1
|
Liang X, Sun Y, Chen J, Li J, Ye Y. The Complete Mitochondrial Genome of Nephropsis grandis: Insights into the Phylogeny of Nephropidae Mitochondrial Genome. Biochem Genet 2024:10.1007/s10528-024-10948-6. [PMID: 39470934 DOI: 10.1007/s10528-024-10948-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/21/2024] [Indexed: 11/01/2024]
Abstract
The systematic phylogeny of Pleocyemata species, particularly within the family Nephropidae, remains incomplete. In order to enhance the taxonomy and systematics of Nephropidae within the evolutionary context of Pleocyemata, we embarked upon a comprehensive study aiming to elucidate the phylogenetic position of Nephropsis grandis. Consequently, we determined the complete mitochondrial DNA sequence for N. grandis. The circular genome spans a length of 15,344 bp and exhibits a gene composition analogous to that observed in other metazoans, encompassing a comprehensive set of 37 genes. Additionally, the genome features an AT-rich region. The rRNAs exhibited the highest AT content among the 37 genes (70.41%), followed by tRNAs (67.42%) and protein-coding genes (PCGs) (62.76%). The absence of a dihydrouracil arm in trnS1 prevented the formation of the canonical cloverleaf secondary structure. Selective pressure analysis indicated that the PCGs underwent purifying selection. The Ka/Ks ratios for cox1, cox2, cox3, and cob were considerably lower compared to other PCGs, implying strong purifying selection acting upon these particular genes. The mitochondrial gene order in N. grandis was consistent with the reported order in ancestral Pleocyemata. Phylogenetic revealed that N. grandis forms a cluster with the genus Metanephrops, and this cluster further groups with Homarus and the genus Nephrops within the Nephropidae family. These findings provide robust support for N. grandis as an ancestral member of the Nephropidae family. This study highlights the significance of employing complete mitochondrial genomes in phylogenetic analysis and deepens our understanding of the evolution of the Nephropidae family.
Collapse
Affiliation(s)
- Xinjie Liang
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Yuman Sun
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Jian Chen
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Jiji Li
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Yingying Ye
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, China.
| |
Collapse
|
2
|
Jauss RT, Solf N, Kolora SRR, Schaffer S, Wolf R, Henle K, Fritz U, Schlegel M. Mitogenome evolution in the Lacerta viridis complex (Lacertidae, Squamata) reveals phylogeny of diverging clades. SYST BIODIVERS 2021. [DOI: 10.1080/14772000.2021.1912205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Robin-Tobias Jauss
- Institute of Biology, Biodiversity & Evolution, University of Leipzig, Talstraße 33, Leipzig, 04103, Germany
| | - Nadiné Solf
- Institute of Biology, Biodiversity & Evolution, University of Leipzig, Talstraße 33, Leipzig, 04103, Germany
| | - Sree Rohit Raj Kolora
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
| | - Stefan Schaffer
- Institute of Biology, Molecular Evolution & Animal Systematics, University of Leipzig, Talstraße 33, Leipzig, 04103, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle Jena Leipzig, Deutscher Platz 5e, Leipzig, 04103, Germany
| | - Ronny Wolf
- Institute of Biology, Molecular Evolution & Animal Systematics, University of Leipzig, Talstraße 33, Leipzig, 04103, Germany
| | - Klaus Henle
- German Centre for Integrative Biodiversity Research (iDiv) Halle Jena Leipzig, Deutscher Platz 5e, Leipzig, 04103, Germany
- Department of Conservation Biology, UFZ – Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318, Leipzig, Germany
| | - Uwe Fritz
- Museum of Zoology, Senckenberg Dresden, A. B. Meyer Building, 01109, Dresden, Germany
| | - Martin Schlegel
- Institute of Biology, Biodiversity & Evolution, University of Leipzig, Talstraße 33, Leipzig, 04103, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle Jena Leipzig, Deutscher Platz 5e, Leipzig, 04103, Germany
| |
Collapse
|
3
|
Silvestri S, Figueroa DF, Hicks D, Figueroa NJ. Mitogenomic phylogenetic analyses of Leptogorgia virgulata and Leptogorgia hebes (Anthozoa: Octocorallia) from the Gulf of Mexico provides insight on Gorgoniidae divergence between Pacific and Atlantic lineages. Ecol Evol 2019; 9:14114-14129. [PMID: 31938507 PMCID: PMC6953674 DOI: 10.1002/ece3.5847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 11/28/2022] Open
Abstract
The use of genetics in recent years has brought to light the need to reevaluate the classification of many gorgonian octocorals. This study focuses on two Leptogorgia species-Leptogorgia virgulata and Leptogorgia hebes-from the northwestern Gulf of Mexico (GOM). We target complete mitochondrial genomes and mtMutS sequences, and integrate this data with previous genetic research of gorgonian corals to resolve phylogenetic relationships and estimate divergence times. This study contributes the first complete mitochondrial genomes for L. ptogorgia virgulata and L. hebes. Our resulting phylogenies stress the need to redefine the taxonomy of the genus Leptogorgia in its entirety. The fossil-calibrated divergence times for Eastern Pacific and Western Atlantic Leptogorgia species based on complete mitochondrial genomes shows that the use of multiple genes results in estimates of more recent speciation events than previous research based on single genes. These more recent divergence times are in agreement with geologic data pertaining to the formation of the Isthmus of Panama.
Collapse
Affiliation(s)
- Samantha Silvestri
- School of Earth, Environmental, and Marine SciencesUniversity of Texas Rio Grande ValleyBrownsvilleTXUSA
| | - Diego F. Figueroa
- School of Earth, Environmental, and Marine SciencesUniversity of Texas Rio Grande ValleyBrownsvilleTXUSA
| | - David Hicks
- School of Earth, Environmental, and Marine SciencesUniversity of Texas Rio Grande ValleyBrownsvilleTXUSA
| | - Nicole J. Figueroa
- School of Earth, Environmental, and Marine SciencesUniversity of Texas Rio Grande ValleyBrownsvilleTXUSA
| |
Collapse
|
4
|
Martinez-Villegas L, Assis-Geraldo J, Koerich LB, Collier TC, Lee Y, Main BJ, Rodrigues NB, Orfano AS, Pires ACAM, Campolina TB, Nacif-Pimenta R, Baia-da-Silva DC, Duarte APM, Bahia AC, Rios-Velásquez CM, Lacerda MVG, Monteiro WM, Lanzaro GC, Secundino NFC, Pimenta PFP. Characterization of the complete mitogenome of Anopheles aquasalis, and phylogenetic divergences among Anopheles from diverse geographic zones. PLoS One 2019; 14:e0219523. [PMID: 31479460 PMCID: PMC6720026 DOI: 10.1371/journal.pone.0219523] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 06/25/2019] [Indexed: 11/18/2022] Open
Abstract
Whole mitogenome sequences (mtDNA) have been exploited for insect ecology studies, using them as molecular markers to reconstruct phylogenies, or to infer phylogeographic relationships and gene flow. Recent Anopheles phylogenomic studies have provided information regarding the time of deep lineage divergences within the genus. Here we report the complete 15,393 bp mtDNA sequences of Anopheles aquasalis, a Neotropical human malaria vector. When comparing its structure and base composition with other relevant and available anopheline mitogenomes, high similarity and conserved genomic features were observed. Furthermore, 22 mtDNA sequences comprising anopheline and Dipteran sibling species were analyzed to reconstruct phylogenies and estimate dates of divergence between taxa. Phylogenetic analysis using complete mtDNA sequences suggests that A. aquasalis diverged from the Anopheles albitarsis complex ~28 million years ago (MYA), and ~38 MYA from Anopheles darlingi. Bayesian analysis suggests that the most recent ancestor of Nyssorhynchus and Anopheles + Cellia was extant ~83 MYA, corroborating current estimates of ~79–100 MYA. Additional sampling and publication of African, Asian, and North American anopheline mitogenomes would improve the resolution of the Anopheles phylogeny and clarify early continental dispersal routes.
Collapse
Affiliation(s)
- Luis Martinez-Villegas
- Laboratory of Medical Entomology, Institute René Rachou, Oswaldo Cruz Foundation, Minas Gerais, FIOCRUZ, Belo Horizonte, MG, Brazil
| | - Juliana Assis-Geraldo
- Biosystems Informatics and Genomics Group, Institute René Rachou, Oswaldo Cruz Foundation, Minas Gerais, FIOCRUZ, Belo Horizonte, MG, Brazil
| | - Leonardo B Koerich
- Laboratory of Physiology of Haematophagous Insects, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Travis C Collier
- Daniel K. Inouye US Pacific Basin Agricultural Research Center (PBARC), United States Department of Agriculture, Agricultural Research Service, Hilo, Hawaii, United States of America
| | - Yoosook Lee
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California-Davis, Davis, California, United States of America
| | - Bradley J Main
- Davis Arbovirus Research and Training, School of Veterinary Medicine, University of California-Davis, Davis, California, United States of America
| | - Nilton B Rodrigues
- Laboratory of Medical Entomology, Institute René Rachou, Oswaldo Cruz Foundation, Minas Gerais, FIOCRUZ, Belo Horizonte, MG, Brazil
| | - Alessandra S Orfano
- Laboratory of Medical Entomology, Institute René Rachou, Oswaldo Cruz Foundation, Minas Gerais, FIOCRUZ, Belo Horizonte, MG, Brazil
| | - Ana C A M Pires
- Laboratory of Medical Entomology, Institute René Rachou, Oswaldo Cruz Foundation, Minas Gerais, FIOCRUZ, Belo Horizonte, MG, Brazil
| | - Thais B Campolina
- Laboratory of Medical Entomology, Institute René Rachou, Oswaldo Cruz Foundation, Minas Gerais, FIOCRUZ, Belo Horizonte, MG, Brazil
| | - Rafael Nacif-Pimenta
- Laboratory of Medical Entomology, Institute René Rachou, Oswaldo Cruz Foundation, Minas Gerais, FIOCRUZ, Belo Horizonte, MG, Brazil
| | - Djane C Baia-da-Silva
- Institute of Clinical Research Borborema, Tropical Medicine Foundation Dr. Heitor Vieira Dourado, Manaus, AM, Brazil
- Graduation Program in Tropical Medicine, Amazonas State University, Manaus, AM, Brazil
- Foundation of Tropical Medicine Dr. Heitor Vieira Dourado, Manaus, AM, Brazil
| | - Ana P M Duarte
- Institute of Clinical Research Borborema, Tropical Medicine Foundation Dr. Heitor Vieira Dourado, Manaus, AM, Brazil
- Graduation Program in Tropical Medicine, Amazonas State University, Manaus, AM, Brazil
- Foundation of Tropical Medicine Dr. Heitor Vieira Dourado, Manaus, AM, Brazil
| | - Ana C Bahia
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Marcus V G Lacerda
- Institute of Clinical Research Borborema, Tropical Medicine Foundation Dr. Heitor Vieira Dourado, Manaus, AM, Brazil
- Graduation Program in Tropical Medicine, Amazonas State University, Manaus, AM, Brazil
- Foundation of Tropical Medicine Dr. Heitor Vieira Dourado, Manaus, AM, Brazil
- Institute Leonidas and Maria Deane, Oswaldo Cruz Foundation, FIOCRUZ, Manaus, AM, Brazil
| | - Wuelton M Monteiro
- Institute of Clinical Research Borborema, Tropical Medicine Foundation Dr. Heitor Vieira Dourado, Manaus, AM, Brazil
- Graduation Program in Tropical Medicine, Amazonas State University, Manaus, AM, Brazil
- Foundation of Tropical Medicine Dr. Heitor Vieira Dourado, Manaus, AM, Brazil
| | - Gregory C Lanzaro
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California-Davis, Davis, California, United States of America
| | - Nagila F C Secundino
- Laboratory of Medical Entomology, Institute René Rachou, Oswaldo Cruz Foundation, Minas Gerais, FIOCRUZ, Belo Horizonte, MG, Brazil
- Graduation Program in Tropical Medicine, Amazonas State University, Manaus, AM, Brazil
- Foundation of Tropical Medicine Dr. Heitor Vieira Dourado, Manaus, AM, Brazil
| | - Paulo F P Pimenta
- Laboratory of Medical Entomology, Institute René Rachou, Oswaldo Cruz Foundation, Minas Gerais, FIOCRUZ, Belo Horizonte, MG, Brazil
- Institute of Clinical Research Borborema, Tropical Medicine Foundation Dr. Heitor Vieira Dourado, Manaus, AM, Brazil
- Graduation Program in Tropical Medicine, Amazonas State University, Manaus, AM, Brazil
- Foundation of Tropical Medicine Dr. Heitor Vieira Dourado, Manaus, AM, Brazil
| |
Collapse
|
5
|
Xu QZ, Li YX, Dong Y. Characterization of the complete mitochondrial genome of Amphioplus laevis (Ophiuroidea, Amphiuridae) with phylogenetic analysis. Mitochondrial DNA B Resour 2019; 4:3062-3063. [PMID: 33365856 PMCID: PMC7706814 DOI: 10.1080/23802359.2019.1667907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The complete mitochondrial genome of Amphioplus laevis was 16,084 bp in length (Genbank accession: MN276320). It contained 13 protein-coding genes, 2 ribosomal RNA and 22 transfer RNA. The GC contents of A. laevis was 37.59%. The gene order was similar with species in the same family. Phylogenetic relationships within known ophiuroids reconstructed by 13 protein-coding mitochondrial genes, which showed that it was mostly related to Amphiopholis squamata, corresponding to the gene order. These results could provide a novel insight to the phylogeny of Ophiuroidea.
Collapse
Affiliation(s)
- Qin-Zeng Xu
- Ministry of Natural Resources, Key Laboratory of Science and Engineering for Marine Ecology and Environment, The First Institute of Oceanography, Qingdao, People's Republic of China
- Pilot National Laboratory for Marine Science and Technology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, People's Republic of China
| | - Yi-Xuan Li
- Ministry of Natural Resources, Key Laboratory of Science and Engineering for Marine Ecology and Environment, The First Institute of Oceanography, Qingdao, People's Republic of China
| | - Yue Dong
- Ministry of Natural Resources, Key Laboratory of Science and Engineering for Marine Ecology and Environment, The First Institute of Oceanography, Qingdao, People's Republic of China
| |
Collapse
|
6
|
García-Arrarás JE, Lázaro-Peña MI, Díaz-Balzac CA. Holothurians as a Model System to Study Regeneration. Results Probl Cell Differ 2018; 65:255-283. [PMID: 30083924 DOI: 10.1007/978-3-319-92486-1_13] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Echinoderms possess an incredible regenerative capacity. Within this phylum, holothurians, better known as sea cucumbers, can regenerate most of their internal and external organs. While regeneration has been studied in several species, the most recent and extensive studies have been done in the species Holothuria glaberrima, the focus of most of our discussion. This chapter presents the model system and integrates the work that has been done to determine the major steps that take place, during regeneration of the intestinal and nervous system, from wound healing to the reestablishment of original function. We describe the cellular and molecular events associated with the regeneration processes and also describe the techniques that have been used, discuss the results, and explain the gaps in our knowledge that remain. We expect that the information provided here paves the road for new and young investigators to continue the study of the amazing potential of regeneration in members of the Echinodermata and how these studies will shed some light into the mechanisms that are common to many regenerative processes.
Collapse
Affiliation(s)
- José E García-Arrarás
- Department of Biology, University of Puerto Rico - Río Piedras Campus, San Juan, Puerto Rico.
| | - María I Lázaro-Peña
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
| | - Carlos A Díaz-Balzac
- Department of Medicine, University of Rochester Medical Center, Strong Memorial Hospital, Rochester, NY, USA
| |
Collapse
|
7
|
Kusakabe TG. Identifying Vertebrate Brain Prototypes in Deuterostomes. DIVERSITY AND COMMONALITY IN ANIMALS 2017. [DOI: 10.1007/978-4-431-56469-0_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Gaitán-Espitia JD, Solano-Iguaran JJ, Tejada-Martinez D, Quintero-Galvis JF. Mitogenomics of electric rays: evolutionary considerations within Torpediniformes (Batoidea; Chondrichthyes). Zool J Linn Soc 2016. [DOI: 10.1111/zoj.12417] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Juan Diego Gaitán-Espitia
- Instituto de Ciencias Ambientales y Evolutivas; Universidad Austral de Chile; Casilla 567 Valdivia Chile
- CSIRO Oceans & Atmosphere; GPO Box 1538 Hobart 7001 TAS Australia
| | - Jaiber J. Solano-Iguaran
- Instituto de Ciencias Ambientales y Evolutivas; Universidad Austral de Chile; Casilla 567 Valdivia Chile
- Programa de Magister en Ciencias mención Genética; Facultad de Ciencias; Universidad Austral de Chile; Valdivia Chile
| | - Daniela Tejada-Martinez
- Instituto de Ciencias Ambientales y Evolutivas; Universidad Austral de Chile; Casilla 567 Valdivia Chile
- Programa de Doctorado en Ciencias mención Ecología y Evolución; Facultad de Ciencias; Universidad Austral de Chile; Valdivia Chile
| | - Julian F. Quintero-Galvis
- Instituto de Ciencias Ambientales y Evolutivas; Universidad Austral de Chile; Casilla 567 Valdivia Chile
- Programa de Magister en Ciencias mención Genética; Facultad de Ciencias; Universidad Austral de Chile; Valdivia Chile
| |
Collapse
|
9
|
The phylogeny, evolutionary developmental biology, and paleobiology of the Deuterostomia: 25 years of new techniques, new discoveries, and new ideas. ORG DIVERS EVOL 2016. [DOI: 10.1007/s13127-016-0270-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
Lambertz M. Craniota vs. Craniata: arguments towards nomenclatural consistency. J ZOOL SYST EVOL RES 2016. [DOI: 10.1111/jzs.12126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Markus Lambertz
- Institut für Zoologie; Rheinische Friedrich-Wilhelms-Universität Bonn; Bonn Germany
| |
Collapse
|
11
|
Zhang D, Gong F, Liu T, Guo H, Zhang N, Zhu K, Jiang S. Shotgun assembly of the mitochondrial genome from Fenneropenaeus penicillatus with phylogenetic consideration. Mar Genomics 2015; 24 Pt 3:379-86. [PMID: 26429699 DOI: 10.1016/j.margen.2015.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 08/26/2015] [Accepted: 09/15/2015] [Indexed: 11/25/2022]
Abstract
The complete mitochondrial genome is of great importance for better understanding of the genome-level characteristics and phylogenetic relationships among related species. In this study, Fenneropenaeus penicillatus mitochondrial genome sequence was determined by next-generation sequencing. The complete genome DNA was 16,040 bp in length and consisted of a typical set of 13 protein-coding genes, 22 transfer RNA (tRNA) genes, two ribosomal RNA (rRNA) genes and a putative control region (CR). The gene arrangement is identical to the pancrustacean pattern. The overall base composition of its mitochondrial genome is estimated to be 34.1% for A, 34.1% for T, 12.5% for G and 19.3% for C with a high A+T content (68.2%). The analysis of the average Ka/Ks in the 13 mitochondrial protein-coding genes of penaeid shrimps indicated a strong purifying selection within this group. The phylogenetic analysis based on mitochondrial sequences and 13 concatenated protein-coding genes showed strong statistic support for the following relationship among the five genera ((Penaeus s.s+Fenneropenaeus)+(Litopenaeus+Farfantepenaeus))+Marsupenaeus. The sequence data of F. penicillatus can provide useful information for the studies on molecular systematics, population structure, stock evaluation and conservation genetics.
Collapse
Affiliation(s)
- Dianchang Zhang
- Key Laboratory of South China Sea Fishery Research Exploitation and Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China.
| | - Fahui Gong
- Key Laboratory of South China Sea Fishery Research Exploitation and Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; College of Fisheries and Life, Shanghai Ocean University, Shanghai; 201306, China
| | - Tiantian Liu
- Key Laboratory of South China Sea Fishery Research Exploitation and Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; College of Fisheries and Life, Shanghai Ocean University, Shanghai; 201306, China
| | - Huayang Guo
- Key Laboratory of South China Sea Fishery Research Exploitation and Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Nan Zhang
- Key Laboratory of South China Sea Fishery Research Exploitation and Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Kecheng Zhu
- Key Laboratory of South China Sea Fishery Research Exploitation and Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Shigui Jiang
- Key Laboratory of South China Sea Fishery Research Exploitation and Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China.
| |
Collapse
|
12
|
Shen X, Sun S, Zhao FQ, Zhang GT, Tian M, Tsang LM, Wang JF, Chu KH. Phylomitogenomic analyses strongly support the sister relationship of the Chaetognatha and Protostomia. ZOOL SCR 2015. [DOI: 10.1111/zsc.12140] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xin Shen
- Jiangsu Key Laboratory of Marine Biotechnology/Co-Innovation Center of Jiangsu Marine Bio-industry Technology; Huaihai Institute of Technology; Lianyungang 222005 China
- Beijing Institutes of Life Science; Chinese Academy of Sciences; Beijing 100101 China
- Simon F. S. Li Marine Science Laboratory; School of Life Sciences; The Chinese University of Hong Kong; Shatin Hong Kong China
| | - Song Sun
- KLMEES and JBMERS; Institute of Oceanology; Chinese Academy of Sciences; Qingdao 266071 China
| | - Fang Qing Zhao
- Beijing Institutes of Life Science; Chinese Academy of Sciences; Beijing 100101 China
| | - Guang Tao Zhang
- KLMEES and JBMERS; Institute of Oceanology; Chinese Academy of Sciences; Qingdao 266071 China
| | - Mei Tian
- Jiangsu Key Laboratory of Marine Biotechnology/Co-Innovation Center of Jiangsu Marine Bio-industry Technology; Huaihai Institute of Technology; Lianyungang 222005 China
| | - Ling Ming Tsang
- Institute of Marine Biology; National Taiwan Ocean University; Keelung 20224 Taiwan
| | - Jin Feng Wang
- Beijing Institutes of Life Science; Chinese Academy of Sciences; Beijing 100101 China
| | - Ka Hou Chu
- Simon F. S. Li Marine Science Laboratory; School of Life Sciences; The Chinese University of Hong Kong; Shatin Hong Kong China
| |
Collapse
|
13
|
Luo YJ, Satoh N, Endo K. Mitochondrial gene order variation in the brachiopod Lingula anatina and its implications for mitochondrial evolution in lophotrochozoans. Mar Genomics 2015; 24 Pt 1:31-40. [PMID: 26342990 DOI: 10.1016/j.margen.2015.08.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 08/07/2015] [Accepted: 08/25/2015] [Indexed: 11/18/2022]
Abstract
Vertebrate mitochondrial (mt) genomes display highly conserved gene order and relatively low evolutionary rates. However, these features are variable in marine invertebrates. Here we present the mt genome of the lingulid brachiopod, Lingula anatina, from Amami Island, Japan, as part of the nuclear genome project. We obtain ~2000-fold coverage of the 17.9-kb mt genome using Illumina sequencing, and we identify hypervariable regions within the same individual. Transcriptome analyses show that mt transcripts are polycistronic and expressed differentially. Unexpectedly, we find that the mt gene order of Amami Lingula is completely shuffled compared to that of a specimen from Yanagawa, suggesting that there may be cryptic species. Using breakpoint distance analyses with 101 metazoan mt genomes, we show that the evolutionary history of mt gene order among lophotrochozoans is unique. Analyses of non-synonymous substitution rates reveal that mt protein-coding genes of Lingula have experienced rapid evolution comparable to that expected for interspecific comparisons. Whole genome phylogenetic analyses suggest that mt genomes have limited value for inferring the phylogenetic positions of lophotrochozoans because of their high evolutionary rates in brachiopods and bivalves.
Collapse
Affiliation(s)
- Yi-Jyun Luo
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan.
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Kazuyoshi Endo
- Department of Earth and Planetary Science, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
14
|
Abstract
Traditional metazoan phylogeny classifies the Vertebrata as a subphylum of the phylum Chordata, together with two other subphyla, the Urochordata (Tunicata) and the Cephalochordata. The Chordata, together with the phyla Echinodermata and Hemichordata, comprise a major group, the Deuterostomia. Chordates invariably possess a notochord and a dorsal neural tube. Although the origin and evolution of chordates has been studied for more than a century, few authors have intimately discussed taxonomic ranking of the three chordate groups themselves. Accumulating evidence shows that echinoderms and hemichordates form a clade (the Ambulacraria), and that within the Chordata, cephalochordates diverged first, with tunicates and vertebrates forming a sister group. Chordates share tadpole-type larvae containing a notochord and hollow nerve cord, whereas ambulacrarians have dipleurula-type larvae containing a hydrocoel. We propose that an evolutionary occurrence of tadpole-type larvae is fundamental to understanding mechanisms of chordate origin. Protostomes have now been reclassified into two major taxa, the Ecdysozoa and Lophotrochozoa, whose developmental pathways are characterized by ecdysis and trochophore larvae, respectively. Consistent with this classification, the profound dipleurula versus tadpole larval differences merit a category higher than the phylum. Thus, it is recommended that the Ecdysozoa, Lophotrochozoa, Ambulacraria and Chordata be classified at the superphylum level, with the Chordata further subdivided into three phyla, on the basis of their distinctive characteristics.
Collapse
Affiliation(s)
- Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Daniel Rokhsar
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3200, USA
| | - Teruaki Nishikawa
- Department of Biology, Faculty of Science, Toho University, Funabashi, Chiba 274-8510, Japan
| |
Collapse
|
15
|
Justice JL, Weese DA, Santos SR. Phylogenetic utility, and variability in structure and content, of complete mitochondrial genomes among genetic lineages of the Hawaiian anchialine shrimp Halocaridina rubra Holthuis 1963 (Atyidae:Decapoda). Mitochondrial DNA A DNA Mapp Seq Anal 2015; 27:2710-8. [PMID: 26061341 DOI: 10.3109/19401736.2015.1046161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The Atyidae are caridean shrimp possessing hair-like setae on their claws and are important contributors to ecological services in tropical and temperate fresh and brackish water ecosystems. Complete mitochondrial genomes have only been reported from five of the 449 species in the family, thus limiting understanding of mitochondrial genome evolution and the phylogenetic utility of complete mitochondrial sequences in the Atyidae. Here, comparative analyses of complete mitochondrial genomes from eight genetic lineages of Halocaridina rubra, an atyid endemic to the anchialine ecosystem of the Hawaiian Archipelago, are presented. Although gene number, order, and orientation were syntenic among genomes, three regions were identified and further quantified where conservation was substantially lower: (1) high length and sequence variability in the tRNA-Lys and tRNA-Asp intergenic region; (2) a 317-bp insertion between the NAD6 and CytB genes confined to a single lineage and representing a partial duplication of CytB; and (3) the putative control region. Phylogenetic analyses utilizing complete mitochondrial sequences provided new insights into relationships among the H. rubra genetic lineages, with the topology of one clade correlating to the geologic sequence of the islands. However, deeper nodes in the phylogeny lacked bootstrap support. Overall, our results from H. rubra suggest intra-specific mitochondrial genomic diversity could be underestimated across the Metazoa since the vast majority of complete genomes are from just a single individual of a species.
Collapse
Affiliation(s)
- Joshua L Justice
- a Department of Biological Sciences and Molette Laboratory for Climate Change and Environmental Studies , Auburn University , Auburn , AL , USA .,b Department of Microbiology , University of Alabama at Birmingham , Birmingham , AL , USA , and
| | - David A Weese
- a Department of Biological Sciences and Molette Laboratory for Climate Change and Environmental Studies , Auburn University , Auburn , AL , USA .,c Department of Biological and Environmental Sciences , Georgia College and State University , Milledgeville , GA , USA
| | - Scott Ross Santos
- a Department of Biological Sciences and Molette Laboratory for Climate Change and Environmental Studies , Auburn University , Auburn , AL , USA
| |
Collapse
|
16
|
MitoPhAST, a new automated mitogenomic phylogeny tool in the post-genomic era with a case study of 89 decapod mitogenomes including eight new freshwater crayfish mitogenomes. Mol Phylogenet Evol 2015; 85:180-8. [DOI: 10.1016/j.ympev.2015.02.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 12/20/2014] [Accepted: 02/13/2015] [Indexed: 11/22/2022]
|
17
|
Reich A, Dunn C, Akasaka K, Wessel G. Phylogenomic analyses of Echinodermata support the sister groups of Asterozoa and Echinozoa. PLoS One 2015; 10:e0119627. [PMID: 25794146 PMCID: PMC4368666 DOI: 10.1371/journal.pone.0119627] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 01/12/2015] [Indexed: 12/01/2022] Open
Abstract
Echinoderms (sea urchins, sea stars, brittle stars, sea lilies and sea cucumbers) are a group of diverse organisms, second in number within deuterostome species to only the chordates. Echinoderms serve as excellent model systems for developmental biology due to their diverse developmental mechanisms, tractable laboratory use, and close phylogenetic distance to chordates. In addition, echinoderms are very well represented in the fossil record, including some larval features, making echinoderms a valuable system for studying evolutionary development. The internal relationships of Echinodermata have not been consistently supported across phylogenetic analyses, however, and this has hindered the study of other aspects of their biology. In order to test echinoderm phylogenetic relationships, we sequenced 23 de novo transcriptomes from all five clades of echinoderms. Using multiple phylogenetic methods at a variety of sampling depths we have constructed a well-supported phylogenetic tree of Echinodermata, including support for the sister groups of Asterozoa (sea stars and brittle stars) and Echinozoa (sea urchins and sea cucumbers). These results will help inform developmental and evolutionary studies specifically in echinoderms and deuterostomes in general.
Collapse
Affiliation(s)
- Adrian Reich
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, United States of America
| | - Casey Dunn
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island, United States of America
| | - Koji Akasaka
- Misaki Marine Biological Station, University of Tokyo, Miura, Japan
| | - Gary Wessel
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, United States of America
| |
Collapse
|
18
|
Complete mitogenome of the edible sea urchin Loxechinus albus: genetic structure and comparative genomics within Echinozoa. Mol Biol Rep 2014; 42:1081-9. [DOI: 10.1007/s11033-014-3847-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 11/25/2014] [Indexed: 10/24/2022]
|
19
|
Dilly GF, Gaitán-Espitia JD, Hofmann GE. Characterization of the Antarctic sea urchin (Sterechinus neumayeri) transcriptome and mitogenome: a molecular resource for phylogenetics, ecophysiology and global change biology. Mol Ecol Resour 2014; 15:425-36. [DOI: 10.1111/1755-0998.12316] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 06/24/2014] [Accepted: 07/21/2014] [Indexed: 11/30/2022]
Affiliation(s)
- G. F. Dilly
- Marine Science Institute; Department of Ecology, Evolution and Marine Biology; University of California; Santa Barbara CA USA
| | - J. D. Gaitán-Espitia
- Instituto de Ciencias Ambientales y Evolutivas; Universidad Austral de Chile; Valdivia Chile
| | - G. E. Hofmann
- Marine Science Institute; Department of Ecology, Evolution and Marine Biology; University of California; Santa Barbara CA USA
| |
Collapse
|
20
|
Wessel GM, Brayboy L, Fresques T, Gustafson EA, Oulhen N, Ramos I, Reich A, Swartz SZ, Yajima M, Zazueta V. The biology of the germ line in echinoderms. Mol Reprod Dev 2014; 81:679-711. [PMID: 23900765 PMCID: PMC4102677 DOI: 10.1002/mrd.22223] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Accepted: 07/23/2013] [Indexed: 12/16/2022]
Abstract
The formation of the germ line in an embryo marks a fresh round of reproductive potential. The developmental stage and location within the embryo where the primordial germ cells (PGCs) form, however, differs markedly among species. In many animals, the germ line is formed by an inherited mechanism, in which molecules made and selectively partitioned within the oocyte drive the early development of cells that acquire this material to a germ-line fate. In contrast, the germ line of other animals is fated by an inductive mechanism that involves signaling between cells that directs this specialized fate. In this review, we explore the mechanisms of germ-line determination in echinoderms, an early-branching sister group to the chordates. One member of the phylum, sea urchins, appears to use an inherited mechanism of germ-line formation, whereas their relatives, the sea stars, appear to use an inductive mechanism. We first integrate the experimental results currently available for germ-line determination in the sea urchin, for which considerable new information is available, and then broaden the investigation to the lesser-known mechanisms in sea stars and other echinoderms. Even with this limited insight, it appears that sea stars, and perhaps the majority of the echinoderm taxon, rely on inductive mechanisms for germ-line fate determination. This enables a strongly contrasted picture for germ-line determination in this phylum, but one for which transitions between different modes of germ-line determination might now be experimentally addressed.
Collapse
Affiliation(s)
- Gary M. Wessel
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Lynae Brayboy
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Tara Fresques
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Eric A. Gustafson
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Nathalie Oulhen
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Isabela Ramos
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Adrian Reich
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - S. Zachary Swartz
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Mamiko Yajima
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Vanessa Zazueta
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| |
Collapse
|
21
|
Gan HM, Tan MH, Eprilurahman R, Austin CM. The complete mitogenome of Cherax monticola (Crustacea: Decapoda: Parastacidae), a large highland crayfish from New Guinea. Mitochondrial DNA A DNA Mapp Seq Anal 2014; 27:337-8. [PMID: 24617471 DOI: 10.3109/19401736.2014.892105] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The complete mitochondrial genome of a highland freshwater crayfish, Cherax monticola, was recovered by shotgun sequencing. The mitogenome consists of 15,917 base pairs containing 13 protein-coding genes, 2 ribosomal subunit genes, 22 transfer RNAs and a non-coding AT-rich region. The base composition of C. monticola is 33.46% for T, 21.48% for C, 33.71% for A and 11.35% for G, with an AT bias of 67.17%.
Collapse
Affiliation(s)
- Han Ming Gan
- a School of Science, Monash University Malaysia , Selangor , Malaysia and
| | - Mun Hua Tan
- a School of Science, Monash University Malaysia , Selangor , Malaysia and
| | - Rury Eprilurahman
- b Faculty of Biology , Universitas Gadjah Mada , Yogyakarta , Indonesia
| | | |
Collapse
|
22
|
Schierwater B, Stadler P, Desalle R, Podsiadlowski L. Mitogenomics and metazoan evolution. Mol Phylogenet Evol 2014; 69:311-2. [PMID: 24010851 DOI: 10.1016/j.ympev.2013.08.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Bernd Schierwater
- ITZ, TiHo Hannover, Buenteweg 17d, 30559 Hannover, Germany; Yale University, MCDB, 165 Prospect St, New Haven, CT 06511, USA; AMNH New York, Central Park West at 79th Street, New York, NY 10024, USA
| | | | | | | |
Collapse
|
23
|
Gan HM, Schultz MB, Austin CM. Integrated shotgun sequencing and bioinformatics pipeline allows ultra-fast mitogenome recovery and confirms substantial gene rearrangements in Australian freshwater crayfishes. BMC Evol Biol 2014; 14:19. [PMID: 24484414 PMCID: PMC3915555 DOI: 10.1186/1471-2148-14-19] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 01/29/2014] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Although it is possible to recover the complete mitogenome directly from shotgun sequencing data, currently reported methods and pipelines are still relatively time consuming and costly. Using a sample of the Australian freshwater crayfish Engaeus lengana, we demonstrate that it is possible to achieve three-day turnaround time (four hours hands-on time) from tissue sample to NCBI-ready submission file through the integration of MiSeq sequencing platform, Nextera sample preparation protocol, MITObim assembly algorithm and MITOS annotation pipeline. RESULTS The complete mitochondrial genome of the parastacid freshwater crayfish, Engaeus lengana, was recovered by modest shotgun sequencing (1.2 giga bases) using the Illumina MiSeq benchtop sequencing platform. Genome assembly using the MITObim mitogenome assembler recovered the mitochondrial genome as a single contig with a 97-fold mean coverage (min. = 17; max. = 138). The mitogenome consists of 15,934 base pairs and contains the typical 37 mitochondrial genes and a non-coding AT-rich region. The genome arrangement is similar to the only other published parastacid mitogenome from the Australian genus Cherax. CONCLUSIONS We infer that the gene order arrangement found in Cherax destructor is common to Australian crayfish and may be a derived feature of the southern hemisphere family Parastacidae. Further, we report to our knowledge, the simplest and fastest protocol for the recovery and assembly of complete mitochondrial genomes using the MiSeq benchtop sequencer.
Collapse
Affiliation(s)
- Han Ming Gan
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 46150 Petaling Jaya, Selangor, Malaysia.
| | | | | |
Collapse
|
24
|
Bernt M, Bleidorn C, Braband A, Dambach J, Donath A, Fritzsch G, Golombek A, Hadrys H, Jühling F, Meusemann K, Middendorf M, Misof B, Perseke M, Podsiadlowski L, von Reumont B, Schierwater B, Schlegel M, Schrödl M, Simon S, Stadler PF, Stöger I, Struck TH. A comprehensive analysis of bilaterian mitochondrial genomes and phylogeny. Mol Phylogenet Evol 2013; 69:352-64. [PMID: 23684911 DOI: 10.1016/j.ympev.2013.05.002] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 04/27/2013] [Accepted: 05/03/2013] [Indexed: 12/16/2022]
Abstract
About 2800 mitochondrial genomes of Metazoa are present in NCBI RefSeq today, two thirds belonging to vertebrates. Metazoan phylogeny was recently challenged by large scale EST approaches (phylogenomics), stabilizing classical nodes while simultaneously supporting new sister group hypotheses. The use of mitochondrial data in deep phylogeny analyses was often criticized because of high substitution rates on nucleotides, large differences in amino acid substitution rate between taxa, and biases in nucleotide frequencies. Nevertheless, mitochondrial genome data might still be promising as it allows for a larger taxon sampling, while presenting a smaller amount of sequence information. We present the most comprehensive analysis of bilaterian relationships based on mitochondrial genome data. The analyzed data set comprises more than 650 mitochondrial genomes that have been chosen to represent a profound sample of the phylogenetic as well as sequence diversity. The results are based on high quality amino acid alignments obtained from a complete reannotation of the mitogenomic sequences from NCBI RefSeq database. However, the results failed to give support for many otherwise undisputed high-ranking taxa, like Mollusca, Hexapoda, Arthropoda, and suffer from extreme long branches of Nematoda, Platyhelminthes, and some other taxa. In order to identify the sources of misleading phylogenetic signals, we discuss several problems associated with mitochondrial genome data sets, e.g. the nucleotide and amino acid landscapes and a strong correlation of gene rearrangements with long branches.
Collapse
Affiliation(s)
- Matthias Bernt
- Parallel Computing and Complex Systems Group, Department of Computer Science, University of Leipzig, Augustusplatz 10, D-04109 Leipzig, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|