1
|
Almeida EAB, Packer L, Melo GAR, Danforth BN, Cardinal SC, Quinteiro FB, Pie MR. The diversification of neopasiphaeine bees during the Cenozoic (Hymenoptera: Colletidae). ZOOL SCR 2018. [DOI: 10.1111/zsc.12333] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Eduardo A. B. Almeida
- Laboratório de Biologia Comparada e Abelhas (LBCA), Departamento de Biologia, Faculdade de Filosofia Ciências e Letras, Universidade de São Paulo Ribeirão Preto SP Brazil
| | | | - Gabriel A. R. Melo
- Departamento de Zoologia Universidade Federal do Paraná Curitiba PR Brazil
| | - Bryan N. Danforth
- Department of Entomology Comstock Hall, Cornell University. Ithaca New York
| | - Sophie C. Cardinal
- Agriculture and Agri‐Food Canada Canadian National Collection of Insects Ottawa Ontario Canada
| | - Fábio B. Quinteiro
- Laboratório de Biologia Comparada e Abelhas (LBCA), Departamento de Biologia, Faculdade de Filosofia Ciências e Letras, Universidade de São Paulo Ribeirão Preto SP Brazil
- Departamento de Ecologia, Zoologia e Genética, Instituto de Biologia Universidade Federal de Pelotas Pelotas Rio Grande do Sul Brazil
| | - Marcio R. Pie
- Departamento de Zoologia Universidade Federal do Paraná Curitiba PR Brazil
| |
Collapse
|
4
|
Brennan IG, Oliver PM. Mass turnover and recovery dynamics of a diverse Australian continental radiation. Evolution 2017; 71:1352-1365. [PMID: 28213971 DOI: 10.1111/evo.13207] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 02/03/2017] [Accepted: 02/06/2017] [Indexed: 11/29/2022]
Abstract
Trends in global and local climate history have been linked to observed macroevolutionary patterns across a variety of organisms. These climatic pressures may unilaterally or asymmetrically influence the evolutionary trajectory of clades. To test and compare signatures of changing global (Eocene-Oligocene boundary cooling) and continental (Miocene aridification) environments on a continental fauna, we investigated the macroevolutionary dynamics of one of Australia's most diverse endemic radiations, pygopodoid geckos. We generated a time-calibrated phylogeny (>90% taxon coverage) to test whether (i) asymmetrical pygopodoid tree shape may be the result of mass turnover deep in the group's history, and (ii) how Miocene aridification shaped trends in biome assemblages. We find evidence of mass turnover in pygopodoids following the isolation of the Australian continental plate ∼30 million years ago, and in contrast, gradual aridification is linked to elevated speciation rates in the young arid zone. Surprisingly, our results suggest that invasion of arid habitats was not an evolutionary end point. Instead, arid Australia has acted as a source for diversity, with repeated outward dispersals having facilitated diversification of this group. This pattern contrasts trends in richness and distribution of other Australian vertebrates, illustrating the profound effects historical biome changes have on macroevolutionary patterns.
Collapse
Affiliation(s)
- Ian G Brennan
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Paul M Oliver
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
6
|
Ceccarelli FS, Opell BD, Haddad CR, Raven RJ, Soto EM, Ramírez MJ. Around the World in Eight Million Years: Historical Biogeography and Evolution of the Spray Zone Spider Amaurobioides (Araneae: Anyphaenidae). PLoS One 2016; 11:e0163740. [PMID: 27732621 PMCID: PMC5061358 DOI: 10.1371/journal.pone.0163740] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 09/13/2016] [Indexed: 11/24/2022] Open
Abstract
Closely related organisms with transoceanic distributions have long been the focus of historical biogeography, prompting the question of whether long-distance dispersal, or tectonic-driven vicariance shaped their current distribution. Regarding the Southern Hemisphere continents, this question deals with the break-up of the Gondwanan landmass, which has also affected global wind and oceanic current patterns since the Miocene. With the advent of phylogenetic node age estimation and parametric bioinformatic advances, researchers have been able to disentangle historical evolutionary processes of taxa with greater accuracy. In this study, we used the coastal spider genus Amaurobioides to investigate the historical biogeographical and evolutionary processes that shaped the modern-day distribution of species of this exceptional genus of spiders. As the only genus of the subfamily Amaurobioidinae found on three Southern Hemisphere continents, its distribution is well-suited to study in the context of Gondwanic vicariance versus long-distance, transoceanic dispersal. Ancestral species of the genus Amaurobioides appear to have undergone several long-distance dispersal events followed by successful establishments and speciation, starting from the mid-Miocene through to the Pleistocene. The most recent common ancestor of all present-day Amaurobioides species is estimated to have originated in Africa after arriving from South America during the Miocene. From Africa the subsequent dispersals are likely to have taken place predominantly in an eastward direction. The long-distance dispersal events by Amaurobioides mostly involved transoceanic crossings, which we propose occurred by rafting, aided by the Antarctic Circumpolar Current and the West Wind Drift.
Collapse
Affiliation(s)
- F. Sara Ceccarelli
- División de Aracnología, Museo Argentino de Ciencias Naturales, Av. Angel Gallardo 470, C1405DJR, Buenos Aires, Argentina
| | - Brent D. Opell
- Department of Biological Sciences, 1405 Perry Street, Virginia Tech, Blacksburg, VA 24061, United States of America
| | - Charles R. Haddad
- Dept. of Zoology & Entomology, University of the Free State, P. O. Box 339, Bloemfontein 9300, South Africa
| | - Robert J. Raven
- Arachnid Collection, Terrestrial Biodiversity Group, Queensland Museum, Grey St, P. O. Box 3300, South Brisbane 4101, Queensland, Australia
| | - Eduardo M. Soto
- Departamento de Ecología, Genética y Evolución, IEGEBA (CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II (C1428 EHA), Buenos Aires, Argentina
| | - Martín J. Ramírez
- División de Aracnología, Museo Argentino de Ciencias Naturales, Av. Angel Gallardo 470, C1405DJR, Buenos Aires, Argentina
| |
Collapse
|
7
|
Marshall DC, Hill KBR, Moulds M, Vanderpool D, Cooley JR, Mohagan AB, Simon C. Inflation of Molecular Clock Rates and Dates: Molecular Phylogenetics, Biogeography, and Diversification of a Global Cicada Radiation from Australasia (Hemiptera: Cicadidae: Cicadettini). Syst Biol 2015; 65:16-34. [PMID: 26493828 DOI: 10.1093/sysbio/syv069] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 09/17/2015] [Indexed: 11/13/2022] Open
Abstract
Dated phylogenetic trees are important for studying mechanisms of diversification, and molecular clocks are important tools for studies of organisms lacking good fossil records. However, studies have begun to identify problems in molecular clock dates caused by uncertainty of the modeled molecular substitution process. Here we explore Bayesian relaxed-clock molecular dating while studying the biogeography of ca. 200 species from the global cicada tribe Cicadettini. Because the available fossils are few and uninformative, we calibrate our trees in part with a cytochrome oxidase I (COI) clock prior encompassing a range of literature estimates for arthropods. We show that tribe-level analyses calibrated solely with the COI clock recover extremely old dates that conflict with published estimates for two well-studied New Zealand subclades within Cicadettini. Additional subclade analyses suggest that COI relaxed-clock rates and maximum-likelihood branch lengths become inflated relative to EF-1[Formula: see text] intron and exon rates and branch lengths as clade age increases. We present corrected estimates derived from: (i) an extrapolated EF-1[Formula: see text] exon clock derived from COI-calibrated analysis within the largest New Zealand subclade; (ii) post hoc scaling of the tribe-level chronogram using results from subclade analyses; and (iii) exploitation of a geological calibration point associated with New Caledonia. We caution that considerable uncertainty is generated due to dependence of substitution estimates on both the taxon sample and the choice of model, including gamma category number and the choice of empirical versus estimated base frequencies. Our results suggest that diversification of the tribe Cicadettini commenced in the early- to mid-Cenozoic and continued with the development of open, arid habitats in Australia and worldwide. We find that Cicadettini is a rare example of a global terrestrial animal group with an Australasian origin, with all non-Australasian genera belonging to two distal clades. Within Australia, we show that Cicadettini is more widely distributed than any other cicada tribe, diverse in temperate, arid and monsoonal habitats, and nearly absent from rainforests. We comment on the taxonomic implications of our findings for thirteen cicada genera.
Collapse
Affiliation(s)
- David C Marshall
- Department of Ecology and Evolutionary Biology, 75 N. Eagleville Rd., Storrs, CT 06269, USA;
| | - Kathy B R Hill
- Department of Ecology and Evolutionary Biology, 75 N. Eagleville Rd., Storrs, CT 06269, USA
| | - Max Moulds
- Entomology Department, Australian Museum, 6 College Street, Sydney NSW 2010, Australia
| | - Dan Vanderpool
- Department of Ecology and Evolutionary Biology, 75 N. Eagleville Rd., Storrs, CT 06269, USA; Division of Biological Sciences, Health Sciences 304, U. Montana, Missoula, MT 59812
| | - John R Cooley
- Department of Ecology and Evolutionary Biology, 75 N. Eagleville Rd., Storrs, CT 06269, USA
| | - Alma B Mohagan
- Central Mindanao University, Sayre Highway, Bukidnon, Philippines
| | - Chris Simon
- Department of Ecology and Evolutionary Biology, 75 N. Eagleville Rd., Storrs, CT 06269, USA
| |
Collapse
|
8
|
Toussaint EF, Condamine FL, Hawlitschek O, Watts CH, Porch N, Hendrich L, Balke M. Unveiling the Diversification Dynamics of Australasian Predaceous Diving Beetles in the Cenozoic. Syst Biol 2014; 64:3-24. [DOI: 10.1093/sysbio/syu067] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Emmanuel F.A. Toussaint
- SNSB-Bavarian State Collection of Zoology, Münchhausenstraße 21, 81247 Munich, Germany; 2CNRS, UMR 7641 Centre de Mathématiques Appliquées (Ecole Polytechnique), Route de Saclay, 91128 Palaiseau cedex, France; 3South Australian Museum, Adelaide, South Australia, Australia; 4Centre for Integrated Ecology & School of Life and Environmental Sciences, Deakin University, 221 Burwood Highway, Burwood, Victoria 3125, Australia; and 5GeoBioCenter, Ludwig-Maximilians University, Munich, Germany
| | - Fabien L. Condamine
- SNSB-Bavarian State Collection of Zoology, Münchhausenstraße 21, 81247 Munich, Germany; 2CNRS, UMR 7641 Centre de Mathématiques Appliquées (Ecole Polytechnique), Route de Saclay, 91128 Palaiseau cedex, France; 3South Australian Museum, Adelaide, South Australia, Australia; 4Centre for Integrated Ecology & School of Life and Environmental Sciences, Deakin University, 221 Burwood Highway, Burwood, Victoria 3125, Australia; and 5GeoBioCenter, Ludwig-Maximilians University, Munich, Germany
| | - Oliver Hawlitschek
- SNSB-Bavarian State Collection of Zoology, Münchhausenstraße 21, 81247 Munich, Germany; 2CNRS, UMR 7641 Centre de Mathématiques Appliquées (Ecole Polytechnique), Route de Saclay, 91128 Palaiseau cedex, France; 3South Australian Museum, Adelaide, South Australia, Australia; 4Centre for Integrated Ecology & School of Life and Environmental Sciences, Deakin University, 221 Burwood Highway, Burwood, Victoria 3125, Australia; and 5GeoBioCenter, Ludwig-Maximilians University, Munich, Germany
| | - Chris H. Watts
- SNSB-Bavarian State Collection of Zoology, Münchhausenstraße 21, 81247 Munich, Germany; 2CNRS, UMR 7641 Centre de Mathématiques Appliquées (Ecole Polytechnique), Route de Saclay, 91128 Palaiseau cedex, France; 3South Australian Museum, Adelaide, South Australia, Australia; 4Centre for Integrated Ecology & School of Life and Environmental Sciences, Deakin University, 221 Burwood Highway, Burwood, Victoria 3125, Australia; and 5GeoBioCenter, Ludwig-Maximilians University, Munich, Germany
| | - Nick Porch
- SNSB-Bavarian State Collection of Zoology, Münchhausenstraße 21, 81247 Munich, Germany; 2CNRS, UMR 7641 Centre de Mathématiques Appliquées (Ecole Polytechnique), Route de Saclay, 91128 Palaiseau cedex, France; 3South Australian Museum, Adelaide, South Australia, Australia; 4Centre for Integrated Ecology & School of Life and Environmental Sciences, Deakin University, 221 Burwood Highway, Burwood, Victoria 3125, Australia; and 5GeoBioCenter, Ludwig-Maximilians University, Munich, Germany
| | - Lars Hendrich
- SNSB-Bavarian State Collection of Zoology, Münchhausenstraße 21, 81247 Munich, Germany; 2CNRS, UMR 7641 Centre de Mathématiques Appliquées (Ecole Polytechnique), Route de Saclay, 91128 Palaiseau cedex, France; 3South Australian Museum, Adelaide, South Australia, Australia; 4Centre for Integrated Ecology & School of Life and Environmental Sciences, Deakin University, 221 Burwood Highway, Burwood, Victoria 3125, Australia; and 5GeoBioCenter, Ludwig-Maximilians University, Munich, Germany
| | - Michael Balke
- SNSB-Bavarian State Collection of Zoology, Münchhausenstraße 21, 81247 Munich, Germany; 2CNRS, UMR 7641 Centre de Mathématiques Appliquées (Ecole Polytechnique), Route de Saclay, 91128 Palaiseau cedex, France; 3South Australian Museum, Adelaide, South Australia, Australia; 4Centre for Integrated Ecology & School of Life and Environmental Sciences, Deakin University, 221 Burwood Highway, Burwood, Victoria 3125, Australia; and 5GeoBioCenter, Ludwig-Maximilians University, Munich, Germany
- SNSB-Bavarian State Collection of Zoology, Münchhausenstraße 21, 81247 Munich, Germany; 2CNRS, UMR 7641 Centre de Mathématiques Appliquées (Ecole Polytechnique), Route de Saclay, 91128 Palaiseau cedex, France; 3South Australian Museum, Adelaide, South Australia, Australia; 4Centre for Integrated Ecology & School of Life and Environmental Sciences, Deakin University, 221 Burwood Highway, Burwood, Victoria 3125, Australia; and 5GeoBioCenter, Ludwig-Maximilians University, Munich, Germany
| |
Collapse
|
9
|
Rehan SM, Leys R, Schwarz MP. First evidence for a massive extinction event affecting bees close to the K-T boundary. PLoS One 2013; 8:e76683. [PMID: 24194843 PMCID: PMC3806776 DOI: 10.1371/journal.pone.0076683] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 08/31/2013] [Indexed: 11/19/2022] Open
Abstract
Bees and eudicot plants both arose in the mid-late Cretaceous, and their co-evolutionary relationships have often been assumed as an important element in the rise of flowering plants. Given the near-complete dependence of bees on eudicots we would expect that major extinction events affecting the latter would have also impacted bees. However, given the very patchy distribution of bees in the fossil record, identifying any such extinctions using fossils is very problematic. Here we use molecular phylogenetic analyses to show that one bee group, the Xylocopinae, originated in the mid-Cretaceous, coinciding with the early radiation of the eudicots. Lineage through time analyses for this bee subfamily show very early diversification, followed by a long period of seemingly no radiation and then followed by rapid diversification in each of the four constituent tribes. These patterns are consistent with both a long-fuse model of radiation and a massive extinction event close to the K-T boundary. We argue that massive extinction is much more plausible than a long fuse, given the historical biogeography of these bees and the diversity of ecological niches that they occupy. Our results suggest that events near the K-T boundary would have disrupted many plant-bee relationships, with major consequences for the subsequent evolution of eudicots and their pollinators.
Collapse
Affiliation(s)
- Sandra M. Rehan
- Department of Biological Sciences, University of New Hampshire, Durham, New Hampshire, United States of America
- * E-mail:
| | - Remko Leys
- School of Biological Sciences, Flinders University of South Australia, Adelaide, South Australia, Australia
- Evolutionary Biology Unit, South Australia Museum, Adelaide, South Australia, Australia
- School of Earth and Environmental Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Michael P. Schwarz
- School of Biological Sciences, Flinders University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|