1
|
Rose SA, Robicheau BM, Tolman J, Fonseca-Batista D, Rowland E, Desai D, Ratten JM, Kantor EJH, Comeau AM, Langille MG, Jerlström-Hultqvist J, Devred E, Sarthou G, Bertrand EM, LaRoche J. Nitrogen fixation in the widely distributed marine γ-proteobacterial diazotroph Candidatus Thalassolituus haligoni. SCIENCE ADVANCES 2024; 10:eadn1476. [PMID: 39083619 PMCID: PMC11290528 DOI: 10.1126/sciadv.adn1476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 06/25/2024] [Indexed: 08/02/2024]
Abstract
The high diversity and global distribution of heterotrophic bacterial diazotrophs (HBDs) in the ocean has recently become apparent. However, understanding the role these largely uncultured microorganisms play in marine N2 fixation poses a challenge due to their undefined growth requirements and the complex regulation of the nitrogenase enzyme. We isolated and characterized Candidatus Thalassolituus haligoni, a member of a widely distributed clade of HBD belonging to the Oceanospirillales. Analysis of its nifH gene via amplicon sequencing revealed the extensive distribution of Cand. T. haligoni across the Pacific, Atlantic, and Arctic Oceans. Pangenome analysis indicates that the isolate shares >99% identity with an uncultured metagenome-assembled genome called Arc-Gamma-03, recently recovered from the Arctic Ocean. Through combined genomic, proteomic, and physiological approaches, we confirmed that the isolate fixes N2 gas. However, the mechanisms governing nitrogenase regulation in Cand. T. haligoni remain unclear. We propose Cand. T. haligoni as a globally distributed, cultured HBD model species within this understudied clade of Oceanospirillales.
Collapse
Affiliation(s)
- Sonja A. Rose
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Brent M. Robicheau
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jennifer Tolman
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Debany Fonseca-Batista
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Oceanography, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Elden Rowland
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Dhwani Desai
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Integrated Microbiome Resource (IMR) and Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jenni-Marie Ratten
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Ella Joy H. Kantor
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - André M. Comeau
- Integrated Microbiome Resource (IMR) and Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Morgan G.I. Langille
- Integrated Microbiome Resource (IMR) and Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | - Emmanuel Devred
- Fisheries and Oceans Canada, Bedford Institute of Oceanography, Halifax, Nova Scotia, Canada
| | | | - Erin M. Bertrand
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Julie LaRoche
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
2
|
Lü Z, Li H, Jiang H, Luo H, Wang W, Kong X, Li Y. Reply to: Phylogenomic and comparative genomic analyses support a single evolutionary origin of flatfish asymmetry. Nat Genet 2024; 56:1073-1074. [PMID: 38802565 DOI: 10.1038/s41588-024-01783-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/26/2024] [Indexed: 05/29/2024]
Affiliation(s)
- Zhenming Lü
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, Zhoushan, China
| | - Haorong Li
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Hui Jiang
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, Zhoushan, China
| | - Hairong Luo
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Wen Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China.
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.
| | - Xiaoyu Kong
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.
| | - Yongxin Li
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China.
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
| |
Collapse
|
3
|
Kundu S, Palimirmo FS, Kang HE, Kim AR, Lee SR, Gietbong FZ, Song SH, Kim HW. Insights into the Mitochondrial Genetic Makeup and Miocene Colonization of Primitive Flatfishes (Pleuronectiformes: Psettodidae) in the East Atlantic and Indo-West Pacific Ocean. BIOLOGY 2023; 12:1317. [PMID: 37887027 PMCID: PMC10604034 DOI: 10.3390/biology12101317] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/25/2023] [Accepted: 10/06/2023] [Indexed: 10/28/2023]
Abstract
The mitogenomic evolution of the Psettodes flatfishes is still poorly known from their range distribution in eastern Atlantic and Indo-West Pacific Oceans. The study delves into the matrilineal evolutionary pathway of these primitive flatfishes, with a specific focus on the complete mitogenome of the Psettodes belcheri species, as determined through next-generation sequencing. The mitogenome in question spans a length of 16,747 base pairs and comprises a total of 37 genes, including 13 protein-coding genes, 2 ribosomal RNA genes, 22 transfer RNA genes, and a control region. Notably, the mitogenome of P. belcheri exhibits a bias towards AT base pairs, with a composition of 54.15%, mirroring a similar bias observed in its close relative, Psettodes erumei, which showcases percentages of 53.07% and 53.61%. Most of the protein-coding genes commence with an ATG initiation codon, except for Cytochrome c oxidase I (COI), which initiates with a GTG codon. Additionally, four protein-coding genes commence with a TAA termination codon, while seven others exhibit incomplete termination codons. Furthermore, two protein-coding genes, namely NAD1 and NAD6, terminate with AGG and TAG stop codons, respectively. In the mitogenome of P. belcheri, the majority of transfer RNAs demonstrate the classical cloverleaf secondary structures, except for tRNA-serine, which lacks a DHU stem. Comparative analysis of conserved blocks within the control regions of two Psettodidae species unveiled that the CSB-II block extended to a length of 51 base pairs, surpassing the other blocks and encompassing highly variable sites. A comprehensive phylogenetic analysis using mitochondrial genomes (13 concatenated PCGs) categorized various Pleuronectiformes species, highlighting the basal position of the Psettodidae family and showed monophyletic clustering of Psettodes species. The approximate divergence time (35-10 MYA) between P. belcheri and P. erumei was estimated, providing insights into their separation and colonization during the early Miocene. The TimeTree analysis also estimated the divergence of two suborders, Psettodoidei and Pleuronectoidei, during the late Paleocene to early Eocene (56.87 MYA). The distribution patterns of Psettodes flatfishes were influenced by ocean currents and environmental conditions, contributing to their ecological speciation. In the face of climate change and anthropogenic activities, the conservation implications of Psettodes flatfishes are emphasized, underscoring the need for regulated harvesting and adaptive management strategies to ensure their survival in changing marine ecosystems. Overall, this study contributes to understanding the evolutionary history, genetic diversity, and conservation needs of Psettodes flatfishes globally. However, the multifaceted exploration of mitogenome and larger-scale genomic data of Psettodes flatfish will provide invaluable insights into their genetic characterization, evolutionary history, environmental adaptation, and conservation in the eastern Atlantic and Indo-West Pacific Oceans.
Collapse
Affiliation(s)
- Shantanu Kundu
- Institute of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea
- Department of Marine Biology, Pukyong National University, Busan 48513, Republic of Korea
| | - Flandrianto Sih Palimirmo
- Department of Marine Biology, Pukyong National University, Busan 48513, Republic of Korea
- Research Center for Conservation of Marine and Inland Water Resources, National Research and Innovation Agency, Cibinong 16911, Indonesia
| | - Hye-Eun Kang
- Institute of Marine Life Science, Pukyong National University, Busan 48513, Republic of Korea
| | - Ah Ran Kim
- Marine Integrated Biomedical Technology Center, National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea
| | - Soo Rin Lee
- Marine Integrated Biomedical Technology Center, National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea
| | | | - Se Hyun Song
- Fisheries Resources Management Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea
| | - Hyun-Woo Kim
- Institute of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea
- Department of Marine Biology, Pukyong National University, Busan 48513, Republic of Korea
- Marine Integrated Biomedical Technology Center, National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
4
|
Ramírez D, Rodríguez ME, Cross I, Arias-Pérez A, Merlo MA, Anaya M, Portela-Bens S, Martínez P, Robles F, Ruiz-Rejón C, Rebordinos L. Integration of Maps Enables a Cytogenomics Analysis of the Complete Karyotype in Solea senegalensis. Int J Mol Sci 2022; 23:ijms23105353. [PMID: 35628170 PMCID: PMC9140517 DOI: 10.3390/ijms23105353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/28/2022] [Accepted: 05/09/2022] [Indexed: 02/06/2023] Open
Abstract
The Pleuronectiformes order, which includes several commercially-important species, has undergone extensive chromosome evolution. One of these species is Solea senegalensis, a flatfish with 2n = 42 chromosomes. In this study, a cytogenomics approach and integration with previous maps was applied to characterize the karyotype of the species. Synteny analysis of S. senegalensis was carried out using two flatfish as a reference: Cynoglossus semilaevis and Scophthalmus maximus. Most S. senegalensis chromosomes (or chromosome arms for metacentrics and submetacentrics) showed a one-to-one macrosyntenic pattern with the other two species. In addition, we studied how repetitive sequences could have played a role in the evolution of S. senegalensis bi-armed (3, and 5–9) and acrocentric (11, 12 and 16) chromosomes, which showed the highest rearrangements compared with the reference species. A higher abundance of TEs (Transposable Elements) and other repeated elements was observed adjacent to telomeric regions on chromosomes 3, 7, 9 and 16. However, on chromosome 11, a greater abundance of DNA transposons was detected in interstitial BACs. This chromosome is syntenic with several chromosomes of the other two flatfish species, suggesting rearrangements during its evolution. A similar situation was also found on chromosome 16 (for microsatellites and low complexity sequences), but not for TEs (retroelements and DNA transposons). These differences in the distribution and abundance of repetitive elements in chromosomes that have undergone remodeling processes during the course of evolution also suggest a possible role for simple repeat sequences in rearranged regions.
Collapse
Affiliation(s)
- Daniel Ramírez
- Área de Genética, Facultad de Ciencias del Mar y Ambientales, INMAR, Universidad de Cádiz, 11510 Cádiz, Spain; (D.R.); (M.E.R.); (I.C.); (A.A.-P.); (M.A.M.); (M.A.); (S.P.-B.)
| | - María Esther Rodríguez
- Área de Genética, Facultad de Ciencias del Mar y Ambientales, INMAR, Universidad de Cádiz, 11510 Cádiz, Spain; (D.R.); (M.E.R.); (I.C.); (A.A.-P.); (M.A.M.); (M.A.); (S.P.-B.)
| | - Ismael Cross
- Área de Genética, Facultad de Ciencias del Mar y Ambientales, INMAR, Universidad de Cádiz, 11510 Cádiz, Spain; (D.R.); (M.E.R.); (I.C.); (A.A.-P.); (M.A.M.); (M.A.); (S.P.-B.)
| | - Alberto Arias-Pérez
- Área de Genética, Facultad de Ciencias del Mar y Ambientales, INMAR, Universidad de Cádiz, 11510 Cádiz, Spain; (D.R.); (M.E.R.); (I.C.); (A.A.-P.); (M.A.M.); (M.A.); (S.P.-B.)
| | - Manuel Alejandro Merlo
- Área de Genética, Facultad de Ciencias del Mar y Ambientales, INMAR, Universidad de Cádiz, 11510 Cádiz, Spain; (D.R.); (M.E.R.); (I.C.); (A.A.-P.); (M.A.M.); (M.A.); (S.P.-B.)
| | - Marco Anaya
- Área de Genética, Facultad de Ciencias del Mar y Ambientales, INMAR, Universidad de Cádiz, 11510 Cádiz, Spain; (D.R.); (M.E.R.); (I.C.); (A.A.-P.); (M.A.M.); (M.A.); (S.P.-B.)
| | - Silvia Portela-Bens
- Área de Genética, Facultad de Ciencias del Mar y Ambientales, INMAR, Universidad de Cádiz, 11510 Cádiz, Spain; (D.R.); (M.E.R.); (I.C.); (A.A.-P.); (M.A.M.); (M.A.); (S.P.-B.)
| | - Paulino Martínez
- Departamento de Zoología, Genética y Antropología Física, Universidad de Santiago de Compostela, 27002 Lugo, Spain;
| | - Francisca Robles
- Departamento de Genética, Universidad de Granada, 18071 Granada, Spain; (F.R.); (C.R.-R.)
| | - Carmelo Ruiz-Rejón
- Departamento de Genética, Universidad de Granada, 18071 Granada, Spain; (F.R.); (C.R.-R.)
| | - Laureana Rebordinos
- Área de Genética, Facultad de Ciencias del Mar y Ambientales, INMAR, Universidad de Cádiz, 11510 Cádiz, Spain; (D.R.); (M.E.R.); (I.C.); (A.A.-P.); (M.A.M.); (M.A.); (S.P.-B.)
- Correspondence: ; Tel.: +34-956-016181
| |
Collapse
|
5
|
Lü Z, Gong L, Ren Y, Chen Y, Wang Z, Liu L, Li H, Chen X, Li Z, Luo H, Jiang H, Zeng Y, Wang Y, Wang K, Zhang C, Jiang H, Wan W, Qin Y, Zhang J, Zhu L, Shi W, He S, Mao B, Wang W, Kong X, Li Y. Large-scale sequencing of flatfish genomes provides insights into the polyphyletic origin of their specialized body plan. Nat Genet 2021; 53:742-751. [PMID: 33875864 PMCID: PMC8110480 DOI: 10.1038/s41588-021-00836-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 03/05/2021] [Indexed: 11/09/2022]
Abstract
The evolutionary and genetic origins of the specialized body plan of flatfish are largely unclear. We analyzed the genomes of 11 flatfish species representing 9 of the 14 Pleuronectiforme families and conclude that Pleuronectoidei and Psettodoidei do not form a monophyletic group, suggesting independent origins from different percoid ancestors. Genomic and transcriptomic data indicate that genes related to WNT and retinoic acid pathways, hampered musculature and reduced lipids might have functioned in the evolution of the specialized body plan of Pleuronectoidei. Evolution of Psettodoidei involved similar but not identical genes. Our work provides valuable resources and insights for understanding the genetic origins of the unusual body plan of flatfishes.
Collapse
Affiliation(s)
- Zhenming Lü
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, Zhoushan, China
| | - Li Gong
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, Zhoushan, China
| | - Yandong Ren
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Yongjiu Chen
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, Zhoushan, China
| | - Zhongkai Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Liqin Liu
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, Zhoushan, China
| | - Haorong Li
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Xianqing Chen
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Zhenzhu Li
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Hairong Luo
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Hui Jiang
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, Zhoushan, China
| | - Yan Zeng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yifan Wang
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, Zhoushan, China
| | - Kun Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Chen Zhang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Haifeng Jiang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Wenting Wan
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Yanli Qin
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Jianshe Zhang
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, Zhoushan, China
| | - Liang Zhu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Wei Shi
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Shunping He
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Bingyu Mao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Wen Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China.
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.
| | - Xiaoyu Kong
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.
| | - Yongxin Li
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China.
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
| |
Collapse
|
6
|
Cytogenomics Unveil Possible Transposable Elements Driving Rearrangements in Chromosomes 2 and 4 of Solea senegalensis. Int J Mol Sci 2021; 22:ijms22041614. [PMID: 33562667 PMCID: PMC7915175 DOI: 10.3390/ijms22041614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/21/2021] [Accepted: 01/29/2021] [Indexed: 12/18/2022] Open
Abstract
Cytogenomics, the integration of cytogenetic and genomic data, has been used here to reconstruct the evolution of chromosomes 2 and 4 of Solea senegalensis. S. senegalensis is a flat fish with a karyotype comprising 2n = 42 chromosomes: 6 metacentric + 4 submetacentric + 8 subtelocentric + 24 telocentric. The Fluorescence in situ Hybridization with Bacterial Artificial Chromosomes (FISH-BAC) technique was applied to locate BACs in these chromosomes (11 and 10 BACs in chromosomes 2 and 4, respectively) and to generate integrated maps. Synteny analysis, taking eight reference fish species (Cynoglossus semilaevis, Scophthalmus maximus, Sparus aurata, Gasterosteus aculeatus, Xiphophorus maculatus, Oryzias latipes, Danio rerio, and Lepisosteus oculatus) for comparison, showed that the BACs of these two chromosomes of S. senegalensis were mainly distributed in two principal chromosomes in the reference species. Transposable Elements (TE) analysis showed significant differences between the two chromosomes, in terms of number of loci per Mb and coverage, and the class of TE (I or II) present. Analysis of TE divergence in chromosomes 2 and 4 compared to their syntenic regions in four reference fish species (C. semilaevis, S. maximus, O. latipes, and D. rerio) revealed differences in their age of activity compared with those species but less notable differences between the two chromosomes. Differences were also observed in peaks of divergence and coverage of TE families for all reference species even in those close to S. senegalensis, like S. maximus and C. semilaevis. Considered together, chromosomes 2 and 4 have evolved by Robertsonian fusions, pericentric inversions, and other chromosomal rearrangements mediated by TEs.
Collapse
|
7
|
Campbell MA, Buser TJ, Alfaro ME, López JA. Addressing incomplete lineage sorting and paralogy in the inference of uncertain salmonid phylogenetic relationships. PeerJ 2020; 8:e9389. [PMID: 32685284 PMCID: PMC7337038 DOI: 10.7717/peerj.9389] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/28/2020] [Indexed: 12/14/2022] Open
Abstract
Recent and continued progress in the scale and sophistication of phylogenetic research has yielded substantial advances in knowledge of the tree of life; however, segments of that tree remain unresolved and continue to produce contradicting or unstable results. These poorly resolved relationships may be the product of methodological shortcomings or of an evolutionary history that did not generate the signal traits needed for its eventual reconstruction. Relationships within the euteleost fish family Salmonidae have proven challenging to resolve in molecular phylogenetics studies in part due to ancestral autopolyploidy contributing to conflicting gene trees. We examine a sequence capture dataset from salmonids and use alternative strategies to accommodate the effects of gene tree conflict based on aspects of salmonid genome history and the multispecies coalescent. We investigate in detail three uncertain relationships: (1) subfamily branching, (2) monophyly of Coregonus and (3) placement of Parahucho. Coregoninae and Thymallinae are resolved as sister taxa, although conflicting topologies are found across analytical strategies. We find inconsistent and generally low support for the monophyly of Coregonus, including in results of analyses with the most extensive dataset and complex model. The most consistent placement of Parahucho is as sister lineage of Salmo.
Collapse
Affiliation(s)
- Matthew A. Campbell
- University of Alaska Museum, University of Alaska—Fairbanks, Fairbanks, AK, USA
| | - Thaddaeus J. Buser
- Department of Fisheries and Wildlife, Oregon State University, Corvallis, OR, USA
| | - Michael E. Alfaro
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - J. Andrés López
- University of Alaska Museum, University of Alaska—Fairbanks, Fairbanks, AK, USA
- College of Fisheries and Ocean Sciences, University of Alaska—Fairbanks, Fairbanks, AK, USA
| |
Collapse
|
8
|
Girard MG, Davis MP, Smith WL. The Phylogeny of Carangiform Fishes: Morphological and Genomic Investigations of a New Fish Clade. COPEIA 2020. [DOI: 10.1643/ci-19-320] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Matthew G. Girard
- Biodiversity Institute, 1345 Jayhawk Boulevard, University of Kansas, Lawrence, Kansas 66045; (MGG) . Send reprint requests to MGG
| | - Matthew P. Davis
- Department of Biological Sciences, St. Cloud State University, St. Cloud, Minnesota 56301
| | - W. Leo Smith
- Biodiversity Institute, 1345 Jayhawk Boulevard, University of Kansas, Lawrence, Kansas 66045; (MGG) . Send reprint requests to MGG
| |
Collapse
|
9
|
Campbell MA, Chanet B, Chen J, Lee M, Chen W. Origins and relationships of the Pleuronectoidei: Molecular and morphological analysis of living and fossil taxa. ZOOL SCR 2019. [DOI: 10.1111/zsc.12372] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
| | - Bruno Chanet
- Département Origines et Évolution Muséum National d'Histoire Naturelle Paris France
| | - Jhen‐Nien Chen
- Institute of Oceanography National Taiwan University Taipei Taiwan
| | - Mao‐Ying Lee
- Institute of Oceanography National Taiwan University Taipei Taiwan
| | - Wei‐Jen Chen
- Institute of Oceanography National Taiwan University Taipei Taiwan
| |
Collapse
|
10
|
García-Angulo A, Merlo MA, Portela-Bens S, Rodríguez ME, García E, Al-Rikabi A, Liehr T, Rebordinos L. Evidence for a Robertsonian fusion in Solea senegalensis (Kaup, 1858) revealed by zoo-FISH and comparative genome analysis. BMC Genomics 2018; 19:818. [PMID: 30428854 PMCID: PMC6236887 DOI: 10.1186/s12864-018-5216-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 10/31/2018] [Indexed: 11/16/2022] Open
Abstract
Background Solea senegalensis (Kaup, 1858) is a commercially important flatfish species, belonging to the Pleuronectiformes order. The taxonomy of this group has long been controversial, and the karyotype of the order presents a high degree of variability in diploid number, derived from chromosomal rearrangements such as Robertsonian fusions. Previously it has been proposed that the large metacentric chromosome of S. senegalensis arises from this kind of chromosome rearrangement and that this is a proto-sex chromosome. Results In this work, the Robertsonian origin of the large metacentric chromosome of S. senegalensis has been tested by the Zoo-FISH technique applied to two species of the Soleidae family (Dicologlossa cuneata and Dagetichthys lusitanica), and by comparative genome analysis with Cynoglossus semilaevis. From the karyotypic analysis we were able to determine a chromosome complement comprising 2n = 50 (FN = 54) in D. cuneata and 2n = 42 (FN = 50) in D. lusitanica. The large metacentric painting probe gave consistent signals in four acrocentric chromosomes of the two Soleidae species; and the genome analysis proved a common origin with four chromosome pairs of C. semilaevis. As a result of the genomic analysis, up to 61 genes were annotated within the thirteen Bacterial Artificial Chromosome clones analysed. Conclusions These results confirm that the large metacentric chromosome of S. senegalensis originated from a Robertsonian fusion and provide new data about the chromosome evolution of S. senegalensis in particular, and of Pleuronectiformes in general. Electronic supplementary material The online version of this article (10.1186/s12864-018-5216-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aglaya García-Angulo
- Área de Genética, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, 11510, Cádiz, Spain
| | - Manuel A Merlo
- Área de Genética, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, 11510, Cádiz, Spain
| | - Silvia Portela-Bens
- Área de Genética, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, 11510, Cádiz, Spain
| | - María E Rodríguez
- Área de Genética, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, 11510, Cádiz, Spain
| | - Emilio García
- Área de Genética, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, 11510, Cádiz, Spain
| | - Ahmed Al-Rikabi
- Institut für Humangenetik, Universitätsklinikum Jena, 07743, Jena, Germany
| | - Thomas Liehr
- Institut für Humangenetik, Universitätsklinikum Jena, 07743, Jena, Germany
| | - Laureana Rebordinos
- Área de Genética, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, 11510, Cádiz, Spain.
| |
Collapse
|
11
|
Byrne L, Chapleau F, Aris-Brosou S. How the Central American Seaway and an Ancient Northern Passage Affected Flatfish Diversification. Mol Biol Evol 2018; 35:1982-1989. [PMID: 29788493 DOI: 10.1093/molbev/msy104] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
While the natural history of flatfish has been debated for decades, the mode of diversification of this biologically and economically important group has never been elucidated. To address this question, we assembled the largest molecular data set to date, covering > 300 species (out of ca. 800 extant), from 13 of the 14 known families over nine genes, and employed relaxed molecular clocks to uncover their patterns of diversification. As the fossil record of flatfish is contentious, we used sister species distributed on both sides of the American continent to calibrate clock models based on the closure of the Central American Seaway (CAS), and on their current species range. We show that flatfish diversified in two bouts, as species that are today distributed around the equator diverged during the closure of CAS, whereas those with a northern range diverged after this, hereby suggesting the existence of a postCAS closure dispersal for these northern species, most likely along a trans-Arctic northern route, a hypothesis fully compatible with paleogeographic reconstructions.
Collapse
Affiliation(s)
- Lisa Byrne
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | | | - Stéphane Aris-Brosou
- Department of Biology, University of Ottawa, Ottawa, ON, Canada.,Department of Mathematics & Statistics, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
12
|
Campbell MA, Sado T, Shinzato C, Koyanagi R, Okamoto M, Miya M. Multilocus phylogenetic analysis of the first molecular data from the rare and monotypic Amarsipidae places the family within the Pelagia and highlights limitations of existing data sets in resolving pelagian interrelationships. Mol Phylogenet Evol 2018. [DOI: 10.1016/j.ympev.2018.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
13
|
Shi W, Chen S, Kong X, Si L, Gong L, Zhang Y, Yu H. Flatfish monophyly refereed by the relationship of Psettodes in Carangimorphariae. BMC Genomics 2018; 19:400. [PMID: 29801430 PMCID: PMC5970519 DOI: 10.1186/s12864-018-4788-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 05/14/2018] [Indexed: 11/18/2022] Open
Abstract
Background The monophyly of flatfishes has not been supported in many molecular phylogenetic studies. The monophyly of Pleuronectoidei, which comprises all but one family of flatfishes, is broadly supported. However, the Psettodoidei, comprising the single family Psettodidae, is often found to be most closely related to other carangimorphs based on substantial sequencing efforts and diversely analytical methods. In this study, we examined why this particular result is often obtained. Results The mitogenomes of five flatfishes were determined. Select mitogenomes of representative carangimorph species were further employed for phylogenetic and molecular clock analyses. Our phylogenetic results do not fully support Psettodes as a sister group to pleuronectoids or other carangimorphs. And results also supported the evidence of long-branch attraction between Psettodes and the adjacent clades. Two chronograms, derived from Bayesian relaxed-clock methods, suggest that over a short period in the early Paleocene, a series of important evolutionary events occurred in carangimorphs. Conclusion Based on insights provided by the molecular clock, we propose the following evolutionary explanation for the difficulty in determining the phylogenetic position of Psettodes: The initial diversification of Psettodes was very close in time to the initial diversification of carangimorphs, and the primary diversification time of pleuronectoids, the other suborder of flatfishes, occurred later than that of some percomorph taxa. Additionally, the clade of Psettodes is long and naked branch, which supports the uncertainty of its phylogenetic placement. Finally, we confirmed the monophyly of flatfishes, which was accepted by most ichthyologists. Electronic supplementary material The online version of this article (10.1186/s12864-018-4788-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wei Shi
- College of Life Science, Foshan University, Foshan, 528231, Guangdong, China.,CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China
| | - Shixi Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoyu Kong
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China.
| | - Lizhen Si
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China
| | - Li Gong
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China
| | - Yanchun Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China
| | - Hui Yu
- College of Life Science, Foshan University, Foshan, 528231, Guangdong, China.
| |
Collapse
|
14
|
Robledo D, Hermida M, Rubiolo JA, Fernández C, Blanco A, Bouza C, Martínez P. Integrating genomic resources of flatfish (Pleuronectiformes) to boost aquaculture production. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2016; 21:41-55. [PMID: 28063346 DOI: 10.1016/j.cbd.2016.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 12/09/2016] [Accepted: 12/13/2016] [Indexed: 12/15/2022]
Abstract
Flatfish have a high market acceptance thus representing a profitable aquaculture production. The main farmed species is the turbot (Scophthalmus maximus) followed by Japanese flounder (Paralichthys olivaceous) and tongue sole (Cynoglossus semilaevis), but other species like Atlantic halibut (Hippoglossus hippoglossus), Senegalese sole (Solea senegalensis) and common sole (Solea solea) also register an important production and are very promising for farming. Important genomic resources are available for most of these species including whole genome sequencing projects, genetic maps and transcriptomes. In this work, we integrate all available genomic information of these species within a common framework, taking as reference the whole assembled genomes of turbot and tongue sole (>210× coverage). New insights related to the genetic basis of productive traits and new data useful to understand the evolutionary origin and diversification of this group were obtained. Despite a general 1:1 chromosome syntenic relationship between species, the comparison of turbot and tongue sole genomes showed huge intrachromosomic reorganizations. The integration of available mapping information supported specific chromosome fusions along flatfish evolution and facilitated the comparison between species of previously reported genetic associations for productive traits. When comparing transcriptomic resources of the six species, a common set of ~2500 othologues and ~150 common miRNAs were identified, and specific sets of putative missing genes were detected in flatfish transcriptomes, likely reflecting their evolutionary diversification.
Collapse
Affiliation(s)
- Diego Robledo
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Biology (CIBUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Miguel Hermida
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Juan A Rubiolo
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Carlos Fernández
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Andrés Blanco
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Carmen Bouza
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Paulino Martínez
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
| |
Collapse
|
15
|
Harrington RC, Faircloth BC, Eytan RI, Smith WL, Near TJ, Alfaro ME, Friedman M. Phylogenomic analysis of carangimorph fishes reveals flatfish asymmetry arose in a blink of the evolutionary eye. BMC Evol Biol 2016; 16:224. [PMID: 27769164 PMCID: PMC5073739 DOI: 10.1186/s12862-016-0786-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 09/30/2016] [Indexed: 11/26/2022] Open
Abstract
Background Flatfish cranial asymmetry represents one of the most remarkable morphological innovations among vertebrates, and has fueled vigorous debate on the manner and rate at which strikingly divergent phenotypes evolve. A surprising result of many recent molecular phylogenetic studies is the lack of support for flatfish monophyly, where increasingly larger DNA datasets of up to 23 loci have either yielded a weakly supported flatfish clade or indicated the group is polyphyletic. Lack of resolution for flatfish relationships has been attributed to analytical limitations for dealing with processes such as nucleotide non-stationarity and incomplete lineage sorting (ILS). We tackle this phylogenetic problem using a sequence dataset comprising more than 1,000 ultraconserved DNA element (UCE) loci covering 45 carangimorphs, the broader clade containing flatfishes and several other specialized lineages such as remoras, billfishes, and archerfishes. Results We present a phylogeny based on UCE loci that unequivocally supports flatfish monophyly and a single origin of asymmetry. We document similar levels of discordance among UCE loci as in previous, smaller molecular datasets. However, relationships among flatfishes and carangimorphs recovered from multilocus concatenated and species tree analyses of our data are robust to the analytical framework applied and size of data matrix used. By integrating the UCE data with a rich fossil record, we find that the most distinctive carangimorph bodyplans arose rapidly during the Paleogene (66.0–23.03 Ma). Flatfish asymmetry, for example, likely evolved over an interval of no more than 2.97 million years. Conclusions The longstanding uncertainty in phylogenetic hypotheses for flatfishes and their carangimorph relatives highlights the limitations of smaller molecular datasets when applied to successive, rapid divergences. Here, we recovered significant support for flatfish monophyly and relationships among carangimorphs through analysis of over 1,000 UCE loci. The resulting time-calibrated phylogeny points to phenotypic divergence early within carangimorph history that broadly matches with the predictions of adaptive models of lineage diversification. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0786-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Richard C Harrington
- Department of Earth Sciences, University of Oxford, Oxford, OX1 3AN, UK. .,Department of Ecology & Evolutionary Biology and Peabody Museum of Natural History, Yale University, New Haven, CT, 06520, USA.
| | - Brant C Faircloth
- Department of Biological Sciences and Museum of Natural Science, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Ron I Eytan
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX, 77553, USA
| | - W Leo Smith
- Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, 66045, USA
| | - Thomas J Near
- Department of Ecology & Evolutionary Biology and Peabody Museum of Natural History, Yale University, New Haven, CT, 06520, USA
| | - Michael E Alfaro
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Matt Friedman
- Department of Earth Sciences, University of Oxford, Oxford, OX1 3AN, UK.,Museum of Paleontology and Department of Earth and Environmental Science, University of Michigan, 1109 Geddes Ave, Ann Arbor, MI, 48109-1079, USA
| |
Collapse
|
16
|
Mirande JM. Combined phylogeny of ray-finned fishes (Actinopterygii) and the use of morphological characters in large-scale analyses. Cladistics 2016; 33:333-350. [DOI: 10.1111/cla.12171] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2016] [Indexed: 01/27/2023] Open
Affiliation(s)
- Juan Marcos Mirande
- Unidad Ejecutora Lillo (UEL, Fundación Miguel Lillo-CONICET); San Miguel de Tucumán 4000 Argentina
| |
Collapse
|
17
|
Figueras A, Robledo D, Corvelo A, Hermida M, Pereiro P, Rubiolo JA, Gómez-Garrido J, Carreté L, Bello X, Gut M, Gut IG, Marcet-Houben M, Forn-Cuní G, Galán B, García JL, Abal-Fabeiro JL, Pardo BG, Taboada X, Fernández C, Vlasova A, Hermoso-Pulido A, Guigó R, Álvarez-Dios JA, Gómez-Tato A, Viñas A, Maside X, Gabaldón T, Novoa B, Bouza C, Alioto T, Martínez P. Whole genome sequencing of turbot (Scophthalmus maximus; Pleuronectiformes): a fish adapted to demersal life. DNA Res 2016; 23:181-92. [PMID: 26951068 PMCID: PMC4909306 DOI: 10.1093/dnares/dsw007] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 02/03/2016] [Indexed: 01/25/2023] Open
Abstract
The turbot is a flatfish (Pleuronectiformes) with increasing commercial value, which has prompted active genomic research aimed at more efficient selection. Here we present the sequence and annotation of the turbot genome, which represents a milestone for both boosting breeding programmes and ascertaining the origin and diversification of flatfish. We compare the turbot genome with model fish genomes to investigate teleost chromosome evolution. We observe a conserved macrosyntenic pattern within Percomorpha and identify large syntenic blocks within the turbot genome related to the teleost genome duplication. We identify gene family expansions and positive selection of genes associated with vision and metabolism of membrane lipids, which suggests adaptation to demersal lifestyle and to cold temperatures, respectively. Our data indicate a quick evolution and diversification of flatfish to adapt to benthic life and provide clues for understanding their controversial origin. Moreover, we investigate the genomic architecture of growth, sex determination and disease resistance, key traits for understanding local adaptation and boosting turbot production, by mapping candidate genes and previously reported quantitative trait loci. The genomic architecture of these productive traits has allowed the identification of candidate genes and enriched pathways that may represent useful information for future marker-assisted selection in turbot.
Collapse
Affiliation(s)
- Antonio Figueras
- Instituto de Investigaciones Marinas (IIM), Consejo Superior de Investigaciones Científicas (CSIC), Vigo 36208, Spain
| | - Diego Robledo
- Departamento de Xenética, Facultade de Bioloxía (CIBUS), Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - André Corvelo
- Centre Nacional d'Anàlisi Genòmica (CNAG-CRG), Centre de Regulació Genómica, Parc Científic de Barcelona, Barcelona 08028, Spain New York Genome Center, 101 Avenue of the Americas, New York, NY 10013, USA
| | - Miguel Hermida
- Departamento de Xenética, Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo 27002, Spain
| | - Patricia Pereiro
- Instituto de Investigaciones Marinas (IIM), Consejo Superior de Investigaciones Científicas (CSIC), Vigo 36208, Spain
| | - Juan A Rubiolo
- Departamento de Xenética, Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo 27002, Spain
| | - Jèssica Gómez-Garrido
- Centre Nacional d'Anàlisi Genòmica (CNAG-CRG), Centre de Regulació Genómica, Parc Científic de Barcelona, Barcelona 08028, Spain
| | - Laia Carreté
- Centre Nacional d'Anàlisi Genòmica (CNAG-CRG), Centre de Regulació Genómica, Parc Científic de Barcelona, Barcelona 08028, Spain
| | - Xabier Bello
- Departamento de Anatomía Patolóxica e Ciencias Forenses, Grupo de Medicina Xenómica, CIMUS, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain Xenómica Comparada de Parasitos Humanos, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela 15706, Spain
| | - Marta Gut
- Centre Nacional d'Anàlisi Genòmica (CNAG-CRG), Centre de Regulació Genómica, Parc Científic de Barcelona, Barcelona 08028, Spain
| | - Ivo Glynne Gut
- Centre Nacional d'Anàlisi Genòmica (CNAG-CRG), Centre de Regulació Genómica, Parc Científic de Barcelona, Barcelona 08028, Spain
| | - Marina Marcet-Houben
- Centre Nacional d'Anàlisi Genòmica (CNAG-CRG), Centre de Regulació Genómica, Parc Científic de Barcelona, Barcelona 08028, Spain
| | - Gabriel Forn-Cuní
- Instituto de Investigaciones Marinas (IIM), Consejo Superior de Investigaciones Científicas (CSIC), Vigo 36208, Spain
| | - Beatriz Galán
- Centro de Investigaciones Biológicas (CIB), Consejo Superior de Investigaciones Científicas, Madrid 28040, Spain
| | - José Luis García
- Centro de Investigaciones Biológicas (CIB), Consejo Superior de Investigaciones Científicas, Madrid 28040, Spain
| | - José Luis Abal-Fabeiro
- Departamento de Anatomía Patolóxica e Ciencias Forenses, Grupo de Medicina Xenómica, CIMUS, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain Xenómica Comparada de Parasitos Humanos, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela 15706, Spain
| | - Belen G Pardo
- Departamento de Xenética, Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo 27002, Spain
| | - Xoana Taboada
- Departamento de Xenética, Facultade de Bioloxía (CIBUS), Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Carlos Fernández
- Departamento de Xenética, Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo 27002, Spain
| | - Anna Vlasova
- Centre Nacional d'Anàlisi Genòmica (CNAG-CRG), Centre de Regulació Genómica, Parc Científic de Barcelona, Barcelona 08028, Spain
| | - Antonio Hermoso-Pulido
- Centre Nacional d'Anàlisi Genòmica (CNAG-CRG), Centre de Regulació Genómica, Parc Científic de Barcelona, Barcelona 08028, Spain
| | - Roderic Guigó
- Centre Nacional d'Anàlisi Genòmica (CNAG-CRG), Centre de Regulació Genómica, Parc Científic de Barcelona, Barcelona 08028, Spain
| | - José Antonio Álvarez-Dios
- Departamento de Matemática Aplicada, Facultade de Matemáticas, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Antonio Gómez-Tato
- Departamento de Xeometría e Topoloxía, Facultade de Matemáticas, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Ana Viñas
- Departamento de Xenética, Facultade de Bioloxía (CIBUS), Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Xulio Maside
- Departamento de Anatomía Patolóxica e Ciencias Forenses, Grupo de Medicina Xenómica, CIMUS, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain Xenómica Comparada de Parasitos Humanos, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela 15706, Spain
| | - Toni Gabaldón
- Centre Nacional d'Anàlisi Genòmica (CNAG-CRG), Centre de Regulació Genómica, Parc Científic de Barcelona, Barcelona 08028, Spain Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Beatriz Novoa
- Instituto de Investigaciones Marinas (IIM), Consejo Superior de Investigaciones Científicas (CSIC), Vigo 36208, Spain
| | - Carmen Bouza
- Departamento de Xenética, Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo 27002, Spain
| | - Tyler Alioto
- Centre Nacional d'Anàlisi Genòmica (CNAG-CRG), Centre de Regulació Genómica, Parc Científic de Barcelona, Barcelona 08028, Spain
| | - Paulino Martínez
- Departamento de Xenética, Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo 27002, Spain
| |
Collapse
|
18
|
Simmons MP, Sloan DB, Gatesy J. The effects of subsampling gene trees on coalescent methods applied to ancient divergences. Mol Phylogenet Evol 2016; 97:76-89. [PMID: 26768112 DOI: 10.1016/j.ympev.2015.12.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 12/03/2015] [Accepted: 12/20/2015] [Indexed: 10/22/2022]
Abstract
Gene-tree-estimation error is a major concern for coalescent methods of phylogenetic inference. We sampled eight empirical studies of ancient lineages with diverse numbers of taxa and genes for which the original authors applied one or more coalescent methods. We found that the average pairwise congruence among gene trees varied greatly both between studies and also often within a study. We recommend that presenting plots of pairwise congruence among gene trees in a dataset be treated as a standard practice for empirical coalescent studies so that readers can readily assess the extent and distribution of incongruence among gene trees. ASTRAL-based coalescent analyses generally outperformed MP-EST and STAR with respect to both internal consistency (congruence between analyses of subsamples of genes with the complete dataset of all genes) and congruence with the concatenation-based topology. We evaluated the approach of subsampling gene trees that are, on average, more congruent with other gene trees as a method to reduce artifacts caused by gene-tree-estimation errors on coalescent analyses. We suggest that this method is well suited to testing whether gene-tree-estimation error is a primary cause of incongruence between concatenation- and coalescent-based results, to reconciling conflicting phylogenetic results based on different coalescent methods, and to identifying genes affected by artifacts that may then be targeted for reciprocal illumination. We provide scripts that automate the process of calculating pairwise gene-tree incongruence and subsampling trees while accounting for differential taxon sampling among genes. Finally, we assert that multiple tree-search replicates should be implemented as a standard practice for empirical coalescent studies that apply MP-EST.
Collapse
Affiliation(s)
- Mark P Simmons
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA.
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - John Gatesy
- Department of Biology, University of California, Riverside, CA 92521, USA
| |
Collapse
|
19
|
Li DH, Shi W, Munroe TA, Gong L, Kong XY. Concerted Evolution of Duplicate Control Regions in the Mitochondria of Species of the Flatfish Family Bothidae (Teleostei: Pleuronectiformes). PLoS One 2015; 10:e0134580. [PMID: 26237419 PMCID: PMC4523187 DOI: 10.1371/journal.pone.0134580] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 07/12/2015] [Indexed: 12/20/2022] Open
Abstract
Mitogenomes of flatfishes (Pleuronectiformes) exhibit the greatest diversity of gene rear-rangements in teleostean fishes. Duplicate control regions (CRs) have been found in the mito-genomes of two flatfishes, Samariscus latus (Samaridae) and Laeops lanceolata (Bothidae), which is rare in teleosts. It has been reported that duplicate CRs have evolved in a concerted fashion in fishes and other animals, however, whether concerted evo-lution exists in flatfishes remains unknown. In this study, based on five newly sequenced and six previously reported mitogenomes of lefteye flounders in the Bothidae, we explored whether duplicate CRs and concerted evolution exist in these species. Results based on the present study and previous reports show that four out of eleven bothid species examined have duplicate CRs of their mitogenomes. The core regions of the duplicate CRs of mitogenomes in the same species have identical, or nearly identical, sequences when compared to each other. This pattern fits the typical characteristics of concerted evolution. Additionally, phylogenetic and ancestral state reconstruction analysis also provided evidence to support the hypothesis that duplicate CRs evolved concertedly. The core region of concerted evolution is situated at the conserved domains of the CR of the mitogenome from the termination associated sequences (TASs) to the conserved sequence blocks (CSBs). Commonly, this region is con-sidered to regulate mitochondrial replication and transcription. Thus, we hypothesize that the cause of concerted evolution of the duplicate CRs in the mtDNAs of these four bothids may be related to some function of the conserved sequences of the CRs during mitochondrial rep-lication and transcription. We hope our results will provide fresh insight into the molecular mechanisms related to replication and evolution of mitogenomes.
Collapse
Affiliation(s)
- Dong-He Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, 510301, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Shi
- Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, 510301, China
- * E-mail: (WS); (XYK)
| | - Thomas A. Munroe
- National Systematics Laboratory NMFS/NOAA, Post Office Box 37012, Smithsonian Institution NHB, WC 60, MRC-153, Washington, D.C., 20013–7012, United States of America
| | - Li Gong
- Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, 510301, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Yu Kong
- Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- * E-mail: (WS); (XYK)
| |
Collapse
|
20
|
Britz R, Conway KW, Rüber L. Miniatures, morphology and molecules: Paedocypris and its phylogenetic position (Teleostei, Cypriniformes). Zool J Linn Soc 2014. [DOI: 10.1111/zoj12184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ralf Britz
- Department of Zoology, Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Kevin W. Conway
- Department of Wildlife and Fisheries Sciences and Biodiversity Research and Teaching Collections, Texas A&M University, College Station, TX, 77843, USA
| | - Lukas Rüber
- Naturhistorisches Museum der Burgergemeinde Bern, Bernastrasse 15, 3005, Bern, Switzerland
| |
Collapse
|
21
|
Britz R, Conway KW, Rüber L. Miniatures, morphology and molecules:Paedocyprisand its phylogenetic position (Teleostei, Cypriniformes). Zool J Linn Soc 2014. [DOI: 10.1111/zoj.12184] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ralf Britz
- Department of Zoology; Natural History Museum; Cromwell Road London SW7 5BD UK
| | - Kevin W. Conway
- Department of Wildlife and Fisheries Sciences and Biodiversity Research and Teaching Collections; Texas A&M University; College Station TX 77843 USA
| | - Lukas Rüber
- Naturhistorisches Museum der Burgergemeinde Bern; Bernastrasse 15 3005 Bern Switzerland
| |
Collapse
|
22
|
Mitochondrial genomic investigation of flatfish monophyly. Gene 2014; 551:176-82. [PMID: 25172210 DOI: 10.1016/j.gene.2014.08.053] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 07/11/2014] [Accepted: 08/26/2014] [Indexed: 11/21/2022]
Abstract
We present the first study to use whole mitochondrial genome sequences to examine phylogenetic affinities of the flatfishes (Pleuronectiformes). Flatfishes have attracted attention in evolutionary biology since the early history of the field because understanding the evolutionary history and patterns of diversification of the group will shed light on the evolution of novel body plans. Because recent molecular studies based primarily on DNA sequences from nuclear loci have yielded conflicting results, it is important to examine phylogenetic signal in different genomes and genome regions. We aligned and analyzed mitochondrial genome sequences from thirty-nine pleuronectiforms including nine that are newly reported here, and sixty-six non-pleuronectiforms (twenty additional clade L taxa [Carangimorpha or Carangimorpharia] and forty-six secondary outgroup taxa). The analyses yield strong support for clade L and weak support for the monophyly of Pleuronectiformes. The suborder Pleuronectoidei receives moderate support, and as with other molecular studies the putatively basal lineage of Pleuronectiformes, the Psettodoidei is frequently not most closely related to other pleuronectiforms. Within the Pleuronectoidei, the basal lineages in the group are poorly resolved, however several flatfish subclades receive consistent support. The affinities of Lepidoblepharon and Citharoides among pleuronectoids are particularly uncertain with these data.
Collapse
|