1
|
Ongaga EG, Muli JK, Kamau PK, Budambula NL. Endophytic Microflora of Crotalaria: Their Diversity and Role in Plant Growth Promotion. Curr Microbiol 2025; 82:214. [PMID: 40140094 DOI: 10.1007/s00284-025-04181-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 03/09/2025] [Indexed: 03/28/2025]
Abstract
The endophytic microflora of Crotalaria constitute a heterogeneous community of beneficial microorganisms that colonize healthy tissues of the host plant without causing any apparent harm. The microflora play a crucial role in promoting plant growth, nutrient gain, and resilience to various biotic and abiotic stresses. This review highlights the range of endophytic microorganisms that reside in Crotalaria tissues, providing insights on the methods of detection and the role played by endophytes in promoting host plant growth. Diverse groups of endophytes ranging from bacteria, fungi, and actinomycetes colonize internal organs of Crotalaria species. Key findings indicate that Crotalaria-associated endophytes, including species of Bradyrhizobium, Rhizobium, Burkholderia, and Methylobacterium, exhibit plant growth-promoting traits such as nitrogen fixation, phytohormone production, phosphate solubilization, and resistance to abiotic stresses. Additionally, some endophytes produce metabolites that serve as biocontrol agents, protecting Crotalaria against phytopathogens. This review offers valuable insights for future exploitation of endophytic microflora of Crotalaria in enhancing crop productivity and stress tolerance.
Collapse
Affiliation(s)
- Edinah G Ongaga
- Department of Biological Sciences, University of Embu (UoEm), P.O Box 6-60100, Embu, Kenya
| | - Joshua K Muli
- Department of Biological Sciences, University of Embu (UoEm), P.O Box 6-60100, Embu, Kenya
| | - Peter K Kamau
- Department of Life Sciences, South Eastern Kenya University (SEKU), P.O. Box 170-90200, Kitui, Kenya
| | - Nancy L Budambula
- Department of Biological Sciences, University of Embu (UoEm), P.O Box 6-60100, Embu, Kenya.
| |
Collapse
|
2
|
Beyene BB, Tuji FA. Inoculation of Erythrina brucei with plant-beneficial microbial consortia enhanced its growth and improved soil nitrogen and phosphorous status when applied as green manure. Heliyon 2024; 10:e30484. [PMID: 38737265 PMCID: PMC11088309 DOI: 10.1016/j.heliyon.2024.e30484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 05/14/2024] Open
Abstract
Erythrina brucei has been applied as a green manure to improve soil fertility in southern Ethiopia. It has been nodulated by indigenous rhizobia. The objectives of this study were to evaluate the effects of E. brucei inoculation with microbial consortia consisted of Bradyrhizobium shewense, Acinetobacter soli and arbuscular mycorrhizal fungi (AMF)on E.brucei growth, soil nitrogen and phosphorous status after application as a green manure.A field experiment was conducted by inoculating E. Brucei with different microbial consortia. E. brucei inoculated with the microbial consortia were grown for 150 days. Its shoot length was measured at 60, 90, 120 and 150 days after planting. Then, plants were uprooted and mulched as a green manure. The soil nitrogen, available phosphorous and soil organic matter analysis were done. The experimental design was completely randomized block design with eight treatments comprised of three replications. Inoculated treatments did not show a significant (p < 0.05) difference in shoot length in the first 60 days. However, shoot length was increased between 19.1 and 41.3 %, 10.5-43.4 % and 8.7-37.6 %, respectively at 90, 120 and 150 days. The soil organic matter was improved in both inoculated and un-inoculated treatments. The improvements in the soil organic matter of un-inoculated treatments may be due to the decomposition of un-inoculated plants biomass in the soil. The B. shewense inoculation improved the soil nitrogen by 17 %. The soil phosphorous was improved in 57 % of inoculated treatments. The inoculation of E. brucei with microbial consortia enhanced its growth and improved soil fertility when applied as a green manure. Inoculating the green manure legumes with symbiotically effective rhizobia and plant-beneficial microbes can enhance the growth of E. brucei and its nutrient uptake.
Collapse
Affiliation(s)
- Belay Berza Beyene
- DebreMarkos University, College of Natural and Computational Sciences, Department of Biology, Debre Markos, Ethiopia
| | - Fassil Assefa Tuji
- Addis Ababa University, College of Natural and Computational Sciences, Department of Microbial, Cellular and Molecular Biology, Addis Ababa, Ethiopia
| |
Collapse
|
3
|
Surgun-Acar Y. Response of soybean (Glycine max L.) seedlings to polystyrene nanoplastics: Physiological, biochemical, and molecular perspectives. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120262. [PMID: 36162560 DOI: 10.1016/j.envpol.2022.120262] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 09/04/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Micro and nanoplastics are new generation contaminants of global concern. It is important to evaluate the effects on edible products due to the presence of micro- and nano-sized plastics in the treated wastewater. A hydroponic experiment was carried out to explore the effect of polsytrene nanoplastics (PS-NPs; 20 nm) at different concentrations (0, 12.5, 25, and 50 mg L-1) on Glycine max L. (soybean) seedlings for 7-days. In the current study, firstly the uptake of PS-NPs by Glycine max L. (soybean) roots were confirmed by laser confocal scanning microscope. Exposure to PS-NPs, negatively affected growth parameters and increased Fe, Zn and Mn contents in roots and leaves of soybean seedlings. PS-NPs treatments caused oxidative stress in soybean seedlings. The hydrogen peroxide and malondialdehyde contents, showed similar increase pattern in seedlings exposed to PS-NPs. Response to PS-NPs, the level of antioxidant enzymes (superoxide dismutase, catalase, ascorbate peroxidase, and guaiacol peroxidase) and proline content were generally enhanced in roots and leaves of soybean. The expression level of stress-related genes examined in the study included CSD5, FSD3, APX1, and POD up-regulated in PS-NPs treated-soybean seedlings in a tissue specific manner. The results of the present study showed the adverse effects of PS-NPs on soybean seedlings, which may have important implications for the risk assessment of NPs on crop production and environmental safety.
Collapse
Affiliation(s)
- Yonca Surgun-Acar
- Department of Agricultural Biotechnology, Faculty of Agriculture, Çanakkale Onsekiz Mart University, Çanakkale 17000, Turkey.
| |
Collapse
|
4
|
Castellano-Hinojosa A, Mora C, Strauss SL. Native Rhizobia Improve Plant Growth, Fix N 2, and Reduce Greenhouse Emissions of Sunnhemp More than Commercial Rhizobia Inoculants in Florida Citrus Orchards. PLANTS (BASEL, SWITZERLAND) 2022; 11:3011. [PMID: 36432740 PMCID: PMC9695096 DOI: 10.3390/plants11223011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Sunnhemp (Crotalaria juncea L.) is an important legume cover crop used in tree cropping systems, where there is increased interest by growers to identify rhizobia to maximize soil nitrogen (N) inputs. We aimed to isolate and identify native rhizobia and compare their capabilities with non-native rhizobia from commercial inoculants to fix atmospheric dinitrogen (N2), produce and reduce nitrous oxide (N2O), and improve plant growth. Phylogenetic analyses of sequences of the 16S rRNA and recA, atpD, and glnII genes showed native rhizobial strains belonged to Rhizobium tropici and the non-native strain to Bradyrhizobium japonicum. Plant nodulation tests, sequencing of nodC and nifH genes, and the acetylene-dependent ethylene production assay confirmed the capacity of all strains to nodulate sunnhemp and fix N2. Inoculation with native rhizobial strains resulted in significant increases in root and shoot weight and total C and N contents in the shoots, and showed greater N2-fixation rates and lower emissions of N2O compared to the non-native rhizobium. Our results suggest that native rhizobia improve plant growth, fix N2, and reduce greenhouse emissions of sunnhemp more than commercial rhizobia inoculants in Florida citrus orchards.
Collapse
|
5
|
Rajkumari J, Katiyar P, Dheeman S, Pandey P, Maheshwari DK. The changing paradigm of rhizobial taxonomy and its systematic growth upto postgenomic technologies. World J Microbiol Biotechnol 2022; 38:206. [PMID: 36008736 DOI: 10.1007/s11274-022-03370-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 07/28/2022] [Indexed: 11/29/2022]
Abstract
Rhizobia are a diazotrophic group of bacteria that are usually isolated form the nodules in roots, stem of leguminous plants and are able to form nodules in the host plant owing to the presence of symbiotic genes. The rhizobial community is highly diverse, and therefore, the taxonomy and genera-wise classification of rhizobia has been constantly changing since the last three decades. This is mainly due to technical advancements, and shifts in definitions, resulting in a changing paradigm of rhizobia taxonomy. Initially, the taxonomic definitions at the species and sub species level were based on phylogenetic analysis of 16S rRNA sequence, followed by polyphasic approach to have phenotypic, biochemical, and genetic analysis including multilocus sequence analysis. Rhizobia mainly belonging to α- and β-proteobacteria, and recently new additions from γ-proteobacteria had been classified. Nowadays rhizobial taxonomy has been replaced by genome-based taxonomy that allows gaining more insights of genomic characteristics. These omics-technologies provide genome specific information that considers nodulation and symbiotic genes, along with molecular markers as taxonomic traits. Taxonomy based on complete genome sequence (genotaxonomy), average nucleotide identity, is now being considered as primary approach, resulting in an ongoing paradigm shift in rhizobial taxonomy. Also, pairwise whole-genome comparisons, phylogenomic analyses offer correlations between DNA and DNA re-association values that have delineated biologically important species. This review elaborates the present classification and taxonomy of rhizobia, vis-a-vis development of technical advancements, parameters and controversies associated with it, and describe the updated information on evolutionary lineages of rhizobia.
Collapse
Affiliation(s)
- Jina Rajkumari
- Department of Microbiology, Assam University, Silchar, Assam, 788011, India
| | - Prashant Katiyar
- Department of Botany and Microbiology, Gurukula Kangri Vishwavidyalaya, Haridwar, 249-404, India
| | - Shrivardhan Dheeman
- Department of Microbiology, Sardar Bhagwan Singh University, Dehra Dun, Uttarakhand, 248161, India
| | - Piyush Pandey
- Department of Microbiology, Assam University, Silchar, Assam, 788011, India.
| | - Dinesh Kumar Maheshwari
- Department of Botany and Microbiology, Gurukula Kangri Vishwavidyalaya, Haridwar, 249-404, India.
| |
Collapse
|
6
|
Adjei JA, Aserse AA, Yli-Halla M, Ahiabor BDK, Abaidoo RC, Lindstrom K. Phylogenetically diverse Bradyrhizobium genospecies nodulate Bambara groundnut (Vigna subterranea L. Verdc) and soybean (Glycine max L. Merril) in the northern savanna zones of Ghana. FEMS Microbiol Ecol 2022; 98:fiac043. [PMID: 35404419 PMCID: PMC9329091 DOI: 10.1093/femsec/fiac043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/30/2022] [Accepted: 04/08/2022] [Indexed: 11/25/2022] Open
Abstract
A total of 102 bacterial strains isolated from nodules of three Bambara groundnut and one soybean cultivars grown in nineteen soil samples collected from northern Ghana were characterized using multilocus gene sequence analysis. Based on a concatenated sequence analysis (glnII-rpoB-recA-gyrB-atpD-dnaK), 54 representative strains were distributed in 12 distinct lineages, many of which were placed mainly in the Bradyrhizobium japonicum and Bradyrhizobium elkanii supergroups. Twenty-four of the 54 representative strains belonged to seven putative novel species, while 30 were conspecific with four recognized Bradyrhizobium species. The nodA phylogeny placed all the representative strains in the cosmopolitan nodA clade III. The strains were further separated in seven nodA subclusters with reference strains mainly of African origin. The nifH phylogeny was somewhat congruent with the nodA phylogeny, but both symbiotic genes were mostly incongruent with the core housekeeping gene phylogeny indicating that the strains acquired their symbiotic genes horizontally from distantly related Bradyrhizobium species. Using redundancy analysis, the distribution of genospecies was found to be influenced by the edaphic factors of the respective sampling sites. In general, these results mainly underscore the high genetic diversity of Bambara groundnut-nodulating bradyrhizobia in Ghanaian soils and suggest a possible vast resource of adapted inoculant strains.
Collapse
Affiliation(s)
- Josephine A Adjei
- Department of Crop and Soil Sciences, Faculty of Agriculture, Kwame Nkrumah University of Science and Technology, PMB, Kumasi, Ghana
- Faculty of Biological and Environmental Sciences, University of Helsinki, FIN-00014 Helsinki, Finland
- Council for Scientific and Industrial Research, Savanna Agricultural Research Institute, PO Box 52, Tamale, Ghana
| | - Aregu A Aserse
- Faculty of Biological and Environmental Sciences, University of Helsinki, FIN-00014 Helsinki, Finland
| | - Markku Yli-Halla
- Department of Agricultural Sciences, University of Helsinki, FIN-00014 Helsinki, Finland
| | - Benjamin D K Ahiabor
- Council for Scientific and Industrial Research, Savanna Agricultural Research Institute, PO Box 52, Tamale, Ghana
| | - Robert C Abaidoo
- Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology, PMB, Kumasi, Ghana
- International Institute of Tropical Agriculture, PMB 5320, Ibadan, Nigeria
| | - Kristina Lindstrom
- Faculty of Biological and Environmental Sciences, University of Helsinki, FIN-00014 Helsinki, Finland
| |
Collapse
|
7
|
Avontuur JR, Palmer M, Beukes CW, Chan WY, Tasiya T, van Zyl E, Coetzee MPA, Stepkowski T, Venter SN, Steenkamp ET. Bradyrhizobium altum sp. nov., Bradyrhizobium oropedii sp. nov. and Bradyrhizobium acaciae sp. nov. from South Africa show locally restricted and pantropical nodA phylogeographic patterns. Mol Phylogenet Evol 2021; 167:107338. [PMID: 34757168 DOI: 10.1016/j.ympev.2021.107338] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/22/2021] [Accepted: 10/27/2021] [Indexed: 10/20/2022]
Abstract
Africa is known for its rich legume diversity with a significant number of endemic species originating in South Africa. Many of these legumes associate with rhizobial symbionts of the genus Bradyrhizobium, of which most represent new species. Yet, none of the Bradyrhizobium species from South Africa have been described. In this study, phylogenetic analysis of 16S rRNA gene sequences of fourteen strains isolated in southern Africa from root nodules of diverse legumes (i.e., from the tribes Crotalarieae, Acacieae, Genisteae, Phaseoleae and Cassieae) revealed that they belong to the Bradyrhizobium elkanii supergroup. The taxonomic position and possible novelty of these strains were further interrogated using genealogical concordance of five housekeeping genes (atpD, dnaK, glnII, gyrB and rpoB). These phylogenies consistently recovered four monophyletic groups and one singleton within Bradyrhizobium. Of these groups, two were conspecific with Bradyrhizobium brasilense UFLA 03-321T and Bradyrhizobium ivorense CI-1BT, while the remaining three represented novel taxa. Their existence was further supported with genome data, as well as metabolic and physiological traits. Analysis of nodA gene sequences further showed that the evolution of these bacteria likely involved adapting to local legume hosts and environmental conditions through the acquisition, via horizontal gene transfer, of optimal symbiotic loci. We accordingly propose the following names Bradyrhizobium acaciae sp. nov. 10BBT (SARCC 730T = LMG 31409T), Bradyrhizobium oropedii sp. nov. Pear76T (SARCC 731T = LMG 31408T), and Bradyrhizobium altum sp. nov. Pear77T (SARCC 754T = LMG 31407T) to accommodate three novel species, all of which are symbionts of legumes in South Africa.
Collapse
Affiliation(s)
- Juanita R Avontuur
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Marike Palmer
- School of Life Sciences, University of Nevada, Las Vegas, Nevada, United States
| | - Chrizelle W Beukes
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Wai Y Chan
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa; National Institute for Communicable Disease, National Health Laboratory Service, Johannesburg, South Africa
| | - Taponeswa Tasiya
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Elritha van Zyl
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Martin P A Coetzee
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Tomasz Stepkowski
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences (SGGW), Poland
| | - Stephanus N Venter
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa.
| | - Emma T Steenkamp
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| |
Collapse
|
8
|
Banasiewicz J, Granada CE, Lisboa BB, Grzesiuk M, Matuśkiewicz W, Bałka M, Schlindwein G, Vargas LK, Passaglia LMP, Stępkowski T. Diversity and phylogenetic affinities of Bradyrhizobium isolates from Pampa and Atlantic Forest Biomes. Syst Appl Microbiol 2021; 44:126203. [PMID: 33857759 DOI: 10.1016/j.syapm.2021.126203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/10/2021] [Accepted: 03/22/2021] [Indexed: 02/06/2023]
Abstract
In this work, we investigated Bradyrhizobium strains isolated from soils collected from the rhizosphere of native and exotic legumes species inhabiting two ecoclimatic zones - asubtropical-lowland pasture (Pampa Biome) and a volcanic plateau covered by Araucaria Moist Forests (Atlantic Forest Biome). The rhizobial strains were isolated from the nodules of seven native and one exotic legume species used as rhizobium traps. Single-gene (recA, glnII, dnaK) and combined-gene MLSA analyses (dnaK-glnII-gyrB-recA-rpoB) revealed that nearly 85% of the isolates clustered in B. elkanii supergroup, while the remaining (except for two isolates) in B. japonicum supergroup, albeit, in most cases, separately from the type strains of Bradyrhizobium species. As a symbiotic gene marker, a portion of nifD gene was sequenced for 194 strains. In the nifD-tree, an American branch III.3D (104 isolates), was the most numerous among the isolates. A significant portion of the isolates clustered in American groups; subclade III.4 (40 strains), Clade VII (3 strains), and a new Clade XX (4 strains). Most of the remaining strains belonged to a pantropical III.3C branch (39 isolates). On the other hand, identification of isolates belonging, respectively, to Clade I and Clade II may result of spreading of the Australian (Clade I) and European (Clade II) bradyrhizobia following the introduction of their legume hosts. Our study indicated that the American groups predominated in the symbiotic Bradyrhizobium communities in southern Brazil. However, there is a significant component of exotic lineages, resulting from the dispersal of pantropical Fabaceae taxa and the introduction of exotic legumes.
Collapse
Affiliation(s)
- Joanna Banasiewicz
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Camille E Granada
- Universidade do Vale do Taquari - UNIVATES, Rua Avelino Tallini, 171, 95900-000 Lajeado, RS, Brazil
| | - Bruno B Lisboa
- Fundação Estadual de Pesquisa Agropecuária (FEPAGRO), Rua Gonçalves Dias 570, 90130-060 Porto Alegre, RS, Brazil
| | - Małgorzata Grzesiuk
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Weronika Matuśkiewicz
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Mateusz Bałka
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Gilson Schlindwein
- Fundação Estadual de Pesquisa Agropecuária (FEPAGRO), Rua Gonçalves Dias 570, 90130-060 Porto Alegre, RS, Brazil
| | - Luciano K Vargas
- Fundação Estadual de Pesquisa Agropecuária (FEPAGRO), Rua Gonçalves Dias 570, 90130-060 Porto Alegre, RS, Brazil
| | - Luciane M P Passaglia
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul., Av. Bento Gonçalves, 9500, Caixa Postal 15.053, 91501-970 Porto Alegre, RS, Brazil
| | - Tomasz Stępkowski
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland.
| |
Collapse
|
9
|
Bünger W, Sarkar A, Grönemeyer JL, Zielinski J, Revermann R, Hurek T, Reinhold-Hurek B. Root Nodule Rhizobia From Undomesticated Shrubs of the Dry Woodlands of Southern Africa Can Nodulate Angolan Teak Pterocarpus angolensis, an Important Source of Timber. Front Microbiol 2021; 12:611704. [PMID: 33584615 PMCID: PMC7876412 DOI: 10.3389/fmicb.2021.611704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/06/2021] [Indexed: 11/17/2022] Open
Abstract
Pterocarpus angolensis, a leguminous tree native to the dry woodlands of Southern Africa, provides valuable timber, but is threatened by land conversion and overharvesting while showing limited natural regeneration. Nitrogen-fixing root nodule symbionts that could improve establishment of young seedlings have not yet been described. Therefore, we investigated the ability of P. angolensis to form nodules with a diverse range of rhizobia. In drought-prone areas under climate change with higher temperatures, inoculants that are heat-tolerant and adapted to these conditions are likely to be of advantage. Sources of bacterial isolates were roots of P. angolensis from nurseries in the Kavango region, other shrubs from this area growing near Pterocarpus such as Indigofera rautanenii, Desmodium barbatum, Chamaecrista sp., or shrubs from drought-prone areas in Namaqualand (Wiborgia monoptera, Leobordea digitata) or Kalahari (Indigofera alternans). Only slight protrusions were observed on P. angolensis roots, from which a non-nodulating Microbacterium sp. was isolated. Rhizobia that were isolated from nodules of other shrubs were affiliated to Bradyrhizobium ripae WR4T, Bradyrhizobium spp. (WR23/WR74/WR93/WR96), or Ensifer/Mesorhizobium (WR41/WR52). As many plant growth-promoting rhizobacteria (PGPR), nodule isolates produced siderophores and solubilized phosphate. Among them, only the Bradyrhizobium strains nodulated P. angolensis under controlled conditions in the laboratory. Isolates were further characterized by multilocus sequence analysis and were found to be distant from known Bradyrhizobium species. Among additional reference species tested for nodulation on P. angolensis, Bradyrhizobium vignae 7-2T and Bradyrhizobium namibiense 5-10T from the Kavango region of Namibia as well as Bradyrhizobium elkanii LMG6234T and Bradyrhizobium yuanmingense LMG21728T induced nitrogen-fixing nodules, while Bradyrhizobium diazoefficiens USDA110T and Bradyrhizobium tropiciagri SEMIA6148T did not. This suggests a broad microsymbiont range from Bradyrhizobium japonicum and B. elkanii lineages. Phylogenetic analysis of nodC genes indicated that nodulating bradyrhizobia did not belong to a specific symbiovar. Also, for I. rautanenii and Wiborgia, nodule isolates B. ripae WR4T or Mesorhizobium sp. WR52, respectively, were authenticated. Characterization of symbionts inducing effective root nodules in P. angolensis and other shrubs from Subsahara Africa (SSA) give insights in their symbiotic partners for the first time and might help in future to develop bioinoculants for young seedlings in nurseries, and for reforestation efforts in Southern Africa.
Collapse
Affiliation(s)
- Wiebke Bünger
- Department of Microbe-Plant Interactions, CBIB (Center for Biomolecular Interactions Bremen), Faculty Biology and Chemistry, University of Bremen, Bremen, Germany
| | - Abhijit Sarkar
- Department of Microbe-Plant Interactions, CBIB (Center for Biomolecular Interactions Bremen), Faculty Biology and Chemistry, University of Bremen, Bremen, Germany
| | - Jann Lasse Grönemeyer
- Department of Microbe-Plant Interactions, CBIB (Center for Biomolecular Interactions Bremen), Faculty Biology and Chemistry, University of Bremen, Bremen, Germany
| | - Janina Zielinski
- Department of Microbe-Plant Interactions, CBIB (Center for Biomolecular Interactions Bremen), Faculty Biology and Chemistry, University of Bremen, Bremen, Germany
| | - Rasmus Revermann
- Department of Biodiversity, Ecology and Evolution of Plants, Institute of Plant Science and Microbiology, University of Hamburg, Hamburg, Germany
- Faculty of Natural Resources and Spatial Sciences, Namibia University of Science and Technology, Windhoek, Namibia
| | - Thomas Hurek
- Department of Microbe-Plant Interactions, CBIB (Center for Biomolecular Interactions Bremen), Faculty Biology and Chemistry, University of Bremen, Bremen, Germany
| | - Barbara Reinhold-Hurek
- Department of Microbe-Plant Interactions, CBIB (Center for Biomolecular Interactions Bremen), Faculty Biology and Chemistry, University of Bremen, Bremen, Germany
| |
Collapse
|
10
|
Fossou RK, Pothier JF, Zézé A, Perret X. Bradyrhizobium ivorense sp. nov. as a potential local bioinoculant for Cajanus cajan cultures in Côte d'Ivoire. Int J Syst Evol Microbiol 2020; 70:1421-1430. [PMID: 32122457 PMCID: PMC7397250 DOI: 10.1099/ijsem.0.003931] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
For many smallholder farmers of Sub-Saharan Africa, pigeonpea (Cajanus cajan) is an important crop to make ends meet. To ascertain the taxonomic status of pigeonpea isolates of Côte d’Ivoire previously identified as bradyrhizobia, a polyphasic approach was applied to strains CI-1BT, CI-14A, CI-19D and CI-41S. Phylogeny of 16S ribosomal RNA (rRNA) genes placed these nodule isolates in a separate lineage from current species of the B. elkanii super clade. In phylogenetic analyses of single and concatenated partial dnaK, glnII, gyrB, recA and rpoB sequences, the C. cajan isolates again formed a separate lineage, with strain CI-1BT sharing the highest sequence similarity (95.2 %) with B. tropiciagri SEMIA 6148T. Comparative genomic analyses corroborated the novel species status, with 86 % ANIb and 89 % ANIm as the highest average nucleotide identity (ANI) values with B. elkanii USDA 76T. Although CI-1BT, CI-14A, CI-19D and CI-41S shared similar phenotypic and metabolic properties, growth of CI-41S was slower in/on various media. Symbiotic efficacy varied significantly between isolates, with CI-1BT and CI-41S scoring on the C. cajan ‘Light-Brown’ landrace as the most and least proficient bacteria, respectively. Also proficient on Vigna radiata (mung bean), Vigna unguiculata (cowpea, niébé) and additional C. cajan cultivars, CI-1BT represents a potential bioinoculant adapted to local soil conditions and capable of fostering the growth of diverse legume crops in Côte d'Ivoire. Given the data presented here, we propose the 19 C. cajan isolates to belong to a novel species called Bradyrhizobium ivorense sp. nov., with CI-1BT (=CCOS 1862T=CCMM B1296T) as a type strain.
Collapse
Affiliation(s)
- Romain K Fossou
- Laboratoire de Biotechnologies Végétale et Microbienne, Unité Mixte de Recherche et d'Innovation en Sciences Agronomiques et Génie Rural, Institut National Polytechnique Felix Houphouët-Boigny, Yamoussoukro, Côte d'Ivoire.,Department of Botany and Plant Biology, Microbiology Unit, University of Geneva, Sciences III, 30 quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland
| | - Joël F Pothier
- Environmental Genomics and Systems Biology Research Group, Institute of Natural Resource Sciences, Zurich University of Applied Sciences (ZHAW), Einsiedlerstrasse 31, CH-8820 Wädenswil, Switzerland
| | - Adolphe Zézé
- Laboratoire de Biotechnologies Végétale et Microbienne, Unité Mixte de Recherche et d'Innovation en Sciences Agronomiques et Génie Rural, Institut National Polytechnique Felix Houphouët-Boigny, Yamoussoukro, Côte d'Ivoire
| | - Xavier Perret
- Department of Botany and Plant Biology, Microbiology Unit, University of Geneva, Sciences III, 30 quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland
| |
Collapse
|
11
|
Woliy K, Degefu T, Frostegård Å. Host Range and Symbiotic Effectiveness of N 2O Reducing Bradyrhizobium Strains. Front Microbiol 2019; 10:2746. [PMID: 31849890 PMCID: PMC6896821 DOI: 10.3389/fmicb.2019.02746] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/12/2019] [Indexed: 11/13/2022] Open
Abstract
Emissions of the potent greenhouse gas N2O is one of the environmental problems associated with intensive use of synthetic N fertilizers, and novel N2O mitigation strategies are needed to minimize fertilizer applications and N2O release without affecting agricultural efficiencies. Increased incorporation of legume crops in agricultural practices offers a sustainable alternative. Legumes, in their symbiosis with nitrogen fixing bacteria, rhizobia, reduce the need for fertilizers and also respond to the need for increased production of plant-based proteins. Not all combinations of rhizobia and legumes result in efficient nitrogen fixation, and legume crops therefore often need to be inoculated with compatible rhizobial strains. Recent research has demonstrated that some rhizobia are also very efficient N2O reducers. Several nutritionally and economically important legumes form root nodules in symbiosis with bacteria belonging to Bradyrhizobium. Here, the host-ranges of fourteen N2O reducing Bradyrhizobium strains were tested on six legume hosts; cowpea, groundnut, mung bean, haricot bean, soybean, and alfalfa. The plants were grown for 35 days in pots in sterile sand supplemented with N-free nutrient solution. Cowpea was the most promiscuous host nodulated by all test strains, followed by groundnut (11 strains) and mungbean (4 strains). Three test strains were able to nodulate all these three legumes, while none nodulated the other three hosts. For cowpea, five strains increased the shoot dry weight and ten strains the shoot nitrogen content (pairwise comparison; p < 0.05). For groundnut the corresponding results were three and nine strains. The symbiotic effectiveness for the different strains ranged from 45 to 98% in cowpea and 34 to 95% in groundnut, relative to fertilized controls. The N2O reduction capacity of detached nodules from cowpea plants inoculated with one of these strains confirmed active N2O reduction inside the nodules. When released from senescent nodules such strains are expected to also act as sinks for N2O produced by denitrifying organisms in the soil microbial community. Our strategy to search among known N2O-reducing Bradyrhizobium strains for their N2-fixation effectiveness successfully identified several strains which can potentially be used for the production of legume inoculants with the dual capacities of efficacious N2-fixation and N2O reduction.
Collapse
Affiliation(s)
- Kedir Woliy
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Tulu Degefu
- International Crops Research Institute for the Semi-Arid Tropics, Addis Ababa, Ethiopia
| | - Åsa Frostegård
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
12
|
Aeschynomene indica-Nodulating Rhizobia Lacking Nod Factor Synthesis Genes: Diversity and Evolution in Shandong Peninsula, China. Appl Environ Microbiol 2019; 85:AEM.00782-19. [PMID: 31562167 DOI: 10.1128/aem.00782-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 09/04/2019] [Indexed: 02/02/2023] Open
Abstract
Aeschynomene indica is a semiaquatic legume that forms both stem and root nodules with rhizobia. Some A. indica rhizobia (AIRs) have been reported to nodulate the host using a Nod factor-independent pathway and possess photosynthetic abilities. To investigate the diversity and community structure of AIRs in China, a total of 300 rhizobial isolates were acquired from the root and stem nodules of A. indica grown at 4 sites in Shandong Peninsula, China. Nineteen representative strains were selected according to their recA phylogeny. With further classification in comparison with reference strains, 10 Bradyrhizobium genospecies were defined based on the 16S rRNA gene phylogeny and multilocus sequence analysis (MLSA) of housekeeping genes (HKGs) recA, atpD, glnII, dnaK, gyrB, and rpoB In addition, 6 genospecies were found only in China. No nodulation gene (nodA, nodB, nodC, or nodZ) was detected in the AIRs isolates by PCR amplification and Southern blotting. Phylogenetic analysis of nifH and the photosynthesis-related gene pufLM revealed their common origins. All representative strains formed root nodules, but only 9 representative strains for 4 genospecies formed stem nodules on A. indica, indicating that the stem nodulation process of A. indica is limited to some strains. The nucleotide diversity and recombination events of the HKGs, as well as nifH and pufLM genes, showed that mutation contributes more than recombination in evolution. The distribution of dominant AIR genospecies was mainly affected by available nitrogen, organic carbon, total nitrogen, and pH. Our study helps to characterize the diversity and evolution of AIRs.IMPORTANCE Aeschynomene indica rhizobia (AIRs) can form both root and stem nodules via Nod factor-independent processes, which distinguishes them from other rhizobia. This study systematically uncovered the diversity and community composition of A. indica rhizobia distributed in eastern China. Our results reclassified all the A. indica rhizobia across the world and represent a useful contribution to evaluating the diversity and distribution of the symbiont. The presence of novel genospecies specifically distributed in China enriched the A. indica rhizobia resources and provided insight into the geographic distribution of rhizobia. The phylogenetic relationship between nifH and pufLM of A. indica rhizobia across the world provides insight into the evolution of their nitrogen fixation and photosynthetic abilities.
Collapse
|
13
|
Ormeño-Orrillo E, Martínez-Romero E. A Genomotaxonomy View of the Bradyrhizobium Genus. Front Microbiol 2019; 10:1334. [PMID: 31263459 PMCID: PMC6585233 DOI: 10.3389/fmicb.2019.01334] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 05/28/2019] [Indexed: 11/13/2022] Open
Abstract
Whole genome analysis of the Bradyrhizobium genus using average nucleotide identity (ANI) and phylogenomics showed the genus to be essentially monophyletic with seven robust groups within this taxon that includes nitrogen-fixing nodule forming bacteria as well as free living strains. Despite the wide genetic diversity of these bacteria no indication was found to suggest that the Bradyrhizobium genus have to split in different taxa. Bradyrhizobia have larger genomes than other genera of the Bradyrhizobiaceae family, probably reflecting their metabolic diversity and different lifestyles. Few plasmids in the sequenced strains were revealed from rep gene analysis and a relatively low proportion of the genome is devoted to mobile genetic elements. Sequence diversity of recA and glnII gene metadata was used to theoretically estimate the number of existing species and to predict how many would exist. There may be many more species than those presently described with predictions of around 800 species in nature. Different arguments are presented suggesting that nodulation might have arose in the ancestral genus Bradyrhizobium.
Collapse
Affiliation(s)
- Ernesto Ormeño-Orrillo
- Laboratorio de Ecología Microbiana y Biotecnología, Departamento de Biología, Facultad de Ciencias, Universidad Nacional Agraria La Molina, Lima, Peru
| | | |
Collapse
|
14
|
Jaiswal SK, Dakora FD. Widespread Distribution of Highly Adapted Bradyrhizobium Species Nodulating Diverse Legumes in Africa. Front Microbiol 2019; 10:310. [PMID: 30853952 PMCID: PMC6395442 DOI: 10.3389/fmicb.2019.00310] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 02/05/2019] [Indexed: 11/17/2022] Open
Abstract
Bradyrhizobium is one of the most cosmopolitan and diverse bacterial group nodulating a variety of host legumes in Africa, however, the diversity and distribution of bradyrhizobial symbionts nodulating indigenous African legumes are not well understood, though needed for increased food legume production. In this review, we have shown that many African food legumes are nodulated by bradyrhizobia, with greater diversity in Southern Africa compared to other parts of Africa. From a few studies done in Africa, the known bradyrhizobia (i.e., Bradyrhizobium elkanii, B. yuanmingense) along with many novel Bradyrhizobium species are the most dominant in African soils. This could be attributed to the unique edapho-climatic conditions of the contrasting environments in the continent. More studies are needed to identify the many novel bradyrhizobia resident in African soils in order to better understand the biogeography of bradyrhizobia and their potential for inoculant production.
Collapse
Affiliation(s)
- Sanjay K. Jaiswal
- Department of Chemistry, Faculty of Science, Tshwane University of Technology, Pretoria, South Africa
| | - Felix D. Dakora
- Department of Chemistry, Faculty of Science, Tshwane University of Technology, Pretoria, South Africa
| |
Collapse
|
15
|
Huang CT, Hish KT, Wang CN, Liu CT, Kao WY. Phylogenetic analyses of Bradyrhizobium symbionts associated with invasive Crotalaria zanzibarica and its coexisting legumes in Taiwan. Syst Appl Microbiol 2018; 41:619-628. [DOI: 10.1016/j.syapm.2018.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/01/2018] [Accepted: 05/01/2018] [Indexed: 11/30/2022]
|
16
|
Kang W, Xu L, Jiang Z, Shi S. Genetic diversity and symbiotic efficiency difference of endophytic rhizobia of Medicago sativa. Can J Microbiol 2018; 65:68-83. [PMID: 30273494 DOI: 10.1139/cjm-2018-0158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Research on rhizobium diversity has paved the way for diversification of rhizobial germplasm resources. Seventy-three endophytic bacterial isolates were collected from seven tissues of five alfalfa cultivars in three geographic locations in Gansu, China. Restriction fragment length polymorphism (RFLP) fingerprinting of 16S rRNA and analysis of concatenated sequence of three housekeeping genes (atpD, glnII, and recA) and two symbiotic genes (nodC and nifH) were used for strain identification. Results showed that the endophytic strains were genetically diverse at different taxonomic levels, and Ensifer meliloti (31) and Agrobacterium radiobacter (12) are common Medicago sativa endophytic bacteria in Gansu, China. The nifH genes (97%-98% sequence identity) of E. meliloti strains were more diverse than the nodC genes (99%-100% sequence identity), even though the strains evolved from a common ancestor. The degree of dispersion of symbiotic phenotypes of E. meliloti strains on M. sativa 'Gannong No. 3', 'Gannong No. 9', and 'Qingshui' was much less than that on M. sativa 'Longzhong' and 'WL168HQ'. This suggested that the symbiotic efficiency of E. meliloti strains on the former three alfalfa cultivars was similar but on the latter two was discrepant. Their symbiotic efficiency differed primarily according to alfalfa cultivars and, to a lesser extent, to the tested strains, indicating the difference in the sensitivity of different alfalfa cultivars to rhizobial strains.
Collapse
Affiliation(s)
- Wenjuan Kang
- a College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, P.R. China
| | - Lin Xu
- b College of Agriculture and Biotechnology, Hexi University, Zhangye 734000, P.R. China
| | - Zhehao Jiang
- a College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, P.R. China
| | - Shangli Shi
- a College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, P.R. China.,c Key Laboratory of Grassland Ecosystem of Ministry of Education, Lanzhou 730070, P.R. China
| |
Collapse
|
17
|
Grönemeyer JL, Reinhold-Hurek B. Diversity of Bradyrhizobia in Subsahara Africa: A Rich Resource. Front Microbiol 2018; 9:2194. [PMID: 30294308 PMCID: PMC6158577 DOI: 10.3389/fmicb.2018.02194] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 08/27/2018] [Indexed: 01/08/2023] Open
Abstract
Making use of biological nitrogen fixation (BNF) with pulses and green manure legumes can help to alleviate nitrogen deficiencies and increase soil fertility, problems faced particularly in smallholder agriculture in Subsahara Africa (SSA). The isolation of indigenous rhizobia provides a basis for the formulation of rhizobial inoculants. Moreover, their identification and characterization contribute to the general understanding of species distribution and ecology. Here we discuss global species discovery of Bradyrhizobium spp. Although recently the number of validly published Bradyrhizobium species is rapidly increasing, their diversity in SSA is not well-represented. We summarize the recent knowledge on species diversity in the Bradyrhizobium yuanmingense lineage to which most SSA isolates belong, and their biogeographic distribution and adaptations. Most indigenous rhizobia appear to differ from species found on other continents. We stress that an as yet hidden diversity may be a rich resource for inoculant development in future. As some species are exceptionally temperature tolerant, they may be potential biofertilizer candidates for global warming scenarios.
Collapse
Affiliation(s)
| | - Barbara Reinhold-Hurek
- Department of Microbe-Plant Interactions, Faculty of Biology and Chemistry, Center for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany
| |
Collapse
|
18
|
Rathi S, Tak N, Bissa G, Chouhan B, Ojha A, Adhikari D, Barik SK, Satyawada RR, Sprent JI, James EK, Gehlot HS. Selection of Bradyrhizobium or Ensifer symbionts by the native Indian caesalpinioid legume Chamaecrista pumila depends on soil pH and other edaphic and climatic factors. FEMS Microbiol Ecol 2018; 94:5089966. [DOI: 10.1093/femsec/fiy180] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 09/01/2018] [Indexed: 11/12/2022] Open
Affiliation(s)
- Sonam Rathi
- BNF and Microbial Genomics Lab., Department of Botany, Center of Advanced Study, Jai Narain Vyas University, Jodhpur- 342001, Rajasthan, India
| | - Nisha Tak
- BNF and Microbial Genomics Lab., Department of Botany, Center of Advanced Study, Jai Narain Vyas University, Jodhpur- 342001, Rajasthan, India
| | - Garima Bissa
- BNF and Microbial Genomics Lab., Department of Botany, Center of Advanced Study, Jai Narain Vyas University, Jodhpur- 342001, Rajasthan, India
| | - Bhawana Chouhan
- BNF and Microbial Genomics Lab., Department of Botany, Center of Advanced Study, Jai Narain Vyas University, Jodhpur- 342001, Rajasthan, India
| | - Archana Ojha
- Department of Botany, North-Eastern Hill University, Shillong-793022, Meghalaya, India
| | - Dibyendu Adhikari
- Department of Botany, North-Eastern Hill University, Shillong-793022, Meghalaya, India
| | - Saroj K Barik
- Department of Botany, North-Eastern Hill University, Shillong-793022, Meghalaya, India
| | - Rama Rao Satyawada
- Department of Biotechnology and Bioinformatics, North-Eastern Hill University, Shillong-793022, Meghalaya, India
| | - Janet I Sprent
- Division of Plant Sciences, University of Dundee at the James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Euan K James
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Hukam S Gehlot
- BNF and Microbial Genomics Lab., Department of Botany, Center of Advanced Study, Jai Narain Vyas University, Jodhpur- 342001, Rajasthan, India
| |
Collapse
|
19
|
Kang W, Shi S, Xu L. Diversity and symbiotic divergence of endophytic and non-endophytic rhizobia of Medicago sativa. ANN MICROBIOL 2018. [DOI: 10.1007/s13213-018-1333-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
20
|
Stępkowski T, Banasiewicz J, Granada CE, Andrews M, Passaglia LMP. Phylogeny and Phylogeography of Rhizobial Symbionts Nodulating Legumes of the Tribe Genisteae. Genes (Basel) 2018. [PMID: 29538303 PMCID: PMC5867884 DOI: 10.3390/genes9030163] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The legume tribe Genisteae comprises 618, predominantly temperate species, showing an amphi-Atlantic distribution that was caused by several long-distance dispersal events. Seven out of the 16 authenticated rhizobial genera can nodulate particular Genisteae species. Bradyrhizobium predominates among rhizobia nodulating Genisteae legumes. Bradyrhizobium strains that infect Genisteae species belong to both the Bradyrhizobium japonicum and Bradyrhizobium elkanii superclades. In symbiotic gene phylogenies, Genisteae bradyrhizobia are scattered among several distinct clades, comprising strains that originate from phylogenetically distant legumes. This indicates that the capacity for nodulation of Genisteae spp. has evolved independently in various symbiotic gene clades, and that it has not been a long-multi-step process. The exception is Bradyrhizobium Clade II, which unlike other clades comprises strains that are specialized in nodulation of Genisteae, but also Loteae spp. Presumably, Clade II represents an example of long-lasting co-evolution of bradyrhizobial symbionts with their legume hosts.
Collapse
Affiliation(s)
- Tomasz Stępkowski
- Autonomous Department of Microbial Biology, Faculty of Agriculture and Biology, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland.
| | - Joanna Banasiewicz
- Autonomous Department of Microbial Biology, Faculty of Agriculture and Biology, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland.
| | - Camille E Granada
- Universidade do Vale do Taquari-UNIVATES, Rua Avelino Tallini, 171, 95900-000 Lajeado, RS, Brazil.
| | - Mitchell Andrews
- Faculty of Agriculture and Life Sciences, Lincoln University, P.O. Box 84, Lincoln 7647, New Zealand.
| | - Luciane M P Passaglia
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul. Av. Bento Gonçalves, 9500, Caixa Postal 15.053, 91501-970 Porto Alegre, RS, Brazil.
| |
Collapse
|
21
|
Aserse AA, Woyke T, Kyrpides NC, Whitman WB, Lindström K. Draft genome sequences of Bradyrhizobium shewense sp. nov. ERR11 T and Bradyrhizobium yuanmingense CCBAU 10071 T. Stand Genomic Sci 2017; 12:74. [PMID: 29225730 PMCID: PMC5717998 DOI: 10.1186/s40793-017-0283-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/21/2017] [Indexed: 01/01/2023] Open
Abstract
The type strain of the prospective 10.1601/nm.30737 sp. nov. ERR11T, was isolated from a nodule of the leguminous tree Erythrina brucei native to Ethiopia. The type strain 10.1601/nm.1463 10.1601/strainfinder?urlappend=%3Fid%3DCCBAU+10071 T, was isolated from the nodules of Lespedeza cuneata in Beijing, China. The genomes of ERR11T and 10.1601/strainfinder?urlappend=%3Fid%3DCCBAU+10071 T were sequenced by DOE-JGI and deposited at the DOE-JGI genome portal as well as at the European Nucleotide Archive. The genome of ERR11T is 9,163,226 bp in length and has 102 scaffolds, containing 8548 protein-coding and 86 RNA genes. The 10.1601/strainfinder?urlappend=%3Fid%3DCCBAU+10071 T genome is arranged in 108 scaffolds and consists of 8,201,522 bp long and 7776 protein-coding and 85 RNA genes. Both genomes contain symbiotic genes, which are homologous to the genes found in the complete genome sequence of 10.1601/nm.24498 10.1601/strainfinder?urlappend=%3Fid%3DUSDA+110 T. The genes encoding for nodulation and nitrogen fixation in ERR11T showed high sequence similarity with homologous genes found in the draft genome of peanut-nodulating 10.1601/nm.27386 10.1601/strainfinder?urlappend=%3Fid%3DLMG+26795 T. The nodulation genes nolYA-nodD2D1YABCSUIJ-nolO-nodZ of ERR11T and 10.1601/strainfinder?urlappend=%3Fid%3DCCBAU+10071 T are organized in a similar way to the homologous genes identified in the genomes of 10.1601/strainfinder?urlappend=%3Fid%3DUSDA+110 T, 10.1601/nm.25806 10.1601/strainfinder?urlappend=%3Fid%3DUSDA+4 and 10.1601/nm.1462 10.1601/strainfinder?urlappend=%3Fid%3DCCBAU+05525. The genomes harbor hupSLCFHK and hypBFDE genes that code the expression of hydrogenase, an enzyme that helps rhizobia to uptake hydrogen released by the N2-fixation process and genes encoding denitrification functions napEDABC and norCBQD for nitrate and nitric oxide reduction, respectively. The genome of ERR11T also contains nosRZDFYLX genes encoding nitrous oxide reductase. Based on multilocus sequence analysis of housekeeping genes, the novel species, which contains eight strains formed a unique group close to the 10.1601/nm.25806 branch. Genome Average Nucleotide Identity (ANI) calculated between the genome sequences of ERR11T and closely related sequences revealed that strains belonging to 10.1601/nm.25806 branch (10.1601/strainfinder?urlappend=%3Fid%3DUSDA+4 and 10.1601/strainfinder?urlappend=%3Fid%3DCCBAU+15615), were the closest strains to the strain ERR11T with 95.2% ANI. Type strain ERR11T showed the highest DDH predicted value with 10.1601/strainfinder?urlappend=%3Fid%3DCCBAU+15615 (58.5%), followed by 10.1601/strainfinder?urlappend=%3Fid%3DUSDA+4 (53.1%). Nevertheless, the ANI and DDH values obtained between ERR11T and 10.1601/strainfinder?urlappend=%3Fid%3DCCBAU+15615 or 10.1601/strainfinder?urlappend=%3Fid%3DUSDA+4 were below the cutoff values (ANI ≥ 96.5%; DDH ≥ 70%) for strains belonging to the same species, suggesting that ERR11T is a new species. Therefore, based on the phylogenetic analysis, ANI and DDH values, we formally propose the creation of 10.1601/nm.30737 sp. nov. with strain ERR11T (10.1601/strainfinder?urlappend=%3Fid%3DHAMBI+3532 T=10.1601/strainfinder?urlappend=%3Fid%3DLMG+30162 T) as the type strain.
Collapse
Affiliation(s)
- Aregu Amsalu Aserse
- Department of Environmental Sciences, University of Helsinki, Helsinki, Finland
| | | | | | - William B Whitman
- Department of Microbiology, Biological Sciences, University of Georgia, Athens, USA
| | - Kristina Lindström
- Department of Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
22
|
Degefu T, Wolde-Meskel E, Rasche F. Genetic diversity and symbiotic effectiveness of Bradyrhizobium strains nodulating selected annual grain legumes growing in Ethiopia. Int J Syst Evol Microbiol 2017; 68:449-460. [PMID: 29143730 DOI: 10.1099/ijsem.0.002486] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Vigna unguiculata, Vigna radiata and Arachis hypogaea growing in Ethiopia are nodulated by a genetically diverse group of Bradyrhizobium strains. To determine the genetic identity and symbiotic effectiveness of these bacteria, a collection of 36 test strains originating from the root nodules of the three hosts was investigated using multilocus sequence analyses (MLSA) of core genes including 16S rRNA, recA, glnII, gyrB, atpD and dnaK. Sequence analysis of nodA and nifH genes along with tests for symbiotic effectiveness using δ15N analysis were also carried out. The phylogenetic trees derived from the MLSA grouped most test strains into four well-supported distinct positions designated as genospecies I-IV. The maximum likelihood (ML) tree that was constructed based on the nodA gene sequences separated the entire test strains into two lineages, where the majority of the test strains were clustered on one of a well-supported large branch that comprise Bradyrhizobium species from the tropics. This clearly suggested the monophyletic origin of the nodA genes within the bradyrhizobia of tropical origin. The δ15N-based symbiotic effectiveness test of seven selected strains revealed that strains GN100 (δ15N=0.73) and GN102 (δ15N=0.79) were highly effective nitrogen fixers when inoculated to cowpea, thus can be considered as inoculants in cowpea production. It was concluded that Ethiopian soils are a hotspot for rhizobial diversity. This calls for further research to unravel as yet unknown bradyrhizobia nodulating legume host species growing in the country. In this respect, prospective research should also address the mechanisms of symbiotic specificity that could lead to high nitrogen fixation in target legumes.
Collapse
Affiliation(s)
- Tulu Degefu
- School of Applied Natural Sciences, Applied Biology Program, Adama Science and Technology University, P.O. Box 1888, Adama, Ethiopia
| | | | - Frank Rasche
- Institute of Agricultural Sciences in the Tropics (Hans-Ruthenberg-Institute), University of Hohenheim, 70593 Stuttgart, Germany
| |
Collapse
|
23
|
Delamuta JRM, Menna P, Ribeiro RA, Hungria M. Phylogenies of symbiotic genes of Bradyrhizobium symbionts of legumes of economic and environmental importance in Brazil support the definition of the new symbiovars pachyrhizi and sojae. Syst Appl Microbiol 2017; 40:254-265. [PMID: 28647304 DOI: 10.1016/j.syapm.2017.04.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 04/19/2017] [Accepted: 04/21/2017] [Indexed: 11/19/2022]
Abstract
Bradyrhizobium comprises most tropical symbiotic nitrogen-fixing strains, but the correlation between symbiotic and core genes with host specificity is still unclear. In this study, the phylogenies of the nodY/K and nifH genes of 45 Bradyrhizobium strains isolated from legumes of economic and environmental importance in Brazil (Arachis hypogaea, Acacia auriculiformis, Glycine max, Lespedeza striata, Lupinus albus, Stylosanthes sp. and Vigna unguiculata) were compared to 16S rRNA gene phylogeny and genetic diversity by rep-PCR. In the 16S rRNA tree, strains were distributed into two superclades-B. japonicum and B. elkanii-with several strains being very similar within each clade. The rep-PCR analysis also revealed high intra-species diversity. Clustering of strains in the nodY/K and nifH trees was identical: 39 strains isolated from soybean grouped with Bradyrhizobium type species symbionts of soybean, whereas five others occupied isolated positions. Only one strain isolated from Stylosanthes sp. showed similar nodY/K and nifH sequences to soybean strains, and it also nodulated soybean. Twenty-one representative strains of the 16S rRNA phylogram were selected and taxonomically classified using a concatenated glnII-recA phylogeny; nodC sequences were also compared and revealed the same clusters as observed in the nodY/K and nifH phylograms. The analyses of symbiotic genes indicated that a large group of strains from the B. elkanii superclade comprised the novel symbiovar sojae, whereas for another group, including B. pachyrhizi, the symbiovar pachyrhizi could be proposed. Other potential new symbiovars were also detected. The co-evolution hypotheses is discussed and it is suggested that nodY/K analysis would be useful for investigating the symbiotic diversity of the genus Bradyrhizobium.
Collapse
Affiliation(s)
- Jakeline Renata Marçon Delamuta
- Embrapa Soja, C.P. 231, 86001-970, Londrina, Paraná, Brazil; Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), SBN, Quadra 2, Bloco L, Lote 06, Edifício Capes, 70.040-020, Brasília, Distrito Federal, Brazil.
| | - Pâmela Menna
- Embrapa Soja, C.P. 231, 86001-970, Londrina, Paraná, Brazil; Conselho Nacional de Desenvolvimento Científico e Tecnológico, SHIS QI 1 Conjunto B, Blocos A, B, C e D, Lago Sul, 71605-001, Brasília, Distrito Federal, Brazil.
| | - Renan Augusto Ribeiro
- Conselho Nacional de Desenvolvimento Científico e Tecnológico, SHIS QI 1 Conjunto B, Blocos A, B, C e D, Lago Sul, 71605-001, Brasília, Distrito Federal, Brazil.
| | - Mariangela Hungria
- Embrapa Soja, C.P. 231, 86001-970, Londrina, Paraná, Brazil; Conselho Nacional de Desenvolvimento Científico e Tecnológico, SHIS QI 1 Conjunto B, Blocos A, B, C e D, Lago Sul, 71605-001, Brasília, Distrito Federal, Brazil.
| |
Collapse
|
24
|
Haro H, Sanon KB, Le Roux C, Duponnois R, Traoré AS. Improvement of cowpea productivity by rhizobial and mycorrhizal inoculation in Burkina Faso. Symbiosis 2017. [DOI: 10.1007/s13199-017-0478-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Degefu T, Wolde-meskel E, Woliy K, Frostegård Å. Phylogenetically diverse groups of Bradyrhizobium isolated from nodules of tree and annual legume species growing in Ethiopia. Syst Appl Microbiol 2017; 40:205-214. [DOI: 10.1016/j.syapm.2017.04.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/29/2017] [Accepted: 04/01/2017] [Indexed: 11/27/2022]
|
26
|
Huang CT, Liu CT, Chen SJ, Kao WY. Phylogenetic Identification, Phenotypic Variations, and Symbiotic Characteristics of the Peculiar Rhizobium, Strain CzR2, Isolated from Crotalaria zanzibarica in Taiwan. Microbes Environ 2016; 31:410-417. [PMID: 27682803 PMCID: PMC5158113 DOI: 10.1264/jsme2.me16063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Crotalaria zanzibarica is an exotic and widely distributed leguminous plant in Taiwan. The relationship between C. zanzibarica and its rhizobial symbionts has been suggested to contribute to its successful invasion. A rhizobial strain (designed as CzR2) isolated from the root nodules of C. zanzibarica and cultivated in standard YEM medium displayed pleomorphism, with cells ranging between 2 and 10 μm in length and some branching. In the present study, we identified this rhizobial strain, investigated the causes of pleomorphism, and examined the nodules formed. The results of a multilocus sequence analysis of the atpD, dnaK, glnII, gyrB, recA, and rpoB genes revealed that CzR2 belongs to Bradyrhizobium arachidis, a peanut symbiont recently isolated from China. Cells of the strain were uniformly rod-shaped in basal HM medium, but displayed pleomorphism in the presence of yeast extract, mannitol, or fructose. These results indicate that the morphology of CzR2 in its free-living state is affected by nutrient conditions. Several highly pleomorphic bacteroids enclosed in symbiosomes were frequently detected in FM and TEM observations of sections of the indeterminate nodules induced by CzR2; however, no infection thread was identified. Flow cytometric analyses showed that CzR2 cells in YEM medium and in the nodules of C. zanzibarica had two or more than two peaks in relative DNA contents, respectively, suggesting that the elongated cells of CzR2 in its free-living state occur due to a cell cycle-delayed process, while those in its symbiotic state are from genomic endo-reduplication.
Collapse
Affiliation(s)
- Cheng-Tai Huang
- Institute of Ecology and Evolutionary Biology, National Taiwan University
| | | | | | | |
Collapse
|
27
|
Fossou RK, Ziegler D, Zézé A, Barja F, Perret X. Two Major Clades of Bradyrhizobia Dominate Symbiotic Interactions with Pigeonpea in Fields of Côte d'Ivoire. Front Microbiol 2016; 7:1793. [PMID: 27891120 PMCID: PMC5104742 DOI: 10.3389/fmicb.2016.01793] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 10/25/2016] [Indexed: 12/03/2022] Open
Abstract
In smallholder farms of Côte d'Ivoire, particularly in the northeast of the country, Cajanus cajan (pigeonpea) has become an important crop because of its multiple beneficial facets. Pigeonpea seeds provide food to make ends meet, are sold on local markets, and aerial parts serve as forage for animals. Since it fixes atmospheric nitrogen in symbiosis with soil bacteria collectively known as rhizobia, C. cajan also improves soil fertility and reduces fallow time. Yet, seed yields remain low mostly because farmers cannot afford chemical fertilizers. To identify local rhizobial strains susceptible to be used as bio-inoculants to foster pigeonpea growth, root nodules were collected in six fields of three geographically distant regions of Côte d'Ivoire. Nodule bacteria were isolated and characterized using various molecular techniques including matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectrometry (MS) and DNA sequencing. These molecular analyses showed that 63 out of 85 nodule isolates belonged to two major clades of bradyrhizobia, one of which is known as the Bradyrhizobium elkanii super clade. Phylogenies of housekeeping (16S-ITS-23S, rpoB) and symbiotic (nifH) genes were not always congruent suggesting that lateral transfer of nitrogen fixation genes also contributed to define the genome of these bradyrhizobial isolates. Interestingly, no field-, plant-, or cultivar-specific effect was found to shape the profiles of symbiotic strains. In addition, nodule isolates CI-1B, CI-36E, and CI-41A that belong to distinct species, showed similar symbiotic efficiencies suggesting that any of these strains might serve as a proficient inoculant for C. cajan.
Collapse
Affiliation(s)
- Romain K Fossou
- Microbiology Unit, Department of Botany and Plant Biology, University of Geneva Geneva, Switzerland
| | - Dominik Ziegler
- Microbiology Unit, Department of Botany and Plant Biology, University of GenevaGeneva, Switzerland; Mabritec AGRiehen, Switzerland
| | - Adolphe Zézé
- Laboratoire de Biotechnologies Végétale et Microbienne, Unité Mixte de Recherche et d'Innovation en Sciences Agronomiques et Génie Rural, Institut National Polytechnique Félix Houphouët-Boigny (INPHB) Yamoussoukro, Côte d'Ivoire
| | - François Barja
- Microbiology Unit, Department of Botany and Plant Biology, University of Geneva Geneva, Switzerland
| | - Xavier Perret
- Microbiology Unit, Department of Botany and Plant Biology, University of Geneva Geneva, Switzerland
| |
Collapse
|
28
|
Biogeographical Patterns of Legume-Nodulating Burkholderia spp.: from African Fynbos to Continental Scales. Appl Environ Microbiol 2016; 82:5099-115. [PMID: 27316955 DOI: 10.1128/aem.00591-16] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/24/2016] [Indexed: 12/31/2022] Open
Abstract
UNLABELLED Rhizobia of the genus Burkholderia have large-scale distribution ranges and are usually associated with South African papilionoid and South American mimosoid legumes, yet little is known about their genetic structuring at either local or global geographic scales. To understand variation at different spatial scales, from individual legumes in the fynbos (South Africa) to a global context, we analyzed chromosomal (16S rRNA, recA) and symbiosis (nifH, nodA, nodC) gene sequences. We showed that the global diversity of nodulation genes is generally grouped according to the South African papilionoid or South American mimosoid subfamilies, whereas chromosomal sequence data were unrelated to biogeography. While nodulation genes are structured on a continental scale, a geographic or host-specific distribution pattern was not detected in the fynbos region. In host range experiments, symbiotic promiscuity of Burkholderia tuberum STM678(T) and B phymatum STM815(T) was discovered in selected fynbos species. Finally, a greenhouse experiment was undertaken to assess the ability of mimosoid (Mimosa pudica) and papilionoid (Dipogon lignosus, Indigofera filifolia, Macroptilium atropurpureum, and Podalyria calyptrata) species to nodulate in South African (fynbos) and Malawian (savanna) soils. While the Burkholderia-philous fynbos legumes (D lignosus, I filifolia, and P calyptrata) nodulated only in their native soils, the invasive neotropical species M pudica did not develop nodules in the African soils. The fynbos soil, notably rich in Burkholderia, seems to retain nodulation genes compatible with the local papilionoid legume flora but is incapable of nodulating mimosoid legumes that have their center of diversity in South America. IMPORTANCE This study is the most comprehensive phylogenetic assessment of root-nodulating Burkholderia and investigated biogeographic and host-related patterns of the legume-rhizobial symbiosis in the South African fynbos biome, as well as at global scales, including native species from the South American Caatinga and Cerrado biomes. While a global investigation of the rhizobial diversity revealed distinct nodulation and nitrogen fixation genes among South African and South American legumes, regionally distributed species in the Cape region were unrelated to geographic and host factors.
Collapse
|
29
|
Beukes CW, Stępkowski T, Venter SN, Cłapa T, Phalane FL, le Roux MM, Steenkamp ET. Crotalarieae and Genisteae of the South African Great Escarpment are nodulated by novel Bradyrhizobium species with unique and diverse symbiotic loci. Mol Phylogenet Evol 2016; 100:206-218. [DOI: 10.1016/j.ympev.2016.04.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 03/30/2016] [Accepted: 04/07/2016] [Indexed: 12/21/2022]
|
30
|
Genetic diversity and distribution of bradyrhizobia nodulating peanut in acid-neutral soils in Guangdong Province. Syst Appl Microbiol 2016; 39:418-27. [PMID: 27499533 DOI: 10.1016/j.syapm.2016.06.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 06/02/2016] [Accepted: 06/06/2016] [Indexed: 11/20/2022]
Abstract
To reveal the genetic diversity and geographic distribution of peanut (Arachis hypogaea L.) rhizobia in Guangdong Province, one of the main peanut producing regions in China, 216 bradyrhizobial isolates were trapped by peanut plants inoculated with soil samples (pH 4.7-7.4) collected from ten sites in Guangdong. Based on BOX-PCR fingerprinting analysis, 71 representative isolates were selected for sequence analyses of ribosomal IGS, recA, atpD and symbiotic gene nodA. As a result, 22 genospecies were detected in the peanut rhizobia, including eight minor groups or single strains corresponding to Bradyrhizobium diazoefficiens, B. japonicum, B. yuanmingense, B. arachidis, B. guangdongense, B. guangxiense, B. iriomotense and B. liaoningense, as well as 14 novel Bradyrhizobium genospecies covering the majority of isolates. Five symbiotic clusters were obtained based on the phylogenetic relationships of nodA genes, related to the soybean-nodulating or peanut-nodulating reference strains. Biogeographic patterns, which were mainly correlated with potassium content and pH, were detected in the peanut bradyrhizobial community in Guangdong Province. These findings enriched the diversity of peanut rhizobia, and added the K content as a special determinant for peanut rhizobial distribution in acid soils.
Collapse
|
31
|
Azarias Guimarães A, Florentino LA, Alves Almeida K, Lebbe L, Barroso Silva K, Willems A, de Souza Moreira FM. High diversity of Bradyrhizobium strains isolated from several legume species and land uses in Brazilian tropical ecosystems. Syst Appl Microbiol 2015; 38:433-41. [DOI: 10.1016/j.syapm.2015.06.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 06/05/2015] [Accepted: 06/12/2015] [Indexed: 10/23/2022]
|
32
|
Parker MA, Jankowiak JG, Landrigan GK. Diversifying selection by Desmodiinae legume species onBradyrhizobiumsymbionts. FEMS Microbiol Ecol 2015; 91:fiv075. [DOI: 10.1093/femsec/fiv075] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2015] [Indexed: 11/14/2022] Open
|
33
|
Parker MA. The spread of Bradyrhizobium lineages across host legume clades: from Abarema to Zygia. MICROBIAL ECOLOGY 2015; 69:630-640. [PMID: 25301497 DOI: 10.1007/s00248-014-0503-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 09/24/2014] [Indexed: 06/04/2023]
Abstract
To analyze macroevolutionary patterns in host use by Bradyrhizobium root-nodule bacteria, 420 strains from 75 legume host genera (sampled in 25 countries) were characterized for portions of six housekeeping genes and the nifD locus in the symbiosis island chromosomal region. Most Bradyrhizobium clades utilized very divergent sets of legume hosts. This suggests that Bradyrhizobium spread across the major legume lineages early in its evolution, with only a few derived clades subsequently developing a narrower pattern of host use. Significant modularity existed in the network structure of recent host jumps (inferred from cases where closely related strain pairs were found on different legume taxa). This implies that recent host switching has occurred most often within particular subgroups of legumes. Nevertheless, the observed link structure would allow a bacterial lineage to reach almost any of the 75 legume host genera in a relatively small number of steps. However, permutation tests also showed that symbionts from certain host plant clades were significantly more similar than would be the case if bacteria were distributed at random on the trees. Related legumes thus harbored related sets of symbionts in some cases, indicating some degree of phylogenetic conservatism in partner selection.
Collapse
Affiliation(s)
- Matthew A Parker
- Department of Biological Sciences, State University of New York, Binghamton, NY, 13902, USA,
| |
Collapse
|
34
|
Rhizobia Indigenous to the Okavango Region in Sub-Saharan Africa: Diversity, Adaptations, and Host Specificity. Appl Environ Microbiol 2014; 80:7244-57. [PMID: 25239908 DOI: 10.1128/aem.02417-14] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 09/10/2014] [Indexed: 02/01/2023] Open
Abstract
The rhizobial community indigenous to the Okavango region has not yet been characterized. The isolation of indigenous rhizobia can provide a basis for the formulation of a rhizobial inoculant. Moreover, their identification and characterization contribute to the general understanding of species distribution and ecology. Isolates were obtained from nodules of local varieties of the pulses cowpea, Bambara groundnut, peanut, hyacinth bean, and common bean. Ninety-one of them were identified by BOX repetitive element PCR (BOX-PCR) and sequence analyses of the 16S-23S rRNA internally transcribed spacer (ITS) and the recA, glnII, rpoB, and nifH genes. A striking geographical distribution was observed. Bradyrhizobium pachyrhizi dominated at sampling sites in Angola which were characterized by acid soils and a semihumid climate. Isolates from the semiarid sampling sites in Namibia were more diverse, with most of them being related to Bradyrhizobium yuanmingense and Bradyrhizobium daqingense. Host plant specificity was observed only for hyacinth bean, which was nodulated by rhizobia presumably representing yet-undescribed species. Furthermore, the isolates were characterized with respect to their adaptation to high temperatures, drought, and local host plants. The adaptation experiments revealed that the Namibian isolates shared an exceptionally high temperature tolerance, but none of the isolates showed considerable adaptation to drought. Moreover, the isolates' performance on different local hosts showed variable results, with most Namibian isolates inducing better nodulation on peanut and hyacinth bean than the Angolan strains. The local predominance of distinct genotypes implies that indigenous strains may exhibit a better performance in inoculant formulations.
Collapse
|
35
|
Rouws LFM, Leite J, de Matos GF, Zilli JE, Coelho MRR, Xavier GR, Fischer D, Hartmann A, Reis VM, Baldani JI. Endophytic Bradyrhizobium spp. isolates from sugarcane obtained through different culture strategies. ENVIRONMENTAL MICROBIOLOGY REPORTS 2014; 6:354-63. [PMID: 24992534 DOI: 10.1111/1758-2229.12122] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 10/27/2013] [Indexed: 05/12/2023]
Abstract
Brazilian sugarcane has been shown to obtain part of its nitrogen via biological nitrogen fixation (BNF). Recent reports, based on the culture independent sequencing of bacterial nifH complementary DNA (cDNA) from sugarcane tissues, have suggested that members of the Bradyrhizobium genus could play a role in sugarcane-associated BNF. Here we report on the isolation of Bradyrhizobium spp. isolates and a few other species from roots of sugarcane cultivar RB867515 by two cultivation strategies: direct isolation on culture media and capture of Bradyrhizobium spp. using the promiscuous legume Vigna unguiculata as trap-plant. Both strategies permitted the isolation of genetically diverse Bradyrhizobium spp. isolates, as concluded from enterobacterial repetitive intergenic consensus polymerase chain reaction (PCR) fingerprinting and 16S ribosomal RNA, nifH and nodC sequence analyses. Several isolates presented nifH phylotypes highly similar to nifH cDNA phylotypes detected in field-grown sugarcane by a culture-independent approach. Four isolates obtained by direct plate cultivation were unable to nodulate V. unguiculata and, based on PCR analysis, lacked a nodC gene homologue. Acetylene reduction assay showed in vitro nitrogenase activity for some Bradyrhizobium spp. isolates, suggesting that these bacteria do not require a nodule environment for BNF. Therefore, this study brings further evidence that Bradyrhizobium spp. may play a role in sugarcane-associated BNF under field conditions.
Collapse
|
36
|
Parker MA, Rousteau A. Mosaic origins of Bradyrhizobium legume symbionts on the Caribbean island of Guadeloupe. Mol Phylogenet Evol 2014; 77:110-5. [DOI: 10.1016/j.ympev.2014.04.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 04/04/2014] [Accepted: 04/08/2014] [Indexed: 11/28/2022]
|
37
|
Zhang XX, Guo HJ, Wang R, Sui XH, Zhang YM, Wang ET, Tian CF, Chen WX. Genetic divergence of bradyrhizobium strains nodulating soybeans as revealed by multilocus sequence analysis of genes inside and outside the symbiosis island. Appl Environ Microbiol 2014; 80:3181-90. [PMID: 24632260 PMCID: PMC4018923 DOI: 10.1128/aem.00044-14] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 03/07/2014] [Indexed: 01/26/2023] Open
Abstract
The genus Bradyrhizobium has been considered to be a taxonomically difficult group. In this study, phylogenetics and evolutionary genetics analyses were used to investigate divergence levels among Bradyrhizobium strains nodulating soybeans in China. Eleven genospecies were identified by sequence analysis of three phylogenetic and taxonomic markers (SMc00019, thrA, and truA). This was also supported by analyses of eight genes outside the symbiosis island ("off-island" genes; SMc00019, thrA, truA, fabB, glyA, phyR, exoN, and hsfA). However, seven genes inside the symbiosis island ("island" genes; nifA, nifH, nodC, nodV, fixA, trpD, and rhcC2) showed contrasting lower levels of nucleotide diversity and recombination rates than did off-island genes. Island genes had significantly incongruent gene phylogenies compared to the species tree. Four phylogenetic clusters were observed in island genes, and the epidemic cluster IV (harbored by Bradyrhizobium japonicum, Bradyrhizobium diazoefficiens, Bradyrhizobium huanghuaihaiense, Bradyrhizobium liaoningense, Bradyrhizobium daqingense, Bradyrhizobium sp. I, Bradyrhizobium sp. III, and Bradyrhizobium sp. IV) was not found in Bradyrhizobium yuanmingense, Bradyrhizobium sp. II, or Bradyrhizobium elkanii. The gene flow level of island genes among genospecies is discussed in the context of the divergence level of off-island genes.
Collapse
Affiliation(s)
- Xing Xing Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- Key Laboratory of Soil Microbiology, Ministry of Agriculture, China Agricultural University, Beijing, China
- Rhizobium Research Center, China Agricultural University, Beijing, China
| | - Hui Juan Guo
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- Key Laboratory of Soil Microbiology, Ministry of Agriculture, China Agricultural University, Beijing, China
- Rhizobium Research Center, China Agricultural University, Beijing, China
| | - Rui Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- Key Laboratory of Soil Microbiology, Ministry of Agriculture, China Agricultural University, Beijing, China
- Rhizobium Research Center, China Agricultural University, Beijing, China
| | - Xin Hua Sui
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- Key Laboratory of Soil Microbiology, Ministry of Agriculture, China Agricultural University, Beijing, China
- Rhizobium Research Center, China Agricultural University, Beijing, China
| | - Yan Ming Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- Key Laboratory of Soil Microbiology, Ministry of Agriculture, China Agricultural University, Beijing, China
- Rhizobium Research Center, China Agricultural University, Beijing, China
| | - En Tao Wang
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Chang Fu Tian
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- Key Laboratory of Soil Microbiology, Ministry of Agriculture, China Agricultural University, Beijing, China
- Rhizobium Research Center, China Agricultural University, Beijing, China
| | - Wen Xin Chen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- Key Laboratory of Soil Microbiology, Ministry of Agriculture, China Agricultural University, Beijing, China
- Rhizobium Research Center, China Agricultural University, Beijing, China
| |
Collapse
|
38
|
Horn K, Parker IM, Malek W, Rodríguez-Echeverría S, Parker MA. Disparate origins ofBradyrhizobiumsymbionts for invasive populations ofCytisus scoparius(Leguminosae) in North America. FEMS Microbiol Ecol 2014; 89:89-98. [DOI: 10.1111/1574-6941.12335] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 03/24/2014] [Accepted: 03/26/2014] [Indexed: 11/27/2022] Open
Affiliation(s)
- Kevin Horn
- Department of Biological Sciences; State University of New York; Binghamton NY USA
| | - Ingrid M. Parker
- Department of Ecology and Evolutionary Biology; University of California; Santa Cruz CA USA
| | - Wanda Malek
- Department of Genetics and Microbiology; Marie Curie-Sklodowska University; Lublin Poland
| | | | - Matthew A. Parker
- Department of Biological Sciences; State University of New York; Binghamton NY USA
| |
Collapse
|
39
|
MALDI-TOF mass spectrometry as a tool for differentiation of Bradyrhizobium species: application to the identification of Lupinus nodulating strains. Syst Appl Microbiol 2013; 36:565-71. [PMID: 24168963 DOI: 10.1016/j.syapm.2013.09.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Revised: 09/14/2013] [Accepted: 09/23/2013] [Indexed: 11/22/2022]
Abstract
Genus Bradyrhizobium includes slow growing bacteria able to nodulate different legumes as well as species isolated from plant tumours. The slow growth presented by the members of this genus and the phylogenetic closeness of most of its species difficults their identification. In the present work we applied for the first time Matrix-Assisted Laser Desorption Ionization-Time-of-Flight Mass Spectrometry (MALDI-TOF MS) to the analysis of Bradyrhizobium species after the extension of MALDI Biotyper 2.0 database with the currently valid species of this genus. With this methodology it was possible to identify strains belonging to phylogenetically closely related species of genus Bradyrhizobium allowing the discrimination among species with rrs gene identities higher than 99%. The application of MALDI-TOF MS to strains isolated from nodules of different Lupinus species in diverse geographical locations allowed their correct identification when comparing with the results of rrs gene and ITS analyses. The nodulation of Lupinus gredensis, an endemic species of the west of Spain, by B. canariense supports the European origin of this species.
Collapse
|
40
|
Aserse AA, Räsänen LA, Aseffa F, Hailemariam A, Lindström K. Diversity of sporadic symbionts and nonsymbiotic endophytic bacteria isolated from nodules of woody, shrub, and food legumes in Ethiopia. Appl Microbiol Biotechnol 2013; 97:10117-34. [PMID: 24196581 DOI: 10.1007/s00253-013-5248-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 08/17/2013] [Accepted: 08/21/2013] [Indexed: 10/26/2022]
Abstract
Fifty-five bacterial isolates were obtained from surface-sterilized nodules of woody and shrub legumes growing in Ethiopia: Crotalaria spp., Indigofera spp., and Erythrina brucei, and the food legumes soybean and common bean. Based on partial 16S rRNA gene sequence analysis, the majority of the isolates were identified as Gram-negative bacteria belonging to the genera Achromobacter, Agrobacterium, Burkholderia, Cronobacter, Enterobacter, Mesorhizobium, Novosphingobium, Pantoea, Pseudomonas, Rahnella, Rhizobium, Serratia, and Variovorax. Seven isolates were Gram-positive bacteria belonging to the genera Bacillus, Paenibacillus, Planomicrobium, and Rhodococcus. Amplified fragment length polymorphism (AFLP) fingerprinting showed that each strain was genetically distinct. According to phylogenetic analysis of recA, glnII, rpoB, and 16S rRNA gene sequences, Rhizobium, Mesorhizobium, and Agrobacterium were further classified into six different genospecies: Agrobacterium spp., Agrobacterium radiobacter, Rhizobium sp., Rhizobium phaseoli, Mesorhizobium sp., and putative new Rhizobium species. The strains from R. phaseoli, Rhizobium sp. IAR30, and Mesorhizobium sp. ERR6 induced nodules on their host plants. The other strains did not form nodules on their original host. Nine endophytic bacterial strains representing seven genera, Agrobacterium, Burkholderia, Paenibacillus, Pantoea, Pseudomonas, Rhizobium, and Serratia, were found to colonize nodules of Crotalaria incana and common bean on co-inoculation with symbiotic rhizobia. Four endophytic Rhizobium and two Agrobacterium strains had identical nifH gene sequences with symbiotic Rhizobium strains, suggesting horizontal gene transfer. Most symbiotic and nonsymbiotic endophytic bacteria showed plant growth-promoting properties in vitro, which indicate their potential role in the promotion of plant growth when colonizing plant roots and the rhizosphere.
Collapse
Affiliation(s)
- Aregu Amsalu Aserse
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, P.O. Box 56, 00014, Finland,
| | | | | | | | | |
Collapse
|
41
|
Degefu T, Wolde-meskel E, Frostegård Å. Phylogenetic diversity of Rhizobium strains nodulating diverse legume species growing in Ethiopia. Syst Appl Microbiol 2013; 36:272-80. [PMID: 23643092 DOI: 10.1016/j.syapm.2013.03.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 02/16/2013] [Accepted: 03/25/2013] [Indexed: 11/17/2022]
Abstract
The taxonomic diversity of thirty-seven Rhizobium strains, isolated from nodules of leguminous trees and herbs growing in Ethiopia, was studied using multilocus sequence analyses (MLSA) of six core and two symbiosis-related genes. Phylogenetic analysis based on the 16S rRNA gene grouped them into five clusters related to nine Rhizobium reference species (99-100% sequence similarity). In addition, two test strains occupied their own independent branches on the phylogenetic tree (AC86a2 along with R. tibeticum; 99.1% similarity and AC100b along with R. multihospitium; 99.5% similarity). One strain from Milletia ferruginea was closely related (>99%) to the genus Shinella, further corroborating earlier findings that nitrogen-fixing bacteria are distributed among phylogenetically unrelated taxa. Sequence analyses of five housekeeping genes also separated the strains into five well-supported clusters, three of which grouped with previously studied Ethiopian common bean rhizobia. Three of the five clusters could potentially be described into new species. Based on the nifH genes, most of the test strains from crop legumes were closely related to several strains of Ethiopian common bean rhizobia and other symbionts of bean plants (R. etli and R. gallicum sv. phaseoli). The grouping of the test strains based on the symbiosis-related genes was not in agreement with the housekeeping genes, signifying differences in their evolutionary history. Our earlier studies revealing a large diversity of Mesorhizobium and Ensifer microsymbionts isolated from Ethiopian legumes, together with the results from the present analysis of Rhizobium strains, suggest that this region might be a potential hotspot for rhizobial biodiversity.
Collapse
Affiliation(s)
- Tulu Degefu
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Ås, Norway.
| | | | | |
Collapse
|