy coding sequences and analyze all 60 genes with both Bayesian and maximum likelihood methods. Our analyses support monophyly of the group. Apart from the uncertain placement of a single species, D. baimaii, our analyses also support the monophyly of all seven subgroups proposed within the montium group. Our phylograms and relative chronograms provide a highly resolved species tree, with discordance restricted to estimates of relatively short branches deep in the tree. In contrast, age estimates for the montium crown group, relative to its divergence from D. melanogaster, depend critically on prior assumptions concerning variation in rates of molecular evolution across branches, and hence have not been reliably determined. We discuss methodological issues that limit phylogenetic resolution - even when complete genome sequences are available - as well as the utility of the current phylogeny for understanding the evolutionary and biogeographic history of this clade.
Collapse
Affiliation(s)
- William R Conner
- Department of Evolution and Ecology, University of California, Davis, CA 95616, USA; Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA(1)
| | - Emily K Delaney
- Department of Evolution and Ecology, University of California, Davis, CA 95616, USA
| | - Michael J Bronski
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Paul S Ginsberg
- Department of Evolution and Ecology, University of California, Davis, CA 95616, USA; Department of Genetics, University of Georgia, Athens, GA 30602, USA(1)
| | - Timothy B Wheeler
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA(1)
| | - Kelly M Richardson
- Bio21 Institute, School of BioScience, University of Melbourne, Victoria 3010, Australia
| | - Brooke Peckenpaugh
- Department of Evolution and Ecology, University of California, Davis, CA 95616, USA; Department of Biology, Indiana University, Bloomington, IN 47405, USA(1)
| | - Kevin J Kim
- Department of Evolution and Ecology, University of California, Davis, CA 95616, USA
| | - Masayoshi Watada
- Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime, Japan
| | - Ary A Hoffmann
- Bio21 Institute, School of BioScience, University of Melbourne, Victoria 3010, Australia
| | - Michael B Eisen
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Artyom Kopp
- Department of Evolution and Ecology, University of California, Davis, CA 95616, USA
| | - Brandon S Cooper
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA(1)
| | - Michael Turelli
- Department of Evolution and Ecology, University of California, Davis, CA 95616, USA.
| |
Collapse
|
4
|
Whole Genome Sequences of 23 Species from the Drosophila montium Species Group (Diptera: Drosophilidae): A Resource for Testing Evolutionary Hypotheses. G3-GENES GENOMES GENETICS 2020; 10:1443-1455. [PMID: 32220952 PMCID: PMC7202002 DOI: 10.1534/g3.119.400959] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Large groups of species with well-defined phylogenies are excellent systems for testing evolutionary hypotheses. In this paper, we describe the creation of a comparative genomic resource consisting of 23 genomes from the species-rich Drosophila montium species group, 22 of which are presented here for the first time. The montium group is well-positioned for clade genomics. Within the montium clade, evolutionary distances are such that large numbers of sequences can be accurately aligned while also recovering strong signals of divergence; and the distance between the montium group and D. melanogaster is short enough so that orthologous sequence can be readily identified. All genomes were assembled from a single, small-insert library using MaSuRCA, before going through an extensive post-assembly pipeline. Estimated genome sizes within the montium group range from 155 Mb to 223 Mb (mean = 196 Mb). The absence of long-distance information during the assembly process resulted in fragmented assemblies, with the scaffold NG50s varying widely based on repeat content and sample heterozygosity (min = 18 kb, max = 390 kb, mean = 74 kb). The total scaffold length for most assemblies is also shorter than the estimated genome size, typically by 5-15%. However, subsequent analysis showed that our assemblies are highly complete. Despite large differences in contiguity, all assemblies contain at least 96% of known single-copy Dipteran genes (BUSCOs, n = 2,799). Similarly, by aligning our assemblies to the D. melanogaster genome and remapping coordinates for a large set of transcriptional enhancers (n = 3,457), we showed that each montium assembly contains orthologs for at least 91% of D. melanogaster enhancers. Importantly, the genic and enhancer contents of our assemblies are comparable to that of far more contiguous Drosophila assemblies. The alignment of our own D. serrata assembly to a previously published PacBio D. serrata assembly also showed that our longest scaffolds (up to 1 Mb) are free of large-scale misassemblies. Our genome assemblies are a valuable resource that can be used to further resolve the montium group phylogeny; study the evolution of protein-coding genes and cis-regulatory sequences; and determine the genetic basis of ecological and behavioral adaptations.
Collapse
|
5
|
Campillo LC, Barley AJ, Thomson RC. Model-Based Species Delimitation: Are Coalescent Species Reproductively Isolated? Syst Biol 2019; 69:708-721. [DOI: 10.1093/sysbio/syz072] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 09/06/2019] [Accepted: 10/22/2019] [Indexed: 12/31/2022] Open
Abstract
Abstract
A large and growing fraction of systematists define species as independently evolving lineages that may be recognized by analyzing the population genetic history of alleles sampled from individuals belonging to those species. This has motivated the development of increasingly sophisticated statistical models rooted in the multispecies coalescent process. Specifically, these models allow for simultaneous estimation of the number of species present in a sample of individuals and the phylogenetic history of those species using only DNA sequence data from independent loci. These methods hold extraordinary promise for increasing the efficiency of species discovery but require extensive validation to ensure that they are accurate and precise. Whether the species identified by these methods correspond to the species that would be recognized by alternative species recognition criteria (such as measurements of reproductive isolation) is currently an open question and a subject of vigorous debate. Here, we perform an empirical test of these methods by making use of a classic model system in the history of speciation research, flies of the genus Drosophila. Specifically, we use the uniquely comprehensive data on reproductive isolation that is available for this system, along with DNA sequence data, to ask whether Drosophila species inferred under the multispecies coalescent model correspond to those recognized by many decades of speciation research. We found that coalescent based and reproductive isolation-based methods of inferring species boundaries are concordant for 77% of the species pairs. We explore and discuss potential explanations for these discrepancies. We also found that the amount of prezygotic isolation between two species is a strong predictor of the posterior probability of species boundaries based on DNA sequence data, regardless of whether the species pairs are sympatrically or allopatrically distributed. [BPP; Drosophila speciation; genetic distance; multispecies coalescent.]
Collapse
Affiliation(s)
- Luke C Campillo
- School of Life Sciences, University of Hawai’i, Honolulu, HI 96822, USA
| | - Anthony J Barley
- School of Life Sciences, University of Hawai’i, Honolulu, HI 96822, USA
| | - Robert C Thomson
- School of Life Sciences, University of Hawai’i, Honolulu, HI 96822, USA
| |
Collapse
|
6
|
Cordeiro J, Carvalho TL, Valente VLDS, Robe LJ. Evolutionary history and classification of Micropia retroelements in Drosophilidae species. PLoS One 2019; 14:e0220539. [PMID: 31622354 PMCID: PMC6797199 DOI: 10.1371/journal.pone.0220539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/04/2019] [Indexed: 11/19/2022] Open
Abstract
Transposable elements (TEs) have the main role in shaping the evolution of genomes and host species, contributing to the creation of new genes and promoting rearrangements frequently associated with new regulatory networks. Support for these hypotheses frequently results from studies with model species, and Drosophila provides a great model organism to the study of TEs. Micropia belongs to the Ty3/Gypsy group of long terminal repeats (LTR) retroelements and comprises one of the least studied Drosophila transposable elements. In this study, we assessed the evolutionary history of Micropia within Drosophilidae, while trying to assist in the classification of this TE. At first, we performed searches of Micropia presence in the genome of natural populations from several species. Then, based on searches within online genomic databases, we retrieved Micropia-like sequences from the genomes of distinct Drosophilidae species. We expanded the knowledge of Micropia distribution within Drosophila species. The Micropia retroelements we detected consist of an array of divergent sequences, which we subdivided into 20 subfamilies. Even so, a patchy distribution of Micropia sequences within the Drosophilidae phylogeny could be identified, with incongruences between the species phylogeny and the Micropia phylogeny. Comparing the pairwise synonymous distance (dS) values between Micropia and three host nuclear sequences, we found several cases of unexpectedly high levels of similarity between Micropia sequences in divergent species. All these findings provide a hypothesis to the evolution of Micropia within Drosophilidae, which include several events of vertical and horizontal transposon transmission, associated with ancestral polymorphisms and recurrent Micropia sequences diversification.
Collapse
Affiliation(s)
- Juliana Cordeiro
- Departamento de Ecologia, Zoologia e Genética, Instituto de Biologia, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Tuane Letícia Carvalho
- Programa de Pós-Graduação em Biodiversidade Animal, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Vera Lúcia da Silva Valente
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre; Rio Grande do Sul; Brazil
| | - Lizandra Jaqueline Robe
- Programa de Pós-Graduação em Biodiversidade Animal, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
- Departamento de Ecologia e Evolução, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| |
Collapse
|
7
|
The chromosomes of Drosophila suzukii (Diptera: Drosophilidae): detailed photographic polytene chromosomal maps and in situ hybridization data. Mol Genet Genomics 2019; 294:1535-1546. [PMID: 31346719 DOI: 10.1007/s00438-019-01595-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/15/2019] [Indexed: 01/25/2023]
Abstract
The spotted wing drosophila, D. suzukii, is a serious agricultural pest attacking a variety of soft fruits and vegetables. Although originating from East Asia it has recently invaded America and Europe raising major concern about its expansion potential and the consequent economic losses. Since cytogenetic information on the species is scarce, we report here the mitotic karyotype and detailed photographic maps of the salivary gland polytene chromosomes of D. suzukii. The mitotic metaphase complement contains three pairs of autosomes, one of which is dot-like, and one pair of heteromorphic (XX/XY) sex chromosomes. The salivary gland polytene complement consists of five long polytene arms, representing the two metacentric autosomes and the acrocentric X chromosome, and one very short polytene element, which corresponds to the dot-like autosome. Banding pattern as well as the most characteristic features and prominent landmarks of each polytene chromosome arm are presented and discussed. Furthermore, twelve gene markers have been mapped on the polytene chromosomes of D. suzukii by in situ hybridization. Their distribution pattern was found quite similar to that of D. melanogaster revealing conservation of synteny although the relative position within each chromosome arm for most of the genes differed significantly between D. suzukii and D. melanogaster. The chromosome information presented here is suitable for comparative cytogenetic studies and phylogenetic exploration, while it could also facilitate the assembly of the genome sequence and support the development of genetic tools for species-specific and environment-friendly biological control applications such as the sterile insect technique.
Collapse
|
8
|
Helleu Q, Levine MT. Recurrent Amplification of the Heterochromatin Protein 1 (HP1) Gene Family across Diptera. Mol Biol Evol 2019; 35:2375-2389. [PMID: 29924345 PMCID: PMC6188558 DOI: 10.1093/molbev/msy128] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The heterochromatic genome compartment mediates strictly conserved cellular processes such as chromosome segregation, telomere integrity, and genome stability. Paradoxically, heterochromatic DNA sequence is wildly unconserved. Recent reports that many hybrid incompatibility genes encode heterochromatin proteins, together with the observation that interspecies hybrids suffer aberrant heterochromatin-dependent processes, suggest that heterochromatic DNA packaging requires species-specific innovations. Testing this model of coevolution between fast-evolving heterochromatic DNA and its packaging proteins begins with defining the latter. Here we describe many such candidates encoded by the Heterochromatin Protein 1 (HP1) gene family across Diptera, an insect Order that encompasses dramatic episodes of heterochromatic sequence turnover. Using BLAST, synteny analysis, and phylogenetic tree building across 64 Diptera genomes, we discovered a staggering 121 HP1 duplication events. In contrast, we observed virtually no gene duplication in gene families that share a common “chromodomain” with HP1s, including Polycomb and Su(var)3-9. The remarkably high number of Dipteran HP1 paralogs arises from distant clades undergoing convergent HP1 family amplifications. These independently derived, young HP1s span diverse ages, domain structures, and rates of molecular evolution, including episodes of positive selection. Moreover, independently derived HP1s exhibit convergent expression evolution. While ancient HP1 parent genes are transcribed ubiquitously, young HP1 paralogs are transcribed primarily in male germline tissue, a pattern typical of young genes. Pervasive gene youth, rapid evolution, and germline specialization implicate heterochromatin-encoded selfish elements driving recurrent HP1 gene family expansions. The 121 young genes offer valuable experimental traction for elucidating the germline processes shaped by Diptera’s many dramatic episodes of heterochromatin turnover.
Collapse
Affiliation(s)
- Quentin Helleu
- Department of Biology, Epigenetics Institute, University of Pennsylvania, Philadelphia, PA
| | - Mia T Levine
- Department of Biology, Epigenetics Institute, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
9
|
Ferronato P, Woch AL, Soares PL, Bernardi D, Botton M, Andreazza F, Oliveira EE, Corrêa AS. A Phylogeographic Approach to the Drosophila suzukii (Diptera: Drosophilidae) Invasion in Brazil. JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:425-433. [PMID: 30383249 DOI: 10.1093/jee/toy321] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Indexed: 06/08/2023]
Abstract
Biological invasions have reached large parts of the globe, due to human actions across the planet. Drosophila suzukii (Matsumura, 1931) is a globally invasive species, always associated with enormous and costly damage to agricultural crops. Native to Southeast Asia, D. suzukii recently (i.e., 2013) invaded and is dispersing through South America. Here, we used a phylogeographic approach based on the cytochrome c oxidase subunit I gene fragment to explore the invasion dynamics of D. suzukii populations in Brazil. We identified five haplotypes and moderate genetic diversity in Brazilian populations, which are undergoing demographic and spatial expansion. The analyses of molecular variance indicated a high genetic structure among the populations, which is partially explained by their morphoclimatic origin and invasion history. Drosophila suzukii expanded from southern to southeastern Brazil, aided by human-mediated transport of fruits from region to region. The sharing of haplotypes among Brazilian and other invaded regions of the world suggests a single invasion event of D. suzukii in Brazil, originating from previously invaded areas (e.g., North America and Europe). The rapid geographic dispersal and wide variety of fruits attacked by of D. suzukii require immediate implementation of control strategies (legal and phytosanitary) to manage this pest in Brazil.
Collapse
Affiliation(s)
- Petra Ferronato
- Department of Entomology and Acarology, University of Sao Paulo, Luiz de Queiroz College of Agriculture (USP/ESALQ), Piracicaba, SP, Brazil
| | - Ana Luiza Woch
- Department of Entomology and Acarology, University of Sao Paulo, Luiz de Queiroz College of Agriculture (USP/ESALQ), Piracicaba, SP, Brazil
| | - Patricia Lima Soares
- Department of Entomology and Acarology, University of Sao Paulo, Luiz de Queiroz College of Agriculture (USP/ESALQ), Piracicaba, SP, Brazil
| | - Daniel Bernardi
- Department of Plant Health, Federal University of Pelotas, Capão do Leão, RS, Brazil
| | - Marcos Botton
- Embrapa Grape and Wine, Bento Gonçalves, Rio Grande do Sul, RS, Brazil
| | - Felipe Andreazza
- Department of Entomology, Federal University of Viçosa, Viçosa, MG, Brazil
| | - Eugênio E Oliveira
- Department of Entomology, Federal University of Viçosa, Viçosa, MG, Brazil
| | - Alberto Soares Corrêa
- Department of Entomology and Acarology, University of Sao Paulo, Luiz de Queiroz College of Agriculture (USP/ESALQ), Piracicaba, SP, Brazil
| |
Collapse
|
10
|
Conner WR, Blaxter ML, Anfora G, Ometto L, Rota‐Stabelli O, Turelli M. Genome comparisons indicate recent transfer of wRi-like Wolbachia between sister species Drosophila suzukii and D. subpulchrella. Ecol Evol 2017; 7:9391-9404. [PMID: 29187976 PMCID: PMC5696437 DOI: 10.1002/ece3.3449] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/26/2017] [Accepted: 09/01/2017] [Indexed: 12/22/2022] Open
Abstract
Wolbachia endosymbionts may be acquired by horizontal transfer, by introgression through hybridization between closely related species, or by cladogenic retention during speciation. All three modes of acquisition have been demonstrated, but their relative frequency is largely unknown. Drosophila suzukii and its sister species D. subpulchrella harbor Wolbachia, denoted wSuz and wSpc, very closely related to wRi, identified in California populations of D. simulans. However, these variants differ in their induced phenotypes: wRi causes significant cytoplasmic incompatibility (CI) in D. simulans, but CI has not been detected in D. suzukii or D. subpulchrella. Our draft genomes of wSuz and wSpc contain full-length copies of 703 of the 734 single-copy genes found in wRi. Over these coding sequences, wSuz and wSpc differ by only 0.004% (i.e., 28 of 704,883 bp); they are sisters relative to wRi, from which each differs by 0.014%-0.015%. Using published data from D. melanogaster, Nasonia wasps and Nomada bees to calibrate relative rates of Wolbachia versus host nuclear divergence, we conclude that wSuz and wSpc are too similar-by at least a factor of 100-to be plausible candidates for cladogenic transmission. These three wRi-like Wolbachia, which differ in CI phenotype in their native hosts, have different numbers of orthologs of genes postulated to contribute to CI; and the CI loci differ at several nucleotides that may account for the CI difference. We discuss the general problem of distinguishing alternative modes of Wolbachia acquisition, focusing on the difficulties posed by limited knowledge of variation in absolute and relative rates of molecular evolution for host nuclear genomes, mitochondria, and Wolbachia.
Collapse
Affiliation(s)
- William R. Conner
- Department of Evolution and EcologyUniversity of CaliforniaDavisCAUSA
| | - Mark L. Blaxter
- Institute of Evolutionary Biology and Edinburgh Genomics FacilityUniversity of EdinburghEdinburghUK
| | - Gianfranco Anfora
- Chemical Ecology LaboratoryDepartment of Sustainable Agro‐Ecosystems and Bio‐ResourcesFondazione Edmund MachSan Michele all'AdigeTNItaly
- Centre Agriculture Food EnvironmentUniversity of TrentoSan Michele all'AdigeTNItaly
| | - Lino Ometto
- Chemical Ecology LaboratoryDepartment of Sustainable Agro‐Ecosystems and Bio‐ResourcesFondazione Edmund MachSan Michele all'AdigeTNItaly
- Present address:
MezzocoronaTNItaly
| | - Omar Rota‐Stabelli
- Chemical Ecology LaboratoryDepartment of Sustainable Agro‐Ecosystems and Bio‐ResourcesFondazione Edmund MachSan Michele all'AdigeTNItaly
| | - Michael Turelli
- Department of Evolution and EcologyUniversity of CaliforniaDavisCAUSA
| |
Collapse
|
11
|
De Ré FC, Robe LJ, Wallau GL, Loreto ELS. Inferring the phylogenetic position of the Drosophila flavopilosa
group: Incongruence within and between mitochondrial and nuclear multilocus datasets. J ZOOL SYST EVOL RES 2017. [DOI: 10.1111/jzs.12170] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Francine C. De Ré
- Programa de Pós Graduação em Biodiversidade Animal; Universidade Federal de Santa Maria (UFSM); Santa Maria Rio Grande do Sul Brazil
| | - Lizandra J. Robe
- Programa de Pós Graduação em Biodiversidade Animal; Universidade Federal de Santa Maria (UFSM); Santa Maria Rio Grande do Sul Brazil
- Programa de Pós-Graduação em Biologia de Ambientes Aquáticos Continentais; Universidade Federal do Rio Grande (FURG); Rio Grande Rio Grande do Sul Brazil
| | - Gabriel L. Wallau
- Programa de Pós Graduação em Biodiversidade Animal; Universidade Federal de Santa Maria (UFSM); Santa Maria Rio Grande do Sul Brazil
- Departamento de Entomologia; Instituto Aggeu Magalhães - FIOCRUZ-IAM; Recife PE Brazil
| | - Elgion L. S. Loreto
- Programa de Pós Graduação em Biodiversidade Animal; Universidade Federal de Santa Maria (UFSM); Santa Maria Rio Grande do Sul Brazil
- Departamento de Bioquímica e Biologia Molecular; Universidade Federal de Santa Maria (UFSM); Santa Maria Rio Grande do Sul Brazil
| |
Collapse
|
12
|
Choi DS, Park JS, Kim MJ, Kim JS, Jeong SY, Jeong JS, Park J, Kim I. Geographic variation in the spotted-wing drosophila, Drosophila suzukii (Diptera: Drosophilidae), based on mitochondrial DNA sequences. Mitochondrial DNA A DNA Mapp Seq Anal 2017; 29:312-322. [PMID: 28129731 DOI: 10.1080/24701394.2016.1278534] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The spotted-wing drosophila (SWD), Drosophila suzukii (Diptera: Drosophilidae), is an economically damaging pest that feeds on most thin-skinned fruits. It was originally native to a few Asian countries, including Korea, but is now found in North America and Europe. In this study, we sequenced portions of the mitochondrial (mt) COI and ND4 genes from a total of 195 individuals collected mainly from Korea. We then combined GenBank-registered COI sequences from all ancestral-range and introduced-range populations with our own COI data to assess the worldwide diversity, divergence, and relatedness of SWD haplotypes. A total of 139 haplotypes were obtained from the concatenated COI and ND4 sequences. Most haplotypes were confined to single localities, but 12 of them were found in more than two localities, and one haplotype (SWDCN61) was found from Korea to Canada. A dataset combining GenBank sequences with our own data identified a total of 94 worldwide COI haplotypes with a maximum sequence divergence (MSD) of 5.433% (32 bp). Although most haplotypes were found in only a single country, a few haplotypes were found commonly in China, Korea, and Japan; these occurred at a higher frequency and were often involved in introductions. A rough estimate of genetic diversity in each country showed higher diversity in ancestral distributional ranges, but the invasion over Asian countries seems to have been substantial because haplotype diversity was only 2.35 to 3.97-fold lower in the U.S.A, Canada, and Italy than that in the populations' ancestral ranges.
Collapse
Affiliation(s)
- Deuk-Soo Choi
- a Department of Plant Quarantine , Animal and Plant Quarantine Agency , Gimcheon-si , Republic of Korea
| | - Jeong Sun Park
- b College of Agriculture and Life Sciences , Chonnam National University , Gwangju , Republic of Korea
| | - Min Jee Kim
- b College of Agriculture and Life Sciences , Chonnam National University , Gwangju , Republic of Korea
| | - Jong Seok Kim
- b College of Agriculture and Life Sciences , Chonnam National University , Gwangju , Republic of Korea
| | - Su Yeon Jeong
- b College of Agriculture and Life Sciences , Chonnam National University , Gwangju , Republic of Korea
| | - Jun Seong Jeong
- b College of Agriculture and Life Sciences , Chonnam National University , Gwangju , Republic of Korea
| | - Jinyoung Park
- c Department of Ecological Monitoring and Assessment , National Institute of Ecology , Seocheon-gun , Chungcheongnam-do , Republic of Korea
| | - Iksoo Kim
- b College of Agriculture and Life Sciences , Chonnam National University , Gwangju , Republic of Korea
| |
Collapse
|
13
|
ZHANG LI, KANG HAN, JIN SHAN, ZENG QINGTAO, YANG YONG. Hsp27 gene in Drosophila ananassae subgroup was split by a recently acquired intron. J Genet 2016; 95:257-62. [DOI: 10.1007/s12041-016-0629-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Lynch ZR, Schlenke TA, de Roode JC. Evolution of behavioural and cellular defences against parasitoid wasps in the Drosophila melanogaster subgroup. J Evol Biol 2016; 29:1016-29. [PMID: 26859227 DOI: 10.1111/jeb.12842] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 02/01/2016] [Accepted: 02/04/2016] [Indexed: 01/04/2023]
Abstract
It may be intuitive to predict that host immune systems will evolve to counter a broad range of potential challenges through simultaneous investment in multiple defences. However, this would require diversion of resources from other traits, such as growth, survival and fecundity. Therefore, ecological immunology theory predicts that hosts will specialize in only a subset of possible defences. We tested this hypothesis through a comparative study of a cellular immune response and a putative behavioural defence used by eight fruit fly species against two parasitoid wasp species (one generalist and one specialist). Fly larvae can survive infection by melanotically encapsulating wasp eggs, and female flies can potentially reduce infection rates in their offspring by laying fewer eggs when wasps are present. The strengths of both defences varied significantly but were not negatively correlated across our chosen host species; thus, we found no evidence for a trade-off between behavioural and cellular immunity. Instead, cellular defences were significantly weaker against the generalist wasp, whereas behavioural defences were similar in strength against both wasps and positively correlated between wasps. We investigated the adaptive significance of wasp-induced oviposition reduction behaviour by testing whether wasp-exposed parents produce offspring with stronger cellular defences, but we found no support for this hypothesis. We further investigated the sensory basis of this behaviour by testing mutants deficient in either vision or olfaction, both of which failed to reduce their oviposition rates in the presence of wasps, suggesting that both senses are necessary for detecting and responding to wasps.
Collapse
Affiliation(s)
- Z R Lynch
- Department of Biology, Emory University, Atlanta, GA, USA
| | - T A Schlenke
- Department of Biology, Emory University, Atlanta, GA, USA.,Department of Biology, Reed College, Portland, OR, USA
| | - J C de Roode
- Department of Biology, Emory University, Atlanta, GA, USA
| |
Collapse
|
15
|
Li F, Scott MJ. CRISPR/Cas9-mediated mutagenesis of the white and Sex lethal loci in the invasive pest, Drosophila suzukii. Biochem Biophys Res Commun 2015; 469:911-6. [PMID: 26721433 DOI: 10.1016/j.bbrc.2015.12.081] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 12/18/2015] [Indexed: 02/07/2023]
Abstract
Drosophila suzukii (commonly called spotted wing Drosophila) is an invasive pest of soft-skinned fruit (e.g. blueberries, strawberries). A high quality reference genome sequence is available but functional genomic tools, such as used in Drosophila melanogaster, remain to be developed. In this study we have used the CRISPR/Cas9 system to introduce site-specific mutations in the D. suzukii white (w) and Sex lethal (Sxl) genes. Hemizygous males with w mutations develop white eyes and the mutant genes are transmissible to the next generation. Somatic mosaic females that carry mutations in the Sxl gene develop abnormal genitalia and reproductive tissue. The D. suzukii Sxl gene could be an excellent target for a Cas9-mediated gene drive to suppress populations of this highly destructive pest.
Collapse
Affiliation(s)
- Fang Li
- Department of Entomology, North Carolina State University, Campus Box 7613, Raleigh 27695-7613, NC, USA
| | - Maxwell J Scott
- Department of Entomology, North Carolina State University, Campus Box 7613, Raleigh 27695-7613, NC, USA.
| |
Collapse
|
16
|
Wallau GL, Capy P, Loreto E, Le Rouzic A, Hua-Van A. VHICA, a New Method to Discriminate between Vertical and Horizontal Transposon Transfer: Application to the Mariner Family within Drosophila. Mol Biol Evol 2015; 33:1094-109. [PMID: 26685176 PMCID: PMC4776708 DOI: 10.1093/molbev/msv341] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Transposable elements (TEs) are genomic repeated sequences that display complex evolutionary patterns. They are usually inherited vertically, but can occasionally be transmitted between sexually independent species, through so-called horizontal transposon transfers (HTTs). Recurrent HTTs are supposed to be essential in life cycle of TEs, which are otherwise destined for eventual decay. HTTs also impact the host genome evolution. However, the extent of HTTs in eukaryotes is largely unknown, due to the lack of efficient, statistically supported methods that can be applied to multiple species sequence data sets. Here, we developed a new automated method available as a R package "vhica" that discriminates whether a given TE family was vertically or horizontally transferred, and potentially infers donor and receptor species. The method is well suited for TE sequences extracted from complete genomes, and applicable to multiple TEs and species at the same time. We first validated our method using Drosophila TE families with well-known evolutionary histories, displaying both HTTs and vertical transmission. We then tested 26 different lineages of mariner elements recently characterized in 20 Drosophila genomes, and found HTTs in 24 of them. Furthermore, several independent HTT events could often be detected within the same mariner lineage. The VHICA (Vertical and Horizontal Inheritance Consistence Analysis) method thus appears as a valuable tool to analyze the evolutionary history of TEs across a large range of species.
Collapse
Affiliation(s)
- Gabriel Luz Wallau
- Pós Graduação em Biodiversidade Animal, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil Departamento de Entomologia, Centro de Pesquisas Aggeu Magalhães-FIOCRUZ-CPqAM, Recife, PE, Brazil
| | - Pierre Capy
- Laboratoire Évolution, Génomes, Comportement, Écologie; CNRS, IRD, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Elgion Loreto
- Pós Graduação em Biodiversidade Animal, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Rio Grande do Sul, Brazil
| | - Arnaud Le Rouzic
- Laboratoire Évolution, Génomes, Comportement, Écologie; CNRS, IRD, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Aurélie Hua-Van
- Laboratoire Évolution, Génomes, Comportement, Écologie; CNRS, IRD, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
17
|
Steele LD, Coates B, Valero MC, Sun W, Seong KM, Muir WM, Clark JM, Pittendrigh BR. Selective sweep analysis in the genomes of the 91-R and 91-C Drosophila melanogaster strains reveals few of the 'usual suspects' in dichlorodiphenyltrichloroethane (DDT) resistance. PLoS One 2015; 10:e0123066. [PMID: 25826265 PMCID: PMC4380341 DOI: 10.1371/journal.pone.0123066] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 02/17/2015] [Indexed: 11/19/2022] Open
Abstract
Adaptation of insect phenotypes for survival after exposure to xenobiotics can result from selection at multiple loci with additive genetic effects. To the authors' knowledge, no selective sweep analysis has been performed to identify such loci in highly dichlorodiphenyltrichloroethane (DDT) resistant insects. Here we compared a highly DDT resistant phenotype in the Drosophila melanogaster (Drosophila) 91-R strain to the DDT susceptible 91-C strain, both of common origin. Whole genome re-sequencing data from pools of individuals was generated separately for 91-R and 91-C, and mapped to the reference Drosophila genome assembly (v. 5.72). Thirteen major and three minor effect chromosome intervals with reduced nucleotide diversity (π) were identified only in the 91-R population. Estimates of Tajima's D (D) showed corresponding evidence of directional selection in these same genome regions of 91-R, however, no similar reductions in π or D estimates were detected in 91-C. An overabundance of non-synonymous proteins coding to synonymous changes were identified in putative open reading frames associated with 91-R. Except for NinaC and Cyp4g1, none of the identified genes were the 'usual suspects' previously observed to be associated with DDT resistance. Additionally, up-regulated ATP-binding cassette transporters have been previously associated with DDT resistance; however, here we identified a structurally altered MDR49 candidate resistance gene. The remaining fourteen genes have not previously been shown to be associated with DDT resistance. These results suggest hitherto unknown mechanisms of DDT resistance, most of which have been overlooked in previous transcriptional studies, with some genes having orthologs in mammals.
Collapse
Affiliation(s)
- Laura D. Steele
- Department of Entomology, University of Illinois, Urbana-Champaign, Illinois, United States of America
- * E-mail:
| | - Brad Coates
- United States Department of Agriculture, Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, Iowa State University, Ames, Iowa, United States of America
| | - M. Carmen Valero
- Department of Entomology, University of Illinois, Urbana-Champaign, Illinois, United States of America
| | - Weilin Sun
- Department of Entomology, University of Illinois, Urbana-Champaign, Illinois, United States of America
| | - Keon Mook Seong
- Department of Entomology, University of Illinois, Urbana-Champaign, Illinois, United States of America
| | - William M. Muir
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - John M. Clark
- Department of Veterinary & Animal Science, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Barry R. Pittendrigh
- Department of Entomology, University of Illinois, Urbana-Champaign, Illinois, United States of America
| |
Collapse
|
18
|
Dodsworth S, Chase MW, Kelly LJ, Leitch IJ, Macas J, Novák P, Piednoël M, Weiss-Schneeweiss H, Leitch AR. Genomic repeat abundances contain phylogenetic signal. Syst Biol 2015; 64:112-26. [PMID: 25261464 PMCID: PMC4265144 DOI: 10.1093/sysbio/syu080] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 09/18/2014] [Indexed: 12/12/2022] Open
Abstract
A large proportion of genomic information, particularly repetitive elements, is usually ignored when researchers are using next-generation sequencing. Here we demonstrate the usefulness of this repetitive fraction in phylogenetic analyses, utilizing comparative graph-based clustering of next-generation sequence reads, which results in abundance estimates of different classes of genomic repeats. Phylogenetic trees are then inferred based on the genome-wide abundance of different repeat types treated as continuously varying characters; such repeats are scattered across chromosomes and in angiosperms can constitute a majority of nuclear genomic DNA. In six diverse examples, five angiosperms and one insect, this method provides generally well-supported relationships at interspecific and intergeneric levels that agree with results from more standard phylogenetic analyses of commonly used markers. We propose that this methodology may prove especially useful in groups where there is little genetic differentiation in standard phylogenetic markers. At the same time as providing data for phylogenetic inference, this method additionally yields a wealth of data for comparative studies of genome evolution.
Collapse
Affiliation(s)
- Steven Dodsworth
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK; Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK; School of Plant Biology, The University of Western Australia, Crawley WA 6009, Australia; Institute of Plant Molecular Biology, Biology Centre ASCR, Branišovská 31, České Budějovice, CZ-37005, Czech Republic; Systematic Botany and Mycology, University of Munich (LMU), Menzinger Straße 67, 80638 München, Germany; and Department of Systematic and Evolutionary Botany, University of Vienna, Rennweg 14, A-1030 Vienna, Austria School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK; Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK; School of Plant Biology, The University of Western Australia, Crawley WA 6009, Australia; Institute of Plant Molecular Biology, Biology Centre ASCR, Branišovská 31, České Budějovice, CZ-37005, Czech Republic; Systematic Botany and Mycology, University of Munich (LMU), Menzinger Straße 67, 80638 München, Germany; and Department of Systematic and Evolutionary Botany, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Mark W Chase
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK; Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK; School of Plant Biology, The University of Western Australia, Crawley WA 6009, Australia; Institute of Plant Molecular Biology, Biology Centre ASCR, Branišovská 31, České Budějovice, CZ-37005, Czech Republic; Systematic Botany and Mycology, University of Munich (LMU), Menzinger Straße 67, 80638 München, Germany; and Department of Systematic and Evolutionary Botany, University of Vienna, Rennweg 14, A-1030 Vienna, Austria School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK; Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK; School of Plant Biology, The University of Western Australia, Crawley WA 6009, Australia; Institute of Plant Molecular Biology, Biology Centre ASCR, Branišovská 31, České Budějovice, CZ-37005, Czech Republic; Systematic Botany and Mycology, University of Munich (LMU), Menzinger Straße 67, 80638 München, Germany; and Department of Systematic and Evolutionary Botany, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Laura J Kelly
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK; Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK; School of Plant Biology, The University of Western Australia, Crawley WA 6009, Australia; Institute of Plant Molecular Biology, Biology Centre ASCR, Branišovská 31, České Budějovice, CZ-37005, Czech Republic; Systematic Botany and Mycology, University of Munich (LMU), Menzinger Straße 67, 80638 München, Germany; and Department of Systematic and Evolutionary Botany, University of Vienna, Rennweg 14, A-1030 Vienna, Austria School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK; Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK; School of Plant Biology, The University of Western Australia, Crawley WA 6009, Australia; Institute of Plant Molecular Biology, Biology Centre ASCR, Branišovská 31, České Budějovice, CZ-37005, Czech Republic; Systematic Botany and Mycology, University of Munich (LMU), Menzinger Straße 67, 80638 München, Germany; and Department of Systematic and Evolutionary Botany, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Ilia J Leitch
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK; Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK; School of Plant Biology, The University of Western Australia, Crawley WA 6009, Australia; Institute of Plant Molecular Biology, Biology Centre ASCR, Branišovská 31, České Budějovice, CZ-37005, Czech Republic; Systematic Botany and Mycology, University of Munich (LMU), Menzinger Straße 67, 80638 München, Germany; and Department of Systematic and Evolutionary Botany, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Jiří Macas
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK; Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK; School of Plant Biology, The University of Western Australia, Crawley WA 6009, Australia; Institute of Plant Molecular Biology, Biology Centre ASCR, Branišovská 31, České Budějovice, CZ-37005, Czech Republic; Systematic Botany and Mycology, University of Munich (LMU), Menzinger Straße 67, 80638 München, Germany; and Department of Systematic and Evolutionary Botany, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Petr Novák
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK; Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK; School of Plant Biology, The University of Western Australia, Crawley WA 6009, Australia; Institute of Plant Molecular Biology, Biology Centre ASCR, Branišovská 31, České Budějovice, CZ-37005, Czech Republic; Systematic Botany and Mycology, University of Munich (LMU), Menzinger Straße 67, 80638 München, Germany; and Department of Systematic and Evolutionary Botany, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Mathieu Piednoël
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK; Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK; School of Plant Biology, The University of Western Australia, Crawley WA 6009, Australia; Institute of Plant Molecular Biology, Biology Centre ASCR, Branišovská 31, České Budějovice, CZ-37005, Czech Republic; Systematic Botany and Mycology, University of Munich (LMU), Menzinger Straße 67, 80638 München, Germany; and Department of Systematic and Evolutionary Botany, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Hanna Weiss-Schneeweiss
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK; Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK; School of Plant Biology, The University of Western Australia, Crawley WA 6009, Australia; Institute of Plant Molecular Biology, Biology Centre ASCR, Branišovská 31, České Budějovice, CZ-37005, Czech Republic; Systematic Botany and Mycology, University of Munich (LMU), Menzinger Straße 67, 80638 München, Germany; and Department of Systematic and Evolutionary Botany, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Andrew R Leitch
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK; Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK; School of Plant Biology, The University of Western Australia, Crawley WA 6009, Australia; Institute of Plant Molecular Biology, Biology Centre ASCR, Branišovská 31, České Budějovice, CZ-37005, Czech Republic; Systematic Botany and Mycology, University of Munich (LMU), Menzinger Straße 67, 80638 München, Germany; and Department of Systematic and Evolutionary Botany, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| |
Collapse
|
19
|
Hamm CA, Begun DJ, Vo A, Smith CCR, Saelao P, Shaver AO, Jaenike J, Turelli M. Wolbachia do not live by reproductive manipulation alone: infection polymorphism in Drosophila suzukii and D. subpulchrella. Mol Ecol 2014; 23:4871-85. [PMID: 25156506 DOI: 10.1111/mec.12901] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/09/2014] [Accepted: 08/15/2014] [Indexed: 01/30/2023]
Abstract
Drosophila suzukii recently invaded North America and Europe. Populations in Hawaii, California, New York and Nova Scotia are polymorphic for Wolbachia, typically with <20% infection frequency. The Wolbachia in D. suzukii, denoted wSuz, is closely related to wRi, the variant prevalent in continental populations of D. simulans. wSuz is also nearly identical to Wolbachia found in D. subpulchrella, plausibly D. suzukii's sister species. This suggests vertical Wolbachia transmission through cladogenesis ('cladogenic transmission'). The widespread occurrence of 7-20% infection frequencies indicates a stable polymorphism. wSuz is imperfectly maternally transmitted, with wild infected females producing on average 5-10% uninfected progeny. As expected from its low frequency, wSuz produces no cytoplasmic incompatibility (CI), that is, no increased embryo mortality when infected males mate with uninfected females, and no appreciable sex-ratio distortion. The persistence of wSuz despite imperfect maternal transmission suggests positive fitness effects. Assuming a balance between selection and imperfect transmission, we expect a fitness advantage on the order of 20%. Unexpectedly, Wolbachia-infected females produce fewer progeny than do uninfected females. We do not yet understand the maintenance of wSuz in D. suzukii. The absence of detectable CI in D. suzukii and D. subpulchrella makes it unlikely that CI-based mechanisms could be used to control this species without transinfection using novel Wolbachia. Contrary to their reputation as horizontally transmitted reproductive parasites, many Wolbachia infections are acquired through introgression or cladogenesis and many cause no appreciable reproductive manipulation. Such infections, likely to be mutualistic, may be central to understanding the pervasiveness of Wolbachia among arthropods.
Collapse
Affiliation(s)
- Christopher A Hamm
- Department of Evolution and Ecology, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Dhami MK, Kumarasinghe L. A HRM real-time PCR assay for rapid and specific identification of the emerging pest spotted-wing drosophila (Drosophila suzukii). PLoS One 2014; 9:e98934. [PMID: 24927410 PMCID: PMC4057120 DOI: 10.1371/journal.pone.0098934] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 05/09/2014] [Indexed: 01/02/2023] Open
Abstract
Spotted wing drosophila (Drosophila suzukii) is an emerging pest that began spreading in 2008 and its distribution now includes 13 countries across two continents. Countries where it is established have reported significant economic losses of fresh produce, such as cherries due to this species of fly. At larval stages, it is impossible to identify due to its striking similarities with other cosmopolitan and harmless drosophilids. Molecular methods allow identification but the current technique of DNA barcoding is time consuming. We developed and validated a rapid, highly sensitive and specific assay based on real-time PCR and high resolution melt (HRM) analysis using EvaGreen DNA intercalating dye chemistry. Performance characteristics of this qualitative assay, validation and applicability in a New Zealand quarantine framework are discussed. Application of this robust and independently validated assay across the spectrum of key food production and border protection industries will allow us to reduce the further spread of this damaging species worldwide.
Collapse
Affiliation(s)
- Manpreet K. Dhami
- Plant Health and Environment Laboratory, Ministry for Primary Industries, Auckland, New Zealand
- * E-mail:
| | - Lalith Kumarasinghe
- Plant Health and Environment Laboratory, Ministry for Primary Industries, Auckland, New Zealand
| |
Collapse
|
21
|
Steele LD, Muir WM, Seong KM, Valero MC, Rangesa M, Sun W, Clark JM, Coates B, Pittendrigh BR. Genome-wide sequencing and an open reading frame analysis of dichlorodiphenyltrichloroethane (DDT) susceptible (91-C) and resistant (91-R) Drosophila melanogaster laboratory populations. PLoS One 2014; 9:e98584. [PMID: 24915415 PMCID: PMC4051598 DOI: 10.1371/journal.pone.0098584] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 05/05/2014] [Indexed: 11/30/2022] Open
Abstract
The Drosophila melanogaster 91-R and 91-C strains are of common origin, however, 91-R has been intensely selected for dichlorodiphenyltrichloroethane (DDT) resistance over six decades while 91-C has been maintained as the non-selected control strain. These fly strains represent a unique genetic resource to understand the accumulation and fixation of mutations under laboratory conditions over decades of pesticide selection. Considerable research has been done to investigate the differential expression of genes associated with the highly DDT resistant strain 91-R, however, with the advent of whole genome sequencing we can now begin to develop an in depth understanding of the genomic changes associated with this intense decades-long xenobiotic selection pressure. Here we present the first whole genome sequencing analysis of the 91-R and 91-C fly strains to identify genome-wide structural changes within the open reading frames. Between-strain changes in allele frequencies revealed a higher percent of new alleles going to fixation for the 91-R strain, as compared to 91-C (P<0.0001). These results suggest that resistance to DDT in the 91-R laboratory strain could potentially be due primarily to new mutations, as well as being polygenic rather than the result of a few major mutations, two hypotheses that remain to be tested.
Collapse
Affiliation(s)
- Laura D. Steele
- Department of Entomology, University of Illinois, Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail:
| | - William M. Muir
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Keon Mook Seong
- Department of Entomology, University of Illinois, Urbana-Champaign, Urbana, Illinois, United States of America
| | - M. Carmen Valero
- Department of Entomology, University of Illinois, Urbana-Champaign, Urbana, Illinois, United States of America
| | - Madhumitha Rangesa
- Department of Entomology, University of Illinois, Urbana-Champaign, Urbana, Illinois, United States of America
| | - Weilin Sun
- Department of Entomology, University of Illinois, Urbana-Champaign, Urbana, Illinois, United States of America
| | - John M. Clark
- Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Brad Coates
- United States Department of Agriculture, Agricultural Research Service, Corn Insects & Crop Genetics Research Unit, Iowa State University, Ames, Iowa, United States of America
| | - Barry R. Pittendrigh
- Department of Entomology, University of Illinois, Urbana-Champaign, Urbana, Illinois, United States of America
| |
Collapse
|
22
|
Catullo RA, Oakeshott JG. Problems with data quality in the reconstruction of evolutionary relationships in the Drosophila melanogaster species group: Comments on Yang et al. (2012). Mol Phylogenet Evol 2014; 78:275-6. [PMID: 24925823 DOI: 10.1016/j.ympev.2014.05.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 05/26/2014] [Indexed: 10/25/2022]
Affiliation(s)
- Renee A Catullo
- CSIRO Ecosystem Science, Climate Adaptation Flagship, Canberra, ACT, Australia.
| | - John G Oakeshott
- CSIRO Ecosystem Science, Climate Adaptation Flagship, Canberra, ACT, Australia
| |
Collapse
|
23
|
Abstract
Abstract
Sexual dimorphism is often derived from sexual selection. In sexually dimorphic Drosophila species, exaggerated male structures are used for specific behaviors in male-to-male competition or courtship toward females. In Drosophila prolongata, a member of the melanogaster species group, males have enlarged forelegs whereas females do not. However, the adaptive role of the enlarged forelegs is unclear because little is known about the behavior of D. prolongata. In this study, the courtship behavior of D. prolongata was investigated in comparison with closely related species. Males of D. prolongata use their forelegs in a specific behavior, “leg vibration”, in which the male vigorously vibrates the female’s abdomen by extending his forelegs from in front of her. Leg vibration was observed immediately before “attempting copulation”, indicating that it has an adaptive role in the mating process. In contrast, leg vibration was not observed in closely related species. Because the large forelegs are necessary to accomplish leg vibration, it was suggested that the sexual dimorphism of D. prolongata forelegs is currently under the influence of sexual selection in courtship behavior.
Collapse
|
24
|
Ahuja A, Extavour CG. Patterns of molecular evolution of the germ line specification gene oskar suggest that a novel domain may contribute to functional divergence in Drosophila. Dev Genes Evol 2014; 224:65-77. [DOI: 10.1007/s00427-013-0463-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 12/07/2013] [Indexed: 01/04/2023]
|
25
|
Balakirev ES, Chechetkin VR, Lobzin VV, Ayala FJ. Computational methods of identification of pseudogenes based on functionality: entropy and GC content. Methods Mol Biol 2014; 1167:41-62. [PMID: 24823770 DOI: 10.1007/978-1-4939-0835-6_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Spectral entropy and GC content analyses reveal comprehensive structural features of DNA sequences. To illustrate the significance of these features, we analyze the β-esterase gene cluster, including the Est-6 gene and the ψEst-6 putative pseudogene, in seven species of the Drosophila melanogaster subgroup. The spectral entropies show distinctly lower structural ordering for ψEst-6 than for Est-6 in all species studied. However, entropy accumulation is not a completely random process for either gene and it shows to be nucleotide dependent. Furthermore, GC content in synonymous positions is uniformly higher in Est-6 than in ψEst-6, in agreement with the reduced GC content generally observed in pseudogenes and nonfunctional sequences. The observed differences in entropy and GC content reflect an evolutionary shift associated with the process of pseudogenization and subsequent functional divergence of ψEst-6 and Est-6 after the duplication event. The data obtained show the relevance and significance of entropy and GC content analyses for pseudogene identification and for the comparative study of gene-pseudogene evolution.
Collapse
Affiliation(s)
- Evgeniy S Balakirev
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA,
| | | | | | | |
Collapse
|
26
|
Seetharam AS, Stuart GW. Whole genome phylogeny for 21 Drosophila species using predicted 2b-RAD fragments. PeerJ 2013; 1:e226. [PMID: 24432193 PMCID: PMC3883493 DOI: 10.7717/peerj.226] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 11/28/2013] [Indexed: 01/16/2023] Open
Abstract
Type IIB restriction endonucleases are site-specific endonucleases that cut both strands of double-stranded DNA upstream and downstream of their recognition sequences. These restriction enzymes have recognition sequences that are generally interrupted and range from 5 to 7 bases long. They produce DNA fragments which are uniformly small, ranging from 21 to 33 base pairs in length (without cohesive ends). The fragments are generated from throughout the entire length of a genomic DNA providing an excellent fractional representation of the genome. In this study we simulated restriction enzyme digestions on 21 sequenced genomes of various Drosophila species using the predicted targets of 16 Type IIB restriction enzymes to effectively produce a large and arbitrary selection of loci from these genomes. The fragments were then used to compare organisms and to calculate the distance between genomes in pair-wise combination by counting the number of shared fragments between the two genomes. Phylogenetic trees were then generated for each enzyme using this distance measure and the consensus was calculated. The consensus tree obtained agrees well with the currently accepted tree for the Drosophila species. We conclude that multi-locus sub-genomic representation combined with next generation sequencing, especially for individuals and species without previous genome characterization, can accelerate studies of comparative genomics and the building of accurate phylogenetic trees.
Collapse
Affiliation(s)
- Arun S Seetharam
- Bioinformatics Core, Purdue University , West Lafayette, IN , USA
| | - Gary W Stuart
- Department of Biology, Indiana State University , Terre Haute, IN , USA
| |
Collapse
|
27
|
Prabhakaran PM, De J, Sheeba V. Natural conditions override differences in emergence rhythm among closely related drosophilids. PLoS One 2013; 8:e83048. [PMID: 24349430 PMCID: PMC3859640 DOI: 10.1371/journal.pone.0083048] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Accepted: 11/07/2013] [Indexed: 11/19/2022] Open
Abstract
Previous studies on adult emergence rhythm of Drosophila melanogaster (DM) done under semi-natural conditions have shown that emergence is correlated to daily changes in temperature, humidity and light at dawn. Recently we showed that under laboratory conditions D. ananassae (DA), a closely related species of DM exhibits patterns in its activity/rest rhythm distinct from the latter. Here, we report the results of a study aimed at examining whether this difference in activity/rest rhythm among species extends to other circadian behaviours such as the adult emergence rhythm under a more natural environment with multiple cyclic time cues. We monitored the adult emergence rhythm of recently wild-caught DM and DA populations in parallel with those of a related species D. malerkotliana (DK), both in the laboratory and under semi-natural conditions. We find that although DM, DK and DA showed marked difference from one another under laboratory conditions, such differences were not detectable in the emergence behaviour of these three species under semi-natural conditions, and that they respond very similarly to seasonal changes in the environment. The results suggest that seasonal changes in temperature and humidity contribute largely to the variation in adult emergence waveform in terms of gate width, phase and amplitude of the peak and day-to-day variance in the timing of the emergence peak. In all three species, seasons with cooler and wetter conditions make the rhythm less tightly gated, with low amplitude peak and high day-to-day variation in timing of the peak of emergence. We show that in nature the emergence rhythm of DM, DK and DA is strongly influenced by environmental factors such that in a given season all of them exhibit similar time course and waveform and that with the changing season, they all modify their emergence patterns in a similar manner.
Collapse
Affiliation(s)
- Priya M. Prabhakaran
- Behavioural Neurogenetics Laboratory, Evolutionary and Organismal Biology Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, Karnataka, India
| | - Joydeep De
- Behavioural Neurogenetics Laboratory, Evolutionary and Organismal Biology Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, Karnataka, India
| | - Vasu Sheeba
- Behavioural Neurogenetics Laboratory, Evolutionary and Organismal Biology Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, Karnataka, India
- * E-mail:
| |
Collapse
|
28
|
Abstract
Drosophila suzukii Matsumura (spotted wing drosophila) has recently become a serious pest of a wide variety of fruit crops in the United States as well as in Europe, leading to substantial yearly crop losses. To enable basic and applied research of this important pest, we sequenced the D. suzukii genome to obtain a high-quality reference sequence. Here, we discuss the basic properties of the genome and transcriptome and describe patterns of genome evolution in D. suzukii and its close relatives. Our analyses and genome annotations are presented in a web portal, SpottedWingFlyBase, to facilitate public access.
Collapse
|
29
|
Mazzoni V, Anfora G, Virant-Doberlet M. Substrate vibrations during courtship in three Drosophila species. PLoS One 2013; 8:e80708. [PMID: 24260459 PMCID: PMC3829934 DOI: 10.1371/journal.pone.0080708] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 10/05/2013] [Indexed: 12/01/2022] Open
Abstract
While a plethora of studies have focused on the role of visual, chemical and near-field airborne signals in courtship of Drosophila fruit flies, the existence of substrate-borne vibrational signals has been almost completely overlooked. Here we describe substrate vibrations generated during courtship in three species of the D. melanogaster group, from the allegedly mute species D. suzukii, its sister species D. biarmipes, and from D. melanogaster. In all species, we recorded several types of substrate vibrations which were generated by locomotion, abdominal vibrations and most likely through the activity of thoracic wing muscles. In D. melanogaster and D. suzukii, all substrate vibrations described in intact males were also recorded in males with amputated wings. Evidence suggests that vibrational signalling may be widespread among Drosophila species, and fruit flies may provide an ideal model to study various aspects of this widespread form of animal communication.
Collapse
Affiliation(s)
- Valerio Mazzoni
- Research and Innovation Centre, Fondazione Edmund, Mach, San Michele all’Adige, Italy
| | - Gianfranco Anfora
- Research and Innovation Centre, Fondazione Edmund, Mach, San Michele all’Adige, Italy
| | | |
Collapse
|
30
|
Prabhakaran PM, Sheeba V. Insights into differential activity patterns of drosophilids under semi-natural conditions. ACTA ACUST UNITED AC 2013; 216:4691-702. [PMID: 24143027 DOI: 10.1242/jeb.092270] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We showed recently that Drosophila ananassae, a closely related and sympatric species of the commonly studied fruitfly D. melanogaster, shows distinctly deviant patterns in circadian activity/rest rhythm from the latter under a variety of laboratory conditions. To examine whether such differences extend to more natural conditions where a variety of time cues and similar environmental pressures might force different species to adopt similar temporal patterns, we examined these two species under semi-natural conditions over a span of 1.5 years. Furthermore, we asked to what extent features of activity/rest rhythm of flies are conserved across species under changing environmental conditions encountered across seasons, and to do so, we studied two more drosophilid species. We found that while each species exhibits seasonality in activity patterns, this seasonality is marked by interesting inter-specific differences. Similar to laboratory studies, D. ananassae showed activity mostly during the day, while D. melanogaster and D. malerkotliana exhibited almost similar activity patterns across seasons, with predominantly two peaks of activity, one in the morning and another in the evening. Throughout the year, Zaprionus indianus displayed very low levels of activity compared with D. melanogaster, yet, compared with those seen in standard laboratory assays, this species exhibited more robust rhythms under semi-natural conditions. We hypothesise that different ecological factors may have influenced these species to adopt different temporal niches.
Collapse
Affiliation(s)
- Priya M Prabhakaran
- Behavioural Neurogenetics Laboratory, Evolutionary and Organismal Biology Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560064, India
| | | |
Collapse
|
31
|
Ometto L, Cestaro A, Ramasamy S, Grassi A, Revadi S, Siozios S, Moretto M, Fontana P, Varotto C, Pisani D, Dekker T, Wrobel N, Viola R, Pertot I, Cavalieri D, Blaxter M, Anfora G, Rota-Stabelli O. Linking genomics and ecology to investigate the complex evolution of an invasive Drosophila pest. Genome Biol Evol 2013; 5:745-57. [PMID: 23501831 PMCID: PMC3641628 DOI: 10.1093/gbe/evt034] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Drosophilid fruit flies have provided science with striking cases of behavioral adaptation and genetic innovation. A recent example is the invasive pest Drosophila suzukii, which, unlike most other Drosophila, lays eggs and feeds on undamaged, ripening fruits. This not only poses a serious threat for fruit cultivation but also offers an interesting model to study evolution of behavioral innovation. We developed genome and transcriptome resources for D. suzukii. Coupling analyses of these data with field observations, we propose a hypothesis of the origin of its peculiar ecology. Using nuclear and mitochondrial phylogenetic analyses, we confirm its Asian origin and reveal a surprising sister relationship between the eugracilis and the melanogaster subgroups. Although the D. suzukii genome is comparable in size and repeat content to other Drosophila species, it has the lowest nucleotide substitution rate among the species analyzed in this study. This finding is compatible with the overwintering diapause of D. suzukii, which results in a reduced number of generations per year compared with its sister species. Genome-scale relaxed clock analyses support a late Miocene origin of D. suzukii, concomitant with paleogeological and climatic conditions that suggest an adaptation to temperate montane forests, a hypothesis confirmed by field trapping. We propose a causal link between the ecological adaptations of D. suzukii in its native habitat and its invasive success in Europe and North America.
Collapse
Affiliation(s)
- Lino Ometto
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Evolution of three parent genes and their retrogene copies in Drosophila species. INTERNATIONAL JOURNAL OF EVOLUTIONARY BIOLOGY 2013; 2013:693085. [PMID: 23841016 PMCID: PMC3690201 DOI: 10.1155/2013/693085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 05/08/2013] [Indexed: 11/21/2022]
Abstract
Retrogenes form a class of gene duplicate lacking the regulatory sequences found outside of the mRNA-coding regions of the parent gene. It is not clear how a retrogene's lack of parental regulatory sequences affects the evolution of the gene pair. To explore the evolution of parent genes and retrogenes, we investigated three such gene pairs in the family Drosophilidae; in Drosophila melanogaster, these gene pairs are CG8331 and CG4960, CG17734 and CG11825, and Sep2 and Sep5. We investigated the embryonic expression patterns of these gene pairs across multiple Drosophila species. Expression patterns of the parent genes and their single copy orthologs are relatively conserved across species, whether or not a species has a retrogene copy, although there is some variation in CG8331 and CG17734. In contrast, expression patterns of the retrogene orthologs have diversified. We used the genome sequences of 20 Drosophila species to investigate coding sequence evolution. The coding sequences of the three gene pairs appear to be evolving predominantly under negative selection; however, the parent genes and retrogenes show some distinct differences in amino acid sequence. Therefore, in general, retrogene expression patterns and coding sequences are distinct compared to their parents and, in some cases, retrogene expression patterns diversify.
Collapse
|
33
|
Affiliation(s)
- Omar Rota-Stabelli
- Sustainable Agro-ecosystems and Bioresources Department, IASMA Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, TN, Italy.
| | | | | |
Collapse
|
34
|
Rajpurohit S, Nedved O, Gibbs AG. Meta-analysis of geographical clines in desiccation tolerance of Indian drosophilids. Comp Biochem Physiol A Mol Integr Physiol 2012. [PMID: 23182926 DOI: 10.1016/j.cbpa.2012.11.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Tropical fruit flies (Drosophilidae) differ from temperate drosophilids in several ecophysiological traits, such as desiccation tolerance. Moreover, many species show significant differences in desiccation tolerance across geographical populations. Fruit flies from the tropical and subtropical Indian subcontinent show a clinal pattern for desiccation tolerance which is similar for more than a dozen species studied so far, suggesting adaptation to climatic differences. We performed a meta-analysis to investigate which particular climatic patterns modulate desiccation tolerance in natural populations of drosophilids. Latitude of the sampling site explained most of the variability. Seasonal thermal amplitude (fluctuations in temperature expressed as coefficient of variation) was the strongest climatic factor shaping desiccation tolerance of flies, while factors measuring humidity directly were not important. Implications for survival of flies after future climate change are suggested.
Collapse
Affiliation(s)
- Subhash Rajpurohit
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154, USA.
| | | | | |
Collapse
|
35
|
Obbard DJ, Maclennan J, Kim KW, Rambaut A, O'Grady PM, Jiggins FM. Estimating divergence dates and substitution rates in the Drosophila phylogeny. Mol Biol Evol 2012; 29:3459-73. [PMID: 22683811 PMCID: PMC3472498 DOI: 10.1093/molbev/mss150] [Citation(s) in RCA: 157] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
An absolute timescale for evolution is essential if we are to associate evolutionary phenomena, such as adaptation or speciation, with potential causes, such as geological activity or climatic change. Timescales in most phylogenetic studies use geologically dated fossils or phylogeographic events as calibration points, but more recently, it has also become possible to use experimentally derived estimates of the mutation rate as a proxy for substitution rates. The large radiation of drosophilid taxa endemic to the Hawaiian islands has provided multiple calibration points for the Drosophila phylogeny, thanks to the "conveyor belt" process by which this archipelago forms and is colonized by species. However, published date estimates for key nodes in the Drosophila phylogeny vary widely, and many are based on simplistic models of colonization and coalescence or on estimates of island age that are not current. In this study, we use new sequence data from seven species of Hawaiian Drosophila to examine a range of explicit coalescent models and estimate substitution rates. We use these rates, along with a published experimentally determined mutation rate, to date key events in drosophilid evolution. Surprisingly, our estimate for the date for the most recent common ancestor of the genus Drosophila based on mutation rate (25-40 Ma) is closer to being compatible with independent fossil-derived dates (20-50 Ma) than are most of the Hawaiian-calibration models and also has smaller uncertainty. We find that Hawaiian-calibrated dates are extremely sensitive to model choice and give rise to point estimates that range between 26 and 192 Ma, depending on the details of the model. Potential problems with the Hawaiian calibration may arise from systematic variation in the molecular clock due to the long generation time of Hawaiian Drosophila compared with other Drosophila and/or uncertainty in linking island formation dates with colonization dates. As either source of error will bias estimates of divergence time, we suggest mutation rate estimates be used until better models are available.
Collapse
Affiliation(s)
- Darren J Obbard
- Institute of Evolutionary Biology, and Centre for Infection Immunity and Evolution, University of Edinburgh, Edinburgh, United Kingdom.
| | | | | | | | | | | |
Collapse
|
36
|
Dias ES, Carareto CMA. Ancestral polymorphism and recent invasion of transposable elements in Drosophila species. BMC Evol Biol 2012; 12:119. [PMID: 22823479 PMCID: PMC3499218 DOI: 10.1186/1471-2148-12-119] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 07/10/2012] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND During the evolution of transposable elements, some processes, such as ancestral polymorphisms and horizontal transfer of sequences between species, can produce incongruences in phylogenies. We investigated the evolutionary history of the transposable elements Bari and 412 in the sequenced genomes of the Drosophila melanogaster group and in the sibling species D. melanogaster and D. simulans using traditional phylogenetic and network approaches. RESULTS Maximum likelihood (ML) phylogenetic analyses revealed incongruences and unresolved relationships for both the Bari and 412 elements. The DNA transposon Bari within the D. ananassae genome is more closely related to the element of the melanogaster complex than to the sequence in D. erecta, which is inconsistent with the species phylogeny. Divergence analysis and the comparison of the rate of synonymous substitutions per synonymous site of the Bari and host gene sequences explain the incongruence as an ancestral polymorphism that was inherited stochastically by the derived species. Unresolved relationships were observed in the ML phylogeny of both elements involving D. melanogaster, D. simulans and D. sechellia. A network approach was used to attempt to resolve these relationships. The resulting tree suggests recent transfers of both elements between D. melanogaster and D. simulans. The divergence values of the elements between these species support this conclusion. CONCLUSIONS We showed that ancestral polymorphism and recent invasion of genomes due to introgression or horizontal transfer between species occurred during the evolutionary history of the Bari and 412 elements in the melanogaster group. These invasions likely occurred in Africa during the Pleistocene, before the worldwide expansion of D. melanogaster and D. simulans.
Collapse
Affiliation(s)
- Elaine Silva Dias
- Department of Biology, São José do Rio Preto, UNESP-São Paulo State University, São Paulo, Brazil
| | | |
Collapse
|
37
|
Repeated evolution of testis-specific new genes: the case of telomere-capping genes in Drosophila. INTERNATIONAL JOURNAL OF EVOLUTIONARY BIOLOGY 2012; 2012:708980. [PMID: 22844639 PMCID: PMC3401529 DOI: 10.1155/2012/708980] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 05/09/2012] [Indexed: 01/12/2023]
Abstract
Comparative genome analysis has allowed the identification of various mechanisms involved in gene birth. However, understanding the evolutionary forces driving new gene origination still represents a major challenge. In particular, an intriguing and not yet fully understood trend has emerged from the study of new genes: many of them show a testis-specific expression pattern, which has remained poorly understood. Here we review the case of such a new gene, which involves a telomere-capping gene family in Drosophila. hiphop and its testis-specific paralog K81 are critical for the protection of chromosome ends in somatic cells and male gametes, respectively. Two independent functional studies recently proposed that these genes evolved under a reproductive-subfunctionalization regime. The 2011 release of new Drosophila genome sequences from the melanogaster group of species allowed us to deepen our phylogenetic analysis of the hiphop/K81 family. This work reveals an unsuspected dynamic of gene birth and death within the group, with recurrent duplication events through retroposition mechanisms. Finally, we discuss the plausibility of different evolutionary scenarios that could explain the diversification of this gene family.
Collapse
|
38
|
Wallau GL, Kaminski VL, Loreto ELS. The role of vertical and horizontal transfer in the evolution of Paris-like elements in drosophilid species. Genetica 2012; 139:1487-97. [PMID: 22527689 DOI: 10.1007/s10709-012-9648-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 04/05/2012] [Indexed: 10/28/2022]
Abstract
The transposable element (TE) Paris was described in a Drosophila virilis strain (virilis species group) as causing a hybrid dysgenesis with other mobile genetic elements. Since then, the element Paris has only been found in D. buzzatii, a species from the repleta group. In this study, we performed a search for Paris-like elements in 56 species of drosophilids to improve the knowledge about the distribution and evolution of this element. Paris-like elements were found in 30 species from the Drosophila genus, 15 species from the Drosophila subgenus and 15 species from the Sophophora subgenus. Analysis of the complete sequences obtained from the complete available Drosophila genomes has shown that there are putative active elements in five species (D. elegans, D. kikkawai, D. ananassae, D. pseudoobscura and D. mojavensis). The Paris-like elements showed an approximately 242-bp-long terminal inverted repeats in the 5' and 3' boundaries (called LIR: long inverted repeat), with two 28-bp-long direct repeats in each LIR. All potentially active elements presented degeneration in the internal region of terminal inverted repeat. Despite the degeneration of the LIR, the distance of 185 bp between the direct repeats was always maintained. This conservation suggests that the spacing between direct repeats is important for transposase binding. The distribution analysis showed that these elements are widely distributed in other Drosophila groups beyond the virilis and repleta groups. The evolutionary analysis of Paris-like elements suggests that they were present as two subfamilies with the common ancestor of the Drosophila genus. Since then, these TEs have been primarily maintained by vertical transmission with some events of stochastic loss and horizontal transfer.
Collapse
Affiliation(s)
- Gabriel Luz Wallau
- Pós Graduação em Biodiversidade Animal, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| | | | | |
Collapse
|