1
|
Sun CH, Lu CH, Wang ZJ. Comparison and phylogenetic analysis of the mitochondrial genomes of Synodontis eupterus and Synodontis polli. Sci Rep 2024; 14:15393. [PMID: 38965284 PMCID: PMC11224264 DOI: 10.1038/s41598-024-65809-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 06/24/2024] [Indexed: 07/06/2024] Open
Abstract
We aimed to distinguish Synodontis eupterus and Synodontis polli. We performed sequencing and bioinformatic analysis of their mitochondrial genomes and constructed a phylogenetic tree of Mochokidae fish using maximum likelihood and Bayesian methods based on protein-coding gene (PCG) sequences of 14 Mochokidae species. The total length of the S. eupterus mitochondrial genome was 16,579 bp, including 13 (PCGs), 22 tRNA genes, two rRNA genes, and one D-loop, with an AT-biased nucleotide composition (56.0%). The total length of the S. polli mitochondrial genome was 16,544 bp, including 13 PCGs, 22 tRNA genes, two rRNA genes, and one D-loop, with an AT-biased nucleotide composition (55.0%). In both species, except for COI, PCGs use ATG as the starting codon, the vast majority use TAG or TAA as the ending codon, and a few use incomplete codons (T - or TA -) as the ending codon. Phylogenetic analysis showed that S. eupterus and Synodontis clarias converged into one branch, S. polli and Synodontis petricola converged into one branch, Mochokiella paynei, Mochokus brevis, and nine species of the genus Synodontis converged into one branch, and M. paynei clustered with the genus Synodontis. This study lays a foundation for rebuilding a clearer Mochokidae fish classification system.
Collapse
Affiliation(s)
- Cheng-He Sun
- The Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China.
| | - Chang-Hu Lu
- The Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China.
| | - Zi-Jian Wang
- Agriculture and Rural Bureau of Gaochun District, Nanjing, 211300, China
| |
Collapse
|
2
|
Mutizwa TI, Kadye WT, Bragança PHN, Bere T, Chakona A. Hidden in the riffles: A new suckermouth catfish (Mochokidae, Chiloglanis) from the middle Zambezi River system, Zimbabwe. Zookeys 2024; 1197:57-91. [PMID: 38616924 PMCID: PMC11015093 DOI: 10.3897/zookeys.1197.114679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/22/2024] [Indexed: 04/16/2024] Open
Abstract
The recent surge in the discovery of hidden diversity within rheophilic taxa, particularly in West and East Africa, prompted a closer examination of the extent to which the current taxonomy may obscure the diversity of riffle-dwelling suckermouth catfishes in the genus Chiloglanis in southern Africa. Currently, the region comprises eight valid species within this genus. Seven of them have relatively narrow geographic distribution ranges except for C.neumanni, which is considered to be widely distributed, occurring from the Buzi River system in the south, and its northern limit being the eastward draining river systems in Tanzania. Recent surveys of the middle Zambezi River system revealed Chiloglanis specimens that were distinguishable from the known species of the genus from southern Africa. Integration of molecular and morphological data indicated that these specimens from the Mukwadzi River represent a new species to science, herein described as Chiloglaniscarnatus Mutizwa, Bragança & Chakona, sp. nov. This species is readily distinguished from its southern African congeners by the possession of a distinctive extended dermal tissue covering the base of the dorsal fin and the possession of ten mandibular teeth (vs 8, 12, or 14 in the other taxa). Results from this study add to the growing evidence of a high level of undocumented diversity within riffle-dwelling taxa in southern Africa.
Collapse
Affiliation(s)
- Tadiwa I. Mutizwa
- Department of Ichthyology and Fisheries Science, Faculty of Science, Rhodes University, Prince Alfred Street, PO Box 94, Makhanda, 6140, South AfricaNRF-South African Institute for Aquatic BiodiversityMakhandaSouth Africa
- NRF-South African Institute for Aquatic Biodiversity, Somerset Street, Private Bag 1015, Makhanda, 6140, South AfricaRhodes UniversityMakhandaSouth Africa
| | - Wilbert T. Kadye
- Department of Ichthyology and Fisheries Science, Faculty of Science, Rhodes University, Prince Alfred Street, PO Box 94, Makhanda, 6140, South AfricaNRF-South African Institute for Aquatic BiodiversityMakhandaSouth Africa
- NRF-South African Institute for Aquatic Biodiversity, Somerset Street, Private Bag 1015, Makhanda, 6140, South AfricaRhodes UniversityMakhandaSouth Africa
| | - Pedro H. N. Bragança
- NRF-South African Institute for Aquatic Biodiversity, Somerset Street, Private Bag 1015, Makhanda, 6140, South AfricaRhodes UniversityMakhandaSouth Africa
- Department of Ichthyology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USADepartment of Ichthyology, American Museum of Natural HistoryNew YorkUnited States of America
| | - Taurai Bere
- School of Wildlife, Ecology and Conservation, Chinhoyi University of Technology, Private Bag 7724, Chinhoyi, ZimbabweChinhoyi University of TechnologyChinhoyiZimbabwe
| | - Albert Chakona
- Department of Ichthyology and Fisheries Science, Faculty of Science, Rhodes University, Prince Alfred Street, PO Box 94, Makhanda, 6140, South AfricaNRF-South African Institute for Aquatic BiodiversityMakhandaSouth Africa
- NRF-South African Institute for Aquatic Biodiversity, Somerset Street, Private Bag 1015, Makhanda, 6140, South AfricaRhodes UniversityMakhandaSouth Africa
| |
Collapse
|
3
|
Day JJ, Steell EM, Vigliotta TR, Withey LA, Bills R, Friel JP, Genner MJ, Stiassny MLJ. Exceptional levels of species discovery ameliorate inferences of the biogeography and diversification of an Afrotropical catfish family. Mol Phylogenet Evol 2023; 182:107754. [PMID: 36906193 DOI: 10.1016/j.ympev.2023.107754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/24/2023] [Accepted: 03/05/2023] [Indexed: 03/13/2023]
Abstract
Endeavours in species discovery, particularly the characterisation of cryptic species, have been greatly aided by the application of DNA molecular sequence data to phylogenetic reconstruction and inference of evolutionary and biogeographic processes. However, the extent of cryptic and undescribed diversity remains unclear in tropical freshwaters, where biodiversity is declining at alarming rates. To investigate how data on previously undiscovered biodiversity impacts inferences of biogeography and diversification dynamics, we generated a densely sampled species-level family tree of Afrotropical Mochokidae catfishes (220 valid species) that was ca. 70 % complete. This was achieved through extensive continental sampling specifically targeting the genus Chiloglanis a specialist of the relatively unexplored fast-flowing lotic habitat. Applying multiple species-delimitation methods, we report exceptional levels of species discovery for a vertebrate genus, conservatively delimiting a staggering ca. 50 putative new Chiloglanis species, resulting in a near 80 % increase in species richness for the genus. Biogeographic reconstructions of the family identified the Congo Basin as a critical region in the generation of mochokid diversity, and further revealed complex scenarios for the build-up of continental assemblages of the two most species rich mochokid genera, Synodontis and Chiloglanis. While Syndontis showed most divergence events within freshwater ecoregions consistent with largely in situ diversification, Chiloglanis showed much less aggregation of freshwater ecoregions, suggesting dispersal as a key diversification process in this older group. Despite the significant increase in mochokid diversity identified here, diversification rates were best supported by a constant rate model consistent with patterns in many other tropical continental radiations. While our findings highlight fast-flowing lotic freshwaters as potential hotspots for undescribed and cryptic species diversity, a third of all freshwater fishes are currently threatened with extinction, signifying an urgent need to increase exploration of tropical freshwaters to better characterise and conserve its biodiversity.
Collapse
Affiliation(s)
- Julia J Day
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK.
| | - Elizabeth M Steell
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Thomas R Vigliotta
- Department of Ichthyology, American Museum of Natural History, New York, NY, USA
| | - Lewis A Withey
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Roger Bills
- South African Institute for Aquatic Biodiversity, Private Bag, 1015, 6140 Grahamstown, South Africa
| | - John P Friel
- Alabama Museum of Natural History, The University of Alabama, Box 870340, 35487-0340 Tuscaloosa, AL, USA
| | - Martin J Genner
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Melanie L J Stiassny
- Department of Ichthyology, American Museum of Natural History, New York, NY, USA
| |
Collapse
|
4
|
Liyandja TLD, Armbruster JW, Poopola MO, Stiassny MLJ. Evolutionary convergence in body shape obscures taxonomic diversity in species of the African Labeo forskalii group: Case study of L. parvus Boulenger 1902 and L. ogunensis Boulenger 1910. JOURNAL OF FISH BIOLOGY 2022; 101:898-913. [PMID: 35763261 DOI: 10.1111/jfb.15148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Labeo is the third most diverse genus of African cyprinids and is widely distributed across the continent. Labeo parvus, a small species originally described from the Congo basin, has been considered the only species of the L. forskalii group distributed across five African ichthyofaunal provinces (Nilo-Sudan, Congo, Cuanza, and Upper and Lower Guinea). However, morphological similarity between L. parvus and numerous congeners remains a central cause of taxonomic confusion within the genus. Here we employed a phylogenetic comparative approach to assess phenotypic convergence among species of the L. forskalii group, investigate the taxonomic status of L. parvus sensu lato (sl) in west Africa, and reevaluate the composition and distribution of L. parvus sensu stricto (ss). Our phylogenetic analysis provides no support for a sister relationship between L. parvus ss and any of the west African Labeo parvus-like species. Geometric morphometric and molecular phylogenetic data indicate that L. parvus ss is a Congo basin endemic, and seemingly ecologically equivalent species found in west Africa are L. ogunensis, L. obscurus and other undescribed or previously synonymized species. We discuss our findings in terms of convergent evolution using phylomorphospace and tests for phylogenetic signal.
Collapse
Affiliation(s)
- Tobit L D Liyandja
- Richard Gilder Graduate School at American Museum of Natural History, New York, New York, USA
- Department of Ichthyology, American Museum of Natural History, New York, New York, USA
- Département de Biologie, Faculté des Sciences, Université de Kinshasa, Kinshasa, Democratic Republic of Congo
| | | | | | - Melanie L J Stiassny
- Richard Gilder Graduate School at American Museum of Natural History, New York, New York, USA
- Department of Ichthyology, American Museum of Natural History, New York, New York, USA
| |
Collapse
|
5
|
Schumacher EL, Carlson BA. Convergent mosaic brain evolution is associated with the evolution of novel electrosensory systems in teleost fishes. eLife 2022; 11:74159. [PMID: 35713403 PMCID: PMC9333993 DOI: 10.7554/elife.74159] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 06/16/2022] [Indexed: 11/16/2022] Open
Abstract
Brain region size generally scales allometrically with brain size, but mosaic shifts in brain region size independent of brain size have been found in several lineages and may be related to the evolution of behavioral novelty. African weakly electric fishes (Mormyroidea) evolved a mosaically enlarged cerebellum and hindbrain, yet the relationship to their behaviorally novel electrosensory system remains unclear. We addressed this by studying South American weakly electric fishes (Gymnotiformes) and weakly electric catfishes (Synodontis spp.), which evolved varying aspects of electrosensory systems, independent of mormyroids. If the mormyroid mosaic increases are related to evolving an electrosensory system, we should find similar mosaic shifts in gymnotiforms and Synodontis. Using micro-computed tomography scans, we quantified brain region scaling for multiple electrogenic, electroreceptive, and non-electrosensing species. We found mosaic increases in cerebellum in all three electrogenic lineages relative to non-electric lineages and mosaic increases in torus semicircularis and hindbrain associated with the evolution of electrogenesis and electroreceptor type. These results show that evolving novel electrosensory systems is repeatedly and independently associated with changes in the sizes of individual major brain regions independent of brain size, suggesting that selection can impact structural brain composition to favor specific regions involved in novel behaviors. Larger animals tend to have larger brains and smaller animals tend to have smaller ones. However, some species do not fit the pattern that would be expected based on their body size. This variation between species can also apply to individual brain regions. This may be due to evolutionary forces shaping the brain when favouring particular behaviours. However, it is difficult to directly link changes in species behaviour and variations in brain structure. One way to understand the impact of evolutionary adaptations is to study species that have developed new behaviours and compare them to related ones that lack such a behaviour. An opportunity to do this lies in the ability of several species of fish to produce and sense electric fields in water. While this system is not found in most fish, it has evolved multiple times independently in distantly-related lineages. Schumacher and Carlson examined whether differences in the size of brains and individual regions between species were associated with the evolution of electric field generation and sensing. Micro-computed tomography, or μCT, scans of the brains of multiple fish species revealed that the species that can produce electricity – also known as ‘electrogenic’ species’ – have more similar brain structures to each other than to their close relatives that lack this ability. The brain regions involved in producing and detecting electrical charges were larger in these electrogenic fish. This similarity was apparent despite variations in how total brain size has evolved with body size across species. These results demonstrate how evolutionary forces acting on particular behaviours can lead to predictable changes in brain structure. Understanding how and why brains evolve will allow researchers to better predict how species’ brains and behaviours may adapt as human activities alter their environments.
Collapse
Affiliation(s)
- Erika L Schumacher
- Department of Biology, Washington University in St. Louis, St. Louis, United States
| | - Bruce A Carlson
- Department of Biology, Washington University in St. Louis, St. Louis, United States
| |
Collapse
|
6
|
Schedel FDB, Chakona A, Sidlauskas BL, Popoola MO, Usimesa Wingi N, Neumann D, Vreven EJWMN, Schliewen UK. New phylogenetic insights into the African catfish families Mochokidae and Austroglanididae. JOURNAL OF FISH BIOLOGY 2022; 100:1171-1186. [PMID: 35184288 PMCID: PMC9310817 DOI: 10.1111/jfb.15014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/20/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Several hundred catfish species (order: Siluriformes) belonging to 11 families inhabit Africa, of which at least six families are endemic to the continent. Although four of those families are well-known to belong to the 'Big-Africa clade', no previous study has addressed the phylogenetic placement of the endemic African catfish family Austroglanididae in a comprehensive framework with molecular data. Furthermore, interrelationships within the 'Big-Africa clade', including the most diverse family Mochokidae, remain unclear. This study was therefore designed to help reconstruct inter- and intrarelationships of all currently valid mochokid genera, to infer their position within the 'Big Africa clade' and to establish a first molecular phylogenetic hypothesis of the relationships of the enigmatic Austroglanididae within the Siluriformes. We assembled a comprehensive mitogenomic dataset comprising all protein coding genes and representing almost all recognized catfish families (N = 33 of 39) with carefully selected species (N = 239). We recovered the monophyly of the previously identified multifamily clades 'Big Asia' and 'Big Africa' and determined Austroglanididae to be closely related to Pangasiidae, Ictaluroidea and Ariidae. Mochokidae was recovered as the sister group to a clade encompassing Auchenoglanididae, Claroteidae, Malapteruridae and the African Schilbeidae, albeit with low statistical support. The two mochokid subfamilies Mochokinae and Chiloglanidinae as well as the chiloglanid tribe Atopochilini were recovered as reciprocally monophyletic. The genus Acanthocleithron forms the sister group of all remaining Mochokinae, although with low support. The genus Atopodontus is the sister group of all remaining Atopochilini. In contrast to morphological reconstructions, the monophyly of the genus Chiloglanis was strongly supported in our analysis, with Chiloglanis macropterus nested within a Chiloglanis sublineage encompassing only other taxa from the Congo drainage. This is an important result because the phylogenetic relationships of C. macropterus have been controversial in the past, and because we and other researchers assumed that this species would be resolved as sister to most or all other members of Chiloglanis. The apparent paraphyly of Synodontis with respect to Microsynodontis provided an additional surprise, with Synodontis punu turning out to be the sister group of the latter genus.
Collapse
Affiliation(s)
- Frederic D. B. Schedel
- Zoological InstituteUniversity of BaselBaselSwitzerland
- Department of IchthyologySNSB‐Bavarian State Collection of ZoologyMunichGermany
- Faculty of BiologyLMU MunichMunichGermany
| | | | - Brian L. Sidlauskas
- Department of Fisheries, Wildlife and Conservation SciencesOregon State UniversityCorvallisOregonUSA
| | | | | | - Dirk Neumann
- Department of IchthyologySNSB‐Bavarian State Collection of ZoologyMunichGermany
| | - Emmanuel J. W. M. N. Vreven
- Vertebrate Section, Royal Museum for Central AfricaTervurenBelgium
- KU Leuven, Laboratory of Biodiversity and Evolutionary GenomicsLeuvenBelgium
| | - Ulrich K. Schliewen
- Department of IchthyologySNSB‐Bavarian State Collection of ZoologyMunichGermany
| |
Collapse
|
7
|
van der Merwe PDW, Cotterill FPD, Kandziora M, Watters BR, Nagy B, Genade T, Flügel TJ, Svendsen DS, Bellstedt DU. Genomic fingerprints of palaeogeographic history: The tempo and mode of rift tectonics across tropical Africa has shaped the diversification of the killifish genus Nothobranchius (Teleostei: Cyprinodontiformes). Mol Phylogenet Evol 2020; 158:106988. [PMID: 33059071 DOI: 10.1016/j.ympev.2020.106988] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 09/16/2020] [Accepted: 10/07/2020] [Indexed: 01/04/2023]
Abstract
This paper reports a phylogeny of the African killifishes (Genus Nothobranchius, Order Cyprinodontiformes) informed by five genetic markers (three nuclear, two mitochondrial) of 80 taxa (seven undescribed and 73 of the 92 recognized species). These short-lived annual fishes occupy seasonally wet habitats in central and eastern Africa, and their distribution coincides largely with the East African Rift System (EARS). The fossil dates of sister clades used to constrain a chronometric tree of all sampled Nothobranchius recovered the origin of the genus at ~13.27 Mya. It was followed by the radiations of six principal clades through the Neogene. An ancestral area estimation tested competing biogeographical hypotheses to constrain the ancestral origin of the genus to the Nilo-Sudan Ecoregion, which seeded a mid-Miocene dispersal event into the Coastal ecoregion, followed closely (~10 Mya) by dispersals southward across the Mozambique coastal plain into the Limpopo Ecoregion. Extending westwards across the Tanzanian plateau, a pulse of radiations through the Pliocene were associated with dispersals and fragmentation of wetlands across the Kalahari and Uganda Ecoregions. We interpret this congruence of drainage rearrangements with dispersals and cladogenic events of Nothobranchius to reflect congruent responses to recurrent uplift and rifting. The coevolution of these freshwater fishes and wetlands is attributed to ultimate control by tectonics, as the EARS extended southwards during the Neogene. Geobiological consilience of the combined evidence supports a tectonic hypothesis for the evolution of Nothobranchius.
Collapse
Affiliation(s)
| | | | - Martha Kandziora
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
| | - Brian R Watters
- 6141 Parkwood Drive, Nanaimo, British Columbia V9T6A2, Canada
| | - Béla Nagy
- 30, Rue du Mont Ussy, 77300 Fontainebleau, France
| | - Tyrone Genade
- Biomedical Sciences, East Tennessee State University, USA
| | - Tyrel J Flügel
- Department of Geography and Environmental Studies, Stellenbosch University, South Africa
| | - David S Svendsen
- Department of Geography and Environmental Studies, Stellenbosch University, South Africa
| | - Dirk U Bellstedt
- Department of Biochemistry, Stellenbosch University, South Africa.
| |
Collapse
|
8
|
Arroyave J, Denton JSS, Stiassny MLJ. Pattern and timing of diversification in the African freshwater fish genus Distichodus (Characiformes: Distichodontidae). BMC Evol Biol 2020; 20:48. [PMID: 32336263 PMCID: PMC7184684 DOI: 10.1186/s12862-020-01615-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 04/16/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Distichodus is a clade of tropical freshwater fishes currently comprising 25 named species distributed continent-wide throughout the Nilo-Sudan and most Sub-Saharan drainages. This study investigates the phylogenetic relationships, timing of diversification, and biogeographic history of the genus from a taxonomically comprehensive mutilocus dataset analyzed using Maximum Likelihood and Bayesian methods of phylogenetic inference, coalescence-based species-tree estimation, divergence time estimation, and inference of geographic range evolution. RESULTS Analyses of comparative DNA sequence data in a phylogenetic context reveal the existence of two major clades of similar species-level diversity and provide support for the monophyletic status of most sampled species. Biogeographic reconstruction on a time-scaled phylogeny suggest that the origins of the genus date back to the late Oligocene and that current geographic distributions are the result of a Congo Basin origin followed by dispersal and range expansion into adjacent ichthyofaunal provinces at different times during the evolutionary history of the group. CONCLUSIONS We present the most comprehensive phylogenetic, chronological, and biogeographic treatment yet conducted for the genus. The few instances of species paraphyly (D. teugelsi, D. fasciolatus) revealed by the resulting phylogenies are likely a consequence of post-divergence introgressive hybridization and/or incomplete lineage sorting due to recent speciation. Historical biogeographic findings are both in agreement and conflict with previous studies of other continent-wide African freshwater fish genera, suggesting a complex scenario for the assemblage of Africa's continental ichthyofaunal communities.
Collapse
Affiliation(s)
- Jairo Arroyave
- Instituto de Biología, Universidad Nacional Autónoma de México, Circuito Zona Deportiva 53, Ciudad Universitaria, 04510 Coyoacán, Ciudad de México, Mexico
- Department of Ichthyology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024 USA
| | - John S. S. Denton
- Department of Ichthyology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024 USA
- Florida Museum of Natural History, University of Florida, Dickinson Hall, 1659 Museum Road, Gainesville, FL 32611 USA
| | - Melanie L. J. Stiassny
- Department of Ichthyology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024 USA
| |
Collapse
|
9
|
Jirsová D, Štefka J, Blažek R, Malala JO, Lotuliakou DE, Mahmoud ZN, Jirků M. From taxonomic deflation to newly detected cryptic species: Hidden diversity in a widespread African squeaker catfish. Sci Rep 2019; 9:15748. [PMID: 31673053 PMCID: PMC6823466 DOI: 10.1038/s41598-019-52306-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/16/2019] [Indexed: 11/21/2022] Open
Abstract
Cryptic genetic diversity and erroneous morphological species determination represent frequent problems in biodiversity research. Here, examination of 138 specimens of Synodontis (Mochokidae, Siluriformes) from the Nile River and Lake Turkana revealed the presence of both S. schall-like and S. frontosus-like morphotypes, with a phenotypic gradient between them. We concluded phylogenetic and population genetic analyses based on two mitochondrial and one nuclear marker including 131 coxI (565 bp), 96 cytb (973 bp) and 19 RAG2 (896 bp) sequences from the Nile-Turkana population, plus additional GenBank data of Synodontis spp. Whilst nuclear data were inconclusive, mitochondrial sequences suggested that both morphotypes and intermediate forms are conspecific. The results imply probable synonymy of S. frontosus with S. schall. Conversely, a strong biogeographical signal was revealed among widely distributed and supposedly conspecific S. schall-like catfish of the Nilo-Sudanian ichthyological province. Synodontis schall sensu stricto (=Eastern clade), as defined by type locality in the Nile, is apparently restricted to the eastern part of the Nilo-Sudanian ichthyological province (e.g. Nile, Turkana, Chad). Synodontis schall Western clade (Senegambia, Niger, Chad) most probably represents a cryptic taxon, unrecognized thus far due to the absence of distinctive morphological differences.
Collapse
Affiliation(s)
- Dagmar Jirsová
- Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, České, Budějovice, Czech Republic.
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, 370 05, České, Budějovice, Czech Republic.
| | - Jan Štefka
- Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, České, Budějovice, Czech Republic
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, 370 05, České, Budějovice, Czech Republic
| | - Radim Blažek
- Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 603 65, Brno, Czech Republic
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
| | - John O Malala
- Kenya Marine and Fisheries Research Institute, Lake Turkana Station, P.O. Box 205, 30500, Lodwar, Kenya
| | - David E Lotuliakou
- Kenya Marine and Fisheries Research Institute, Lake Turkana Station, P.O. Box 205, 30500, Lodwar, Kenya
| | - Zuheir N Mahmoud
- Department of Zoology, Faculty of Science, University of Khartoum, 111 15, Khartoum, Sudan
| | - Miloslav Jirků
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, 370 05, České, Budějovice, Czech Republic
| |
Collapse
|
10
|
Joordens JC, Feibel CS, Vonhof HB, Schulp AS, Kroon D. Relevance of the eastern African coastal forest for early hominin biogeography. J Hum Evol 2019; 131:176-202. [DOI: 10.1016/j.jhevol.2019.03.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 03/10/2019] [Accepted: 03/13/2019] [Indexed: 12/25/2022]
|
11
|
Multigene fossil-calibrated analysis of the African lampeyes (Cyprinodontoidei: Procatopodidae) reveals an early Oligocene origin and Neogene diversification driven by palaeogeographic and palaeoclimatic events. ORG DIVERS EVOL 2019. [DOI: 10.1007/s13127-019-00396-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
12
|
Portik DM, Leaché AD, Rivera D, Barej MF, Burger M, Hirschfeld M, Rödel M, Blackburn DC, Fujita MK. Evaluating mechanisms of diversification in a Guineo‐Congolian tropical forest frog using demographic model selection. Mol Ecol 2017; 26:5245-5263. [DOI: 10.1111/mec.14266] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 07/17/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Daniel M. Portik
- Department of Biology The University of Texas at Arlington Arlington TX USA
| | - Adam D. Leaché
- Department of Biology University of Washington Seattle WA USA
- Burke Museum of Natural History and Culture University of Washington Seattle WA USA
| | - Danielle Rivera
- Department of Biology The University of Texas at Arlington Arlington TX USA
| | - Michael F. Barej
- Museum für Naturkunde – Leibniz Institute for Evolution and Biodiversity Science Berlin Germany
| | - Marius Burger
- African Amphibian Conservation Research Group Unit for Environmental Sciences and Management North‐West University Potchefstroom South Africa
- Flora Fauna & Man Ecological Services Ltd. Tortola British Virgin Island
| | - Mareike Hirschfeld
- Museum für Naturkunde – Leibniz Institute for Evolution and Biodiversity Science Berlin Germany
| | - Mark‐Oliver Rödel
- Museum für Naturkunde – Leibniz Institute for Evolution and Biodiversity Science Berlin Germany
| | - David C. Blackburn
- Florida Museum of Natural History University of Florida Gainesville FL USA
| | - Matthew K. Fujita
- Amphibian and Reptile Diversity Research Center The University of Texas at Arlington Arlington TX USA
| |
Collapse
|
13
|
Basiita RK, Zenger KR, Jerry DR. Populations genetically rifting within a complex geological system: The case of strong structure and low genetic diversity in the migratory freshwater catfish, Bagrus docmak, in East Africa. Ecol Evol 2017; 7:6172-6187. [PMID: 28861223 PMCID: PMC5574809 DOI: 10.1002/ece3.3153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 03/31/2017] [Accepted: 04/24/2017] [Indexed: 11/18/2022] Open
Abstract
The complex geological history of East Africa has been a driving factor in the rapid evolution of teleost biodiversity. While there is some understanding of how macroevolutionary drivers have shaped teleost speciation in East Africa, there is a paucity of research into how the same biogeographical factors have affected microevolutionary processes within lakes and rivers. To address this deficiency, population genetic diversity, demography, and structure were investigated in a widely distributed and migratory (potamodromous) African teleost species, Ssemutundu (Bagrus docmak). Samples were acquired from five geographical locations in East Africa within two major drainage basins; the Albertine Rift and Lake Victoria Basin. Individuals (N = 175) were genotyped at 12 microsatellite loci and 93 individuals sequenced at the mitochondrial DNA control region. Results suggested populations from Lakes Edward and Victoria had undergone a severe historic bottleneck resulting in very low nucleotide diversity (π = 0.004 and 0.006, respectively) and negatively significant Fu values (-3.769 and -5.049; p < .05). Heterozygosity deficiencies and restricted effective population size (NeLD) suggested contemporary exposure of these populations to stress, consistent with reports of the species decline in the East African Region. High genetic structuring between drainages was detected at both historical (ɸST = 0.62 for mtDNA; p < .001) and contemporary (microsatellite FST = 0.460; p < .001) levels. Patterns of low genetic diversity and strong population structure revealed are consistent with speciation patterns that have been linked to the complex biogeography of East Africa, suggesting that these biogeographical features have operated as both macro- and micro-evolutionary forces in the formation of the East African teleost fauna.
Collapse
Affiliation(s)
- Rose Komugisha Basiita
- Centre for Sustainable Tropical Fisheries and Aquaculture and College of Marine and Environmental SciencesJames Cook UniversityTownsvilleQldAustralia
- National Agricultural Research OrganizationNational Fisheries Resources Research InstituteAquaculture Research and Development Center KajjansiKampalaUganda
| | - Kyall Richard Zenger
- Centre for Sustainable Tropical Fisheries and Aquaculture and College of Marine and Environmental SciencesJames Cook UniversityTownsvilleQldAustralia
| | - Dean Robert Jerry
- Centre for Sustainable Tropical Fisheries and Aquaculture and College of Marine and Environmental SciencesJames Cook UniversityTownsvilleQldAustralia
| |
Collapse
|
14
|
Jirsová D, Štefka J, Jirků M. Discordant population histories of host and its parasite: A role for ecological permeability of extreme environment? PLoS One 2017; 12:e0175286. [PMID: 28394904 PMCID: PMC5386267 DOI: 10.1371/journal.pone.0175286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 03/23/2017] [Indexed: 12/24/2022] Open
Abstract
Biogeographical and ecological barriers strongly affect the course of micro-evolutionary processes in free living organisms. Here we assess the impact of a recently emerged barrier on populations of limnic fauna. Genetic diversity and population structure in a host-parasite system (Wenyonia virilis tapeworm, Synodontis schall catfish) are analyzed in the recently divided Turkana and Nile basins. The two basins, were repeatedly connected during the Holocene wet/dry climatic oscillations, following late Pleistocene dessication of the Turkana basin. Mitochondrial DNA sequences for cytochrome oxidase I gene (cox I) and a whole genome scanning method—amplified fragment length polymorphism (AFLP) were employed. A total of 347 cox I sequences (representing 209 haplotypes) and 716 AFLP fragments, as well as 120 cox I sequences (20 haplotypes) and 532 AFLP fragments were obtained from parasites and hosts, respectively. Although results indicate that host and parasite populations share some formative traits (bottlenecks, Nilotic origin), their population histories/patterns differ markedly. Mitochondrial analysis revealed that parasite populations evolve significantly faster and show remarkably higher genetic variability. Analyses of both markers confirmed that the parasites undergo lineage fission, forming new clusters specific for either freshwater or saline parts of Lake Turkana. In congruence with the geological history, these clusters apparently indicate multiple colonisations of Lake Turkana from the Nile. In contrast, the host population pattern indicates fusion of different colonisation waves. Although fish host populations remain connected, saline habitats in Lake Turkana (absent in the Nile), apparently pose a barrier to the gene flow in the parasite, possibly due to its multihost lifecycle, which involves freshwater annelids. Despite partially corroborating mitochondrial results, AFLP data was not sufficiently informative for analyzing populations with recently mixed biogeographic histories.
Collapse
Affiliation(s)
- Dagmar Jirsová
- Faculty of Science, University of South Bohemia, Branišovská, České Budějovice, Czech Republic
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská, České Budějovice, Czech Republic
- * E-mail:
| | - Jan Štefka
- Faculty of Science, University of South Bohemia, Branišovská, České Budějovice, Czech Republic
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská, České Budějovice, Czech Republic
| | - Miloslav Jirků
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská, České Budějovice, Czech Republic
| |
Collapse
|
15
|
Sungani H, Ngatunga BP, Koblmüller S, Mäkinen T, Skelton PH, Genner MJ. Multiple colonisations of the Lake Malawi catchment by the genus Opsaridium (Teleostei: Cyprinidae). Mol Phylogenet Evol 2017; 107:256-265. [DOI: 10.1016/j.ympev.2016.09.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 09/13/2016] [Accepted: 09/29/2016] [Indexed: 01/19/2023]
|
16
|
Pinton A, Le Fur S, Otero O. Evaluation of the fossil fish-specific diversity in a chadian continental assemblage: Exploration of morphological continuous variation in Synodontis (Ostariophysi, Siluriformes). J Morphol 2016; 277:1486-1496. [PMID: 27553265 DOI: 10.1002/jmor.20590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 07/27/2016] [Accepted: 07/28/2016] [Indexed: 11/10/2022]
Abstract
In the fossil record, the quantification of continuous morphological variation has become a central issue when dealing with species identification and speciation. In this context, fossil taxa with living representatives hold great promise, because of the potential to characterise patterns of intraspecific morphological variation in extant species prior to any interpretation in the fossil record. The vast majority of catfish families fulfil this prerequisite, as most of them are represented by extant genera. However, although they constitute a major fish group in terms of distribution, and ecological and taxonomic diversity, the quantitative study of their past morphological variation has been neglected, as fossil specimens are generally identified based on the scarcest remains, that is, complete neurocrania that bear discrete characters. Consequently, a part of freshwater catfish history is unprospected and unknown. In this study, we explored the morphological continuous variation of the humeral plate shape in Synodontis catfishes using Elliptic Fourier Analysis (EFA), and compared extant members and fossil counterparts. We analysed 153 extant specimens of 11 Synodontis species present in the Chad basin, in addition to 23 fossil specimens from the Chadian fossiliferous area of Toros Menalla which is dated around 7 Ma. This highly speciose genus, which is one of the most diversified in Africa, exhibits a rich fossil record with several hundred remains mostly identified as Synodontis sp. The analysis of the outline of the humeral plate reveals that some living morphological types were already represented in the Chad Basin 7 My ago, and allows for the discovery of extinct species. Beside illuminating the complex Neogene evolutionary history of Synodontis, these results underline the interest in the ability of isolated remains to reconstruct a past dynamic history and to validate the relevance of EFA as a tool to explore specific diversity through time. J. Morphol. 277:1486-1496, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Aurélie Pinton
- Faculté Des Sciences Fondamentales Et Appliquées, Université De Poitiers, Institut De Paléoprimatologie, Paléontologie Humaine: Evolution Et Paléoenvironnements - CNRS UMR 7262, Poitiers Cedex, F86022, France.
| | - Soizic Le Fur
- Faculté Des Sciences Fondamentales Et Appliquées, Université De Poitiers, Institut De Paléoprimatologie, Paléontologie Humaine: Evolution Et Paléoenvironnements - CNRS UMR 7262, Poitiers Cedex, F86022, France
| | - Olga Otero
- Faculté Des Sciences Fondamentales Et Appliquées, Université De Poitiers, Institut De Paléoprimatologie, Paléontologie Humaine: Evolution Et Paléoenvironnements - CNRS UMR 7262, Poitiers Cedex, F86022, France
| |
Collapse
|
17
|
Boyle KS, Colleye O, Parmentier E. Sound production to electric discharge: sonic muscle evolution in progress in Synodontis spp. catfishes (Mochokidae). Proc Biol Sci 2015; 281:20141197. [PMID: 25080341 DOI: 10.1098/rspb.2014.1197] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Elucidating the origins of complex biological structures has been one of the major challenges of evolutionary studies. Within vertebrates, the capacity to produce regular coordinated electric organ discharges (EODs) has evolved independently in different fish lineages. Intermediate stages, however, are not known. We show that, within a single catfish genus, some species are able to produce sounds, electric discharges or both signals (though not simultaneously). We highlight that both acoustic and electric communication result from actions of the same muscle. In parallel to their abilities, the studied species show different degrees of myofibril development in the sonic and electric muscle. The lowest myofibril density was observed in Synodontis nigriventris, which produced EODs but no swim bladder sounds, whereas the greatest myofibril density was observed in Synodontis grandiops, the species that produced the longest sound trains but did not emit EODs. Additionally, S. grandiops exhibited the lowest auditory thresholds. Swim bladder sounds were similar among species, while EODs were distinctive at the species level. We hypothesize that communication with conspecifics favoured the development of species-specific EOD signals and suggest an evolutionary explanation for the transition from a fast sonic muscle to electrocytes.
Collapse
Affiliation(s)
- Kelly S Boyle
- Laboratoire de Morphologie Fonctionnelle et Evolutive, Université de Liège, Allée de la Chimie 3, Liège 4000, Belgium
| | - Orphal Colleye
- Laboratoire de Morphologie Fonctionnelle et Evolutive, Université de Liège, Allée de la Chimie 3, Liège 4000, Belgium
| | - Eric Parmentier
- Laboratoire de Morphologie Fonctionnelle et Evolutive, Université de Liège, Allée de la Chimie 3, Liège 4000, Belgium
| |
Collapse
|
18
|
Alter SE, Brown B, Stiassny MLJ. Molecular phylogenetics reveals convergent evolution in lower Congo River spiny eels. BMC Evol Biol 2015; 15:224. [PMID: 26472465 PMCID: PMC4608218 DOI: 10.1186/s12862-015-0507-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 10/04/2015] [Indexed: 11/16/2022] Open
Abstract
Background The lower Congo River (LCR) is a region of exceptional species diversity and endemism in the Congo basin, including numerous species of spiny eels (genus Mastacembelus). Four of these exhibit distinctive phenotypes characterized by greatly reduced optic globes deeply embedded into the head (cryptophthalmia) and reduced (or absent) melanin pigmentation, among other characteristics. A strikingly similar cryptophthalmic phenotype is also found in members of a number of unrelated fish families, strongly suggesting the possibility of convergent evolution. However, little is known about the evolutionary processes that shaped diversification in LCR Mastacembelus, their biogeographic origins, or when colonization of the LCR occurred. Methods We sequenced mitochondrial and nuclear genes from Mastacembelus species collected in the lower Congo River, and compared them with other African species and Asian representatives as outgroups. We analyzed the sequence data using Maximum Likelihood and Bayesian phylogenetic inference. Results Bayesian and Maximum Likelihood phylogenetic analyses, and Bayesian coalescent methods for species tree reconstruction, reveal that endemic LCR spiny eels derive from two independent origins, clearly demonstrating convergent evolution of the cryptophthalmic phenotype. Mastacembelus crassus, M. aviceps, and M. simbi form a clade, allied to species found in southern, eastern and central Africa. Unexpectedly, M. brichardi and brachyrhinus fall within a clade otherwise endemic to Lake Tanganikya (LT) ca. 1500 km east of the LCR. Divergence dating suggests the ages of these two clades of LCR endemics differ markedly. The age of the crassus group is estimated at ~4 Myr while colonization of the LCR by the brichardi-brachyrhinus progenitor was considerably more recent, dated at ~0.5 Myr. Conclusions The phylogenetic framework of spiny eels presented here, the first to include LCR species, demonstrates that cryptophthalmia and associated traits evolved at least twice in Mastacembelus: once in M. brichardi and at least once in the M. crassus clade. Timing of diversification is broadly consistent with the onset of modern high-energy flow conditions in the LCR and with previous studies of endemic cichlids. The close genetic relationship between M. brichardi and M. brachyrhinus is particularly notable given the extreme difference in phenotype between these species, and additional work is needed to better understand the evolutionary history of diversification in this clade. The findings presented here demonstrate strong, multi-trait convergence in LCR spiny eels, suggesting that extreme selective pressures have shaped numerous phenotypic attributes of the endemic species of this region. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0507-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- S Elizabeth Alter
- Department of Biology, York College, City University of New York, 94-20 Guy R. Brewer Blvd, Jamaica, NY, 11415, USA. .,CUNY Graduate Center, 365 Fifth Avenue, New York, NY, 10016, USA. .,Sackler Institute for Comparative Genomics, American Museum of Natural History, 79th St and Central Park West, New York, NY, 10024, USA.
| | - Bianca Brown
- Department of Biology, York College, City University of New York, 94-20 Guy R. Brewer Blvd, Jamaica, NY, 11415, USA
| | - Melanie L J Stiassny
- Department of Ichthyology, American Museum of Natural History, 79th St and Central Park West, New York, NY, 10024, USA
| |
Collapse
|
19
|
Alter SE, Brown B, Stiassny MLJ. Molecular phylogenetics reveals convergent evolution in lower Congo River spiny eels. BMC Evol Biol 2015. [PMID: 26472465 DOI: 10.1186/s12862015-0507-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023] Open
Abstract
BACKGROUND The lower Congo River (LCR) is a region of exceptional species diversity and endemism in the Congo basin, including numerous species of spiny eels (genus Mastacembelus). Four of these exhibit distinctive phenotypes characterized by greatly reduced optic globes deeply embedded into the head (cryptophthalmia) and reduced (or absent) melanin pigmentation, among other characteristics. A strikingly similar cryptophthalmic phenotype is also found in members of a number of unrelated fish families, strongly suggesting the possibility of convergent evolution. However, little is known about the evolutionary processes that shaped diversification in LCR Mastacembelus, their biogeographic origins, or when colonization of the LCR occurred. METHODS We sequenced mitochondrial and nuclear genes from Mastacembelus species collected in the lower Congo River, and compared them with other African species and Asian representatives as outgroups. We analyzed the sequence data using Maximum Likelihood and Bayesian phylogenetic inference. RESULTS Bayesian and Maximum Likelihood phylogenetic analyses, and Bayesian coalescent methods for species tree reconstruction, reveal that endemic LCR spiny eels derive from two independent origins, clearly demonstrating convergent evolution of the cryptophthalmic phenotype. Mastacembelus crassus, M. aviceps, and M. simbi form a clade, allied to species found in southern, eastern and central Africa. Unexpectedly, M. brichardi and brachyrhinus fall within a clade otherwise endemic to Lake Tanganikya (LT) ca. 1500 km east of the LCR. Divergence dating suggests the ages of these two clades of LCR endemics differ markedly. The age of the crassus group is estimated at ~4 Myr while colonization of the LCR by the brichardi-brachyrhinus progenitor was considerably more recent, dated at ~0.5 Myr. CONCLUSIONS The phylogenetic framework of spiny eels presented here, the first to include LCR species, demonstrates that cryptophthalmia and associated traits evolved at least twice in Mastacembelus: once in M. brichardi and at least once in the M. crassus clade. Timing of diversification is broadly consistent with the onset of modern high-energy flow conditions in the LCR and with previous studies of endemic cichlids. The close genetic relationship between M. brichardi and M. brachyrhinus is particularly notable given the extreme difference in phenotype between these species, and additional work is needed to better understand the evolutionary history of diversification in this clade. The findings presented here demonstrate strong, multi-trait convergence in LCR spiny eels, suggesting that extreme selective pressures have shaped numerous phenotypic attributes of the endemic species of this region.
Collapse
Affiliation(s)
- S Elizabeth Alter
- Department of Biology, York College, City University of New York, 94-20 Guy R. Brewer Blvd, Jamaica, NY, 11415, USA.
- CUNY Graduate Center, 365 Fifth Avenue, New York, NY, 10016, USA.
- Sackler Institute for Comparative Genomics, American Museum of Natural History, 79th St and Central Park West, New York, NY, 10024, USA.
| | - Bianca Brown
- Department of Biology, York College, City University of New York, 94-20 Guy R. Brewer Blvd, Jamaica, NY, 11415, USA
| | - Melanie L J Stiassny
- Department of Ichthyology, American Museum of Natural History, 79th St and Central Park West, New York, NY, 10024, USA
| |
Collapse
|
20
|
Daniels SR, Phiri EE, Klaus S, Albrecht C, Cumberlidge N. Multilocus Phylogeny of the Afrotropical Freshwater Crab Fauna Reveals Historical Drainage Connectivity and Transoceanic Dispersal Since the Eocene. Syst Biol 2015; 64:549-67. [PMID: 25649930 DOI: 10.1093/sysbio/syv011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 01/28/2015] [Indexed: 11/14/2022] Open
Abstract
Phylogenetic reconstruction, divergence time estimations and ancestral range estimation were undertaken for 66% of the Afrotropical freshwater crab fauna (Potamonautidae) based on four partial DNA loci (12S rRNA, 16S rRNA, cytochrome oxidase one [COI], and histone 3). The present study represents the most comprehensive taxonomic sampling of any freshwater crab family globally, and explores the impact of paleodrainage interconnectivity on cladogenesis among freshwater crabs. Phylogenetic analyses of the total evidence data using maximum-likelihood (ML), maximum parsimony (MP), and Bayesian inference (BI) produced a robust statistically well-supported tree topology that reaffirmed the monophyly of the Afrotropical freshwater crab fauna. The estimated divergence times suggest that the Afrotropical Potamonautidae diverged during the Eocene. Cladogenesis within and among several genera occurred predominantly during the Miocene, which was associated with major tectonic and climatic ameliorations throughout the region. Paleodrainage connectivity was observed with specimens from the Nilo-Sudan and East African coast proving to be sister to specimens from the Upper Guinea Forests in West Africa. In addition, we observed strong sister taxon affinity between specimens from East Africa and the Congo basin, including specimens from Lake Tanganyika, while the southern African fauna was retrieved as sister to the Angolan taxa. Within the East African clade we observed two independent transoceanic dispersal events, one to the Seychelles Archipelago and a second to Madagascar, while we observe a single transoceanic dispersal event from West Africa to São Tomé. The ancestral area estimation suggested a West African/East African ancestral range for the family with multiple dispersal events between southern Africa and East Africa, and between East Africa and Central Africa The taxonomic implications of our results are discussed in light of the widespread paraphyly evident among a number of genera.
Collapse
Affiliation(s)
- Savel R Daniels
- Department of Botany and Zoology, Private Bag X1, University of Stellenbosch, Matieland 7602, South Africa; Department of Ecology and Evolution, J. W. Goethe-University, Biologicum, Frankfurt am Main 60438, Germany; Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, Peoples Republic of China; Department of Animal Ecology and Systematics, Justus Liebig University, Giessen 35392, Germany; and Department of Biology, Northern Michigan University, Marquette, MI 49855-5376, USA
| | - Ethel E Phiri
- Department of Botany and Zoology, Private Bag X1, University of Stellenbosch, Matieland 7602, South Africa; Department of Ecology and Evolution, J. W. Goethe-University, Biologicum, Frankfurt am Main 60438, Germany; Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, Peoples Republic of China; Department of Animal Ecology and Systematics, Justus Liebig University, Giessen 35392, Germany; and Department of Biology, Northern Michigan University, Marquette, MI 49855-5376, USA
| | - Sebastian Klaus
- Department of Botany and Zoology, Private Bag X1, University of Stellenbosch, Matieland 7602, South Africa; Department of Ecology and Evolution, J. W. Goethe-University, Biologicum, Frankfurt am Main 60438, Germany; Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, Peoples Republic of China; Department of Animal Ecology and Systematics, Justus Liebig University, Giessen 35392, Germany; and Department of Biology, Northern Michigan University, Marquette, MI 49855-5376, USA Department of Botany and Zoology, Private Bag X1, University of Stellenbosch, Matieland 7602, South Africa; Department of Ecology and Evolution, J. W. Goethe-University, Biologicum, Frankfurt am Main 60438, Germany; Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, Peoples Republic of China; Department of Animal Ecology and Systematics, Justus Liebig University, Giessen 35392, Germany; and Department of Biology, Northern Michigan University, Marquette, MI 49855-5376, USA
| | - Christian Albrecht
- Department of Botany and Zoology, Private Bag X1, University of Stellenbosch, Matieland 7602, South Africa; Department of Ecology and Evolution, J. W. Goethe-University, Biologicum, Frankfurt am Main 60438, Germany; Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, Peoples Republic of China; Department of Animal Ecology and Systematics, Justus Liebig University, Giessen 35392, Germany; and Department of Biology, Northern Michigan University, Marquette, MI 49855-5376, USA
| | - Neil Cumberlidge
- Department of Botany and Zoology, Private Bag X1, University of Stellenbosch, Matieland 7602, South Africa; Department of Ecology and Evolution, J. W. Goethe-University, Biologicum, Frankfurt am Main 60438, Germany; Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, Peoples Republic of China; Department of Animal Ecology and Systematics, Justus Liebig University, Giessen 35392, Germany; and Department of Biology, Northern Michigan University, Marquette, MI 49855-5376, USA
| |
Collapse
|
21
|
Dorn A, Musilová Z, Platzer M, Reichwald K, Cellerino A. The strange case of East African annual fishes: aridification correlates with diversification for a savannah aquatic group? BMC Evol Biol 2014; 14:210. [PMID: 25311226 PMCID: PMC4209228 DOI: 10.1186/s12862-014-0210-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 09/23/2014] [Indexed: 01/03/2023] Open
Abstract
Background Annual Nothobranchius fishes are distributed in East and Southern Africa and inhabit ephemeral pools filled during the monsoon season. Nothobranchius show extreme life-history adaptations: embryos survive by entering diapause and they are the vertebrates with the fastest maturation and the shortest lifespan. The distribution of Nothobranchius overlaps with the East Africa Rift System. The geological and paleoclimatic history of this region is known in detail: in particular, aridification of East Africa and expansion of grassland habitats started 8 Mya and three humid periods between 3 and 1 Mya are superimposed on the longer-term aridification. These climatic oscillations are thought to have shaped evolution of savannah African mammals. We reconstructed the phylogeny of Nothobranchius and dated the different stages of diversification in relation to these paleoclimatic events. Results We sequenced one mitochondrial locus and five nuclear loci in 63 specimens and obtained a robust phylogeny. Nothobranchius can be divided in four geographically separated clades whose boundaries largely correspond to the East Africa Rift system. Statistical analysis of dispersal and vicariance identifies a Nilo-Sudan origin with southwards dispersion and confirmed that these four clades are the result of vicariance events In the absence of fossil Nothobranchius, molecular clock was calibrated using more distant outgroups (secondary calibration). This method estimates the age of the Nothobranchius genus to be 8.3 (6.0 – 10.7) My and the separation of the four clades 4.8 (2.7-7.0) Mya. Diversification within the clades was estimated to have started ~3 Mya and most species pairs were estimated to have an age of 0.5-1 My. Conclusions The mechanism of Nothobranchius diversification was allopatric and driven by geographic isolation. We propose a scenario where diversification of Nothobranchius started in rough coincidence with aridification of East Africa, establishment of grassland habitats and the appearance of the typical African bovid fauna of the savannah. Although confidence intervals for the estimated ages of the four Nothobranchius clades are quite large, this scenario is compatible with the biology of extant Nothobranchius that are critically dependent on savannah habitats. Therefore, Nothobranchius diversification might have been shaped by the same paleoclimatic events that shaped African ungulate evolution. Electronic supplementary material The online version of this article (doi:10.1186/s12862-014-0210-3) contains supplementary material, which is available to authorized users.
Collapse
|
22
|
Schmidt RC, Bart HL, Nyingi DW, Gichuki NN. Phylogeny of suckermouth catfishes (Mochokidae: Chiloglanis) from Kenya: the utility of Growth Hormone introns in species level phylogenies. Mol Phylogenet Evol 2014; 79:415-21. [PMID: 25079137 DOI: 10.1016/j.ympev.2014.07.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 07/18/2014] [Accepted: 07/19/2014] [Indexed: 11/30/2022]
Abstract
African suckermouth catfishes (Mochokidae: Chiloglanis) occur in freshwater throughout tropical Africa. Specimens from all major drainages across Kenya were collected over three field seasons. Here we present a phylogeny inferred from both mitochondrial cytochrome b (cyt b) and introns of the nuclear Growth Hormone gene (GH). The phylogeny inferred from introns is largely congruent with the results from an analysis of cyt b. The length and variability of GH introns make them ideal species level nuclear markers without the problem of introgression commonly encountered with mitochondrial genes. This analysis confirmed the presence of two previously known undescribed Chiloglanis species and also suggests the presence of previously unknown diversity within the Athi River system. The resulting phylogeny also indicates the presence of two separate lineages within C. brevibarbis. The historical biogeography of Chiloglanis within Kenya is discussed. The utility of GH intron for species level phylogenies of Siluriformes is compared to that in other groups.
Collapse
Affiliation(s)
- Ray C Schmidt
- Department of Ecology and Evolutionary Biology, Tulane University, 400 Boggs Hall, New Orleans, LA 70118, United States.
| | - Henry L Bart
- Department of Ecology and Evolutionary Biology, Tulane University, 400 Boggs Hall, New Orleans, LA 70118, United States
| | - Dorothy Wanja Nyingi
- Ichthyology Section, National Museums of Kenya, PO Box 40658-00100, Nairobi, Kenya
| | - Nathan Ndegwa Gichuki
- School of Biological Sciences, University of Nairobi, PO Box 30197-00100, Nairobi, Kenya
| |
Collapse
|
23
|
Schultheiß R, Van Bocxlaer B, Riedel F, von Rintelen T, Albrecht C. Disjunct distributions of freshwater snails testify to a central role of the Congo system in shaping biogeographical patterns in Africa. BMC Evol Biol 2014; 14:42. [PMID: 24597925 PMCID: PMC4015641 DOI: 10.1186/1471-2148-14-42] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 02/27/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The formation of the East African Rift System has decisively influenced the distribution and evolution of tropical Africa's biota by altering climate conditions, by creating basins for large long-lived lakes, and by affecting the catchment and drainage directions of river systems. However, it remains unclear how rifting affected the biogeographical patterns of freshwater biota through time on a continental scale, which is further complicated by the scarcity of molecular data from the largest African river system, the Congo. RESULTS We study these biogeographical patterns using a fossil-calibrated multi-locus phylogeny of the gastropod family Viviparidae. This group allows reconstructing drainage patterns exceptionally well because it disperses very poorly in the absence of existing freshwater connections. Our phylogeny covers localities from major drainage basins of tropical Africa and reveals highly disjunct sister-group relationships between (a) the endemic viviparids of Lake Malawi and populations from the Middle Congo as well as between (b) the Victoria region and the Okavango/Upper Zambezi area. CONCLUSIONS The current study testifies to repeated disruptions of the distribution of the Viviparidae during the formation of the East African Rift System, and to a central role of the Congo River system for the distribution of the continent's freshwater fauna during the late Cenozoic. By integrating our results with previous findings on palaeohydrographical connections, we provide a spatially and temporarily explicit model of historical freshwater biogeography in tropical Africa. Finally, we review similarities and differences in patterns of vertebrate and invertebrate dispersal. Amongst others we argue that the closest relatives of present day viviparids in Lake Malawi are living in the Middle Congo River, thus shedding new light on the origin of the endemic fauna of this rift lake.
Collapse
Affiliation(s)
- Roland Schultheiß
- Division of Genetics and Physiology, Department of Biology, University of Turku, Itäinen Pitkäkatu 4, 20014 Turku, Finland.
| | | | | | | | | |
Collapse
|