1
|
Jiu S, Lv Z, Liu M, Xu Y, Chen B, Dong X, Zhang X, Cao J, Manzoor MA, Xia M, Li F, Li H, Chen L, Zhang X, Wang S, Dong Y, Zhang C. Haplotype-resolved genome assembly for tetraploid Chinese cherry ( Prunus pseudocerasus) offers insights into fruit firmness. HORTICULTURE RESEARCH 2024; 11:uhae142. [PMID: 38988622 PMCID: PMC11233885 DOI: 10.1093/hr/uhae142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/11/2024] [Indexed: 07/12/2024]
Abstract
Chinese cherry (Prunus pseudocerasus) holds considerable importance as one of the primary stone fruit crops in China. However, artificially improving its traits and genetic analysis are challenging due to lack of high-quality genomic resources, which mainly result from difficulties associated with resolving its tetraploid and highly heterozygous genome. Herein, we assembled a chromosome-level, haplotype-resolved genome of the cultivar 'Zhuji Duanbing', comprising 993.69 Mb assembled into 32 pseudochromosomes using PacBio HiFi, Oxford Nanopore, and Hi-C. Intra-haplotype comparative analyses revealed extensive intra-genomic sequence and expression consistency. Phylogenetic and comparative genomic analyses demonstrated that P. pseudocerasus was a stable autotetraploid species, closely related to wild P. pusilliflora, with the two diverging ~18.34 million years ago. Similar to other Prunus species, P. pseudocerasus underwent a common whole-genome duplication event that occurred ~139.96 million years ago. Because of its low fruit firmness, P. pseudocerasus is unsuitable for long-distance transportation, thereby restricting its rapid development throughout China. At the ripe fruit stage, P. pseudocerasus cv. 'Zhuji Duanbing' was significantly less firm than P. avium cv. 'Heizhenzhu'. The difference in firmness is attributed to the degree of alteration in pectin, cellulose, and hemicellulose contents. In addition, comparative transcriptomic analyses identified GalAK-like and Stv1, two genes involved in pectin biosynthesis, which potentially caused the difference in firmness between 'Zhuji Duanbing' and 'Heizhenzhu'. Transient transformations of PpsGalAK-like and PpsStv1 increase protopectin content and thereby enhance fruit firmness. Our study lays a solid foundation for functional genomic studies and the enhancement of important horticultural traits in Chinese cherries.
Collapse
Affiliation(s)
- Songtao Jiu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhengxin Lv
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Moyang Liu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yan Xu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Baozheng Chen
- Province Key Laboratory, Biological Big Data College, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Xiao Dong
- Province Key Laboratory, Biological Big Data College, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Xinyu Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jun Cao
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Muhammad Aamir Manzoor
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Mingxu Xia
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fangdong Li
- Yantai Academy of Agricultural Sciences, Yantai, Shandong, 265500, China
| | - Hongwen Li
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, 610066, China
| | - Lijuan Chen
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, 610066, China
| | - Xu Zhang
- Yantai Academy of Agricultural Sciences, Yantai, Shandong, 265500, China
| | - Shiping Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yang Dong
- Province Key Laboratory, Biological Big Data College, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Caixi Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
2
|
Wang J, Kan J, Wang J, Yan X, Li Y, Soe T, Tembrock LR, Xing G, Li S, Wu Z, Jia M. The pan-plastome of Prunus mume: insights into Prunus diversity, phylogeny, and domestication history. FRONTIERS IN PLANT SCIENCE 2024; 15:1404071. [PMID: 38887455 PMCID: PMC11181306 DOI: 10.3389/fpls.2024.1404071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 04/29/2024] [Indexed: 06/20/2024]
Abstract
Backgrounds Prunus mume in the Rosaceae and commonly referred to as mei or Chinese plum is widely used as a traditional ornamental flowering plant and fruit tree in China. Although some population and genetic analyses have been conducted for this species, no extensive comparisons of genetic variation from plastomes have yet been investigated. Methods We de novo assembled a total of 322 complete P. mume plastomes in this study and did a series of comparative analyses to better resolve pan-plastomic patterns of P. mume. To determine the phylogeny and domestication history of this species, we reconstructed the phylogenetic tree of Prunus genus, and resolved the population structure of P. mume. We also examined the nucleotide variation of P. mume to find potential DNA barcodes. Results The assembled plastomes exhibited a typical quadripartite structure and ranged from 157,871 bp to 158,213 bp in total size with a GC content ranging from 36.73 to 36.75%. A total of 112 unique genes were identified. Single nucleotide variants (SNVs) were the most common variants found among the plastomes, followed by nucleotide insertions/deletions (InDels), and block substitutions with the intergenic spacer (IGS) regions containing the greatest number of variants. From the pan-plastome data six well-supported genetic clusters were resolved using multiple different population structure analyses. The different cultivars were unevenly distributed among multiple clades. We also reconstructed a phylogeny for multiple species of Prunus to better understand genus level diversity and history from which a complex introgressive relationship between mei and other apricots/plums was resolved. Conclusion This study constructed the pan-plastome of P. mume, which indicated the domestication of P. mume involved multiple genetic origins and possible matrilineal introgression from other species. The phylogenetic analysis in Prunus and the population structure of P. mume provide an important maternal history for Prunus and the groundwork for future studies on intergenomic sequence transfers, cytonuclear incompatibility, and conservation genetics.
Collapse
Affiliation(s)
- Jie Wang
- College of Horticulture, Shanxi Agricultural University, Jinzhong, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Junhu Kan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Jie Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Xinlin Yan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yi Li
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Thida Soe
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Luke R. Tembrock
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, United States
| | - Guoming Xing
- College of Horticulture, Shanxi Agricultural University, Jinzhong, China
| | - Sen Li
- College of Horticulture, Shanxi Agricultural University, Jinzhong, China
| | - Zhiqiang Wu
- College of Horticulture, Shanxi Agricultural University, Jinzhong, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Minlong Jia
- College of Horticulture, Shanxi Agricultural University, Jinzhong, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
3
|
Yang X, Su Y, Huang S, Hou Q, Wei P, Hao Y, Huang J, Xiao H, Ma Z, Xu X, Wang X, Cao S, Cao X, Zhang M, Wen X, Ma Y, Peng Y, Zhou Y, Cao K, Qiao G. Comparative population genomics reveals convergent and divergent selection in the apricot-peach-plum-mei complex. HORTICULTURE RESEARCH 2024; 11:uhae109. [PMID: 38883333 PMCID: PMC11179850 DOI: 10.1093/hr/uhae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 04/06/2024] [Indexed: 06/18/2024]
Abstract
The economically significant genus Prunus includes fruit and nut crops that have been domesticated for shared and specific agronomic traits; however, the genomic signals of convergent and divergent selection have not been elucidated. In this study, we aimed to detect genomic signatures of convergent and divergent selection by conducting comparative population genomic analyses of the apricot-peach-plum-mei (APPM) complex, utilizing a haplotype-resolved telomere-to-telomere (T2T) genome assembly and population resequencing data. The haplotype-resolved T2T reference genome for the plum cultivar was assembled through HiFi and Hi-C reads, resulting in two haplotypes 251.25 and 251.29 Mb in size, respectively. Comparative genomics reveals a chromosomal translocation of ~1.17 Mb in the apricot genomes compared with peach, plum, and mei. Notably, the translocation involves the D locus, significantly impacting titratable acidity (TA), pH, and sugar content. Population genetic analysis detected substantial gene flow between plum and apricot, with introgression regions enriched in post-embryonic development and pollen germination processes. Comparative population genetic analyses revealed convergent selection for stress tolerance, flower development, and fruit ripening, along with divergent selection shaping specific crop, such as somatic embryogenesis in plum, pollen germination in mei, and hormone regulation in peach. Notably, selective sweeps on chromosome 7 coincide with a chromosomal collinearity from the comparative genomics, impacting key fruit-softening genes such as PG, regulated by ERF and RMA1H1. Overall, this study provides insights into the genetic diversity, evolutionary history, and domestication of the APPM complex, offering valuable implications for genetic studies and breeding programs of Prunus crops.
Collapse
Affiliation(s)
- Xuanwen Yang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-bioengineering/College of Life Sciences, Guizhou University, Guiyang 550025, China
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Science, Zhengzhou 450009, China
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Ying Su
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Xinjiang, Urumqi 830046, China
| | - Siyang Huang
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Qiandong Hou
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-bioengineering/College of Life Sciences, Guizhou University, Guiyang 550025, China
| | - Pengcheng Wei
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Science, Zhengzhou 450009, China
| | - Yani Hao
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- Department of Bioinformatics, School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Jiaqi Huang
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Hua Xiao
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Zhiyao Ma
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Xiaodong Xu
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Xu Wang
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Shuo Cao
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuejing Cao
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Mengyan Zhang
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Xiaopeng Wen
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-bioengineering/College of Life Sciences, Guizhou University, Guiyang 550025, China
| | - Yuhua Ma
- Institute of Pomology Science, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Yanling Peng
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Yongfeng Zhou
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- National Key Laboratory of Tropical Crop Breeding, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 570100, China
| | - Ke Cao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Science, Zhengzhou 450009, China
| | - Guang Qiao
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-bioengineering/College of Life Sciences, Guizhou University, Guiyang 550025, China
| |
Collapse
|
4
|
Buonaiuto DM, Davies TJ, Collins SC, Wolkovich EM. Ecological drivers of flower-leaf sequences: aridity and proxies for pollinator attraction select for flowering-first in the American plums. THE NEW PHYTOLOGIST 2024. [PMID: 38561636 DOI: 10.1111/nph.19685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/01/2024] [Indexed: 04/04/2024]
Abstract
Across temperate forests, many tree species produce flowers before their leaves emerge. This flower-leaf phenological sequence, known as hysteranthy, is generally described as an adaptation for wind pollination. However, this explanation does not address why hysteranthy is also common in biotically pollinated taxa. We quantified flower-leaf sequence variation in the American plums (Prunus, subg. Prunus sect. Prunocerasus), a clade of insect-pollinated trees, using herbaria specimens and Bayesian hierarchical modeling. We tested two common, but rarely interrogated hypotheses - that hysteranthy confers aridity tolerance and/or pollinator visibility - by modeling the associations between hysteranthy and related traits. To understand how these phenology-trait associations were sensitive to taxonomic scale and flower-leaf sequence classification, we then extended these analyses to all Prunus species in North America. Our findings across two taxonomic levels support the hypotheses that hysteranthy may help temporally partition hydraulic demand to reduce water stress and increase pollinator visibility - thereby reducing selective pressure on inflorescence size. Our results provide foundational insights into the evolution of flower-leaf sequences in the genus Prunus, with implications for understanding these patterns in biotically pollinated plants in general. Our approach suggests a path to advance these hypotheses to other clades, but teasing out drivers fully will require new experiments.
Collapse
Affiliation(s)
- D M Buonaiuto
- Department of Environmental Conservation, University of Massachusetts, Amherst, MA, 01003, USA
- Arnold Arboretum of Harvard University, Boston, MA, 02131, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - T J Davies
- Forest & Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - S C Collins
- Forest & Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - E M Wolkovich
- Arnold Arboretum of Harvard University, Boston, MA, 02131, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
- Forest & Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
5
|
Dong J, Yi X, Wang X, Li M, Chen X, Gao S, Fu W, Qian S, Zeng X, Yun Y. Population Variation and Phylogeography of Cherry Blossom ( Prunus conradinae) in China. PLANTS (BASEL, SWITZERLAND) 2024; 13:974. [PMID: 38611504 PMCID: PMC11013036 DOI: 10.3390/plants13070974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 04/14/2024]
Abstract
Prunus conradinae (subgenus Cerasus, Rosaceae) is a significant germplasm resource of wild cherry blossom in China. To ensure the comprehensiveness of this study, we used a large sample size (12 populations comprising 244 individuals) which involved the fresh leaves of P. conradinae in Eastern, Central, and Southwestern China. We combined morphological and molecular evidence (three chloroplast DNA (cpDNA) sequences and one nuclear DNA (nr DNA) sequence) to examine the population of P. conradinae variation and differentiation. Our results revealed that Central, East, and Southwest China are important regions for the conservation of P. conradinae to ensure adequate germplasm resources in the future. We also found support for a new variant, P. conradinae var. rubrum. We observed high genetic diversity within P. conradinae (haplotype diversity [Hd] = 0.830; ribotype diversity [Rd] = 0.798), with novel genetic variation and a distinct genealogical structure among populations. There was genetic variation among populations and phylogeographic structure among populations and three geographical groups (Central, East, and Southwest China). The genetic differentiation coefficient was the lowest in the Southwest region and the gene exchange was obvious, while the differentiation was obvious in Central China. In the three geographic groups, we identified two distinct lineages: an East China lineage (Central China and East China) and a Southwest China lineage ((Central China and Southwest China) and East China). These two lineages originated approximately 4.38 million years ago (Mya) in the early Pliocene due to geographic isolation. P. conradinae expanded from Central China to East China at 3.32 Mya (95% HPD: 1.12-5.17 Mya) in the Pliocene. The population of P. conradinae spread from East China to Southwest China, and the differentiation time was 2.17 Mya (95% (HPD: 0.47-4.54 Mya), suggesting that the population of P. conradinae differentiated first in Central and East China. The population of P. conradinae experienced differentiation from Central China to Southwest China around 1.10 Mya (95% HPD: 0.11-2.85 Mya) during the early Pleistocene of the Quaternary period. The southeastern region of East China, near Mount Wuyi, likely serves as a refuge for P. conradinae. This study establishes a theoretical foundation for the classification, identification, conservation, and exploitation of germplasm resources of P. conradinae.
Collapse
Affiliation(s)
- Jingjing Dong
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (J.D.); (M.L.); (X.C.); (S.G.); (W.F.); (S.Q.); (X.Z.); (Y.Y.)
- Cerasus Research Center, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Xiangui Yi
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (J.D.); (M.L.); (X.C.); (S.G.); (W.F.); (S.Q.); (X.Z.); (Y.Y.)
- Cerasus Research Center, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Xianrong Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (J.D.); (M.L.); (X.C.); (S.G.); (W.F.); (S.Q.); (X.Z.); (Y.Y.)
- Cerasus Research Center, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Meng Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (J.D.); (M.L.); (X.C.); (S.G.); (W.F.); (S.Q.); (X.Z.); (Y.Y.)
- Cerasus Research Center, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Xiangzhen Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (J.D.); (M.L.); (X.C.); (S.G.); (W.F.); (S.Q.); (X.Z.); (Y.Y.)
- Cerasus Research Center, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Shucheng Gao
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (J.D.); (M.L.); (X.C.); (S.G.); (W.F.); (S.Q.); (X.Z.); (Y.Y.)
- Cerasus Research Center, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Wenyi Fu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (J.D.); (M.L.); (X.C.); (S.G.); (W.F.); (S.Q.); (X.Z.); (Y.Y.)
- Cerasus Research Center, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Siyu Qian
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (J.D.); (M.L.); (X.C.); (S.G.); (W.F.); (S.Q.); (X.Z.); (Y.Y.)
- Cerasus Research Center, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Xinglin Zeng
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (J.D.); (M.L.); (X.C.); (S.G.); (W.F.); (S.Q.); (X.Z.); (Y.Y.)
- Cerasus Research Center, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Yingke Yun
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (J.D.); (M.L.); (X.C.); (S.G.); (W.F.); (S.Q.); (X.Z.); (Y.Y.)
- Cerasus Research Center, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
6
|
Xie J, Miao Y, Zhang X, Zhang G, Guo B, Luo G, Huang L. Comparative complete chloroplast genome of Geum japonicum: evolution and phylogenetic analysis. JOURNAL OF PLANT RESEARCH 2024; 137:37-48. [PMID: 37917204 DOI: 10.1007/s10265-023-01502-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 10/05/2023] [Indexed: 11/04/2023]
Abstract
Geum japonicum (Rosaceae) has been widely used in China as a traditional herbal medicine due to its high economic and medicinal value. However, the appearance of Geum species is relatively similar, making identification difficult by conventional phenotypic methods, and the studies of genomics and species evolution are lacking. To better distinguish the medicinal varieties and fill this gap, we carried out relevant research on the chloroplast genome of G. japonicum. Results show a typical quadripartite structure of the chloroplast genome of G. japonicum with a length of 156,042 bp. There are totally 131 unique genes in the genome, including 87 protein-coding genes, 36 tRNA genes, and 8 rRNA genes, and there were also 87 SSRs identified and mostly mononucleotide Adenine-Thymine. We next compared the plastid genomes among four Geum species and obtained 14 hypervariable regions, including ndhF, psbE, trnG-UCC, ccsA, trnQ-UUG, rps16, psbK, trnL-UAA, ycf1, ndhD, atpA, petN, rps14, and trnK-UUU. Phylogenetic analysis revealed that G. japonicum is most closely related to Geum aleppicum, and possibly has some evolutionary relatedness with an ancient relic plant Taihangia rupestris. This research enriched the genome resources and provided fundamental insights for evolutionary studies and the phylogeny of Geum.
Collapse
Affiliation(s)
- Junbo Xie
- Key Laboratory of Chinese Medicine Resources Conservation, Institute of Medicinal Plant Development, State Administration of Traditional Chinese Medicine of China, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330000, China
| | - Yujing Miao
- Key Laboratory of Chinese Medicine Resources Conservation, Institute of Medicinal Plant Development, State Administration of Traditional Chinese Medicine of China, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Xinke Zhang
- Key Laboratory of Chinese Medicine Resources Conservation, Institute of Medicinal Plant Development, State Administration of Traditional Chinese Medicine of China, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Guoshuai Zhang
- Key Laboratory of Chinese Medicine Resources Conservation, Institute of Medicinal Plant Development, State Administration of Traditional Chinese Medicine of China, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Baolin Guo
- Key Laboratory of Chinese Medicine Resources Conservation, Institute of Medicinal Plant Development, State Administration of Traditional Chinese Medicine of China, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Guangming Luo
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330000, China.
| | - Linfang Huang
- Key Laboratory of Chinese Medicine Resources Conservation, Institute of Medicinal Plant Development, State Administration of Traditional Chinese Medicine of China, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China.
| |
Collapse
|
7
|
Hu Y, Feng C, Wu B, Kang M. A chromosome-scale assembly of the early-flowering Prunus campanulata and comparative genomics of cherries. Sci Data 2023; 10:920. [PMID: 38129445 PMCID: PMC10739980 DOI: 10.1038/s41597-023-02843-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023] Open
Abstract
Prunus campanulata is an important flowering cherry germplasm of high ornamental value. Given its early-flowering phenotypes, P. campanulata could be used for molecular breeding of ornamental species and fruit crops belonging to the subgenus Cerasus. Here, we report a chromosome-scale assembly of P. campanulata with a genome size of 282.6 Mb and a contig N50 length of 12.04 Mb. The genome contained 24,861 protein-coding genes, of which 24,749 genes (99.5%) were functionally annotated, and 148.20 Mb (52.4%) of the assembled sequences are repetitive sequences. A combination of genomic and population genomic analyses revealed a number of genes under positive selection or accelerated molecular evolution in P. campanulata. Our study provides a reliable genome resource, and lays a solid foundation for genetic improvement of flowering cherry germplasm.
Collapse
Affiliation(s)
- Yuxi Hu
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Feng
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
| | - Baohuan Wu
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
| | - Ming Kang
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
- South China National Botanical Garden, Guangzhou, 510650, China.
| |
Collapse
|
8
|
Gonçalves AC, Falcão A, Alves G, Silva LR, Flores-Félix JD. Diversity of Culture Microorganisms from Portuguese Sweet Cherries. Life (Basel) 2023; 13:2323. [PMID: 38137924 PMCID: PMC10744636 DOI: 10.3390/life13122323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Consumers today seek safe functional foods with proven health-promoting properties. Current evidence shows that a healthy diet can effectively alleviate oxidative stress levels and reduce inflammatory markers, thereby preventing the occurrence of many types of cancer, hypertension, and cardiovascular and neurological pathologies. Nevertheless, as fruits and vegetables are mainly consumed fresh, they can serve as vectors for the transmission of pathogenic microorganisms associated with various disease outbreaks. As a result, there has been a surge in interest in the microbiome of fruits and vegetables. Therefore, given the growing interest in sweet cherries, and since their microbial communities have been largely ignored, the primary purpose of this study is to investigate their culturome at various maturity stages for the first time. A total of 55 microorganisms were isolated from sweet cherry fruit, comprising 23 bacteria and 32 fungi species. Subsequently, the selected isolates were molecularly identified by amplifying the 16S rRNA gene and ITS region. Furthermore, it was observed that the communities became more diverse as the fruit matured. The most abundant taxa included Pseudomonas and Ralstonia among the bacteria, and Metschnikowia, Aureobasidium, and Hanseniaspora among the fungi.
Collapse
Affiliation(s)
- Ana C. Gonçalves
- CICS–UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (G.A.); (L.R.S.)
- CIBIT—Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548 Coimbra, Portugal;
| | - Amílcar Falcão
- CIBIT—Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548 Coimbra, Portugal;
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Gilberto Alves
- CICS–UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (G.A.); (L.R.S.)
| | - Luís R. Silva
- CICS–UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (G.A.); (L.R.S.)
- CPIRN-UDI/IPG—Centro de Potencial e Inovação em Recursos Naturais, Unidade de Investigação para o Desenvolvimento do Interior do Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal
- Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, Pólo II—Pinhal de Marrocos, University of Coimbra, 3030-790 Coimbra, Portugal
| | - José D. Flores-Félix
- CICS–UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (G.A.); (L.R.S.)
- Microbiology and Genetics Department, University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
9
|
Shen X, Zong W, Li Y, Liu X, Zhuge F, Zhou Q, Zhou S, Jiang D. Evolution of Cherries ( Prunus Subgenus Cerasus) Based on Chloroplast Genomes. Int J Mol Sci 2023; 24:15612. [PMID: 37958595 PMCID: PMC10650623 DOI: 10.3390/ijms242115612] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Cherries (Prunus Subgenus Cerasus) have economic value and ecological significance, yet their phylogeny, geographic origin, timing, and dispersal patterns remain challenging to understand. To fill this gap, we conducted a comprehensive analysis of the complete chloroplast genomes of 54 subg. Cerasus individuals, along with 36 additional genomes from the NCBI database, resulting in a total of 90 genomes for comparative analysis. The chloroplast genomes of subg. Cerasus exhibited varying sizes and consisted of 129 genes, including protein-coding, transfer RNA, and ribosomIal RNA genes. Genomic variation was investigated through InDels and SNPs, showcasing distribution patterns and impact levels. A comparative analysis of chloroplast genome boundaries highlighted variations in inverted repeat (IR) regions among Cerasus and other Prunus species. Phylogeny based on whole-chloroplast genome sequences supported the division of Prunus into three subgenera, I subg. Padus, II subg. Prunus and III subg. Cerasus. The subg. Cerasus was subdivided into seven lineages (IIIa to IIIg), which matched roughly to taxonomic sections. The subg. Padus first diverged 51.42 Mya, followed by the separation of subg. Cerasus from subg. Prunus 39.27 Mya. The subg. Cerasus started diversification at 15.01 Mya, coinciding with geological and climatic changes, including the uplift of the Qinghai-Tibet Plateau and global cooling. The Himalayans were the refuge of cherries, from which a few species reached Europe through westward migration and another species reached North America through northeastward migration. The mainstage of cherry evolution was on the Qing-Tibet Plateau and later East China and Japan as well. These findings strengthen our understanding of the evolution of cherry and provide valuable insights into the conservation and sustainable utilization of cherry's genetic resources.
Collapse
Affiliation(s)
- Xin Shen
- Institute of Tree Breeding, Zhejiang Academy of Forestry, 399 Liuhe Road, Hangzhou 310023, China; (X.S.); (W.Z.); (Y.L.); (X.L.); (F.Z.); (Q.Z.)
| | - Wenjin Zong
- Institute of Tree Breeding, Zhejiang Academy of Forestry, 399 Liuhe Road, Hangzhou 310023, China; (X.S.); (W.Z.); (Y.L.); (X.L.); (F.Z.); (Q.Z.)
| | - Yingang Li
- Institute of Tree Breeding, Zhejiang Academy of Forestry, 399 Liuhe Road, Hangzhou 310023, China; (X.S.); (W.Z.); (Y.L.); (X.L.); (F.Z.); (Q.Z.)
| | - Xinhong Liu
- Institute of Tree Breeding, Zhejiang Academy of Forestry, 399 Liuhe Road, Hangzhou 310023, China; (X.S.); (W.Z.); (Y.L.); (X.L.); (F.Z.); (Q.Z.)
| | - Fei Zhuge
- Institute of Tree Breeding, Zhejiang Academy of Forestry, 399 Liuhe Road, Hangzhou 310023, China; (X.S.); (W.Z.); (Y.L.); (X.L.); (F.Z.); (Q.Z.)
| | - Qi Zhou
- Institute of Tree Breeding, Zhejiang Academy of Forestry, 399 Liuhe Road, Hangzhou 310023, China; (X.S.); (W.Z.); (Y.L.); (X.L.); (F.Z.); (Q.Z.)
| | - Shiliang Zhou
- State Key Laboratory of Systematic & Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Dongyue Jiang
- Institute of Tree Breeding, Zhejiang Academy of Forestry, 399 Liuhe Road, Hangzhou 310023, China; (X.S.); (W.Z.); (Y.L.); (X.L.); (F.Z.); (Q.Z.)
| |
Collapse
|
10
|
Su N, Hodel RG, Wang X, Wang JR, Xie SY, Gui CX, Zhang L, Chang ZY, Zhao L, Potter D, Wen J. Molecular phylogeny and inflorescence evolution of Prunus (Rosaceae) based on RAD-seq and genome skimming analyses. PLANT DIVERSITY 2023; 45:397-408. [PMID: 37601549 PMCID: PMC10435964 DOI: 10.1016/j.pld.2023.03.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 08/22/2023]
Abstract
Prunus is an economically important genus widely distributed in the temperate Northern Hemisphere. Previous studies on the genus using a variety of loci yielded conflicting phylogenetic hypotheses. Here, we generated nuclear reduced representation sequencing data and plastid genomes for 36 Prunus individuals and two outgroups. Both nuclear and plastome data recovered a well-resolved phylogeny. The species were divided into three main clades corresponding to their inflorescence types, - the racemose group, the solitary-flower group and the corymbose group - with the latter two sister to one another. Prunus was inferred to have diversified initially in the Late Cretaceous around 67.32 million years ago. The diversification of the three major clades began between the Paleocene and Miocene, suggesting that paleoclimatic events were an important driving force for Prunus diversification. Ancestral state reconstructions revealed that the most recent common ancestor of Prunus had racemose inflorescences, and the solitary-flower and corymb inflorescence types were derived by reduction of flower number and suppression of the rachis, respectively. We also tested the hybrid origin hypothesis of the racemose group proposed in previous studies. Prunus has undergone extensive hybridization events, although it is difficult to identify conclusively specific instances of hybridization when using SNP data, especially deep in the phylogeny. Our study provides well-resolved nuclear and plastid phylogenies of Prunus, reveals substantial cytonuclear discord at shallow scales, and sheds new light on inflorescence evolution in this economically important lineage.
Collapse
Affiliation(s)
- Na Su
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
- Herbarium of Northwest A&F University, Yangling 712100, China
| | - Richard G.J. Hodel
- Department of Botany, National Museum of Natural History, MRC 166, Smithsonian Institution, Washington, DC 20013-7012, USA
| | - Xi Wang
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
- Herbarium of Northwest A&F University, Yangling 712100, China
| | - Jun-Ru Wang
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
- Herbarium of Northwest A&F University, Yangling 712100, China
| | - Si-Yu Xie
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
- Herbarium of Northwest A&F University, Yangling 712100, China
| | - Chao-Xia Gui
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
- Herbarium of Northwest A&F University, Yangling 712100, China
| | - Ling Zhang
- College of Life Sciences, Tarim University, Alaer 843300, China
| | - Zhao-Yang Chang
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
- Herbarium of Northwest A&F University, Yangling 712100, China
| | - Liang Zhao
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
- Herbarium of Northwest A&F University, Yangling 712100, China
| | - Daniel Potter
- Department of Plant Sciences, MS2, University of California, Davis, CA 95616, USA
| | - Jun Wen
- Department of Botany, National Museum of Natural History, MRC 166, Smithsonian Institution, Washington, DC 20013-7012, USA
| |
Collapse
|
11
|
Chen T, Chen Q, Zhang J, Wang Y, Wang H, Zhang Y, Luo Y, Tang H, Wang X. Phylogeography of 912 Cherry Accessions Insight into Independent Origins of Fruiting Cherries and Domestication Footprints of Cultivated Chinese Cherry ( Prunus pseudocerasus Lindl.). PLANTS (BASEL, SWITZERLAND) 2023; 12:2258. [PMID: 37375885 DOI: 10.3390/plants12122258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/03/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023]
Abstract
The subgenus Cerasus (Rosaceae) contain numerous fruit trees and ornamentals with high economic values. The origin and genetic divergence among various types of fruiting cherries always remain a perplexing issue. We employed three plastom fragments and ITS sequence matrices derived from 912 cherry accessions to elucidate the phylogeographic structure and genetic relationship among fruiting cherries, as well as the origin and domestication of cultivated Chinese cherry. The integration of haplotype genealogies, Approximate Bayesian computation (ABC) approach and estimation of genetic differentiation within and between different groups and lineages has facilitated the resolution of several previously unresolved questions. Firstly, distant phylogenetic relationships between Cerasus and Microcerasus accessions, as indicated by both nuclear and chloroplast data, suggested independent origins and evolution for these two taxa. Moreover, two distinct geographic origin centers (Europe and China) have been confirmed, with significant phylogeographic signals and high genetic differentiation observed between cherries from these regions. This may be attributed to long-term geographic isolation caused by Himalaya-Hengduan Mountains. Our phylogeographic analyses and ABC analysis suggested that cherries inhabiting in China may have undergone multiple hybridization events during the glacial refugia of the eastern edge and southern Himalaya-Hengduan Mountains, followed by rapid radiation throughout their current habitats during interglacial period. The discrepancy between nuclear and chloroplast data may be attributed to hybridization events and incomplete lineage sorting. Furthermore, we speculated that the domesticated Chinese cherries were derived from wild accessions in Longmenshan Fault Zones approximately 2600 years ago. We have also traced the domestication processes and dispersal routes of cultivated Chinese cherries.
Collapse
Affiliation(s)
- Tao Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Qing Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Jing Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Hao Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yong Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Ya Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Haoru Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaorong Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
12
|
Goeckeritz CZ, Rhoades KE, Childs KL, Iezzoni AF, VanBuren R, Hollender CA. Genome of tetraploid sour cherry (Prunus cerasus L.) 'Montmorency' identifies three distinct ancestral Prunus genomes. HORTICULTURE RESEARCH 2023; 10:uhad097. [PMID: 37426879 PMCID: PMC10323630 DOI: 10.1093/hr/uhad097] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/04/2023] [Indexed: 07/11/2023]
Abstract
Sour cherry (Prunus cerasus L.) is a valuable fruit crop in the Rosaceae family and a hybrid between progenitors closely related to extant Prunus fruticosa (ground cherry) and Prunus avium (sweet cherry). Here we report a chromosome-scale genome assembly for sour cherry cultivar Montmorency, the predominant cultivar grown in the USA. We also generated a draft assembly of P. fruticosa to use alongside a published P. avium sequence for syntelog-based subgenome assignments for 'Montmorency' and provide compelling evidence P. fruticosa is also an allotetraploid. Using hierarchal k-mer clustering and phylogenomics, we show 'Montmorency' is trigenomic, containing two distinct subgenomes inherited from a P. fruticosa-like ancestor (A and A') and two copies of the same subgenome inherited from a P. avium-like ancestor (BB). The genome composition of 'Montmorency' is AA'BB and little-to-no recombination has occurred between progenitor subgenomes (A/A' and B). In Prunus, two known classes of genes are important to breeding strategies: the self-incompatibility loci (S-alleles), which determine compatible crosses, successful fertilization, and fruit set, and the Dormancy Associated MADS-box genes (DAMs), which strongly affect dormancy transitions and flowering time. The S-alleles and DAMs in 'Montmorency' and P. fruticosa were manually annotated and support subgenome assignments. Lastly, the hybridization event 'Montmorency' is descended from was estimated to have occurred less than 1.61 million years ago, making sour cherry a relatively recent allotetraploid. The 'Montmorency' genome highlights the evolutionary complexity of the genus Prunus and will inform future breeding strategies for sour cherry, comparative genomics in the Rosaceae, and questions regarding neopolyploidy.
Collapse
Affiliation(s)
- Charity Z Goeckeritz
- Department of Horticulture, Michigan State University, 1066 Bogue St, East Lansing, MI 48824, USA
| | - Kathleen E Rhoades
- Department of Horticulture, Michigan State University, 1066 Bogue St, East Lansing, MI 48824, USA
| | - Kevin L Childs
- Department of Plant Biology, Michigan State University, 612 Wilson Road, East Lansing, MI 48824, USA
| | - Amy F Iezzoni
- Department of Horticulture, Michigan State University, 1066 Bogue St, East Lansing, MI 48824, USA
| | - Robert VanBuren
- Department of Horticulture, Michigan State University, 1066 Bogue St, East Lansing, MI 48824, USA
| | - Courtney A Hollender
- Department of Horticulture, Michigan State University, 1066 Bogue St, East Lansing, MI 48824, USA
| |
Collapse
|
13
|
Youssef D, El-Bakatoushi R, Elframawy A, El-Sadek L, Badan GE. Molecular phylogenetic study of flavonoids in medicinal plants: a case study family Apiaceae. JOURNAL OF PLANT RESEARCH 2023; 136:305-322. [PMID: 36853579 PMCID: PMC10126080 DOI: 10.1007/s10265-023-01442-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/12/2023] [Indexed: 05/25/2023]
Abstract
The current study examined the phylogenetic pattern of medicinal species of the family Apiaceae based on flavonoid groups production, as well as the overall mechanism of the key genes involved in flavonol and flavone production. Thirteen species of the family Apiaceae were used, including Eryngium campestre from the subfamily Saniculoideae, as well as Cuminum cyminum, Carum carvi, Coriandrum sativum, Apium graveolens, Petroselinum crispum, Pimpinella anisum, Anethum graveolens, Foeniculum vulgare, Daucus carota, Ammi majus, Torilis arvensis, and Deverra tortuosa from the subfamily Apioideae. The seeds were cultivated, and the leaves were collected to estimate flavonoids and their groups, physiological factors, transcription levels of flavonol and flavone production-related genes. The phylogenetic relationship between the studied species was established using the L-ribosomal 16 (rpl16) chloroplast gene. The results revealed that the studied species were divided into two patterns: six plant species, E. campestre, C. carvi, C. sativum, P. anisum, An. graveolens, and D. carota, contained low content of flavonoids, while the other seven species had high content. This pattern of flavonoids production coincided with the phylogenetic relationships between the studied species. In contrast, the phylogeny of the flavonol and flavone synthase genes was incompatible with the quantitative production of their products. The study concluded that the increment in the production of flavonol depends on the high expression of chalcone synthase, chalcone isomerase, flavanone 3 hydroxylase, flavonol synthase, the increase of Abscisic acid, sucrose, and phenyl ammonia lyase, while flavone mainly depends on evolution and on the high expression of the flavone synthase gene.
Collapse
Affiliation(s)
- Dalia Youssef
- Biology and Geology Sciences Department, Faculty of Education, University of Alexandria, EgyptAlexandria, El-Shatby, 21526, Egypt.
| | - Ranya El-Bakatoushi
- Biology and Geology Sciences Department, Faculty of Education, University of Alexandria, EgyptAlexandria, El-Shatby, 21526, Egypt
| | - Asmaa Elframawy
- Nucleic Acids Research Department, Genetic Engineering & Biotechnology Research Institute (GEBRI), City for Scientific Research and Technological Applications, Borg El-Arab, Alexandria, 21933, Egypt
| | - Laila El-Sadek
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Camp Caesar, Alexandria, 21525, Egypt
| | - Ghada El Badan
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Camp Caesar, Alexandria, 21525, Egypt
| |
Collapse
|
14
|
Nie C, Zhang Y, Zhang X, Xia W, Sun H, Zhang S, Li N, Ding Z, Lv Y, Wang N. Genome assembly, resequencing and genome-wide association analyses provide novel insights into the origin, evolution and flower colour variations of flowering cherry. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:519-533. [PMID: 36786729 DOI: 10.1111/tpj.16151] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 05/10/2023]
Abstract
Flowering cherry is a very popular species around the world. High-quality genome resources for different elite cultivars are needed, and the understanding of their origins and the regulation of key ornamental traits are limited for this tree. Here, a high-quality chromosome-scale genome of Prunus campanulata 'Plena' (PCP), which is a native and elite flowering cherry cultivar in China, was generated. The contig N50 of the genome was 18.31 Mb, and 99.98% of its contigs were anchored to eight chromosomes. Furthermore, a total of 306 accessions of flowering cherry germplasm and six lines of outgroups were collected. Resequencing of these 312 lines was performed, and 761 267 high-quality genomic variants were obtained. The origins of flowering cherry were predicted, and these 306 accessions could be classified into three clades, A, B and C. According to phylogenetic analysis, we predicted two origins of flowering cherry. Flowering cherry in clade A originated in southern China, such as in the Himalayan Mountains, while clades B and C originated in northeastern China. Finally, a genome-wide association study of flower colour was performed for all 312 accessions of flowering cherry germplasm. A total of seven quantitative trait loci (QTLs) were identified. One gene encoding glycosylate transferase was predicted as the candidate gene for one QTL. Taken together, our results provide a valuable genomic resource and novel insights into the origin, evolution and flower colour variations of flowering cherry.
Collapse
Affiliation(s)
- Chaoren Nie
- School of Landscape Architecture, Beijing Forestry of University, Beijing, 100083, China
- Wuhan Institute of Landscape Architecture, Wuhan, 430081, China
| | - Yingjie Zhang
- Yantai Academy of Agricultural Sciences, Yantai, Shandong, 265500, China
| | - Xiaoqin Zhang
- Wuhan Institute of Landscape Architecture, Wuhan, 430081, China
| | - Wensheng Xia
- Wuhan Institute of Landscape Architecture, Wuhan, 430081, China
| | - Hongbing Sun
- Wuhan Institute of Landscape Architecture, Wuhan, 430081, China
| | - Sisi Zhang
- Wuhan Institute of Landscape Architecture, Wuhan, 430081, China
| | - Na Li
- Wuhan Institute of Landscape Architecture, Wuhan, 430081, China
| | - Zhaoquan Ding
- Wuhan Institute of Landscape Architecture, Wuhan, 430081, China
| | - Yingmin Lv
- School of Landscape Architecture, Beijing Forestry of University, Beijing, 100083, China
| | - Nian Wang
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
15
|
Adie H, Lawes MJ. Solutions to fire and shade: resprouting, growing tall and the origin of Eurasian temperate broadleaved forest. Biol Rev Camb Philos Soc 2023; 98:643-661. [PMID: 36444419 DOI: 10.1111/brv.12923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022]
Abstract
Tree species of Eurasian broadleaved forest possess two divergent trait syndromes with contrasting patterns of resource allocation adapted to different selection environments: short-stature basal resprouters that divert resources to a bud bank adapted to frequent and severe disturbances such as fire and herbivory, and tall trees that delay reproduction by investing in rapid height growth to escape shading. Drawing on theory developed in savanna ecosystems, we propose a conceptual framework showing that the possession of contrasting trait syndromes is essential for the persistence of broadleaved trees in an open ecosystem that burns. Consistent with this hypothesis, trees of modern Eurasian broadleaved forest bear a suite of traits that are adaptive to surface and crown-fire regimes. We contend that limited opportunities in grassland restricts recruitment to disturbance-free refugia, and en masse establishment creates a wooded environment where shade limits the growth of light-demanding savanna plants. Rapid height growth, which involves investment in structural support and the switch from a multi-stemmed to a monopodial growth form, is adaptive in this shaded environment. Although clustering reduces surface fuel loads, these establishment nuclei are vulnerable to high-intensity crown fires. The lethal effects of canopy fire are avoided by seasonal leaf shedding, and aerial resprouting enhances rapid post-fire recovery of photosynthetic capacity. While these woody formations satisfy the structural definition of forest, their constituents are clearly derived from savanna. Contrasting trait syndromes thus represent the shift from consumer to resource regulation in savanna ecosystems. Consistent with global trends, the diversification of most contemporary broadleaved taxa coincided with the spread of grasslands, a surge in fire activity and a decline in wooded ecosystems in the late Miocene-Pliocene. Recognition that Eurasian broadleaved forest has savanna origins and persists as an alternative state with adjacent grassy ecosystems has far-reaching management implications in accordance with functional rather than structural criteria. Shade is a severe constraint to the regeneration and growth of both woody and herbaceous growth forms in consumer-regulated ecosystems. However, these ecosystems are highly resilient to disturbance, an essential process that maintains diversity especially among the species-rich herbaceous component that is vulnerable to shading when consumer behaviour is altered.
Collapse
Affiliation(s)
- Hylton Adie
- School of Life Sciences, University of KwaZulu-Natal, P/Bag X01, Scottsville, 3209, South Africa
| | - Michael J Lawes
- School of Life Sciences, University of KwaZulu-Natal, P/Bag X01, Scottsville, 3209, South Africa
- Institute of Biodiversity and Environmental Conservation (IBEC), Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia
| |
Collapse
|
16
|
Micromorphology of the leaf surface in some species of Dryadoideae (Rosaceae). Micron 2023; 167:103428. [PMID: 36796290 DOI: 10.1016/j.micron.2023.103428] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/27/2023] [Accepted: 02/04/2023] [Indexed: 02/12/2023]
Abstract
The leaf surface of 5 species of the subfamily Dryadoideae (Rosaceae) was studied for the first time by cryoscanning electron microscopy. In the studied representatives of Dryadoideae, some signs of micromorphology were found that are characteristic of other Rosaceae. In Dryas drummondii and D. x suendermannii, cuticular folding was found on the cell surface of the adaxial leaf side. Stomatal dimorphism was found in Cercocarpus betuloides. A representative of the genus Cercocarpus had pronounced differences from the species of the genus Dryas in less pubescence of the abaxial surface with shorter and thicker trichomes, in small elongated stomata, and in smaller cells of the adaxial epidermis. Glandular trichomes and long multicellular outgrowths (possibly emergences) were found on veins in D. grandis. Structures resembling hydathodes or nectaries have also been noted on the leaf margin in this species.
Collapse
|
17
|
Ternjak T, Barreneche T, Šiško M, Ivančič A, Šušek A, Quero-García J. Genetic diversity and structure of Slovenian native germplasm of plum species ( P. domestica L., P. cerasifera Ehrh. and P. spinosa L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1150459. [PMID: 37025128 PMCID: PMC10070851 DOI: 10.3389/fpls.2023.1150459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
Slovenia has particular climatic, soil, geographic and historical conditions that lead to long tradition of plum cultivation and use. In this work, a set of 11 SSR and three universal cpDNA markers, as well as flow cytometry, were used to (1) evaluate the genetic diversity of 124 accessions of the three Prunus species (P. domestica L., P. cerasifera Ehrh., and P. spinosa L.), (2) investigate the possible involvement of P. cerasifera and P. spinosa species in P. domestica origin, (3) study the genetic relationships and variability among the most typical P. domestica accessions present in Slovenia. Ten haplotypes of cpDNA were identified and clustered into three groups according to the Neighbor-Joining analysis (NJ). All 11 SSR primer pairs were polymorphic, revealing 116 unique genotypes. A total of 328 alleles were detected with an average value of 29.82 alleles per locus, showing relatively high diversity. Bayesian analysis of genetic structure was used to identify two ancestral populations in the analyses of all three species as well as in a separate set consisting of P. domestica material only. Principal Coordinate Analysis (PCoA) showed that accessions clustered largely in agreement with Bayesian analysis. Neighbor-Joining analysis grouped 71 P. domestica accessions into three clusters with many subgroups that exhibited complex arrangement. Most accessions clustered in agreement with traditional pomological groups, such as common prunes, mirabelle plums and greengages. In this study, the analyses revealed within P. domestica pool valuable local landraces, such as traditional prunes or bluish plums, which seem to be highly interesting from a genetic point of view. Moreover, complementary approaches allowed us to distinguish between the three species and to gain insights into the origin of plum. The results will be instrumental in understanding the diversity of Slovenian plum germplasm, improving the conservation process, recovering local genotypes and enriching existing collections of plant genetic resources.
Collapse
Affiliation(s)
- T. Ternjak
- Faculty of Agriculture and Life Sciences, University of Maribor, Hoče, Slovenia
| | - T. Barreneche
- INRAE, Univ. Bordeaux, UMR BFP, Villenave d’Ornon, France
| | - M. Šiško
- Faculty of Agriculture and Life Sciences, University of Maribor, Hoče, Slovenia
| | - A. Ivančič
- Faculty of Agriculture and Life Sciences, University of Maribor, Hoče, Slovenia
| | - A. Šušek
- Faculty of Agriculture and Life Sciences, University of Maribor, Hoče, Slovenia
| | | |
Collapse
|
18
|
Wan T, Qiao BX, Zhou J, Shao KS, Pan LY, An F, He XS, Liu T, Li PK, Cai YL. Evolutionary and phylogenetic analyses of 11 Cerasus species based on the complete chloroplast genome. FRONTIERS IN PLANT SCIENCE 2023; 14:1070600. [PMID: 36938043 PMCID: PMC10022824 DOI: 10.3389/fpls.2023.1070600] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
The subgenus Cerasus, one of the most important groups in the genus Prunus sensu lato, comprises over 100 species; however, the taxonomic classification and phylogenetic relationships of Cerasus remain controversial. Therefore, it is necessary to reconstruct the phylogenetic tree for known Cerasus species. Here, we report the chloroplast (cp) genome sequences of 11 Cerasus species to provide insight into evolution of the plastome. The cp genomes of the 11 Cerasus species (157,571-158,830 bp) displayed a typical quadripartite circular structure. The plastomes contain 115 unique genes, including 80 protein-coding genes, four ribosomal RNAs, and 31 transfer RNAs. Twenty genes were found to be duplicated in inverted repeats as well as at the boundary. The conserved non-coding sequences showed significant divergence compared with the coding regions. We found 12 genes and 14 intergenic regions with higher nucleotide diversity and more polymorphic sites, including matK, rps16, rbcL, rps16-trnQ, petN-psbM, and trnL-trnF. During cp plastome evolution, the codon profile has been strongly biased toward the use of A/T at the third base, and leucine and isoleucine codons appear the most frequently. We identified strong purifying selection on the rpoA, cemA, atpA, and petB genes; whereas ccsA, rps19, matK, rpoC2, ycf2 and ndhI showed a signature of possible positive selection during the course of Cerasus evolution. In addition, we further analyzed the phylogenetic relationships of these species with 57 other congenic related species.Through reconstructing the Cerasus phylogeny tree, we found that true cherry is similar to the flora of China forming a distinct group, from which P. mahaleb was separated as an independent subclade. Microcerasus was genetically closer to Amygdalus, Armeniaca, and Prunus (sensu stricto) than to members of true cherry, whereas P. japonica and P. tomentosa were most closely related to P. triloba and P. pedunculata. However, P. tianshanica formed a clade with P. cerasus, P. fruticosa, P. cerasus × P. canescens 'Gisela 6', and P. avium as a true cherry group. These results provide new insights into the plastome evolution of Cerasus, along with potential molecular markers and candidate DNA barcodes for further phylogenetic and phylogeographic analyses of Cerasus species.
Collapse
Affiliation(s)
- Tian Wan
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling, China
| | - Bai-xue Qiao
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling, China
| | - Jing Zhou
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling, China
| | - Ke-sen Shao
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling, China
| | - Liu-yi Pan
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling, China
| | - Feng An
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling, China
| | - Xu-sheng He
- College of Natural Resources and Environment, Northwest Agriculture & Forestry University, Yangling, China
| | - Tao Liu
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling, China
| | - Ping-ke Li
- Center of Experimental Station, Northwest Agriculture & Forestry University, Yangling, China
| | - Yu-liang Cai
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling, China
| |
Collapse
|
19
|
Abdulrahman SS, Daştan SD, Shahbaz SE, Selamoglu Z. Phylogenetic Analysis of Prunus Genus Using Nuclear and Chloroplast Gene Markers as a Bioorganic Structure Profiling. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
20
|
Prunus Knotted-like Genes: Genome-Wide Analysis, Transcriptional Response to Cytokinin in Micropropagation, and Rootstock Transformation. Int J Mol Sci 2023; 24:ijms24033046. [PMID: 36769369 PMCID: PMC9918302 DOI: 10.3390/ijms24033046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Knotted1-like homeobox (KNOX) transcription factors are involved in plant development, playing complex roles in aerial organs. As Prunus species include important fruit tree crops of Italy, an exhaustive investigation of KNOX genes was performed using genomic and RNA-seq meta-analyses. Micropropagation is an essential technology for rootstock multiplication; hence, we investigated KNOX transcriptional behavior upon increasing 6-benzylaminopurine (BA) doses and the effects on GF677 propagules. Moreover, gene function in Prunus spp. was assessed by Gisela 6 rootstock transformation using fluorescence and peach KNOX transgenes. Based on ten Prunus spp., KNOX proteins fit into I-II-M classes named after Arabidopsis. Gene number, class member distribution, and chromosome positions were maintained, and exceptions supported the diversification of Prunus from Cerasus subgenera, and that of Armeniaca from the other sections within Prunus. Cytokinin (CK) cis-elements occurred in peach and almond KNOX promoters, suggesting a BA regulatory role in GF677 shoot multiplication as confirmed by KNOX expression variation dependent on dose, time, and interaction. The tripled BA concentration exacerbated stress, altered CK perception genes, and modified KNOX transcriptions, which are proposed to concur in in vitro anomalies. Finally, Gisela 6 transformation efficiency varied (2.6-0.6%) with the genetic construct, with 35S:GFP being more stable than 35S:KNOPE1 lines, which showed leaf modification typical of KNOX overexpression.
Collapse
|
21
|
Chromosome-Level Assembly of Flowering Cherry ( Prunus campanulata) Provides Insight into Anthocyanin Accumulation. Genes (Basel) 2023; 14:genes14020389. [PMID: 36833316 PMCID: PMC9957189 DOI: 10.3390/genes14020389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
The flowering cherries (genus Prunus, subgenus Cerasus) are popular ornamental trees in China, Japan, Korea, and elsewhere. Prunus campanulata Maxim. is an important species of flowering cherry native to Southern China, which is also distributed in Taiwan, the Ryukyu Islands of Japan, and Vietnam. It produces bell-shaped flowers with colors ranging from bright pink to crimson during the Chinese Spring Festival from January to March each year. We selected the P. campanulata cultivar "Lianmeiren", with only 0.54% of heterozygosity, as the focus of this study, and generated a high-quality chromosome-scale genome assembly of P. campanulata by combining Pacific Biosciences (PacBio) single-molecule sequencing, 10× Genomics sequencing, and high-throughput chromosome conformation capture (Hi-C) technology. We first assembled a 300.48 Mb genome assembly with a contig N50 length of 2.02 Mb. In total, 28,319 protein-coding genes were predicted from the genome, 95.8% of which were functionally annotated. Phylogenetic analyses indicated that P. campanulata diverged from a common ancestor of cherry approximately 15.1 million years ago. Comparative genomic analyses showed that the expanded gene families were significantly involved in ribosome biogenesis, diterpenoid biosynthesis, flavonoid biosynthesis, and circadian rhythm. Furthermore, we identified 171 MYB genes from the P. campanulata genome. Based on the RNA-seq of five organs at three flowering stages, expression analyses revealed that the majority of the MYB genes exhibited tissue-specific expression patterns, and some genes were identified as being associated with anthocyanin accumulation. This reference sequence is an important resource for further studies of floral morphology and phenology, and comparative genomics of the subgenera Cerasus and Prunus.
Collapse
|
22
|
Wu JQ, Wang Y, Sun P, Sun ZS, Shen JS. The complete chloroplast genome of Prunus phaeosticta (Hance) Maxim. (Rosaceae) and its phylogenetic implications. Mitochondrial DNA B Resour 2023; 8:136-140. [PMID: 36685644 PMCID: PMC9848267 DOI: 10.1080/23802359.2022.2163841] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The complete chloroplast (cp) genome of Prunus phaeosticta (Hance) Maxim. has been characterized by reference-based assembly using Illumina paired-end data. The circular complete cp genome is 158,752 bp in length, comprising a large single-copy (LSC) region of 87,085 bp, a small single-copy (SSC) region of 18,923 bp, and a pair of inverted repeats (IRs) of 26,372 bp.A total of 129 functional genes were identified, including 84 protein-coding genes, 37 tRNA genes, and 8 ribosomal RNA genes. The phylogenetic analysis showed that P. phaeosticta displayed a kinship to Prunus zippeliana.
Collapse
Affiliation(s)
- Jia-Qi Wu
- Flower, Forestry and Fruit Institute, Jinhua Academy of Agricultural Sciences, Jinhua, China
| | - Yi Wang
- Flower, Forestry and Fruit Institute, Jinhua Academy of Agricultural Sciences, Jinhua, China
| | - Ping Sun
- Flower, Forestry and Fruit Institute, Jinhua Academy of Agricultural Sciences, Jinhua, China
| | - Zhong-Shuai Sun
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, China
| | - Jian-Sheng Shen
- Flower, Forestry and Fruit Institute, Jinhua Academy of Agricultural Sciences, Jinhua, China,CONTACT Jian-Sheng Shen Flower, Forestry and Fruit Institute, Jinhua Academy of Agricultural Sciences, Jinhua, China
| |
Collapse
|
23
|
Rodamilans B, Oliveros JC, San León D, Martínez-García PJ, Martínez-Gómez P, García JA, Rubio M. sRNA Analysis Evidenced the Involvement of Different Plant Viruses in the Activation of RNA Silencing-Related Genes and the Defensive Response Against Plum pox virus of 'GF305' Peach Grafted with 'Garrigues' Almond. PHYTOPATHOLOGY 2022; 112:2012-2021. [PMID: 35302895 DOI: 10.1094/phyto-01-22-0032-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Plum pox virus (PPV) causes sharka disease in Prunus trees. Peach (P. persica) trees are severely affected by PPV, and no definitive source of genetic resistance has been identified. However, previous results showed that PPV-resistant 'Garrigues' almond (P. dulcis) was able to transfer its resistance to 'GF305' peach through grafting, reducing symptoms and viral load in PPV-infected plants. A recent study tried to identify genes responsible for this effect by studying messenger RNA expression through RNA sequencing in peach and almond plants, before and after grafting and before and after PPV infection. In this work, we used the same peach and almond samples but focused the high-throughput analyses on small RNA (sRNA) expression. We studied massive sequencing data and found an interesting pattern of sRNA overexpression linked to antiviral defense genes that suggested activation of these genes followed by downregulation to basal levels. We also discovered that 'Garrigues' almond plants were infected by different plant viruses that were transferred to peach plants. The large amounts of viral sRNA found in grafted peaches indicated a strong RNA silencing antiviral response and led us to postulate that these plant viruses could be collaborating in the observed "Garrigues effect."
Collapse
Affiliation(s)
| | - Juan C Oliveros
- Department of Plant Molecular Genetics, CNB-CSIC, 28049 Madrid, Spain
| | - David San León
- Department of Plant Molecular Genetics, CNB-CSIC, 28049 Madrid, Spain
| | | | | | - Juan A García
- Department of Plant Molecular Genetics, CNB-CSIC, 28049 Madrid, Spain
| | - Manuel Rubio
- Department of Plant Breeding, CEBAS-CSIC, 30100 Murcia, Spain
| |
Collapse
|
24
|
Brown J, Cunningham SA. Biogeographic history predicts bee community structure across floral resource gradients in south‐east Australia. DIVERS DISTRIB 2022. [DOI: 10.1111/ddi.13583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Julian Brown
- Fenner School of Environment and Society Australian National University Canberra Australian Capital Territory Australia
- School of Ecosystem and Forest Sciences University of Melbourne Richmond Victoria Australia
| | - Saul A. Cunningham
- Fenner School of Environment and Society Australian National University Canberra Australian Capital Territory Australia
| |
Collapse
|
25
|
Hulin MT, Vadillo Dieguez A, Cossu F, Lynn S, Russell K, Neale HC, Jackson RW, Arnold DL, Mansfield JW, Harrison RJ. Identifying resistance in wild and ornamental cherry towards bacterial canker caused by Pseudomonas syringae. PLANT PATHOLOGY 2022; 71:949-965. [PMID: 35909801 PMCID: PMC9305585 DOI: 10.1111/ppa.13513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 05/31/2023]
Abstract
Bacterial canker is a major disease of stone fruits and is a critical limiting factor to sweet cherry (Prunus avium) production worldwide. One important strategy for disease control is the development of resistant varieties. Partial varietal resistance in sweet cherry is discernible using shoot or whole tree inoculations; however, these quantitative differences in resistance are not evident in detached leaf assays. To identify novel sources of resistance to canker, we used a rapid leaf pathogenicity test to screen a range of wild cherry, ornamental Prunus species and sweet cherry × ornamental cherry hybrids with the canker pathogens, Pseudomonas syringae pvs syringae, morsprunorum races 1 and 2, and avii. Several Prunus accessions exhibited limited symptom development following inoculation with each of the pathogens, and this resistance extended to 16 P. syringae strains pathogenic on sweet cherry and plum. Resistance was associated with reduced bacterial multiplication after inoculation, a phenotype similar to that of commercial sweet cherry towards nonhost strains of P. syringae. Progeny resulting from a cross of a resistant ornamental species Prunus incisa with susceptible sweet cherry (P. avium) exhibited resistance indicating it is an inherited trait. Identification of accessions with resistance to the major bacterial canker pathogens is the first step towards characterizing the underlying genetic mechanisms of resistance and introducing these traits into commercial germplasm.
Collapse
Affiliation(s)
- Michelle T. Hulin
- NIAB EMREast MallingUK
- Present address:
The Sainsbury LaboratoryNorwichUK
| | | | | | | | | | - Helen C. Neale
- Centre for Research in BioscienceFaculty of Health and Applied SciencesThe University of the West of EnglandFrenchay CampusBristolUK
| | - Robert W. Jackson
- Birmingham Institute of Forest Research (BIFoR)University of BirminghamBirminghamUK
- School of BiosciencesUniversity of BirminghamBirminghamUK
| | - Dawn L. Arnold
- Centre for Research in BioscienceFaculty of Health and Applied SciencesThe University of the West of EnglandFrenchay CampusBristolUK
- Harper Adams UniversityNewportShropshireUK
| | | | | |
Collapse
|
26
|
Abstract
Plums are a large group of closely related stone fruit species and hybrids of worldwide economic importance and diffusion. This review deals with the main aspects concerning plum agrobiodiversity and its relationship with current and potential contributions offered by breeding in enhancing plum varieties. The most recent breeding achievements are revised according to updated information proceeding from relevant scientific reports and official inventories of plum genetic resources. A special emphasis has been given to the potential sources of genetic traits of interest for breeding programs as well as to the need for efficient and coordinated efforts aimed at efficaciously preserving the rich and underexploited extant plum agrobiodiversity. The specific objective of this review was to: (i) analyze and possibly evaluate the degree of biodiversity existing in the cultivated plum germplasm, (ii) examine the set of traits of prominent agronomic and pomological interest currently targeted by the breeders, and (iii) determine how and to what extent this germplasm was appropriately exploited in breeding programs or could represent concrete prospects for the future.
Collapse
|
27
|
Hodel RGJ, Zimmer EA, Liu BB, Wen J. Synthesis of Nuclear and Chloroplast Data Combined With Network Analyses Supports the Polyploid Origin of the Apple Tribe and the Hybrid Origin of the Maleae-Gillenieae Clade. FRONTIERS IN PLANT SCIENCE 2022; 12:820997. [PMID: 35145537 PMCID: PMC8822239 DOI: 10.3389/fpls.2021.820997] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/20/2021] [Indexed: 05/17/2023]
Abstract
Plant biologists have debated the evolutionary origin of the apple tribe (Maleae; Rosaceae) for over a century. The "wide-hybridization hypothesis" posits that the pome-bearing members of Maleae (base chromosome number x = 17) resulted from a hybridization and/or allopolyploid event between progenitors of other tribes in the subfamily Amygdaloideae with x = 8 and x = 9, respectively. An alternative "spiraeoid hypothesis" proposed that the x = 17 of Maleae arose via the genome doubling of x = 9 ancestors to x = 18, and subsequent aneuploidy resulting in x = 17. We use publicly available genomic data-448 nuclear genes and complete plastomes-from 27 species representing all major tribes within the Amygdaloideae to investigate evolutionary relationships within the subfamily containing the apple tribe. Specifically, we use network analyses and multi-labeled trees to test the competing wide-hybridization and spiraeoid hypotheses. Hybridization occurred between an ancestor of the tribe Spiraeeae (x = 9) and an ancestor of the clade Sorbarieae (x = 9) + Exochordeae (x = 8) + Kerrieae (x = 9), giving rise to the clade Gillenieae (x = 9) + Maleae (x = 17). The ancestor of the Maleae + Gillenieae arose via hybridization between distantly related tribes in the Amygdaloideae (i.e., supporting the wide hybridization hypothesis). However, some evidence supports an aspect of the spiraeoid hypothesis-the ancestors involved in the hybridization event were likely both x = 9, so genome doubling was followed by aneuploidy to result in x = 17 observed in Maleae. By synthesizing existing genomic data with novel analyses, we resolve the nearly century-old mystery regarding the origin of the apple tribe. Our results also indicate that nuclear gene tree-species tree conflict and/or cytonuclear conflict are pervasive at several other nodes in subfamily Amygdaloideae of Rosaceae.
Collapse
Affiliation(s)
- Richard G. J. Hodel
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States
| | - Elizabeth A. Zimmer
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States
| | - Bin-Bin Liu
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Jun Wen
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States
| |
Collapse
|
28
|
Zhong Y, Chen Z, Cheng ZM. Different scales of gene duplications occurring at different times have jointly shaped the NBS-LRR genes in Prunus species. Mol Genet Genomics 2022; 297:263-276. [PMID: 35031863 PMCID: PMC8803762 DOI: 10.1007/s00438-021-01849-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 12/16/2021] [Indexed: 11/25/2022]
Abstract
In this study, genome-wide identification, phylogenetic relationships, duplication time and selective pressure of the NBS-LRR genes, an important group of plant disease-resistance genes (R genes), were performed to uncover their genetic evolutionary patterns in the six Prunus species. A total of 1946 NBS-LRR genes were identified; specifically, 589, 361, 284, 281, 318, and 113 were identified in Prunus yedoensis, P. domestica, P. avium, P. dulcis, P. persica and P. yedoensis var. nudiflora, respectively. Two NBS-LRR gene subclasses, TIR-NBS-LRR (TNL) and non-TIR-NBS-LRR (non-TNL), were also discovered. In total, 435 TNL and 1511 non-TNL genes were identified and could be classified into 30/55/75 and 103/158/191 multi-gene families, respectively, according to three different criteria. Higher Ks and Ka/Ks values were detected in TNL gene families than in non-TNL gene families. These results indicated that the TNL genes had more members involved in relatively ancient duplications and were affected by stronger selection pressure than the non-TNL genes. In general, the NBS-LRR genes were shaped by species-specific duplications, and lineage-specific duplications occurred at recent and relatively ancient periods among the six Prunus species. Therefore, different duplicated copies of NBS-LRRs can resist specific pathogens and will provide an R-gene library for resistance breeding in Prunus species.
Collapse
Affiliation(s)
- Yan Zhong
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Zhao Chen
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zong-Ming Cheng
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
29
|
Li J, Yan J, Yu L, Bai W, Nie D, Xiong Y, Wu S. The complete chloroplast genome of Prunus clarofolia (Rosaceae), a wild cherry endemic to China. Mitochondrial DNA B Resour 2022; 7:164-166. [PMID: 35005234 PMCID: PMC8741222 DOI: 10.1080/23802359.2021.2016080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Prunus clarofolia (Schneid.) Yu et Li is a very attractive wild flowering cherry endemic to China. In this study, the complete chloroplast genome of P. clarofolia was assembled. The total length of the chloroplast genome was 157,899 bp, containing a pair of inverted repeat regions of 26,393 bp each, separated by a small single-copy region of 19,142 bp, and a large single-copy region of 85,971 bp. The overall GC content of the chloroplast genome was 36.71%. The genome contained 131 genes, including 85 protein-coding genes, 37 tRNA genes, eight rRNA genes, and one pseudogene. Phylogenetic analysis revealed that P. clarofolia and P. pseudocerasus showed the closest relationship.
Collapse
Affiliation(s)
- Jianhui Li
- Institute of Economic Botany, Hunan Botanical Garden, Changsha, China
| | - Jiawen Yan
- Institute of Economic Botany, Hunan Botanical Garden, Changsha, China
| | - Lin Yu
- Institute of Economic Botany, Hunan Botanical Garden, Changsha, China
| | - Wenfu Bai
- Institute of Economic Botany, Hunan Botanical Garden, Changsha, China
| | - Dongling Nie
- Institute of Economic Botany, Hunan Botanical Garden, Changsha, China
| | - Ying Xiong
- Institute of Economic Botany, Hunan Botanical Garden, Changsha, China
| | - Sizheng Wu
- Institute of Economic Botany, Hunan Botanical Garden, Changsha, China
| |
Collapse
|
30
|
Zhang J, Wang Y, Chen T, Chen Q, Wang L, Liu ZS, Wang H, Xie R, He W, Li M, Liu CL, Yang SF, Li MY, Lin YX, Zhang YT, Zhang Y, Luo Y, Tang HR, Gao LZ, Wang XR. Evolution of Rosaceae Plastomes Highlights Unique Cerasus Diversification and Independent Origins of Fruiting Cherry. FRONTIERS IN PLANT SCIENCE 2021; 12:736053. [PMID: 34868119 PMCID: PMC8639594 DOI: 10.3389/fpls.2021.736053] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
Rosaceae comprises numerous types of economically important fruits, ornamentals, and timber. The lack of plastome characteristics has blocked our understanding of the evolution of plastome and plastid genes of Rosaceae crops. Using comparative genomics and phylogenomics, we analyzed 121 Rosaceae plastomes of 54 taxa from 13 genera, predominantly including Cerasus (true cherry) and its relatives. To our knowledge, we generated the first comprehensive map of genomic variation across Rosaceae plastomes. Contraction/expansion of inverted repeat regions and sequence losses of the two single-copy regions underlie large genomic variations in size among Rosaceae plastomes. Plastid protein-coding genes were characterized with a high proportion (over 50%) of synonymous variants and insertion-deletions with multiple triplets. Five photosynthesis-related genes were specially selected in perennial woody trees. Comparative genomic analyses implied divergent evolutionary patterns between pomaceous and drupaceous trees. Across all examined plastomes, unique and divergent evolution was detected in Cerasus plastomes. Phylogenomic analyses and molecular dating highlighted the relatively distant phylogenetic relationship between Cerasus and relatives (Microcerasus, Amygdalus, Prunus, and Armeniaca), which strongly supported treating the monophyletic true cherry group as a separate genus excluding dwarf cherry. High genetic differentiation and distinct phylogenetic relationships implied independent origins and domestication between fruiting cherries, particularly between Prunus pseudocerasus (Cerasus pseudocerasus) and P. avium (C. avium). Well-resolved maternal phylogeny suggested that cultivated P. pseudocerasus originated from Longmenshan Fault zone, the eastern edge of Himalaya-Hengduan Mountains, where it was subjected to frequent genomic introgression between its presumed wild ancestors and relatives.
Collapse
Affiliation(s)
- Jing Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Yan Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Tao Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Qing Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Lei Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Zhen-shan Liu
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Hao Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Rui Xie
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Wen He
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Ming Li
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Cong-li Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Shao-feng Yang
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Meng-yao Li
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yuan-xiu Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Yun-ting Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Yong Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Ya Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Hao-ru Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Li-zhi Gao
- Institute of Genomics and Bioinformatics, South China Agricultural University, Guangzhou, China
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Xiao-rong Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
31
|
Su N, Liu BB, Wang JR, Tong RC, Ren C, Chang ZY, Zhao L, Potter D, Wen J. On the Species Delimitation of the Maddenia Group of Prunus (Rosaceae): Evidence From Plastome and Nuclear Sequences and Morphology. FRONTIERS IN PLANT SCIENCE 2021; 12:743643. [PMID: 34707629 PMCID: PMC8542774 DOI: 10.3389/fpls.2021.743643] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/06/2021] [Indexed: 05/23/2023]
Abstract
The recognition, identification, and differentiation of closely related plant species present significant and notorious challenges to taxonomists. The Maddenia group of Prunus, which comprises four to seven species, is an example of a group in which species delimitation and phylogenetic reconstruction have been difficult, due to the lack of clear morphological distinctions, limited sampling, and low informativeness of molecular evidence. Thus, the precise number of species in the group and the relationships among them remain unclear. Here, we used genome skimming to generate the DNA sequence data for 22 samples, including 17 Maddenia individuals and five outgroups in Amygdaloideae of Rosaceae, from which we assembled the plastome and 446 single-copy nuclear (SCN) genes for each sample. The phylogenetic relationships of the Maddenia group were then reconstructed using both concatenated and coalescent-based methods. We also identified eight highly variable regions and detected simple sequence repeats (SSRs) and repeat sequences in the Maddenia species plastomes. The phylogenetic analysis based on the complete plastomes strongly supported three main subclades in the Maddenia group of Prunus, while five subclades were recognized based on the nuclear tree. The phylogenetic network analysis detected six hybridization events. Integrating the nuclear and morphological evidence, we proposed to recognize five species within the Maddenia group, i.e., Prunus fujianensis, P. himalayana, P. gongshanensis, P. hypoleuca, and P. hypoxantha. Within this group, the first three species are well-supported, while the gene flow occurring throughout the Maddenia group seems to be especially frequent between P. hypoleuca and P. hypoxantha, eroding the barrier between them. The phylogenetic trees based on eight concatenated hypervariable regions had a similar topology with the complete plastomes, showing their potential as molecular markers and effective barcodes for further phylogeographic studies on Maddenia.
Collapse
Affiliation(s)
- Na Su
- College of Life Sciences, Northwest A&F University, Yangling, China
- Herbarium of Northwest A&F University, Yangling, China
| | - Bin-bin Liu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- Department of Botany, National Museum of Natural History, MRC 166, Smithsonian Institution, Washington, DC, United States
| | - Jun-ru Wang
- College of Life Sciences, Northwest A&F University, Yangling, China
- Herbarium of Northwest A&F University, Yangling, China
| | - Ru-chang Tong
- College of Life Sciences, Northwest A&F University, Yangling, China
- Herbarium of Northwest A&F University, Yangling, China
| | - Chen Ren
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center of Conservation Biology, Core Botanical Gardens, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Zhao-yang Chang
- College of Life Sciences, Northwest A&F University, Yangling, China
- Herbarium of Northwest A&F University, Yangling, China
| | - Liang Zhao
- College of Life Sciences, Northwest A&F University, Yangling, China
- Herbarium of Northwest A&F University, Yangling, China
| | - Daniel Potter
- Department of Plant Sciences, MS2, University of California, Davis, Davis, CA, United States
| | - Jun Wen
- Department of Botany, National Museum of Natural History, MRC 166, Smithsonian Institution, Washington, DC, United States
| |
Collapse
|
32
|
Halász J, Molnár AB, Ilhan G, Ercisli S, Hegedűs A. Identification and Molecular Analysis of Putative Self-Incompatibility Ribonuclease Alleles in an Extreme Polyploid Species, Prunus laurocerasus L. FRONTIERS IN PLANT SCIENCE 2021; 12:715414. [PMID: 34630463 PMCID: PMC8495262 DOI: 10.3389/fpls.2021.715414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Cherry laurel (Prunus laurocerasus L.) is an extreme polyploid (2n = 22x) species of the Rosaceae family where gametophytic self-incompatibility (GSI) prevents inbreeding. This study was carried out to identify the S-ribonuclease alleles (S-RNases) of P. laurocerasus using PCR amplification of the first and second intron region of the S-RNase gene, cloning and sequencing. A total of 23 putative S-RNase alleles (S 1-S 20, S 5 m, S 13 m, and S 18 m) were sequenced from the second (C2) to the fifth conserved region (C5), and they shared significant homology to other Prunus S-RNases. The length of the sequenced amplicons ranged from 505 to 1,544 bp, and similar sizes prevented the proper discrimination of some alleles based on PCR analysis. We have found three putatively non-functional alleles (S 5 m, S 18 m, and S 9) coding for truncated proteins. Although firm conclusions cannot be drawn, our data seem to support that heteroallelic pollen cannot induce self-compatibility in this polyploid Prunus species. The identities in the deduced amino acid sequences between the P. laurocerasus and other Prunus S-RNases ranged between 44 and 100%, without a discontinuity gap separating the identity percentages of trans-specific and more distantly related alleles. The phylogenetic position, the identities in nucleotide sequences of the second intron and in deduced amino acid sequences found one or more trans-specific alleles for all but S 10, S 14, S 18, and S 20 cherry laurel RNases. The analysis of mutational frequencies in trans-specific allele pairs indicated the region RC4-C5 accepts the most amino acid replacements and hence it may contribute to allele-specificity. Our results form the basis of future studies to confirm the existence and function of the GSI system in this extreme polyploid species and the alleles identified will be also useful for phylogenetic studies of Prunus S-RNases as the number of S-RNase sequences was limited in the Racemose group of Prunus (where P. laurocerasus belongs to).
Collapse
Affiliation(s)
- Júlia Halász
- Group of Horticultural Plant Genetics, Department of Plant Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - Anna Borbála Molnár
- Group of Horticultural Plant Genetics, Department of Plant Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - Gulce Ilhan
- Department of Horticulture, Faculty of Agriculture, Ataturk University, Erzurum, Turkey
| | - Sezai Ercisli
- Department of Horticulture, Faculty of Agriculture, Ataturk University, Erzurum, Turkey
| | - Attila Hegedűs
- Group of Horticultural Plant Genetics, Department of Plant Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| |
Collapse
|
33
|
Abstract
Fleshy fruits can be divided between climacteric (CL, showing a typical rise in respiration and ethylene production with ripening after harvest) and non-climacteric (NC, showing no rise). However, despite the importance of the CL/NC traits in horticulture and the fruit industry, the evolutionary significance of the distinction remains untested. In this study, we tested the hypothesis that NC fruits, which ripen only on the plant, are adapted to tree dispersers (feeding in the tree), and CL fruits, which ripen after falling from the plant, are adapted to ground dispersers. A literature review of 276 reports of 80 edible fruits found a strong correlation between CL/NC traits and the type of seed disperser: fruits dispersed by tree dispersers are more likely to be NC, and those dispersed by ground dispersers are more likely to be CL. NC fruits are more likely to have red-black skin and smaller seeds (preferred by birds), and CL fruits to have green-brownish skin and larger seeds (preferred by large mammals). These results suggest that the CL/NC traits have an important but overlooked seed dispersal function, and CL fruits may have an adaptive advantage in reducing ineffective frugivory by tree dispersers by falling before ripening.
Collapse
Affiliation(s)
- Yuya Fukano
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuuya Tachiki
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo, Japan
| |
Collapse
|
34
|
Cho MS, Takayama K, Yang J, Maki M, Kim SC. Genome-Wide Single Nucleotide Polymorphism Analysis Elucidates the Evolution of Prunus takesimensis in Ulleung Island: The Genetic Consequences of Anagenetic Speciation. FRONTIERS IN PLANT SCIENCE 2021; 12:706195. [PMID: 34539700 PMCID: PMC8445234 DOI: 10.3389/fpls.2021.706195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
Of the two major speciation modes of endemic plants on oceanic islands, cladogenesis and anagenesis, the latter has been recently emphasized as an effective mechanism for increasing plant diversity in isolated, ecologically homogeneous insular settings. As the only flowering cherry occurring on Ulleung Island in the East Sea (concurrently known as Sea of Japan), Prunus takesimensis Nakai has been presumed to be derived through anagenetic speciation on the island. Based on morphological similarities, P. sargentii Rehder distributed in adjacent continental areas and islands has been suggested as a purported continental progenitor. However, the overall genetic complexity and resultant non-monophyly of closely related flowering cherries have hindered the determination of their phylogenetic relationships as well as the establishment of concrete continental progenitors and insular derivative relationships. Based on extensive sampling of wild flowering cherries, including P. takesimensis and P. sargentii from Ulleung Island and its adjacent areas, the current study revealed the origin and evolution of P. takesimensis using multiple molecular markers. The results of phylogenetic reconstruction and population genetic structure analyses based on single nucleotide polymorphisms detected by multiplexed inter-simple sequence repeat genotyping by sequencing (MIG-seq) and complementary cpDNA haplotypes provided evidence for (1) the monophyly of P. takesimensis; (2) clear genetic differentiation between P. takesimensis (insular derivative) and P. sargentii (continental progenitor); (3) uncertain geographic origin of P. takesimensis, but highly likely via single colonization from the source population of P. sargentii in the Korean Peninsula; (4) no significant reduction in genetic diversity in anagenetically derived insular species, i.e., P. takesimensis, compared to its continental progenitor P. sargentii; (5) no strong population genetic structuring or geographical patterns in the insular derivative species; and (6) MIG-seq method as an effective tool to elucidate the complex evolutionary history of plant groups.
Collapse
Affiliation(s)
- Myong-Suk Cho
- Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| | - Koji Takayama
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - JiYoung Yang
- Research Institute for Dok-do and Ulleung-do Island, Kyungpook National University, Daegu, South Korea
| | | | - Seung-Chul Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
35
|
Debray K, Le Paslier MC, Bérard A, Thouroude T, Michel G, Marie-Magdelaine J, Bruneau A, Foucher F, Malécot V. Unveiling the Patterns of Reticulated Evolutionary Processes with Phylogenomics: Hybridization and Polyploidy in the genus Rosa. Syst Biol 2021; 71:547-569. [PMID: 34329460 DOI: 10.1093/sysbio/syab064] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/23/2021] [Accepted: 06/30/2021] [Indexed: 11/13/2022] Open
Abstract
Reticulation, caused by hybridization and allopolyploidization, is considered an important and frequent phenomenon in the evolution of numerous plant lineages. Although both processes represent important driving forces of evolution, they are mostly ignored in phylogenetic studies involving a large number of species. Indeed only a scattering of methods exists to recover a comprehensive reticulated evolutionary history for a broad taxon sampling. Among these methods, comparisons of topologies obtained from plastid markers with those from a few nuclear sequences are favored, even though they restrict in-depth studies of hybridization and polyploidization. The genus Rosa encompasses c. 150 species widely distributed throughout the northern hemisphere and represents a challenging taxonomic group in which hybridization and polyploidization are prominent. Our main objective was to develop a general framework that would take patterns of reticulation into account in the study of the phylogenetic relationships among Rosa species. Using amplicon sequencing we targeted allele variation in the nuclear genome as well as haploid sequences in the chloroplast genome. We successfully recovered robust plastid and nuclear phylogenies and performed in-depth tests for several scenarios of hybridization using a maximum pseudo-likelihood approach on taxon subsets. Our diploid-first approach followed by hybrid and polyploid grafting resolved most of the evolutionary relationships among Rosa subgenera, sections, and selected species. Based on these results, we provide new directions for a future revision of the infrageneric classification in Rosa. The stepwise strategy proposed here can be used to reconstruct the phylogenetic relationships of other challenging taxonomic groups with large numbers of hybrid and polyploid taxa.
Collapse
Affiliation(s)
- Kevin Debray
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000 Angers, France
| | | | - Aurélie Bérard
- Etude du Polymorphisme des Génomes Végétaux (EPGV), INRA, Université Paris-Saclay, 91000 Evry, France
| | - Tatiana Thouroude
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000 Angers, France
| | - Gilles Michel
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000 Angers, France
| | | | - Anne Bruneau
- Institut de recherche en biologie végétale and Département de Sciences biologiques, Université de Montréal, 4101 Sherbrooke Est, Montréal, QC, H1X 2B2, Canada
| | - Fabrice Foucher
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000 Angers, France
| | - Valéry Malécot
- Institut Agro, Univ Angers, INRAE, IRHS, SFR QUASAV, F-49000 Angers, France
| |
Collapse
|
36
|
Acha S, Linan A, MacDougal J, Edwards C. The evolutionary history of vines in a neotropical biodiversity hotspot: Phylogenomics and biogeography of a large passion flower clade (Passiflora section Decaloba). Mol Phylogenet Evol 2021; 164:107260. [PMID: 34273502 DOI: 10.1016/j.ympev.2021.107260] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 11/28/2022]
Abstract
Because of their extraordinary flower and leaf morphology, passion flowers (Passifloraceae) have fascinated naturalists since their discovery. Within the large, diverse (600 species) genus Passiflora is an especially enigmatic and species-rich (120 spp.) subclade, Section Decaloba, which occurs in the Neotropics and has its center of diversity in Andean montane forests. A recent phylogenetic study of Passifloraceae showed that Section Decaloba was monophyletic, but was unable to resolve relationships within the clade, thus preventing inferences of evolutionary history and biogeography. The goal of this study was to elucidate the phylogeny and biogeography of Section Decaloba. We sampled 206 accessions representing 91 of the ~ 120 known species in section Decaloba and four outgroups, with samples derived predominantly from herbarium specimens. We generated DNA sequences using a high-throughput DNA sequencing technique called 2b-RAD, reconstructed the phylogeny, and conducted ancestral area reconstructions to infer the biogeographic history of the group. We recovered predominantly well-supported trees in which species were grouped into two main clades: 1) the Central American clade, within which the majority of nodes well supported and species were monophyletic and 2) the South American clade, a large clade that showed overall lower resolution and included several polyphyletic species and species complexes that need additional research. RASP analysis showed that section Decaloba originated in Central America around 10.4 Ma, and then dispersed to South America, the Greater Antilles, and the Bahamas. The South American clade diversified in the Northern Andes and then dispersed to the rest of South America, and Lesser Antilles. Results suggest that both long-distance dispersal and colonization of newly available habitats (i.e., in the Andes) likely promoted diversification of this clade. This study also illustrates how using herbarium specimens and a RAD-seq approach can produce phylogenies for broadly distributed, highly diverse, and poorly accessible groups of plants where field collections would be unfeasible.
Collapse
Affiliation(s)
- Serena Acha
- Department of Biology, University of Missouri-St. Louis, One University Blvd, Research Hall St. Louis, MO 63121, USA; Missouri Botanical Garden, 4344 Shaw Blvd, St. Louis, MO 63110, USA; University of Florida Herbarium, Florida Museum of Natural History,1659 Museum Rd, Gainesville, FL 32611-7800, USA.
| | - Alexander Linan
- Missouri Botanical Garden, 4344 Shaw Blvd, St. Louis, MO 63110, USA
| | - John MacDougal
- Missouri Botanical Garden, 4344 Shaw Blvd, St. Louis, MO 63110, USA; Harris-Stowe State University, 3026 Laclede Ave, St. Louis, MO 63103, USA
| | | |
Collapse
|
37
|
Li WW, Liu LQ, Zhang QP, Zhou WQ, Fan GQ, Liao K. Phylogeography of Prunus armeniaca L. revealed by chloroplast DNA and nuclear ribosomal sequences. Sci Rep 2021; 11:13623. [PMID: 34211010 PMCID: PMC8249649 DOI: 10.1038/s41598-021-93050-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 06/15/2021] [Indexed: 11/18/2022] Open
Abstract
To clarify the phytogeography of Prunus armeniaca L., two chloroplast DNA fragments (trnL-trnF and ycf1) and the nuclear ribosomal DNA internal transcribed spacer (ITS) were employed to assess genetic variation across 12 P. armeniaca populations. The results of cpDNA and ITS sequence data analysis showed a high the level of genetic diversity (cpDNA: HT = 0.499; ITS: HT = 0.876) and a low level of genetic differentiation (cpDNA: FST = 0.1628; ITS: FST = 0.0297) in P. armeniaca. Analysis of molecular variance (AMOVA) revealed that most of the genetic variation in P. armeniaca occurred among individuals within populations. The value of interpopulation differentiation (NST) was significantly higher than the number of substitution types (GST), indicating genealogical structure in P. armeniaca. P. armeniaca shared genotypes with related species and may be associated with them through continuous and extensive gene flow. The haplotypes/genotypes of cultivated apricot populations in Xinjiang, North China, and foreign apricot populations were mixed with large numbers of haplotypes/genotypes of wild apricot populations from the Ili River Valley. The wild apricot populations in the Ili River Valley contained the ancestral haplotypes/genotypes with the highest genetic diversity and were located in an area considered a potential glacial refugium for P. armeniaca. Since population expansion occurred 16.53 kyr ago, the area has provided a suitable climate for the population and protected the genetic diversity of P. armeniaca.
Collapse
Affiliation(s)
- Wen-Wen Li
- College of Horticulture and Forestry, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Li-Qiang Liu
- College of Horticulture and Forestry, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Qiu-Ping Zhang
- Xiongyue National Germplasm Resources Garden of the Liaoning Institute of Pomology, Xiongyue, Shenyang, China
| | - Wei-Quan Zhou
- College of Horticulture and Forestry, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Guo-Quan Fan
- Luntai National Fruit Germplasm Resources Garden of Xinjiang Academy of Agricultural Sciences, Luntai, Xinjiang, China
| | - Kang Liao
- College of Horticulture and Forestry, Xinjiang Agricultural University, Urumqi, Xinjiang, China.
| |
Collapse
|
38
|
Simple Sequence Repeat and S-Locus Genotyping to Assist the Genetic Characterization and Breeding of Polyploid Prunus Species, P. spinosa and P. domestica subsp. insititia. Biochem Genet 2021; 59:1065-1087. [PMID: 34132957 PMCID: PMC8249305 DOI: 10.1007/s10528-021-10090-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 05/28/2021] [Indexed: 11/18/2022]
Abstract
Polyploid Prunus spinosa (2n = 4 ×) and P. domestica subsp. insititia (2n = 6 ×) represent enormous genetic potential in Central Europe, which can be exploited in breeding programs. In Hungary, 16 cultivar candidates and a recognized cultivar ‘Zempléni’ were selected from wild-growing populations including ten P. spinosa, four P. domestica subsp. insititia and three P. spinosa × P. domestica hybrids (2n = 5 ×) were also created. Genotyping in eleven simple sequence repeat (SSR) loci and the multiallelic S-locus was used to characterize genetic variability and achieve a reliable identification of tested accessions. Nine SSR loci proved to be polymorphic and eight of those were highly informative (PIC values ˃ 0.7). A total of 129 SSR alleles were identified, which means 14.3 average allele number per locus and all accessions but two clones could be discriminated based on unique SSR fingerprints. A total of 23 S-RNase alleles were identified and the complete and partial S-genotype was determined for 10 and 7 accessions, respectively. The DNA sequence was determined for a total of 17 fragments representing 11 S-RNase alleles. ‘Zempléni’ was confirmed to be self-compatible carrying at least one non-functional S-RNase allele (SJ). Our results indicate that the S-allele pools of wild-growing P. spinosa and P. domestica subsp. insititia are overlapping in Hungary. Phylogenetic and principal component analyses confirmed the high level of diversity and genetic differentiation present within the analysed accessions and indicated putative ancestor–descendant relationships. Our data confirm that S-locus genotyping is suitable for diversity studies in polyploid Prunus species but non-related accessions sharing common S-alleles may distort phylogenetic inferences.
Collapse
|
39
|
Smith RL, May TW, Kaur J, Sawbridge TI, Mann RC, Pascoe IG, Edwards J. Re-Evaluation of the Podosphaera tridactyla Species Complex in Australia. J Fungi (Basel) 2021; 7:jof7030171. [PMID: 33652636 PMCID: PMC8025908 DOI: 10.3390/jof7030171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 11/16/2022] Open
Abstract
The Podosphaera tridactyla species complex is highly variable morphologically and causes powdery mildew on a wide range of Prunus species, including stone fruit. A taxonomic revision of the Po. tridactyla species complex in 2020 identified 12 species, seven of which were newly characterised. In order to clarify which species of this complex are present in Australia, next generation sequencing was used to isolate the fungal ITS+28S and host matK chloroplast gene regions from 56 powdery mildew specimens of stone fruit and ornamental Prunus species accessioned as Po. tridactyla or Oidium sp. in Australian reference collections. The specimens were collected in Australia, Switzerland, Italy and Korea and were collected from 1953 to 2018. Host species were confirmed using matK phylogenetic analysis, which identified that four had been misidentified as Prunus but were actually Malusprunifolia. Podosphaera species were identified using ITS+28S phylogenetic analysis, recognising three Podosphaera species on stone fruit and related ornamental Prunus hosts in Australia. These were Po.pannosa, the rose powdery mildew, and two species in the Po. tridactyla species complex: Po. ampla, which was the predominant species, and a previously unidentified species from peach, which we describe here as Po. cunningtonii.
Collapse
Affiliation(s)
- Reannon L. Smith
- Agriculture Victoria, Department of Jobs, Precincts and Regions, AgriBio Centre, Bundoora, VI 3083, Australia; (J.K.); (T.I.S.); (R.C.M.); (J.E.)
- School of Applied Systems Biology, La Trobe University, Bundoora, VI 3083, Australia
- Correspondence:
| | - Tom W. May
- Royal Botanic Gardens Victoria, Melbourne, VI 3004, Australia;
| | - Jatinder Kaur
- Agriculture Victoria, Department of Jobs, Precincts and Regions, AgriBio Centre, Bundoora, VI 3083, Australia; (J.K.); (T.I.S.); (R.C.M.); (J.E.)
| | - Tim I. Sawbridge
- Agriculture Victoria, Department of Jobs, Precincts and Regions, AgriBio Centre, Bundoora, VI 3083, Australia; (J.K.); (T.I.S.); (R.C.M.); (J.E.)
- School of Applied Systems Biology, La Trobe University, Bundoora, VI 3083, Australia
| | - Ross C. Mann
- Agriculture Victoria, Department of Jobs, Precincts and Regions, AgriBio Centre, Bundoora, VI 3083, Australia; (J.K.); (T.I.S.); (R.C.M.); (J.E.)
| | | | - Jacqueline Edwards
- Agriculture Victoria, Department of Jobs, Precincts and Regions, AgriBio Centre, Bundoora, VI 3083, Australia; (J.K.); (T.I.S.); (R.C.M.); (J.E.)
- School of Applied Systems Biology, La Trobe University, Bundoora, VI 3083, Australia
| |
Collapse
|
40
|
G J Hodel R, Zimmer E, Wen J. A phylogenomic approach resolves the backbone of Prunus (Rosaceae) and identifies signals of hybridization and allopolyploidy. Mol Phylogenet Evol 2021; 160:107118. [PMID: 33609711 DOI: 10.1016/j.ympev.2021.107118] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 02/01/2021] [Accepted: 02/08/2021] [Indexed: 10/22/2022]
Abstract
The genus Prunus, which contains 250-400 species, has ample genomic resources for the economically important taxa in the group including cherries, peaches, and almonds. However, the backbone of Prunus, specifically the position of the racemose group relative to the solitary and corymbose groups, remains phylogenetically uncertain. Surprisingly, phylogenomic analyses to resolve relationships in the genus are lacking. Here, we assemble transcriptomes from 17 Prunus species representing four subgenera, and use existing transcriptome assemblies, to resolve key relationships in the genus using a phylogenomic approach. From the transcriptomes, we constructed 21-taxon datasets of putatively single-copy nuclear genes with 591 and 379 genes, depending on taxon-occupancy filtering. Plastome sequences were obtained or assembled for all species present in the nuclear data set. The backbone of Prunus was resolved consistently in the nuclear and chloroplast phylogenies, but we found substantial cytonuclear discord within subgenera. Our nuclear phylogeny recovered a monophyletic racemose group, contrasting with previous studies finding paraphyly that suggests repeated allopolyploidy early in the evolutionary history of the genus. However, we detected multiple species with histories consistent with hybridization and allopolyploidy, including a deep hybridization event involving subgenus Amygdalus and the Armeniaca clade in subgenus Prunus. Analyses of gene tree conflict revealed substantial discord at several nodes, including the crown node of the racemose group. Alternative gene tree topologies that conflicted with the species tree were consistent with a paraphyletic racemose group, highlighting the complex reticulated evolutionary history of this group.
Collapse
Affiliation(s)
- Richard G J Hodel
- Department of Botany, National Museum of Natural History, MRC 166, Smithsonian Institution, Washington, DC 20013-7012, USA.
| | - Elizabeth Zimmer
- Department of Botany, National Museum of Natural History, MRC 166, Smithsonian Institution, Washington, DC 20013-7012, USA
| | - Jun Wen
- Department of Botany, National Museum of Natural History, MRC 166, Smithsonian Institution, Washington, DC 20013-7012, USA
| |
Collapse
|
41
|
Li YL, Reed J, Xu YQ, Qu DH, Sun ZS. Complete chloroplast genome of Prunus fasciculata (Rosaceae), a species native to western North America. Mitochondrial DNA B Resour 2021; 6:480-482. [PMID: 33628896 PMCID: PMC7889079 DOI: 10.1080/23802359.2021.1872439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Affiliation(s)
- Yue-Ling Li
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, China
| | - James Reed
- California Botanic Garden, Claremont, CA, USA
| | - Yu-Qian Xu
- College of Life Sciences, Taizhou University, Taizhou, China
| | - Da-Hao Qu
- College of Life Sciences, Taizhou University, Taizhou, China
| | - Zhong-Shuai Sun
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, China
| |
Collapse
|
42
|
Areces-Berazain F, Hinsinger DD, Strijk JS. Genome-wide supermatrix analyses of maples (Acer, Sapindaceae) reveal recurring inter-continental migration, mass extinction, and rapid lineage divergence. Genomics 2021; 113:681-692. [PMID: 33508445 DOI: 10.1016/j.ygeno.2021.01.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/05/2021] [Accepted: 01/22/2021] [Indexed: 11/18/2022]
Abstract
Acer (Sapindaceae) is an exceptional study system for understanding the evolutionary history, divergence, and assembly of broad-leaved deciduous forests at higher latitudes. Maples stand out due to their high diversity, disjunct distribution pattern across the northern continents, and rich fossil record dating back to the Paleocene. Using a genome-wide supermatrix combining plastomes and nuclear sequences (~585 kb) for 110 Acer taxa, we built a robust time-calibrated hypothesis investigating the evolution of maples, inferring ancestral ranges, reconstructing diversification rates over time, and exploring the impact of mass-extinction on lineage accumulation. Contrary to fossil evidence, our results indicate Acer first originated in the (north)eastern Palearctic region, which acted as a source for recurring outward migration. Warm conditions favored rapid Eocene-onward divergence, but ranges and diversity declined extensively as a result of the Plio-Pleistocene glacial cycles. These signals in genome-wide sequence data corroborate paleobotanical evidence for other major woody north-temperate groups, highlighting the significant (disparate) impact of climatic changes on the evolution, composition, and distribution of the vegetation in the northern hemisphere.
Collapse
Affiliation(s)
- Fabiola Areces-Berazain
- Biodiversity Genomics Team, Plant Ecophysiology & Evolution Group, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, DaXueDongLu 100, Nanning, Guangxi 530005, China; Alliance for Conservation Tree Genomics, Pha Tad Ke Botanical Garden, PO Box 959, 06000 Luang Prabang, Laos
| | - Damien D Hinsinger
- Alliance for Conservation Tree Genomics, Pha Tad Ke Botanical Garden, PO Box 959, 06000 Luang Prabang, Laos; Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, Commisariat à l'Énergie Atomique (CEA), CNRS, Université Évry, Université Paris-Saclay, 91057 Évry, France
| | - Joeri S Strijk
- Alliance for Conservation Tree Genomics, Pha Tad Ke Botanical Garden, PO Box 959, 06000 Luang Prabang, Laos; Institute for Biodiversity and Environmental Research, Universiti Brunei Darussalam, Jalan Tungku Link, BE1410, Brunei Darussalam.
| |
Collapse
|
43
|
Wang XY, Liu LJ, Liu SL, Ye LX, He XK, Sun ZS. Complete chloroplast genome of Cerasus fengyangshanica (Rosaceae), a wild flowering cherry endemic to China. MITOCHONDRIAL DNA PART B-RESOURCES 2021; 6:200-201. [PMID: 33537443 PMCID: PMC7832537 DOI: 10.1080/23802359.2020.1860723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Cerasus fengyangshanica is a wild flowering cherry endemic to Mount Fengyang, China. Here, we reported the complete chloroplast (cp) genome of C. fengyangshanica (GenBank accession number: MW160272). The cp genome was 157,964 bp long, with a large single-copy region (LSC) of 85,972 bp and a small single-copy region (SSC) of 19,086 bp separated by a pair of inverted repeats (IRs) of 26,453 bp. It encodes 129 genes, including 84 protein-coding genes, 37 tRNA genes, and 8 ribosomal RNA genes. We also reconstructed the phylogeny of Prunus sensu lato using maximum likelihood (ML) method, including our data and previously reported cp genomes of related taxa. The phylogenetic analysis indicated that C. fengyangshanica is closely related with Prunus maximowiczii.
Collapse
Affiliation(s)
- Xiao-Yan Wang
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, China
| | - Ling-Juan Liu
- Administration of Fengyangshan-Baishanzu National Natural Reserve, Longquan, China
| | - Sheng-Long Liu
- Administration of Fengyangshan-Baishanzu National Natural Reserve, Longquan, China
| | - Li-Xin Ye
- Administration of Fengyangshan-Baishanzu National Natural Reserve, Longquan, China
| | - Xue-Kai He
- Administration of Fengyangshan-Baishanzu National Natural Reserve, Longquan, China
| | - Zhong-Shuai Sun
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, China
| |
Collapse
|
44
|
Gao J, Liao PC, Huang BH, Yu T, Zhang YY, Li JQ. Historical biogeography of Acer L. (Sapindaceae): genetic evidence for Out-of-Asia hypothesis with multiple dispersals to North America and Europe. Sci Rep 2020; 10:21178. [PMID: 33273626 PMCID: PMC7712834 DOI: 10.1038/s41598-020-78145-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 11/19/2020] [Indexed: 02/07/2023] Open
Abstract
Biogeography is the study of where, when, and how modern species evolved and diversified. Acer L. (maple) is one of the most diverse and widespread genera in the Northern Hemisphere. It comprises 124–156 species in the world, approximately 80% species of Acer are native in Asia. The current diversity center of Acer is not congruent with the distribution of the oldest fossils of the genus. Therefore, we herein used 84 species and subspecies to reconstruct the phylogeny and investigate the biogeographic history of Acer using nuclear ITS and three cpDNA fragments (psbA-trnH spacer, rpl16 intron, and trnL-trnF spacer) with maximum likelihood, maximum parsimony, and Bayesian inference methods. The analyses showed that the current diversity center and the origin center of Acer is Asia. Additionally, the North American and Euro-Mediterranean species originated from multiple sources from Asia via the North Atlantic Land Bridge and the Bering Land Bridge, and intercontinental migration has mainly occurred since the Miocene. This study not only provides a novel insight of the origin and dispersal routes of Acer but also exemplifies how past climatic changes affect the diversification-rates of Northern Hemisphere forest trees.
Collapse
Affiliation(s)
- Jian Gao
- Faculty of Resources and Environment, Baotou Teachers' College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Pei-Chun Liao
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan.
| | - Bing-Hong Huang
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Tao Yu
- Beijing Key Laboratory for Forest Resources and Ecosystem Processes, Beijing Forestry University, Beijing, China
| | - Yu-Yang Zhang
- Beijing Key Laboratory for Forest Resources and Ecosystem Processes, Beijing Forestry University, Beijing, China
| | - Jun-Qing Li
- Beijing Key Laboratory for Forest Resources and Ecosystem Processes, Beijing Forestry University, Beijing, China.
| |
Collapse
|
45
|
Nakano R, Kawai T, Fukamatsu Y, Akita K, Watanabe S, Asano T, Takata D, Sato M, Fukuda F, Ushijima K. Postharvest Properties of Ultra-Late Maturing Peach Cultivars and Their Attributions to Melting Flesh ( M) Locus: Re-evaluation of M Locus in Association With Flesh Texture. FRONTIERS IN PLANT SCIENCE 2020; 11:554158. [PMID: 33324428 PMCID: PMC7725752 DOI: 10.3389/fpls.2020.554158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 10/28/2020] [Indexed: 06/12/2023]
Abstract
The postharvest properties of two ultra-late maturing peach cultivars, "Tobihaku" (TH) and "Daijumitsuto" (DJ), were investigated. Fruit were harvested at commercial maturity and held at 25°C. TH exhibited the characteristics of normal melting flesh (MF) peach, including rapid fruit softening associated with appropriate level of endogenous ethylene production In contrast, DJ did not soften at all during 3 weeks experimental period even though considerable ethylene production was observed. Fruit of TH and DJ were treated with 5,000 ppm of propylene, an ethylene analog, continuously for 7 days. TH softened rapidly whereas DJ maintained high flesh firmness in spite of an increase in endogenous ethylene production, suggesting that DJ but not TH lacked the ability to be softened in response to endogenous and exogenous ethylene/propylene. DNA-seq analysis showed that tandem endo-polygalacturonase (endoPG) genes located at melting flesh (M) locus, Pp-endoPGM (PGM), and Pp-endoPGF (PGF), were deleted in DJ. The endoPG genes at M locus are known to control flesh texture of peach fruit, and it was suggested that the non-softening property of DJ is due to the lack of endoPG genes. On the other hand, TH possessed an unidentified M haplotype that is involved in determination of MF phenotype. Structural identification of the unknown M haplotype, designated as M 0, through comparison with previously reported M haplotypes revealed distinct differences between PGM on M 0 haplotype (PGM-M0 ) and PGM on other haplotypes (PGM-M1 ). Peach M haplotypes were classified into four main haplotypes: M 0 with PGM-M0 ; M 1 with both PGM-M1 and PGF; M 2 with PGM-M1 ; and M 3 lacking both PGM and PGF. Re-evaluation of M locus in association with MF/non-melting flesh (NMF) phenotypes in more than 400 accessions by using whole genome shotgun sequencing data on database and/or by PCR genotyping demonstrated that M 0 haplotype was the common haplotype in MF accessions, and M 0 and M 1 haplotypes were dominant over M 2 and M 3 haplotypes and co-dominantly determined the MF trait. It was also assumed on the basis of structural comparison of M haplotypes among Prunus species that the ancestral haplotype of M 0 diverged from those of the other haplotypes before the speciation of Prunus persica.
Collapse
Affiliation(s)
- Ryohei Nakano
- Experimental Farm of Graduate School of Agriculture, Kyoto University, Kizugawa, Kyoto, Japan
| | - Takashi Kawai
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Yosuke Fukamatsu
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Kagari Akita
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Sakine Watanabe
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Takahiro Asano
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Daisuke Takata
- Faculty of Food and Agricultural Sciences, Fukushima University, Fukushima, Japan
| | - Mamoru Sato
- Faculty of Food and Agricultural Sciences, Fukushima University, Fukushima, Japan
| | - Fumio Fukuda
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Koichiro Ushijima
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| |
Collapse
|
46
|
Yang YX, Tian MH, Liu XH, Li YL, Sun ZS. Complete chloroplast genome of Prunus fruticosa and its implications for the phylogenetic position within Prunus sensulato (Rosaceae). Mitochondrial DNA B Resour 2020; 5:3624-3626. [PMID: 33367034 PMCID: PMC7594838 DOI: 10.1080/23802359.2020.1831993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Prunus fruticosa is a wild species of Prunus distributed across the central Eurasia. Here, we reported the complete chloroplast (cp) genome of P. fruticosa (GenBank accession number: MT916286). The cp genome was 158,217 bp long, with a large single-copy region (LSC) of 86,322 bp and a small single-copy region (SSC) of 19,153 bp separated by a pair of inverted repeats (IRs) of 26,371 bp. It encodes 129 genes, including 84 protein-coding genes, 37 tRNA genes, and 8 ribosomal RNA genes. We also reconstructed the phylogeny of Prunus sensu lato using maximum likelihood (ML) method, including our data and previously reported cp genomes of related taxa. The phylogenetic analysis indicated that P. fruticosa is closely related with Prunus avium.
Collapse
Affiliation(s)
- Yu-Xin Yang
- College of Life Sciences, Taizhou University, Taizhou, China
| | - Mi-Hui Tian
- College of Life Sciences, Taizhou University, Taizhou, China
| | | | - Yue-Ling Li
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, China
| | - Zhong-Shuai Sun
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, China
| |
Collapse
|
47
|
Abdallah D, Baraket G, Perez V, Salhi Hannachi A, Hormaza JI. Self-compatibility in peach [ Prunus persica (L.) Batsch]: patterns of diversity surrounding the S-locus and analysis of SFB alleles. HORTICULTURE RESEARCH 2020; 7:170. [PMID: 33082976 PMCID: PMC7527504 DOI: 10.1038/s41438-020-00392-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/08/2020] [Accepted: 08/12/2020] [Indexed: 05/07/2023]
Abstract
Self-incompatibility (SI) to self-compatibility (SC) transition is one of the most frequent and prevalent evolutionary shifts in flowering plants. Prunus L. (Rosaceae) is a genus of over 200 species most of which exhibit a Gametophytic SI system. Peach [Prunus persica (L.) Batsch; 2n = 16] is one of the few exceptions in the genus known to be a fully self-compatible species. However, the evolutionary process of the complete and irreversible loss of SI in peach is not well understood and, in order to fill that gap, in this study 24 peach accessions were analyzed. Pollen tube growth was controlled in self-pollinated flowers to verify their self-compatible phenotypes. The linkage disequilibrium association between alleles at the S-locus and linked markers at the end of the sixth linkage group was not significant (P > 0.05), except with the closest markers suggesting the absence of a signature of negative frequency dependent selection at the S-locus. Analysis of SFB1 and SFB2 protein sequences allowed identifying the absence of some variable and hypervariable domains and the presence of additional α-helices at the C-termini. Molecular and evolutionary analysis of SFB nucleotide sequences showed a signature of purifying selection in SFB2, while the SFB1 seemed to evolve neutrally. Thus, our results show that the SFB2 allele diversified after P. persica and P. dulcis (almond) divergence, a period which is characterized by an important bottleneck, while SFB1 diversified at a transition time between the bottleneck and population expansion.
Collapse
Affiliation(s)
- Donia Abdallah
- Faculté des Sciences de Tunis, Département Biologie, Université de Tunis El Manar, 2092 Tunis, Tunisie
| | - Ghada Baraket
- Faculté des Sciences de Tunis, Département Biologie, Université de Tunis El Manar, 2092 Tunis, Tunisie
| | - Veronica Perez
- Laboratorio de Agrobiología Juan José Bravo Rodríguez (Cabildo Insular de La Palma), Unidad Técnica del Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), 38700 S/C La Palma, Canary Islands, Spain
| | - Amel Salhi Hannachi
- Faculté des Sciences de Tunis, Département Biologie, Université de Tunis El Manar, 2092 Tunis, Tunisie
| | - Jose I. Hormaza
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora (IHSM La Mayora-UMA-CSIC), 29750 Algarrobo-Costa, Malaga Spain
| |
Collapse
|
48
|
Yang J, Kang GH, Pak JH, Kim SC. Characterization and Comparison of Two Complete Plastomes of Rosaceae Species ( Potentilla dickinsii var. glabrata and Spiraea insularis) Endemic to Ulleung Island, Korea. Int J Mol Sci 2020; 21:E4933. [PMID: 32668601 PMCID: PMC7404287 DOI: 10.3390/ijms21144933] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/02/2020] [Accepted: 07/10/2020] [Indexed: 01/04/2023] Open
Abstract
Potentilla dickinsii var. glabrata and Spiraea insularis in the family Rosaceae are species endemic to Ulleung Island, Korea, the latter of which is listed as endangered. In this study, we characterized the complete plastomes of these two species and compared these with previously reported plastomes of other Ulleung Island endemic species of Rosaceae (Cotoneaster wilsonii, Prunus takesimensis, Rubus takesimensis, and Sorbus ulleungensis). The highly conserved complete plastomes of P. dickinsii var. glabrata and S. insularis are 158,637 and 155,524 base pairs with GC contents of 37% and 36.9%, respectively. Comparative phylogenomic analysis identified three highly variable intergenic regions (trnT-UGU/trnL-UAA, rpl32/trnL-UAG, and ndhF/rpl32) and one variable genic region (ycf1). Only 14 of the 75 protein-coding genes have been subject to strong purifying selection. Phylogenetic analysis of 23 representative plastomes within the Rosaceae supported the monophyly of Potentilla and the sister relationship between Potentilla and Fragaria and indicated that S. insularis is sister to a clade containing Cotoneaster, Malus, Pyrus, and Sorbus. The plastome resources generated in this study will contribute to elucidating the plastome evolution of insular endemic Rosaceae on Ulleung Island and also in assessing the genetic consequences of anagenetic speciation for various endemic lineages on the island.
Collapse
Affiliation(s)
- JiYoung Yang
- Research Institute for Dok-do and Ulleung-do Island, Department of Biology, School of Life Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, Gyeongsangbuk-do 41566, Korea;
| | - Gi-Ho Kang
- Baekdudaegan National Arboretum, 1501 Chunyang-ro, Chungyang-myeon, Bonghwa-gun, Gyeongsangbuk-do 36209, Korea;
| | - Jae-Hong Pak
- Research Institute for Dok-do and Ulleung-do Island, Department of Biology, School of Life Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, Gyeongsangbuk-do 41566, Korea;
| | - Seung-Chul Kim
- Department of Biological Sciences, Sungkyunkwan University, 2066 Seobu-ro, Suwon, Gyeonggi-do 16419, Korea
| |
Collapse
|
49
|
Xue L, Jia L, Nam GS, Huang Y, Zhang S, Wang Y, Zhou Z, Chen Y. Involucre fossils of Carpinus, a northern temperate element, from the Miocene of China and the evolution of its species diversity in East Asia. PLANT DIVERSITY 2020; 42:155-167. [PMID: 32695948 PMCID: PMC7361179 DOI: 10.1016/j.pld.2020.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 01/16/2020] [Accepted: 01/16/2020] [Indexed: 06/11/2023]
Abstract
East Asia has long been recognized as a major center for temperate woody plants diversity. Although several theories have been proposed to explain how the diversity of these temperate elements accumulated in the region, the specific process remains unclear. Here we describe six species of Carpinus, a typical northern hemisphere temperate woody plant, from the early Miocene of the Maguan Basin, southwestern China, southern East Asia. This constitutes the southernmost, and the earliest occurrence that shows a high species diversity of the genus. Together with other Carpinus fossil records from East Asia, we show that the genus had achieved a high diversity in East Asia at least by the middle Miocene. Of the six species here described, three have become extinct, indicating that the genus has experienced apparent species loss during its evolutionary history in East Asia. In contrast, the remaining three species closely resemble extant species, raising the possibility that these species may have persisted in East Asia at least since the early Miocene. These findings indicate that the accumulation of species diversity of Carpinus in East Asia is a complex process involving extinction, persistence, and possible subsequent speciation.
Collapse
Affiliation(s)
- Li Xue
- College of Land Resources and Engineering, Kunming University of Science and Technology, Kunming, 650032, China
| | - Linbo Jia
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, China
| | - Gi-soo Nam
- Gongju National University of Education, 27, Ungjin-ro, Gongju-si, Chungcheongnam-do, 32553, Republic of Korea
| | - Yongjiang Huang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, China
| | - Shitao Zhang
- College of Land Resources and Engineering, Kunming University of Science and Technology, Kunming, 650032, China
| | - Yuqing Wang
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Chiba, 271-8510, Japan
| | - Zhuo Zhou
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, China
| | - Yongsheng Chen
- College of Life Science, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China
| |
Collapse
|
50
|
Yan H, Pengfei W, Brennan H, Ping Q, Bingxiang L, Feiyan Z, Hongbo C, Haijiang C. Diversity of carotenoid composition, sequestering structures and gene transcription in mature fruits of four Prunus species. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 151:113-123. [PMID: 32213457 DOI: 10.1016/j.plaphy.2020.03.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/26/2020] [Accepted: 03/12/2020] [Indexed: 06/10/2023]
Abstract
The genus Prunus contains many fruits used in the human diet, which exhibit a variety of different flavors. However, publications on the diversity of carotenoid profiles and sequestering structures in Prunus fruits are limited. In this study, carotenoids and their associated sequestering structures in mature fruits of four Prunus species, including peach [Prunus persica (L.) Batschi], nectarine [Prunus persica (L.) Batschi var. nucipersica], plum (Prunus salicina L.), and apricot (Prunus armeniaca L.) were investigated. HPLC-PAD analysis revealed that mature fruits all accumulated carotenoid esters, while their profiles and levels differed significantly. Transcription analysis suggested a positive correlation between carotenogenic genes and carotenoid profiles. Transmission electron microscopy (TEM) analysis revealed a common globular chromoplast in Prunus. However, the number and size of plastids and plastoglobules varied between species. Noticeably, the white-flesh Ruiguang 19 nectarine contained plastids similar to chromoplasts, except with smaller plastoglobules. In addition, it seemed like a lipid-dissolved β-carotene form in apricot fruits, which is more effectively absorbed by humans than the solid-crystalline form. Moreover, the lowest transcriptions of plastid-related genes were found in Friar plum, and GLK2 and OR genes were presumed to be associated with the largest chromoplasts observed in apricot. We investigated the correlations among carotenoid accumulation, plastid characteristics and gene transcription and found that chromoplast development is likely more important in determining carotenoid accumulation than carotenogenic transcription in Prunus fruits. This study presents the first report on the diversity of carotenoid sequestering structures in Prunus fruits and suggests some crucial genes associated with diversity.
Collapse
Affiliation(s)
- Han Yan
- College of Horticulture, Agricultural University of Hebei, Baoding Hebei, 071000, China
| | - Wang Pengfei
- College of Horticulture, Agricultural University of Hebei, Baoding Hebei, 071000, China
| | - Hyden Brennan
- Horticulture Section, School of Integrative Plant Science, Cornell University, Cornell AgriTech, Geneva, NY, USA
| | - Qu Ping
- Institute of Science and Technology, Agricultural University of Hebei, Baoding Hebei, 071000, China
| | - Liu Bingxiang
- College of Forest, Agricultural University of Hebei, Baoding Hebei, 071000, China
| | - Zhang Feiyan
- College of Horticulture, Agricultural University of Hebei, Baoding Hebei, 071000, China
| | - Cao Hongbo
- College of Horticulture, Agricultural University of Hebei, Baoding Hebei, 071000, China.
| | - Chen Haijiang
- College of Horticulture, Agricultural University of Hebei, Baoding Hebei, 071000, China.
| |
Collapse
|