1
|
Ye H, Liu H, Li H, Lei D, Gao Z, Zhou H, Zhao P. Complete mitochondrial genome assembly of Juglans regia unveiled its molecular characteristics, genome evolution, and phylogenetic implications. BMC Genomics 2024; 25:894. [PMID: 39342114 PMCID: PMC11439326 DOI: 10.1186/s12864-024-10818-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND The Persian walnut (Juglans regia), an economically vital species within the Juglandaceae family, has seen its mitochondrial genome sequenced and assembled in the current study using advanced Illumina and Nanopore sequencing technology. RESULTS The 1,007,576 bp mitogenome of J. regia consisted of three circular chromosomes with a 44.52% GC content encoding 39 PCGs, 47 tRNA, and five rRNA genes. Extensive repetitive sequences, including 320 SSRs, 512 interspersed, and 83 tandem repeats, were identified, contributing to genomic complexity. The protein-coding sequences (PCGs) favored A/T-ending codons, and the codon usage bias was primarily shaped by selective pressure. Intracellular gene transfer occurred among the mitogenome, chloroplast, and nuclear genomes. Comparative genomic analysis unveiled abundant structure and sequence variation among J. regia and related species. The results of selective pressure analysis indicated that most PCGs underwent purifying selection, whereas the atp4 and ccmB genes had experienced positive selection between many species pairs. In addition, the phylogenetic examination, grounded in mitochondrial genome data, precisely delineated the evolutionary and taxonomic relationships of J. regia and its relatives. We identified a total of 539 RNA editing sites, among which 288 were corroborated by transcriptome sequencing data. Furthermore, expression profiling under temperature stress highlighted the complex regulation pattern of 28 differently expressed PCGs, wherein NADH dehydrogenase and ATP synthase genes might be critical in the mitochondria response to cold stress. CONCLUSIONS Our results provided valuable molecular resources for understanding the genetic characteristics of J. regia and offered novel perspectives for population genetics and evolutionary studies in Juglans and related woody species.
Collapse
Affiliation(s)
- Hang Ye
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Hengzhao Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Haochen Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Dingfan Lei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Zhimei Gao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Huijuan Zhou
- Xi'an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, Shaanxi Academy of Science, Xi'an, Shaanxi, 710061, China
| | - Peng Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China.
| |
Collapse
|
2
|
Li YR, Fritsch PW, Zhao GG, Cheng XJ, Ding ZL, Lu L. Population differentiation and dynamics of five pioneer species of Gaultheria from the secondary forests in subtropical China. BMC PLANT BIOLOGY 2024; 24:516. [PMID: 38851686 PMCID: PMC11161945 DOI: 10.1186/s12870-024-05189-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 05/23/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND The influence of native secondary succession associated with anthropogenic disturbance on the biodiversity of the forests in subtropical China remains uncertain. In particular, the evolutionary response of small understory shrubs, particularly pioneer species inhabiting continuously disturbed habitats, to topographic heterogeneity and climate change is poorly understood. This study aimed to address this knowledge gap by focusing on the Gaultheria crenulata group, a clade of small pioneer shrubs in subtropical China. RESULTS We examined the genetic structure and demographic history of all five species of the G. crenulata group with two maternally inherited chloroplast DNA (cpDNA) fragments and two biparentally inherited low-copy nuclear genes (LCG) over 89 natural populations. We found that the genetic differentiation of this group was influenced by the geomorphological boundary between different regions of China in association with Quaternary climatic events. Despite low overall genetic diversity, we observed an isolation-by-distance (IBD) pattern at a regional scale, rather than isolation-by-environment (IBE), which was attributed to ongoing human disturbance in the region. CONCLUSION Our findings suggest that the genetic structure of the G. crenulata group reflects the interplay of geological topography, historical climates, and anthropogenic disturbance during the Pliocene-Pleistocene-Holocene periods in subtropical China. The observed IBD pattern, particularly prominent in western China, highlights the role of limited dispersal and gene flow, possibly influenced by physical barriers or decreased connectivity over geographic distance. Furthermore, the east-to-west trend of gene flow, potentially facilitated by the East Asian monsoon system, underscores the complex interplay of biotic and abiotic factors shaping the genetic dynamics of pioneer species in subtropical China's secondary forests. These findings can be used to assess the impact of environmental changes on the adaptation and persistence of biodiversity in subtropical forest ecosystems.
Collapse
Affiliation(s)
- Yi-Rong Li
- School of Pharmaceutical Sciences, Yunnan Key Laboratory of Pharmacology for Natural Products, Yunnan College of Modern Biomedical Industry, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Peter W Fritsch
- Botanical Research Institute of Texas, 1700 University Drive, Fort Worth, TX, 76017, USA
| | - Gui-Gang Zhao
- Genome Center of Biodiversity, Kunming Institute of Zoology, Chinese Academy of Science, Kunming, 650223, China
| | - Xiao-Juan Cheng
- School of Pharmaceutical Sciences, Yunnan Key Laboratory of Pharmacology for Natural Products, Yunnan College of Modern Biomedical Industry, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Zhao-Li Ding
- Genome Center of Biodiversity, Kunming Institute of Zoology, Chinese Academy of Science, Kunming, 650223, China.
- Yunnan Key Laboratory of Biodiversity Information, Kunming Institute of Zoology, Chinese Academy of Science, Kunming, 650223, China.
| | - Lu Lu
- School of Pharmaceutical Sciences, Yunnan Key Laboratory of Pharmacology for Natural Products, Yunnan College of Modern Biomedical Industry, Kunming Medical University, Kunming, 650500, Yunnan, China.
| |
Collapse
|
3
|
Dong Q, Zhang Y, Zhong S, Zhang Q, Yang H, Yang H, Yi X, Tan F, Chen C, Luo P. Conserved DNA sequence analysis reveals the phylogeography and evolutionary events of Akebia trifoliata in the region across the eastern edge of the Tibetan Plateau and subtropical China. BMC Ecol Evol 2024; 24:52. [PMID: 38654171 DOI: 10.1186/s12862-024-02243-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 04/15/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND The eastern edge of the Qinghai‒Tibet Plateau (QTP) and subtropical China have various regions where plant species originate and thrive, but these regions have been the focus of very few integrative studies. Here, we elucidated the phylogeographic structure of a continuous and widespread Akebia trifoliata population across these two regions. RESULTS Sixty-one populations consisting of 391 genotypes were examined to assess population diversity and structure via network distribution analysis, maximum likelihood phylogenetic tree reconstruction, divergence time estimation, demographic history inference, and ancestral area reconstruction of both conserved internal transcribed spacer (ITS) and chloroplast (rps16) DNA sequences. The results showed that the ITS region was more variable than the rps16 region and could be suitable for studying intraspecific phylogeography. The A. trifoliata population displayed high genetic diversity, genetic differentiation and obvious phylogeographical structure, possibly originating on the eastern QTP, expanding during the last glacial-interglacial cycle, diverging in the early Pleistocene and middle Pleistocene, and extensively migrating thereafter. The migration route from west to east along rivers could be largely responsible for the long-distance dispersal of this species, while three main refuges (Qinba Mountains, Nanling Mountains and Yunnan-Guizhou Plateau) with multiple ice shelters facilitated its wide distribution. CONCLUSIONS Our results suggested that the from west to east long migration accompanying with the minor short reciprocal migration in the south-north direction, and the three main refuges (the Qinba Mountains, Nanling Mountains and Yunnan-Guizhou Plateau) contributed to the extant geographical distribution of A. trifoliata. In addition, this finding also strongly reduced the discrepancy between glacial contraction and postglacial expansion and the in situ survival hypothesis by simultaneously considering the existence of many similar climate-related ecological niches and migration influences.
Collapse
Affiliation(s)
- Qing Dong
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricultural University of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yongle Zhang
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricultural University of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Shengfu Zhong
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricultural University of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qiuyi Zhang
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricultural University of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Hao Yang
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricultural University of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Huai Yang
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricultural University of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xiaoxiao Yi
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricultural University of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Feiquan Tan
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricultural University of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Chen Chen
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricultural University of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Peigao Luo
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricultural University of Sichuan Province, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
4
|
Ma J, Zuo D, Zhang X, Li H, Ye H, Zhang N, Li M, Dang M, Geng F, Zhou H, Zhao P. Genome-wide identification analysis of the 4-Coumarate: CoA ligase (4CL) gene family expression profiles in Juglans regia and its wild relatives J. Mandshurica resistance and salt stress. BMC PLANT BIOLOGY 2024; 24:211. [PMID: 38519917 PMCID: PMC10960452 DOI: 10.1186/s12870-024-04899-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/11/2024] [Indexed: 03/25/2024]
Abstract
Persian walnut (Juglans regia) and Manchurian walnut (Juglans mandshurica) belong to Juglandaceae, which are vulnerable, temperate deciduous perennial trees with high economical, ecological, and industrial values. 4-Coumarate: CoA ligase (4CL) plays an essential function in plant development, growth, and stress. Walnut production is challenged by diverse stresses, such as salinity, drought, and diseases. However, the characteristics and expression levels of 4CL gene family in Juglans species resistance and under salt stress are unknown. Here, we identified 36 Jr4CL genes and 31 Jm4CL genes, respectively. Based on phylogenetic relationship analysis, all 4CL genes were divided into three branches. WGD was the major duplication mode for 4CLs in two Juglans species. The phylogenic and collinearity analyses showed that the 4CLs were relatively conserved during evolution, but the gene structures varied widely. 4CLs promoter region contained multiply cis-acting elements related to phytohormones and stress responses. We found that Jr4CLs may be participated in the regulation of resistance to anthracnose. The expression level and some physiological of 4CLs were changed significantly after salt treatment. According to qRT-PCR results, positive regulation was found to be the main mode of regulation of 4CL genes after salt stress. Overall, J. mandshurica outperformed J. regia. Therefore, J. mandshurica can be used as a walnut rootstock to improve salt tolerance. Our results provide new understanding the potential functions of 4CL genes in stress tolerance, offer the theoretical genetic basis of walnut varieties adapted to salt stress, and provide an important reference for breeding cultivated walnuts for stress tolerance.
Collapse
Affiliation(s)
- Jiayu Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Dongjun Zuo
- College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Xuedong Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Haochen Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Hang Ye
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Nijing Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Mengdi Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Meng Dang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Fangdong Geng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Huijuan Zhou
- Xi'an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, Shaanxi Academy of Science, Xi'an, Shaanxi, China.
| | - Peng Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China.
| |
Collapse
|
5
|
Lu ZJ, Wang TR, Zheng SS, Meng HH, Cao JG, Song YG, Kozlowski G. Phylogeography of Pterocarya hupehensis reveals the evolutionary patterns of a Cenozoic relict tree around the Sichuan Basin. FORESTRY RESEARCH 2024; 4:e008. [PMID: 39524416 PMCID: PMC11524273 DOI: 10.48130/forres-0024-0005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 01/07/2024] [Accepted: 02/17/2024] [Indexed: 11/16/2024]
Abstract
Environmental factors such as mountain tectonic movements and monsoons can enhance genetic differentiation by hindering inter- and intra-specific gene flow. However, the phylogeographic breaks detected within species may differ depending on the different molecular markers used, and biological traits may be a major confounding factor. Pterocarya hupehensis is a vulnerable relict species distributed throughout the Sichuan Basin. Here, we investigated the phylogeographic patterns and evolutionary history of P. hupehensis using chloroplast DNA and restriction site-associated DNA sequencing data from 18 populations around the Sichuan Basin. The 24 chloroplast haplotypes separated into western and eastern lineages at approximately 16.7 Mya, largely coincident with a strengthening of the East Asian monsoon system during the early to middle Miocene. Both cpDNA and nuclear DNA datasets consistently identified distinct western and eastern lineages whose phylogeographic break conformed to the boundary of the Sino-Himalayan and Sino-Japanese forest sub-kingdoms. However, in contrast to the nuclear gene data, the cpDNA data revealed further divergence of the eastern lineage into northern and southern groups along the Yangtze River, a result that likely reflects differences in the extent of pollen vs seed dispersal. During the temperature decline in the penultimate (Riss) glacial period of the Pleistocene epoch, P. hupehensis experienced a genetic bottleneck event, and ecological niche modeling suggests that a subsequent population expansion occurred during the last interglacial period. Our findings not only establish a basis for conservation of this species, but also serve as a case study for the effects of geography and climate change on the evolutionary history of wind-pollinated relict plants.
Collapse
Affiliation(s)
- Zi-Jia Lu
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Tian-Rui Wang
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Si-Si Zheng
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Hong-Hu Meng
- Plant Phylogenetics and Conservation Group, Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Naypyidaw 05282, Myanmar
| | - Jian-Guo Cao
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Yi-Gang Song
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
- College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
- Department of Biology and Botanic Garden, University of Fribourg, Fribourg 1700, Switzerland
| | - Gregor Kozlowski
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
- Department of Biology and Botanic Garden, University of Fribourg, Fribourg 1700, Switzerland
- Natural History Museum Fribourg, Fribourg 1700, Switzerland
| |
Collapse
|
6
|
Song Y, Xu GB, Long KX, Wang CC, Chen R, Li H, Jiang XL, Deng M. Ensemble species distribution modeling and multilocus phylogeography provide insight into the spatial genetic patterns and distribution dynamics of a keystone forest species, Quercus glauca. BMC PLANT BIOLOGY 2024; 24:168. [PMID: 38438905 PMCID: PMC10910841 DOI: 10.1186/s12870-024-04830-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/16/2024] [Indexed: 03/06/2024]
Abstract
BACKGROUND Forests are essential for maintaining species diversity, stabilizing local and global climate, and providing ecosystem services. Exploring the impact of paleogeographic events and climate change on the genetic structure and distribution dynamics of forest keystone species could help predict responses to future climate change. In this study, we combined an ensemble species distribution model (eSDM) and multilocus phylogeography to investigate the spatial genetic patterns and distribution change of Quercus glauca Thunb, a keystone of East Asian subtropical evergreen broad-leaved forest. RESULTS A total of 781 samples were collected from 77 populations, largely covering the natural distribution of Q. glauca. The eSDM showed that the suitable habitat experienced a significant expansion after the last glacial maximum (LGM) but will recede in the future under a general climate warming scenario. The distribution centroid will migrate toward the northeast as the climate warms. Using nuclear SSR data, two distinct lineages split between east and west were detected. Within-group genetic differentiation was higher in the West than in the East. Based on the identified 58 haplotypes, no clear phylogeographic structure was found. Populations in the Nanling Mountains, Wuyi Mountains, and the southwest region were found to have high genetic diversity. CONCLUSIONS A significant negative correlation between habitat stability and heterozygosity might be explained by the mixing of different lineages in the expansion region after LGM and/or hybridization between Q. glauca and closely related species. The Nanling Mountains may be important for organisms as a dispersal corridor in the west-east direction and as a refugium during the glacial period. This study provided new insights into spatial genetic patterns and distribution dynamics of Q. glauca.
Collapse
Affiliation(s)
- Ying Song
- College of Forestry, The Laboratory of Forestry Genetics, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Gang-Biao Xu
- College of Forestry, The Laboratory of Forestry Genetics, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Ke-Xin Long
- College of Forestry, The Laboratory of Forestry Genetics, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Chun-Cheng Wang
- College of Landscape Architecture, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Ran Chen
- College of Forestry, The Laboratory of Forestry Genetics, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - He Li
- College of Forestry, The Laboratory of Forestry Genetics, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Xiao-Long Jiang
- College of Forestry, The Laboratory of Forestry Genetics, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.
| | - Min Deng
- School of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan, 650500, China.
| |
Collapse
|
7
|
Jiang RH, Liang SQ, Wu F, Tang LM, Qin B, Chen YY, Huang YH, Li KX, Zhang XC. Phylogenomic analysis, cryptic species discovery, and DNA barcoding of the genus Cibotium in China based on plastome data. FRONTIERS IN PLANT SCIENCE 2023; 14:1183653. [PMID: 37346120 PMCID: PMC10279961 DOI: 10.3389/fpls.2023.1183653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/02/2023] [Indexed: 06/23/2023]
Abstract
Germplasm resources are the source of herbal medicine production. The cultivation of superior germplasm resources helps to resolve the conflict between long-term population persistence and growing market demand by consistently producing materials with high quality. The fern species Cibotium barometz is the original plant of cibotii rhizoma ("Gouji"), a traditional Chinese medicine used in the therapy of pain, weakness, and numbness in the lower extremities. Long-history medicinal use has caused serious wild population decline in China. Without sufficient understanding of the species and lineage diversity of Cibotium, it is difficult to propose a targeted conservation scheme at present, let alone select high-quality germplasm resources. In order to fill such a knowledge gap, this study sampled C. barometz and relative species throughout their distribution in China, performed genome skimming to obtain plastome data, and conducted phylogenomic analyses. We constructed a well-supported plastome phylogeny of Chinese Cibotium, which showed that three species with significant genetic differences are distributed in China, namely C. barometz, C. cumingii, and C. sino-burmaense sp. nov., a cryptic species endemic to NW Yunnan and adjacent regions of NE Myanmar. Moreover, our results revealed two differentiated lineages of C. barometz distributed on the east and west sides of a classic phylogeographic boundary that was probably shaped by monsoons and landforms. We also evaluated the resolution of nine traditional barcode loci and designed five new DNA barcodes based on the plastome sequence that can distinguish all these species and lineages of Chinese Cibotium accurately. These novel findings on a genetic basis will guide conservation planners and medicinal plant breeders to build systematic conservation plans and exploit the germplasm resources of Cibotium in China.
Collapse
Affiliation(s)
- Ri-Hong Jiang
- Guangxi Key Laboratory of Special Non-wood Forest Cultivation and Utilization, Guangxi Engineering and Technology Research Center for Woody Spices, Guangxi Forestry Research Institute, Nanning, China
| | - Si-Qi Liang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Fei Wu
- China National Botanical Garden, Beijing, China
- Beijing Botanical Garden, Beijing, China
- Beijing Floriculture Engineering Technology Research Centre, Beijing, China
| | - Li-Ming Tang
- Guangxi Forestry Industry Group Stock Corporation, Nanning, China
| | - Bo Qin
- Guangxi Key Laboratory of Special Non-wood Forest Cultivation and Utilization, Guangxi Engineering and Technology Research Center for Woody Spices, Guangxi Forestry Research Institute, Nanning, China
| | - Ying-Ying Chen
- Guangxi Key Laboratory of Special Non-wood Forest Cultivation and Utilization, Guangxi Engineering and Technology Research Center for Woody Spices, Guangxi Forestry Research Institute, Nanning, China
| | - Yao-Heng Huang
- Guangxi Key Laboratory of Special Non-wood Forest Cultivation and Utilization, Guangxi Engineering and Technology Research Center for Woody Spices, Guangxi Forestry Research Institute, Nanning, China
| | - Kai-Xiang Li
- Guangxi Key Laboratory of Special Non-wood Forest Cultivation and Utilization, Guangxi Engineering and Technology Research Center for Woody Spices, Guangxi Forestry Research Institute, Nanning, China
| | - Xian-Chun Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| |
Collapse
|
8
|
Luo D, Song MS, Xu B, Zhang Y, Zhang JW, Ma XG, Hao XJ, Sun H. A clue to the evolutionary history of modern East Asian flora: insights from phylogeography and diterpenoid alkaloid distribution pattern of the Spiraea japonica complex. Mol Phylogenet Evol 2023; 184:107772. [PMID: 36977458 DOI: 10.1016/j.ympev.2023.107772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/07/2023] [Accepted: 03/21/2023] [Indexed: 03/28/2023]
Abstract
Each subkingdom of East Asian flora (EAF) has a unique evolutionary history, but which has rarely been described based on phylogeographic studies of EAF species. The Spiraea japonica L. complex, which is widespread in East Asia (EA), has received considerable attention because of the presence of diterpenoid alkaloids (DAs). It provides a proxy for understanding the genetic diversity and DA distribution patterns of species under various environmental conditions associated with the geological background in EA. In the present study, the plastome and chloroplast/nuclear DNA of 71 populations belonging to the S. japonica complex and its congeners were sequenced, combined with DA identification, environmental analyses, and ecological niche modelling, to investigate their phylogenetic relationships, genetic and DAs distribution patterns, biogeography, and demographic dynamics. An "ampliative" S. japonica complex was put forward, comprising all species of Sect. Calospira Ser. Japonicae, of which three evolutionary units carrying their respective unique types of DAs were identified and associated with the regionalization of EAF (referring to the Hengduan Mountains, central China, and east China). Moreover, a transition belt in central China with its biogeographic significance was revealed by genetic and DA distribution patterns from the perspective of ecological adaptation. The origin and onset differentiation of the "ampliative" S. japonica complex was estimated in the early Miocene (22.01/19.44 Ma). The formation of Japanese populations (6.75 Ma) was facilitated by the land bridge, which subsequently had a fairly stable demographic history. The populations in east China have undergone a founder effect after the Last Glacial Maximum, which may have been promoted by the expansion potential of polyploidization. Overall, the in-situ origin and diversification of the "ampliative" S. japonica complex since the early Miocene is a vertical section of the formation and development of modern EAF and was shaped by the geological history of each subkingdom.
Collapse
Affiliation(s)
- Dong Luo
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, China
| | - Min-Shu Song
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, China
| | - Bo Xu
- College of Forestry, Southwest Forestry University, Kunming 650224, China
| | - Yu Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, China
| | - Jian-Wen Zhang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, China
| | - Xiang-Guang Ma
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, China
| | - Xiao-Jiang Hao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, China.
| | - Hang Sun
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, China.
| |
Collapse
|
9
|
Ma J, Zuo D, Ye H, Yan Y, Li M, Zhao P. Genome-wide identification, characterization, and expression pattern of the late embryogenesis abundant (LEA) gene family in Juglans regia and its wild relatives J. mandshurica. BMC PLANT BIOLOGY 2023; 23:80. [PMID: 36740678 PMCID: PMC9901102 DOI: 10.1186/s12870-023-04096-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Late Embryogenesis Abundant (LEA) proteins are a class of proteins associated with plant stress resistance. Two Juglans species, Juglans regia and J. mandshurica, are both diploid (2n = 32), monoecious perennial economic tree species with high edible, pharmaceutical, and timber value. The identification, characterization, and expression patterns of LEA proteins in J. regia and its wild relative, J. mandshurica, would not only provide the genetic basis of this gene family, but it would also supply clues for further studies of the evolution and regulating mechanisms of LEA proteins in other tree species. RESULTS In this study, we identified 25 and 20 members of the LEA gene family in Juglans regia and its wild relative, Juglans mandshurica, respectively. The results of phylogenetic analysis showed that the LEA members were divided into eight main subgroups. Predictions of their physicochemical properties showed the variable characteristics of LEA proteins, and the subcellular localization analysis indicated that most LEA proteins are localized in the nucleus. Chromosomal localization analysis and gene replication pattern prediction indicated that WGD is the predominant duplication mode of LEA genes. The results of the comparative analysis indicated a high level of collinearity between the two Juglans species. Analysis of cis-acting elements indicated that LEA genes had a relatively wide range of responses to abiotic stresses and phytohormonal processes, particularly in two phytohormones, methyl jasmonate and abscisic acid. Transcriptome profiling and qRT-PCR experiments showed that JrLEAs are commonly expressed in leaves, green husks, and male and female flowers, and most JmLEAs are more highly expressed in male flowers. We also hypothesized that JrLEAs are involved in the process of anthracnose resistance. Anthracnose-resistant varieties of JrLEAs presented relatively high expression levels at later stages. CONCLUSION In this study, we provide a theoretical basis for the functional study of LEA genes in J. regia and J. mandshurica. Analysis of cis-acting elements and gene expression indicated that JrLEAs and JmLEAs play important roles in resistance to biotic stresses in these species.
Collapse
Affiliation(s)
- Jiayu Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, 710069 Shaanxi China
| | - Dongjun Zuo
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, 710069 Shaanxi China
- College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
| | - Hang Ye
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, 710069 Shaanxi China
| | - Yujie Yan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, 710069 Shaanxi China
| | - Mengdi Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, 710069 Shaanxi China
| | - Peng Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, 710069 Shaanxi China
| |
Collapse
|
10
|
Wang S, Li Y, Zhou J, Jiang K, Chen J, Ye Z, Xue H, Bu W. The anthropogenic effect of land use on population genetics of Malcus inconspicuus. Evol Appl 2023; 16:98-110. [PMID: 36699121 PMCID: PMC9850013 DOI: 10.1111/eva.13512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 11/07/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022] Open
Abstract
Since the beginning of the Holocene era, human activities have seriously impacted animal habitats and vegetative environments. Species that are dependent on natural habitats or with narrow niches might be more severely affected by habitat changes. Malcus inconspicuus is distributed in subtropical China and highly dependent on the mountain environment. Our study investigated the role of the mountainous landscape in the historical evolution of M. inconspicuus and the impact of Holocene human activities on it. A phylogeographical approach was implemented with integrative datasets including double-digest restriction site-associated DNA (ddRAD), mitochondrial data, and distribution data. Three obvious clades and an east-west phylogeographical pattern were found in subtropical China. Mountainous landscape has "multifaceted" effects on the evolutionary history of M. inconspicuus, it has contributed to population differentiation, provided glacial refuges, and provided population expansion corridors during the postglacial period. The effective population size (Ne) of M. inconspicuus showed a sharp decline during the Holocene era, which revealed a significantly negative correlation with the development of cropland in a hilly area at the same time and space. It supported that the species which are highly dependent on natural habitats might undergo greater impact when the habitat was damaged by agricultural activities and we should pay more attention to them, especially in the land development of their distribution areas.
Collapse
Affiliation(s)
- Shujing Wang
- Institute of Entomology, College of Life SciencesNankai UniversityTianjinChina
| | - Yanfei Li
- Institute of Entomology, College of Life SciencesNankai UniversityTianjinChina
| | - Jiayue Zhou
- Institute of Entomology, College of Life SciencesNankai UniversityTianjinChina
| | - Kun Jiang
- Institute of Entomology, College of Life SciencesNankai UniversityTianjinChina
| | - Juhong Chen
- Institute of Entomology, College of Life SciencesNankai UniversityTianjinChina
| | - Zhen Ye
- Institute of Entomology, College of Life SciencesNankai UniversityTianjinChina
| | - Huaijun Xue
- Institute of Entomology, College of Life SciencesNankai UniversityTianjinChina
| | - Wenjun Bu
- Institute of Entomology, College of Life SciencesNankai UniversityTianjinChina
| |
Collapse
|
11
|
Dong F, Zhang Q, Chen YL, Lei FM, Li SH, Wu F, Yang XJ. Potential millennial-scale avian declines by humans in southern China. GLOBAL CHANGE BIOLOGY 2022; 28:5505-5513. [PMID: 35665575 DOI: 10.1111/gcb.16289] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Mounting observational records demonstrate human-caused faunal decline in recent decades, while accumulating archaeological evidence suggests an early biodiversity impact of human activities during the Holocene. A fundamental question arises concerning whether modern wildlife population declines began during early human disturbance. Here, we performed a population genomic analysis of six common forest birds in East Asia to address this question. For five of them, demographic history inference based on 25-33 genomes of each species revealed dramatic population declines by 4- to 48-fold over millennia (e.g. 2000-5000 thousand years ago). Nevertheless, summary statistics detected nonsignificant correlations between these population size trajectories and Holocene temperature variations, and ecological niche models explicitly predicted extensive range persistence during the Holocene, implying limited demographic consequence of Holocene climate change. Further analyses suggest high negative correlations between the reconstructed population declines and human disturbance intensities and indicate a potential driver of human activities. These findings provide a deep-time and large-scale insight into the recently recognized avifaunal decline and support an early origin hypothesis of human effects on biodiversity. Overall, our study sheds light on the current biodiversity crisis in the context of long-term human-environment interactions and offers a multi-evidential framework for quantitatively assessing the ecological consequences of human disturbance.
Collapse
Affiliation(s)
- Feng Dong
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Key Laboratory of Biodiversity and Ecological Security of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Qiang Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yi-Lin Chen
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Key Laboratory of Biodiversity and Ecological Security of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Fu-Min Lei
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Shou-Hsien Li
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Fei Wu
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Key Laboratory of Biodiversity and Ecological Security of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Xiao-Jun Yang
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Key Laboratory of Biodiversity and Ecological Security of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
12
|
Wang L, Li Y, Noshiro S, Suzuki M, Arai T, Kobayashi K, Xie L, Zhang M, He N, Fang Y, Zhang F. Stepped Geomorphology Shaped the Phylogeographic Structure of a Widespread Tree Species ( Toxicodendron vernicifluum, Anacardiaceae) in East Asia. FRONTIERS IN PLANT SCIENCE 2022; 13:920054. [PMID: 35720535 PMCID: PMC9201781 DOI: 10.3389/fpls.2022.920054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Species' phylogeographic patterns reflect the interplay between landscape features, climatic forces, and evolutionary processes. Here, we used two chloroplast DNA (cpDNA) markers (trnL and trnL-F) to explore the role of stepped geomorphology in shaping the phylogeographic structure of Toxicodendron vernicifluum, an economically important tree species widely distributed in East Asia. The range-wide pattern of sequence variation was analyzed based on a dataset including 357 individuals from China, together with published sequences of 92 individuals mainly from Japan and South Korea. We identified five chloroplast haplotypes based on seven substitutions across the 717-bp alignment. A clear east-west phylogeographic break was recovered according to the stepped landforms of mainland China. The wild trees of the western clade were found to be geographically restricted to the "middle step", which is characterized by high mountains and plateaus, while those of the eastern clade were confined to the "low step", which is mainly made up of hills and plains. The two major clades were estimated to have diverged during the Early Pleistocene, suggesting that the cool glacial climate may have caused the ancestral population to retreat to at least two glacial refugia, leading to allopatric divergence in response to long-term geographic isolation. Migration vector analyses based on the outputs of ecological niche models (ENMs) supported a gradual range expansion since the Last Interglacial. Mountain ranges in western China and the East China Sea land bridge were inferred to be dispersal corridors in the western and eastern distributions of T. vernicifluum, respectively. Overall, our study provides solid evidence for the role of stepped geomorphology in shaping the phylogeographic patterns of T. vernicifluum. The resulting east-west genetic discontinuities could persist for a long time, and could occur at a much larger scale than previously reported, extending from subtropical (e.g., the Xuefeng Mountain) to warm-temperate China (e.g., the Taihang Mountain).
Collapse
Affiliation(s)
- Lu Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Yao Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Shuichi Noshiro
- Center for Obsidian and Lithic Studies, Meiji University, Tokyo, Japan
| | | | | | | | - Lei Xie
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Mingyue Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Na He
- Xi’an Research Institute of Chinese Lacquer, All China Federation of Supply and Marketing Cooperatives, Xi’an, China
| | - Yanming Fang
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Feilong Zhang
- Xi’an Research Institute of Chinese Lacquer, All China Federation of Supply and Marketing Cooperatives, Xi’an, China
| |
Collapse
|
13
|
Impact of Gene Flow and Introgression on the Range Wide Genetic Structure of Quercus robur (L.) in Europe. FORESTS 2021. [DOI: 10.3390/f12101425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
As for most other temperate broadleaved tree species, large-scale genetic inventories of pedunculate oak (Quercus robur L.) have focused on the plastidial genome, which showed the impact of post-glacial recolonization and manmade seed transfer. However, how have pollen mediated gene flow and introgression impacted the large-scale genetic structure? To answer these questions, we did a genetic inventory on 1970 pedunculate oak trees from 197 locations in 13 European countries. All samples were screened with a targeted sequencing approach on a set of 381 polymorphic loci (356 nuclear SNPs, 3 nuclear InDels, 17 chloroplast SNPs, and 5 mitochondrial SNPs). In a former analysis with additional 1763 putative Quercus petraea trees screened for the same gene markers we obtained estimates on the species admixture of all pedunculate oak trees. We identified 13 plastidial haplotypes, which showed a strong spatial pattern with a highly significant autocorrelation up to a range of 1250 km. Significant spatial genetic structure up to 1250 km was also observed at the nuclear loci. However, the differentiation at the nuclear gene markers was much lower compared to the organelle gene markers. The matrix of genetic distances among locations was partially correlated between nuclear and organelle genomes. Bayesian clustering analysis revealed the best fit to the data for a sub-division into two gene pools. One gene pool is dominating the west and the other is the most abundant in the east. The western gene pool was significantly influenced by introgression from Quercus petraea in the past. In Germany, we identified a contact zone of pedunculate oaks with different introgression intensity, likely resulting from different historical levels of introgression in glacial refugia or during postglacial recolonization. The main directions of postglacial recolonization were south to north and south to northwest in West and Central Europe, and for the eastern haplotypes also east to west in Central Europe. By contrast, the pollen mediated gene flow and introgression from Q. petraea modified the large-scale structure at the nuclear gene markers with significant west–east direction.
Collapse
|
14
|
Amiteye S. Basic concepts and methodologies of DNA marker systems in plant molecular breeding. Heliyon 2021; 7:e08093. [PMID: 34765757 PMCID: PMC8569399 DOI: 10.1016/j.heliyon.2021.e08093] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/25/2021] [Accepted: 09/27/2021] [Indexed: 12/27/2022] Open
Abstract
The concepts, methodologies and applications of some of the major molecular or DNA markers commonly used in plant science have been presented. The general principles of molecular marker techniques have been elucidated with detailed explanation of some notable basic concepts associated with marker applications: marker polymorphism, dominant or co-dominant mode of inheritance, agronomic trait-marker linkage, genetic mutations and variation. The molecular marker methods that have been extensively reviewed are RFLP, RAPD, SCAR, AFLP, SSR, CpSSR, ISSR, RAMP, SAMPL, SRAP, SSCP, CAPS, SNP, DArT, EST, and STS. In addition, the practicality of the retrotransposon-based marker methods, IRAP, REMAP, RBIP, and IPBS, have been discussed. Moreover, some salient characteristics of DNA markers have been compared and the various marker systems classified as PCR- or non-PCR-based, dominantly or co-dominantly inherited, locus specific or non-specific as well as at the levels of marker polymorphism and efficiency of marker reproducibility. Furthermore, the principles and methods of the following DNA markers have been highlighted: Penta-primer amplification refractory mutation system (PARMS), Conserved DNA-Derived Polymorphism (CDDP), P450-based analogue (PBA) markers, Tubulin-Based Polymorphism (TBP), Inter-SINE amplified polymorphism (ISAP), Sequence specific amplified polymorphism (S-SAP), Intron length polymorphisms (ILPs), Inter small RNA polymorphism (iSNAP), Direct amplification of length polymorphisms (DALP), Promoter anchored amplified polymorphism (PAAP), Target region amplification polymorphism (TRAP), Conserved region amplification polymorphism (CoRAP), Start Codon Targeted (SCoT) Polymorphism, and Directed Amplification of Minisatellite DNA (DAMD). Some molecular marker applications that have been recently employed to achieve various objectives in plant research have also been outlined. This review will serve as a useful reference resource for plant breeders and other scientists, as well as technicians and students who require basic know-how in the use of molecular or DNA marker technologies.
Collapse
Affiliation(s)
- Samuel Amiteye
- Department of Nuclear Agriculture and Radiation Processing (NARP), Graduate School of Nuclear and Allied Sciences (SNAS), College of Basic and Applied Sciences, University of Ghana, P. O. Box AE 1, Accra, Ghana
- Biotechnology Centre, Biotechnology and Nuclear Agriculture Research Institute (BNARI), Ghana Atomic Energy Commission (GAEC), P. O. Box AE 50, Accra, Ghana
| |
Collapse
|
15
|
Elshibli S, Korpelainen H. Genetic Diversity and Population Structure of Medemia argun (Mart.) Wurttenb. ex H.Wendl. Based on Genome-Wide Markers. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.687188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Medemia argun is a wild, dioecious palm, adapted to the harsh arid environment of the Nubian Desert in Sudan and southern Egypt. There is a concern about its conservation status, since little is known about its distribution, abundance, and genetic variation. M. argun grows on the floodplains of seasonal rivers (wadis). The continuing loss of suitable habitats in the Nubian Desert is threatening the survival of this species. We analyzed the genetic diversity, population genetic structure, and occurrence of M. argun populations to foster the development of conservation strategies for M. argun. Genotyping-by-sequencing (GBS) analyses were performed using a whole-genome profiling service. We found an overall low genetic diversity and moderate genetic structuring based on 40 single-nucleotide polymorphisms (SNPs) and 9,866 SilicoDArT markers. The expected heterozygosity of the total population (HT) equaled 0.036 and 0.127, and genetic differentiation among populations/groups (FST) was 0.052 and 0.092, based on SNP and SilicoDArT markers, respectively. Bayesian clustering analyses defined five genetic clusters that did not display any ancestral gene flow among each other. Based on SilicoDArT markers, the results of the analysis of molecular variance (AMOVA) confirmed the previously observed genetic differentiation among generation groups (23%; p < 0.01). Pairwise FST values indicated a genetic gap between old and young individuals. The observed low genetic diversity and its loss among generation groups, even under the detected high gene flow, show genetically vulnerable M. argun populations in the Nubian Desert in Sudan. To enrich and maintain genetic variability in these populations, conservation plans are required, including collection of seed material from genetically diverse populations and development of ex situ gene banks.
Collapse
|
16
|
Cao Y, Zhang DY, Zeng YF, Bai WN. Recent demographic histories of temperate deciduous trees inferred from microsatellite markers. BMC Ecol Evol 2021; 21:88. [PMID: 34006219 PMCID: PMC8130339 DOI: 10.1186/s12862-021-01805-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 04/23/2021] [Indexed: 11/17/2022] Open
Abstract
Background Accurate inference of demographic histories for temperate tree species can aid our understanding of current climate change as a driver of evolution. Microsatellites are more suitable for inferring recent historical events due to their high mutation rates. However, most programs analyzing microsatellite data assume a strict stepwise mutation model (SMM), which could cause false detection of population shrinkage when microsatellite mutation does not follow SMM. Results This study aims to reconstruct the recent demographic histories of five cool-temperate tree species in Eastern Asia, Quercus mongolica, Q. liaotungensis, Juglans cathayensis, J. mandshurica and J. ailantifolia, by using 19 microsatellite markers with two methods considering generalized stepwise mutation model (GSM) (MIGRAINE and VarEff). Both programs revealed that all the five species experienced expansions after the Last Glacial Maximum (LGM). Within butternuts, J. cathayensis experienced a more serious bottleneck than the other species, and within oaks, Q. mongolica showed a moderate increase in population size and remained stable after the expansion. In addition, the point estimates of the multistep mutation proportion in the GSM model (pGSM) for all five species were between 0.50 and 0.65, indicating that when inferring population demographic history of the cool-temperate forest species using microsatellite markers, it is better to assume a GSM rather than a SMM. Conclusions This study provides the first direct evidence that five cool-temperate tree species in East Asia have experienced expansions after the LGM with microsatellite data. Considering the mutation model of microsatellite has a vital influence on demographic inference, combining multiple programs such as MIGRAINE and VarEff can effectively reduce errors caused by inappropriate model selection and prior setting. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-021-01805-w.
Collapse
Affiliation(s)
- Yu Cao
- State Key Laboratory of Earth Surface Process and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Da-Yong Zhang
- State Key Laboratory of Earth Surface Process and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Yan-Fei Zeng
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China
| | - Wei-Ning Bai
- State Key Laboratory of Earth Surface Process and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
17
|
Yan F, Xi RM, She RX, Chen PP, Yan YJ, Yang G, Dang M, Yue M, Pei D, Woeste K, Zhao P. Improved de novo chromosome-level genome assembly of the vulnerable walnut tree Juglans mandshurica reveals gene family evolution and possible genome basis of resistance to lesion nematode. Mol Ecol Resour 2021; 21:2063-2076. [PMID: 33817972 DOI: 10.1111/1755-0998.13394] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 03/15/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022]
Abstract
Manchurian walnut (Juglans mandshurica Maxim.) is a synonym of J. cathayensis, a diploid, vulnerable, temperate deciduous tree valued for its wood and nut. It is also valued as a rootstock for Juglans regia because of its reported tolerance of lesion nematode. Reference genomes are available for several Juglans species, our goal was to produce a de novo, chromosome-level assembly of the J. mandshurica genome. Here, we reported an improved assembly of J. mandshurica with a contig N50 size of 6.49 Mb and a scaffold N50 size of 36.1 Mb. The total genome size was 548 Mb encoding 29,032 protein coding genes which were annotated. The collinearity analysis showed that J. mandshurica and J. regia originated from a common ancestor, with both species undergoing two WGD events. A genomic comparison showed that J. mandshurica was missing 1657 genes found in J. regia, and J. mandshurica includes 2827 genes not found in of the J. regia genome. The J. mandshurica contained 1440 unique paralogues that were highly enriched for flavonoid biosynthesis, phenylpropanoid biosynthesis, and plant-pathogen interaction. Four gene families related to disease resistance notable contraction (rapidly evolving; LEA, WAK, PPR, and PR) in J. mandshurica compared to eight species. JmaPR10 and JmaPR8 contained three orthologous gene pairs with J. regia that were highly expressed in root bark. JmaPR10 is a strong candidate gene for lesion nematodes resistance in J. mandshurica. The J. mandshurica genome should be a useful resource for study of the evolution, breeding, and genetic variation in walnuts (Juglans).
Collapse
Affiliation(s)
- Feng Yan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Rui-Min Xi
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Rui-Xue She
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Peng-Peng Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Yu-Jie Yan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Ge Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Meng Dang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Ming Yue
- Xi'an Botanical Garden of Shaanxi Province, Xi'an, China
| | - Dong Pei
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Keith Woeste
- Department of Forestry and Natural Resources, USDA Forest Service Hardwood Tree Improvement and Regeneration Center (HTIRC), Purdue University, West Lafayette, IN, USA
| | - Peng Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| |
Collapse
|
18
|
Hou H, Ye H, Wang Z, Wu J, Gao Y, Han W, Na D, Sun G, Wang Y. Demographic history and genetic differentiation of an endemic and endangered Ulmus lamellosa (Ulmus). BMC PLANT BIOLOGY 2020; 20:526. [PMID: 33203402 PMCID: PMC7672979 DOI: 10.1186/s12870-020-02723-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 10/26/2020] [Indexed: 05/03/2023]
Abstract
BACKGROUND Ulmus lamellosa (one of the ancient species of Ulmus) is an endemic and endangered plant that has undergone climatic oscillations and geographical changes. The elucidation of its demographic history and genetic differentiation is critical for understanding the evolutionary process and ecological adaption to forests in Northern China. RESULTS Polymorphic haplotypes were detected in most populations of U. lamellosa via DNA sequencing. All haplotypes were divided into three phylogeographic clades fundamentally corresponding to their geographical distribution, namely THM (Taihang Mountains), YM (Yinshan Mountains), and YSM (Yanshan Mountains) groups. The YSM group, which is regarded as ancestral, possessed higher genetic diversity and significant genetic variability in contrast to the YSM and YM groups. Meanwhile, the divergence time of intraspecies haplotypes occurred during the Miocene-Pliocene, which was associated with major Tertiary geological and/or climatic events. Different degrees of gene exchanges were identified between the three groups. During glaciation, the YSM and THM regions might have served as refugia for U. lamellosa. Based on ITS data, range expansion was not expected through evolutionary processes, except for the THM group. A series of mountain uplifts (e.g., Yanshan Mountains and Taihang Mountains) following the Miocene-Pliocene, and subsequently quaternary climatic oscillations in Northern China, further promoted divergence between U. lamellosa populations. CONCLUSIONS Geographical topology and climate change in Northern China played a critical role in establishing the current phylogeographic structural patterns of U. lamellosa. These results provide important data and clues that facilitate the demographic study of tree species in Northern China.
Collapse
Affiliation(s)
- Huimin Hou
- School of Life Science, Shanxi Normal University, Linfen, 041000 P. R. China
| | - Hang Ye
- School of Life Science, Shanxi Normal University, Linfen, 041000 P. R. China
| | - Zhi Wang
- School of Life Science, Shanxi Normal University, Linfen, 041000 P. R. China
| | - Jiahui Wu
- School of Life Science, Shanxi Normal University, Linfen, 041000 P. R. China
| | - Yue Gao
- School of Life Science, Shanxi Normal University, Linfen, 041000 P. R. China
| | - Wei Han
- School of Life Science, Shanxi Normal University, Linfen, 041000 P. R. China
| | - Dongchen Na
- School of Life Science, Shanxi Normal University, Linfen, 041000 P. R. China
| | - Genlou Sun
- Saint Mary’s University, Halifax, Canada
| | - Yiling Wang
- School of Life Science, Shanxi Normal University, Linfen, 041000 P. R. China
| |
Collapse
|
19
|
Sánchez-Del Pino I, Alfaro A, Andueza-Noh RH, Mora-Olivo A, Chávez-Pesqueira M, Ibarra-Morales A, Moore MJ, Flores-Olvera H. High phylogeographic and genetic diversity of Tidestromia lanuginosa supports full-glacial refugia for arid-adapted plants in southern and central Coahuila, Mexico. AMERICAN JOURNAL OF BOTANY 2020; 107:1296-1308. [PMID: 33001458 DOI: 10.1002/ajb2.1536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 06/11/2020] [Indexed: 06/11/2023]
Abstract
PREMISE Recent phylogeographic work suggests the existence of latitudinal gradients in genetic diversity in northern Mexican plants, but very few studies have examined plants of the Chihuahuan Desert. Tidestromia lanuginosa is a morphologically variable annual species whose distribution includes the Chihuahuan Desert Region. Here we undertook phylogeographic analyses of chloroplast loci in this species to test whether genetic diversity and differentiation of Mexican populations of T. lanuginosa change along a latitudinal gradient and whether diversity is higher in Coahuila, consistent with ideas of lower plant community turnover during the Pleistocene. METHODS Haplotype network, maximum likelihood tree, and Bayesian phylogenetic haplotype were reconstructed, and genetic diversity was assessed among 26 populations. Barrier analysis was used to explore barriers to gene flow. RESULTS Four major population groups were identified, corresponding with physiographic provinces in Mexico. Each population group displayed high levels of genetic structure, haplotype, and nucleotide diversity. Diversity was highest in southern populations across the species as a whole and among the Chihuahuan Desert populations. CONCLUSIONS Tidestromia lanuginosa provides an important example of high phylogeographic and genetic diversity in plants of northern Mexico. Barriers to gene flow among the major population groups have most likely been due to a combination of orographic, climatic, and edaphic variables. The high genetic diversity of T. lanuginosa in southern and central Coahuila is consistent with the hypothesis of full-glacial refugia for arid-adapted plants in this area, and highlights the importance of this region as a center of diversity for the Chihuahuan Desert flora.
Collapse
Affiliation(s)
- Ivonne Sánchez-Del Pino
- Centro de Investigación Científica de Yucatán, A.C. Calle 43 No 130 x 32 y 34, Col. Chuburná de Hidalgo, Mérida, Yucatán, C.P. 97205, México
| | - Alejandra Alfaro
- Centro de Investigación Científica de Yucatán, A.C. Calle 43 No 130 x 32 y 34, Col. Chuburná de Hidalgo, Mérida, Yucatán, C.P. 97205, México
| | - Rubén H Andueza-Noh
- CONACYT-Instituto Tecnológico de Conkal, Avenida Tecnológico s/n Conkal, Yucatán, Mérida, Yucatán, C.P. 97345, México
| | - Arturo Mora-Olivo
- Instituto de Ecología Aplicada, Universidad Autónoma de Tamaulipas, Ciudad Victoria, Tamaulipas, México
| | - Mariana Chávez-Pesqueira
- Centro de Investigación Científica de Yucatán, A.C. Calle 43 No 130 x 32 y 34, Col. Chuburná de Hidalgo, Mérida, Yucatán, C.P. 97205, México
| | - Ariadna Ibarra-Morales
- Centro de Investigación Científica de Yucatán, A.C. Calle 43 No 130 x 32 y 34, Col. Chuburná de Hidalgo, Mérida, Yucatán, C.P. 97205, México
| | | | - Hilda Flores-Olvera
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Apdo. Postal 70-367, Ciudad de México, C.P. 04510, Mexico
| |
Collapse
|
20
|
Zheng Y, Dai Q, Guo X, Zeng X. Dynamics behind disjunct distribution, hotspot-edge refugia, and discordant RADseq/mtDNA variability: insights from the Emei mustache toad. BMC Evol Biol 2020; 20:111. [PMID: 32859147 PMCID: PMC7456009 DOI: 10.1186/s12862-020-01675-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 08/20/2020] [Indexed: 12/01/2022] Open
Abstract
Background The distribution of genetic diversity and the underlying processes are important for conservation planning but are unknown for most species and have not been well studied in many regions. In East Asia, the Sichuan Basin and surrounding mountains constitute an understudied region that exhibits a “ring” of high species richness overlapping the eastern edge of the global biodiversity hotspot Mountains of Southwest China. We examine the distributional history and genetic diversification of the Emei mustache toad Leptobrachium boringii, a typical “ring” element characterized by disjunct ranges in the mountains, by integrating time-calibrated gene tree, genetic variability, individual-level clustering, inference of population splitting and mixing from allele frequencies, and paleoclimatic suitability modeling. Results The results reveal extensive range dynamics, including secondary contact after long-term isolation via westward dispersal accompanied by variability loss. They allow the proposal of a model that combines recurrent contractions caused by Quaternary climatic changes and some failed expansions under suitable conditions for explaining the shared disjunct distribution pattern. Providing exceptional low-elevation habitats in the hotspot area, the eastern edge harbors both long-term refugial and young immigrant populations. This finding and a synthesis of evidence from other taxa demonstrate that a certain contributor to biodiversity, one that preserves and receives low-elevation elements of the east in this case, can be significant for only a particular part of a hotspot. By clarifying the low variability of these refugial populations, we show that discordant mitochondrial estimates of diversity can be obtained for populations that experienced admixture, which would have unlikely left proportional immigrant alleles for each locus. Conclusions Dispersal after long-term isolation can explain much of the spatial distribution of genetic diversity in this species, while secondary contact and long-term persistence do not guarantee a large variation. The model for the formation of disjunct ranges may apply to many other taxa isolated in the mountains surrounding the Sichuan Basin. Furthermore, this study provides insights into the heterogeneous nature of hotspots and discordant variability obtained from genome-wide and mitochondrial data.
Collapse
Affiliation(s)
- Yuchi Zheng
- Chengdu Institute of Biology, Chinese Academy of Sciences, #9 of Section 4, Ren-Min-Nan Road, Wuhou District, Chengdu, 610041, Sichuan Province, China. .,Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, 637009, Sichuan Province, China.
| | - Qiang Dai
- Chengdu Institute of Biology, Chinese Academy of Sciences, #9 of Section 4, Ren-Min-Nan Road, Wuhou District, Chengdu, 610041, Sichuan Province, China
| | - Xianguang Guo
- Chengdu Institute of Biology, Chinese Academy of Sciences, #9 of Section 4, Ren-Min-Nan Road, Wuhou District, Chengdu, 610041, Sichuan Province, China
| | - Xiaomao Zeng
- Chengdu Institute of Biology, Chinese Academy of Sciences, #9 of Section 4, Ren-Min-Nan Road, Wuhou District, Chengdu, 610041, Sichuan Province, China
| |
Collapse
|
21
|
Zhang CY, Ling Low S, Song YG, Nurainas, Kozlowski G, Li L, Zhou SS, Tan YH, Cao GL, Zhou Z, Meng HH, Li J. Shining a light on species delimitation in the tree genus Engelhardia Leschenault ex Blume (Juglandaceae). Mol Phylogenet Evol 2020; 152:106918. [PMID: 32738292 DOI: 10.1016/j.ympev.2020.106918] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 07/16/2020] [Accepted: 07/21/2020] [Indexed: 10/23/2022]
Abstract
Enhanced efficacy in species delimitation is critically important in biology given the pending biodiversity crisis under global warming and anthropogenic activity. In particular, delineation of traditional classifications in view of the complexity of species requires an integrative approach to effectively define species boundaries, and this is a major focus of systematic biology. Here, we explored species delimitation of Engelhardia in tropical and subtropical Asia. In total, 716 individuals in 71 populations were genotyped using five chloroplast regions, one nuclear DNA region (nrITS), and 11 nuclear simple sequence repeats (nSSR). Phylogenetic trees were constructed and relationships among species were assessed. Molecular analyses were then combined with 14 morphological characteristics of 720 specimens to further explore the species boundaries of Engelhardia. Integrating phylogenetic and morphological clusters provided well-resolved relationships to delineate seven species. The results suggested that: first, that E. fenzelii, E. roxburghiana, E. hainanensis, E. apoensis, and E. serrata are distinct species; second, E. spicata var. spicata, E. spicata var. aceriflora, E. spicata var. colebrookeana, and E. rigida should be combined under E. spicata and treated as a species complex; third, E. serrata var. cambodica should be raised to species level and named E. villosa. We illuminated that bias thresholds determining the cluster number for delimiting species boundaries were substantially reduced when morphological data were incorporated. Our results urge caution when using the concepts of subspecies and varieties in order to prevent confusion, particularly with respect to species delimitation for tropical and subtropical species. In some cases, re-ranking or combining subspecies and/or varieties may enable more accurate species delimitation.
Collapse
Affiliation(s)
- Can-Yu Zhang
- Plant Phylogenetics and Conservation Group, Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shook Ling Low
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China
| | - Yi-Gang Song
- Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai 201602, China; Department of Biology and Botanic Garden, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland
| | - Nurainas
- Department of Biology, Faculty of Math. & Nat. Sci. Andalas University, Padang 25163, West Sumatra, Indonesia
| | - Gregor Kozlowski
- Department of Biology and Botanic Garden, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland
| | - Lang Li
- Plant Phylogenetics and Conservation Group, Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650023, China; Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Nay Pyi Taw 05282, Myanmar; Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla 666303, China
| | - Shi-Shun Zhou
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Nay Pyi Taw 05282, Myanmar
| | - Yun-Hong Tan
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Nay Pyi Taw 05282, Myanmar; Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla 666303, China
| | - Guan-Long Cao
- Plant Phylogenetics and Conservation Group, Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuo Zhou
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Hong-Hu Meng
- Plant Phylogenetics and Conservation Group, Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650023, China; Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Nay Pyi Taw 05282, Myanmar.
| | - Jie Li
- Plant Phylogenetics and Conservation Group, Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650023, China; Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Nay Pyi Taw 05282, Myanmar; Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla 666303, China.
| |
Collapse
|
22
|
Mu XY, Tong L, Sun M, Zhu YX, Wen J, Lin QW, Liu B. Phylogeny and divergence time estimation of the walnut family (Juglandaceae) based on nuclear RAD-Seq and chloroplast genome data. Mol Phylogenet Evol 2020; 147:106802. [DOI: 10.1016/j.ympev.2020.106802] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 03/18/2020] [Accepted: 03/18/2020] [Indexed: 11/25/2022]
|
23
|
Kou Y, Zhang L, Fan D, Cheng S, Li D, Hodel RGJ, Zhang Z. Evolutionary history of a relict conifer, Pseudotaxus chienii (Taxaceae), in south-east China during the late Neogene: old lineage, young populations. ANNALS OF BOTANY 2020; 125:105-117. [PMID: 31765468 PMCID: PMC6948213 DOI: 10.1093/aob/mcz153] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/04/2019] [Accepted: 11/17/2019] [Indexed: 06/01/2023]
Abstract
BACKGROUND AND AIMS Many monotypic gymnosperm lineages in south-east China paradoxically remain in relict status despite long evolutionary histories and ample opportunities for allopatric speciation, but this paradox has received little attention and has yet to be resolved. Here, we address this issue by investigating the evolutionary history of a relict conifer, Pseudotaxus chienii (Taxaceae). METHODS DNA sequences from two chloroplast regions and 14 nuclear loci were obtained for 134 samples. The demographic history was inferred and the contribution of isolation by environment (IBE) in patterning genetic divergence was compared with that of isolation by distance (IBD). KEY RESULTS Three genetic clusters were identified. Approximate Bayesian computation analyses showed that the three clusters diverged in the late Pliocene (~3.68 Ma) and two admixture events were detected. Asymmetric gene flow and similar population divergence times (~ 3.74 Ma) were characterized using the isolation with migration model. Neither IBD nor IBE contributed significantly to genetic divergence, and the contribution of IBE was much smaller than that of IBD. CONCLUSIONS These results suggest that several monotypic relict gymnosperm lineages like P. chienii in south-east China did not remain in situ and undiversified for millions of years. On the contrary, they have been evolving and the extant populations have become established more recently, having insufficient time to speciate. Our findings provide a new perspective for understanding the formation and evolution of the relict gymnosperm flora of China as well as of the Sino-Japanese Flora.
Collapse
Affiliation(s)
- Yixuan Kou
- Laboratory of Subtropical Biodiversity, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Li Zhang
- Laboratory of Subtropical Biodiversity, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Dengmei Fan
- Laboratory of Subtropical Biodiversity, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Shanmei Cheng
- Laboratory of Subtropical Biodiversity, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Dezhu Li
- Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan China
| | - Richard G J Hodel
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Zhiyong Zhang
- Laboratory of Subtropical Biodiversity, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| |
Collapse
|
24
|
Deng JY, van Noort S, Compton SG, Chen Y, Greeff JM. The genetic consequences of habitat specificity for fig trees in southern African fragmented forests. ACTA OECOLOGICA 2020. [DOI: 10.1016/j.actao.2019.103506] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Gene Introgression among Closely Related Species in Sympatric Populations: A Case Study of Three Walnut (Juglans) Species. FORESTS 2019. [DOI: 10.3390/f10110965] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Gene introgression usually results from natural hybridization occurring among closely related species in sympatric populations. In this study, we discussed two rare and frequent gene flow phenomena between three species of Juglans plants and analyzed the possible causes for the difference. We collected 656 individuals from 40 populations of Persian walnut (Juglans regia L.), Chinese walnut (J. cathayensis Dode), and Iron walnut (J. sigillata Dode) that were genotyped at 17 expressed sequence tag simple sequence repeat (EST-SSR) loci to analyze the introgressions between J. regia and J. cathayensis, and J. regia and J. sigillata. Our study compared the spatial patterns of expected heterozygosity (HE), allelic richness (Rs), and private allele richness (PAR) so as to vividly infer the biogeographic history of related species of Juglans in the two regions. The results of the PCoA, UPGMA, and STRUCTURE analyses showed that all J. regia and J. sigillata populations clustered into one group, and the J. cathayensis populations clustered into the other group. The results of the historical gene flow analysis indicated that J. regia and J. sigillata have no genetic barriers, and the directional gene flow is mainly from J. regia to J. sigillata. For the three species of Juglans, all the above results indicated that gene flow was common among the same group of Juglans, and only rare and low-level gene flow appeared in distinct groups. Therefore, our study revealed multiple phenomena of gene flow and introgression among closely related species in sympatric populations, thereby providing a theoretical basis for the genetic evolution of the genus Juglans.
Collapse
|
26
|
Li Y, Zhang X, Fang Y. Landscape Features and Climatic Forces Shape the Genetic Structure and Evolutionary History of an Oak Species ( Quercus chenii) in East China. FRONTIERS IN PLANT SCIENCE 2019; 10:1060. [PMID: 31552065 PMCID: PMC6734190 DOI: 10.3389/fpls.2019.01060] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 08/06/2019] [Indexed: 06/10/2023]
Abstract
Major topographic features facilitate intraspecific divergence through geographic isolation. This process may be enhanced by environmental isolation along climatic gradients, but also may be reduced by range shifts under rapid climatic changes. In this study, we examined how topography and climate have interacted over time and space to influence the genetic structure and evolutionary history of Quercus chenii, a deciduous oak species representative of the East China flora. Based on the nuclear microsatellite variation at 14 loci, we identified multiple genetic boundaries that were well associated with persistent landscape barriers of East China. Redundancy analysis indicated that both geography and climate explained similar amounts of intraspecific variation. Ecological differences along altitudinal gradients may have driven the divergence between highlands and lowlands. However, range expansions during the Last Interglacial as inferred from approximate Bayesian computation (ABC) may have increased the genetic diversity and eliminated the differentiation of lowland populations via admixture. Chloroplast (cp) DNA analysis of four intergenic spacers (2,866 bp in length) identified a total of 18 haplotypes, 15 of which were private to a single population, probably a result of long-term isolation among multiple montane habitats. A time-calibrated phylogeny suggested that palaeoclimatic changes of the Miocene underlay the lineage divergence of three major clades. In combination with ecological niche modeling (ENM), we concluded that mountainous areas with higher climatic stability are more likely to be glacial refugia that preserved higher phylogenetic diversity, while plains and basins may have acted as dispersal corridors for the post-glacial south-to-north migration. Our findings provide compelling evidence that both topography and climate have shaped the pattern of genetic variation of Q. chenii. Mountains as barriers facilitated differentiation through both geographic and environmental isolation, whereas lowlands as corridors increased the population connectivity especially when the species experienced range expansions.
Collapse
Affiliation(s)
- Yao Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing, China
| | - Xingwang Zhang
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Yanming Fang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
27
|
Feng X, Zhou H, Zulfiqar S, Luo X, Hu Y, Feng L, Malvolti ME, Woeste K, Zhao P. The Phytogeographic History of Common Walnut in China. FRONTIERS IN PLANT SCIENCE 2018; 9:1399. [PMID: 30298084 PMCID: PMC6160591 DOI: 10.3389/fpls.2018.01399] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 09/03/2018] [Indexed: 05/16/2023]
Abstract
Common walnut (Juglans regia L.) is an economically important hardwood tree species cultivated worldwide for its high quality wood and edible nuts. It is generally accepted that after the last glaciation J. regia survived and grew in almost completely isolated stands in Asia, and that ancient humans dispersed walnuts across Asia and into new habitats via trade and cultural expansion. The history of common walnut in China is a matter of debate, however. We estimated the genetic diversity and spatial genetic structure of 31 walnut populations sampled across its Chinese range using 22 microsatellite markers (13 neutral and 9 non-neutral). Using historical data and population genetic analysis, including approximate Bayesian analysis (ABC), we reconstructed the demographic history of J. regia in China. The genetic data indicated the likely presence of J. regia in glacial refugia in the Xinjiang province (Northwest China), Northeastern China (Beijing, Shandong, and Changbai Mountains), Central China (Qinling and Baishan Mountains and Xi'an), and Southwestern China (Tibet, Yunnan, Guizhou, and Sichuan provinces). Based on DIY-ABC analysis, we identified three ancient lineages of J. regia in China. Two lineages (subpopulation A and subpopulation B+C) diverged about 2.79 Mya, while Southwestern China, and Qinling and Baishan Mountains lineages diverged during the Quaternary glaciations (about 1.13 Mya). Remnants of these once-distinct genetic clusters of J. regia may warrant ecological management if they are to be retained as in situ resources. A population size expansion in Northeastern China was detected in the last five centuries. The present distribution of walnut in China resulted from the combined effects of expansion/contraction from multiple refugia after the Last Glacial Maximum and later human exploitation.
Collapse
Affiliation(s)
- Xiaojia Feng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, China
| | - Huijuan Zhou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, China
| | - Saman Zulfiqar
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, China
| | - Xiang Luo
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Yiheng Hu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, China
| | - Li Feng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, China
| | - Maria E. Malvolti
- Institute of Agro-environmental and Forest Biology, Consiglio Nazionale delle Ricerche, Terni, Italy
| | - Keith Woeste
- USDA Forest Service Hardwood Tree Improvement and Regeneration Center (HTIRC), Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, United States
| | - Peng Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, China
| |
Collapse
|
28
|
Zhao P, Zhou HJ, Potter D, Hu YH, Feng XJ, Dang M, Feng L, Zulfiqar S, Liu WZ, Zhao GF, Woeste K. Population genetics, phylogenomics and hybrid speciation of Juglans in China determined from whole chloroplast genomes, transcriptomes, and genotyping-by-sequencing (GBS). Mol Phylogenet Evol 2018; 126:250-265. [DOI: 10.1016/j.ympev.2018.04.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 03/27/2018] [Accepted: 04/09/2018] [Indexed: 10/17/2022]
|
29
|
Dong F, Hung CM, Li XL, Gao JY, Zhang Q, Wu F, Lei FM, Li SH, Yang XJ. Ice age unfrozen: severe effect of the last interglacial, not glacial, climate change on East Asian avifauna. BMC Evol Biol 2017; 17:244. [PMID: 29212454 PMCID: PMC5719578 DOI: 10.1186/s12862-017-1100-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 11/28/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The glacial-interglacial cycles in the Pleistocene caused repeated range expansion and contraction of species in several regions in the world. However, it remains uncertain whether such climate oscillations had similar impact on East Asian biota, despite its widely recognized importance in global biodiversity. Here we use both molecular and ecological niche profiles on 11 East Asian avian species with various elevational ranges to reveal their response to the late Pleistocene climate changes. RESULTS The ecological niche models (ENM) consistently showed that these avian species might substantially contract their ranges to the south during the Last Interglacial period (LIG) and expanded their northern range margins through the Last Glacial Maximum (LGM), leading to the LGM ranges observed for all 11 species. Consistently, coalescent simulations based on 25-30 nuclear genes retrieved signatures of significant population growth through the last glacial period across all species studied. Climate statistics suggested that high climatic variability during the LIG and a relatively mild climate at the LGM potentially explained the historical population dynamics of these birds. CONCLUSIONS This is the first study based on multiple species and both lines of ecological niche profiles and genetic data to characterize the unique response of East Asian biota to late Pleistocene climate. The present study highlights regional differences in the evolutionary consequence of climate change during the last glacial cycle and implies that global warming might pose a great risk to species in this region given potentially higher climatic variation in the future analogous to that during the LIG.
Collapse
Affiliation(s)
- Feng Dong
- Kunming Institute of Zoology, Chinese Academy of Sciences, 32 Jiaochang Donglu Rd., Kunming, Yunnan, China.,Department of Life Science, National Taiwan Normal University, 88 Ting-chou Rd., Sec. 4, Taipei, 116, Taiwan
| | - Chih-Ming Hung
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Xin-Lei Li
- Kunming Institute of Zoology, Chinese Academy of Sciences, 32 Jiaochang Donglu Rd., Kunming, Yunnan, China
| | - Jian-Yun Gao
- Kunming Institute of Zoology, Chinese Academy of Sciences, 32 Jiaochang Donglu Rd., Kunming, Yunnan, China
| | - Qiang Zhang
- Guangdong Institute of Applied Biological Resources, Guangzhou, 510260, China
| | - Fei Wu
- Kunming Institute of Zoology, Chinese Academy of Sciences, 32 Jiaochang Donglu Rd., Kunming, Yunnan, China
| | - Fu-Min Lei
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Rd., Chaoyang District, Beijing, 100101, China.
| | - Shou-Hsien Li
- Department of Life Science, National Taiwan Normal University, 88 Ting-chou Rd., Sec. 4, Taipei, 116, Taiwan.
| | - Xiao-Jun Yang
- Kunming Institute of Zoology, Chinese Academy of Sciences, 32 Jiaochang Donglu Rd., Kunming, Yunnan, China.
| |
Collapse
|
30
|
The demographic response of a deciduous shrub (the Indigofera bungeana complex, Fabaceae) to the Pleistocene climate changes in East Asia. Sci Rep 2017; 7:697. [PMID: 28386059 PMCID: PMC5428846 DOI: 10.1038/s41598-017-00613-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 03/06/2017] [Indexed: 11/25/2022] Open
Abstract
East Asia harbors the highest level of floristic diversity among the world’s temperate regions. Despite the increase in phylogeographic studies of temperate plants in East Asia, far less attention has been paid to widely distributed deciduous shrubs that widespread across several floral regions. We sequenced two chloroplast DNA (cpDNA) fragments (ndhJ-trnF and trnD-trnT) and one nuclear DNA (Pgk1) of 472 individuals from 51 populations of such a group, the Indigofera bungeana complex. We used population genetic data as well as ecological niche modelling to examine the evolutionary history and glacial refugia during the Last Glacial Maximum (LGM) of this group. We recovered 133 cpDNA and 68 nuclear haplotypes. The star-phylogeny of the recovered cpDNA and nuclear haplotypes and demographic analyses suggested distinct range expansion of I. bungeana complex have occurred during the early and middle Pleistocene. The climate change of the LGM might have affected little on the distribution of this complex based on the niche modelling. However, these climate changes and geographic isolation probably resulted in fixtures of the private haplotypes and genetic differentiations between regions. Our results suggested that this arid-tolerant species complex may have different responses to the Quaternary climate changes with those climate-sensitive species.
Collapse
|
31
|
Hu Y, Woeste KE, Zhao P. Completion of the Chloroplast Genomes of Five Chinese Juglans and Their Contribution to Chloroplast Phylogeny. FRONTIERS IN PLANT SCIENCE 2017; 7:1955. [PMID: 28111577 PMCID: PMC5216037 DOI: 10.3389/fpls.2016.01955] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 12/09/2016] [Indexed: 05/18/2023]
Abstract
Juglans L. (walnuts and butternuts) is an economically and ecologically important genus in the family Juglandaceae. All Juglans are important nut and timber trees. Juglans regia (Common walnut), J. sigillata (Iron walnut), J. cathayensis (Chinese walnut), J. hopeiensis (Ma walnut), and J. mandshurica (Manchurian walnut) are native to or naturalized in China. A strongly supported phylogeny of these five species is not available due to a lack of informative molecular markers. We compared complete chloroplast genomes and determined the phylogenetic relationships among the five Chinese Juglans using IIumina sequencing. The plastid genomes ranged from 159,714 to 160,367 bp encoding 128 functional genes, including 88 protein-coding genes and 40 tRNA genes each. A complete map of the variability across the genomes of the five Juglans species was produced that included single nucleotide variants, indels (insertions and deletions), and large structural variants, as well as differences in simple sequence repeats (SSR) and repeat sequences. Molecular phylogeny strongly supported division of the five walnut species into two previously recognized sections (Juglans/Dioscaryon and Cardiocaryon) with a 100% bootstrap (BS) value using the complete cp genomes, protein coding sequences (CDS), and the introns and spacers (IGS) data. The availability of these genomes will provide genetic information for identifying species and hybrids, taxonomy, phylogeny, and evolution in Juglans, and also provide insight into utilization of Juglans plants.
Collapse
Affiliation(s)
- Yiheng Hu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest UniversityXi'an, China
| | - Keith E. Woeste
- United States Department of Agriculture Forest Service Hardwood Tree Improvement and Regeneration Center, Department of Forestry and Natural Resources, Purdue UniversityWest Lafayette, IN, USA
| | - Peng Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest UniversityXi'an, China
| |
Collapse
|
32
|
Yan SX, Zhang L, Mao RL, Zhu H, Li Y. Assessment of genetic diversity and population differentiation of Achyranthes bidentata (Amaranthaceae) in Dao Di and its surrounding region based on microsatellite markers. BIOCHEM SYST ECOL 2016. [DOI: 10.1016/j.bse.2016.08.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Phylogeography of postglacial range expansion in Juglans mandshurica (Juglandaceae) reveals no evidence of bottleneck, loss of genetic diversity, or isolation by distance in the leading-edge populations. Mol Phylogenet Evol 2016; 102:255-64. [PMID: 27346642 DOI: 10.1016/j.ympev.2016.06.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/23/2016] [Accepted: 06/20/2016] [Indexed: 11/23/2022]
Abstract
The past studies of postglacial recolonization patterns in high latitude regions have revealed a significant role of dispersal capacity in shaping the genetic diversity and population structure of temperate trees. However, most of these studies have focused on species with long-distance dispersal followed by exponential population growth and were therefore unable to reveal the patterns in the case of a gradual expansion. Here we studied the impacts of postglacial range expansions on the distribution of genetic diversity in the Manchurian walnut (Juglans mandshurica), a common tree of East Asian cool-temperate deciduous forests that apparently lacks long-distance seed dispersal ability. The genetic diversity and structure of 19 natural walnut populations in Northeast China and the Korean Peninsula were examined using 17 nuclear simple sequence repeat (SSR) loci. Potential habitats under current and past climatic conditions were predicted using the ecological niche modelling (ENM) method. Bayesian clustering analysis revealed three groups, which were inferred to have diverged through multiple glacial-interglacial cycles in multiple refugia during the Quaternary Period. ENM estimated a southward range shift at the LGM, but high suitability scores still occurred in the western parts of the Changbai Mountains (Northeast China), the Korean peninsula and the exposed seafloor of the Yellow Sea. In contrast to most other cool-temperate trees co-occurring in the same region, the Manchurian walnut did not show any evidence of a population bottleneck, loss of genetic diversity or isolation by distance during the postglacial expansion. Our study clearly indicates that current northern populations originated from one glacial lineage and recolonization via a gradually advancing front due to the lack of a long-distance seed dispersal mechanism led to no latitudinal decrease in genetic diversity.
Collapse
|
34
|
Reim S, Lochschmidt F, Proft A, Tröber U, Wolf H. Genetic structure and diversity in Juniperus communis populations in Saxony, Germany. BIODIVERSITY: RESEARCH AND CONSERVATION 2016. [DOI: 10.1515/biorc-2016-0008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Abstract
In recent years, land use changes led to a rapid decline and fragmentation of J. communis populations in Germany. Population isolation may lead to a restricted gene flow and, further, to negative effects on genetic variation. In this study, genetic diversity and population structure in seven fragmented J. communis populations in Saxony, Germany, were investigated using nuclear microsatellites (nSSR) and chloroplast single nucleotide polymorphism (cpSNP). In all Saxony J. communis populations, a high genetic diversity was determined but no population differentiation could be detected whatever method was applied (Bayesian cluster analysis, F-statistics, AMOVA). The same was true for three J. communis out-group samples originating from Italy, Slovakia and Norway, which also showed high genetic diversity and low genetic differences regarding other J. communis populations. Low genetic differentiation among the J. communis populations ascertained with nuclear and chloroplast markers indicated high levels of gene flow by pollen and also by seeds between the sampled locations. Low genetic differentiation may also provide an indicator of Juniper survival during the last glacial maximum (LGM) in Europe. The results of this study serve as a basis for the implementation of appropriate conservation measures in Saxony.
Collapse
|
35
|
Cytoplasmic DNA disclose high nucleotide diversity and different phylogenetic pattern in Taihangia rupestris Yu et Li. BIOCHEM SYST ECOL 2016. [DOI: 10.1016/j.bse.2016.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
36
|
Cao YN, Comes HP, Sakaguchi S, Chen LY, Qiu YX. Evolution of East Asia's Arcto-Tertiary relict Euptelea (Eupteleaceae) shaped by Late Neogene vicariance and Quaternary climate change. BMC Evol Biol 2016; 16:66. [PMID: 27001058 PMCID: PMC4802896 DOI: 10.1186/s12862-016-0636-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 03/13/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The evolutionary origin and historical demography of extant Arcto-Tertiary forest species in East Asia is still poorly understood. Here, we reconstructed the evolutionary and population demographic history of the two extant Euptelea species in China (E. pleiosperma) and Japan (E. polyandra). Chloroplast/nuclear DNA sequences and microsatellite loci were obtained from 36 Euptelea populations to explore molecular structure and diversity in relation to past and present distributions based on ecological niche modelling (ENM). Time-calibrated phylogenetic/phylogeographic inferences and niche-identity tests were used to infer the historical process of lineage formation. RESULTS Euptelea pleiosperma diverged from E. polyandra around the Late Miocene and experienced significant ecological differentiation. A near-simultaneous diversification of six phylogroups occurred during the mid-to-late Pliocene, in response to the abrupt uplift of the eastern Tibetan Plateau and an increasingly cooler and drier climate. Populations of E. pleiosperma seem to have been mostly stationary through the last glacial cycles, while those of E. polyandra reflect more recent climate-induced cycles of range contraction and expansion. CONCLUSIONS Our results illustrate how Late Neogene climatic/tectonic changes promoted speciation and lineage diversification in East Asia's Tertiary relict flora. They also demonstrate for the first time a greater variation in such species' responses to glacial cycles in Japan when compared to congeners in China.
Collapse
Affiliation(s)
- Ya-Nan Cao
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, and College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hans Peter Comes
- Department of Ecology & Evolution, Salzburg University, A-5020, Salzburg, Austria
| | - Shota Sakaguchi
- Laboratory of Plant Evolution and Biodiversity, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-0041, Japan
| | - Lu-Yao Chen
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, and College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ying-Xiong Qiu
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, and College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
37
|
Bai WN, Wang WT, Zhang DY. Phylogeographic breaks within Asian butternuts indicate the existence of a phytogeographic divide in East Asia. THE NEW PHYTOLOGIST 2016; 209:1757-72. [PMID: 26499508 DOI: 10.1111/nph.13711] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 09/15/2015] [Indexed: 05/16/2023]
Abstract
East Asia has been hypothesized to be subdivided into two distinct northern and southern areas, separated by a band of dry climate that was far more severe in the early Tertiary but still exists today. However, this biogeographic hypothesis has rarely been tested using a molecular phylogeographic approach. We genotyped 70 populations throughout the distributional range of Asian butternuts (Juglans section Cardiocaryon) using eight chloroplast DNA regions, one single-copy nuclear gene, and 17 nuclear microsatellite loci, supplemented with paleodistribution modeling of the major genetic clades. The genetic data consistently identified two clades, one northern, comprising Juglans mandshurica and Juglans ailantifolia, and one southern, comprising Juglans cathayensis. The two clades diverged through climate-induced vicariance of an ancestral northern range during the mid-Miocene and remained mostly separate thereafter, with geographical isolation of the Japanese Islands and refugial isolation or secondary contacts in the late Pleistocene producing further subdivision within the northern clade. But beyond all that, we also discovered a role of environmental adaptation in maintaining and/or reinforcing the north-south divergence. Asian butternuts offer a strong case for the existence of a biogeographic divide between the northern and southern parts of East Asia during the Neogene and into the Pleistocene.
Collapse
Affiliation(s)
- Wei-Ning Bai
- State Key Laboratory of Earth Surface Processes and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Wen-Ting Wang
- State Key Laboratory of Earth Surface Processes and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
- School of Mathematics and Computer Science, Northwest University for Nationalities, Lanzhou, 730030, China
| | - Da-Yong Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
38
|
Zeng YF, Wang WT, Liao WJ, Wang HF, Zhang DY. Multiple glacial refugia for cool-temperate deciduous trees in northern East Asia: the Mongolian oak as a case study. Mol Ecol 2015; 24:5676-91. [DOI: 10.1111/mec.13408] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 09/25/2015] [Accepted: 09/28/2015] [Indexed: 01/16/2023]
Affiliation(s)
- Yan-Fei Zeng
- State Key Laboratory of Tree Genetics and Breeding; Chinese Academy of Forestry; Beijing 100091 China
- Key Laboratory of Silviculture of the State Forestry Administration; Research Institute of Forestry; Chinese Academy of Forestry; Beijing 100091 China
| | - Wen-Ting Wang
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering; Beijing Normal University; Beijing 100875 China
- School of Mathematics and Computer Science; Northwest University for Nationalities; Lanzhou 730030 China
| | - Wan-Jin Liao
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering; Beijing Normal University; Beijing 100875 China
| | - Hong-Fang Wang
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering; Beijing Normal University; Beijing 100875 China
| | - Da-Yong Zhang
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering; Beijing Normal University; Beijing 100875 China
| |
Collapse
|
39
|
Chen T, Chen Q, Luo Y, Huang ZL, Zhang J, Tang HR, Pan DM, Wang XR. Phylogeography of Chinese cherry (Prunus pseudocerasus Lindl.) inferred from chloroplast and nuclear DNA: insights into evolutionary patterns and demographic history. PLANT BIOLOGY (STUTTGART, GERMANY) 2015; 17:787-97. [PMID: 25521479 DOI: 10.1111/plb.12294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Accepted: 12/10/2014] [Indexed: 05/16/2023]
Abstract
Chinese cherry (Prunus pseudocerasus Lindl.) is a commercially valuable fruit crop in China. In order to obtain new insights into its evolutionary history and provide valuable recommendations for resource conservation, phylogeographic patterns of 26 natural populations (305 total individuals) from six geographic regions were analyzed using chloroplast and nuclear DNA fragments. Low levels of haplotype and nucleotide diversity were found in these populations, especially in landrace populations. It is likely that a combined effect of botanical characteristics impact the effective population size, such as inbreeding mating system, long life span, as well as vegetative reproduction. In addition, strong bottleneck effect caused by domestication, together with founder effect after dispersal and subsequent demographic expansion, might also accelerate the reduction of the genetic variation in landrace populations. Interestingly, populations from Longmen Mountain (LMM) and Daliangshan Mountain (DLSM) exhibited relatively higher levels of genetic diversity, inferring the two historical genetic diversity centers of the species. Moreover, moderate population subdivision was also detected by both chloroplast DNA (GST = 0.215; NST = 0.256) and nuclear DNA (GST = 0.146; NST = 0.342), respectively. We inferred that the episodes of efficient gene flow through seed dispersal, together with features of long generation cycle and inbreeding mating system, were likely the main contributors causing the observed phylogeographic patterns. Finally, factors that led to the present demographic patterns of populations from these regions and taxonomic varieties were also discussed.
Collapse
Affiliation(s)
- T Chen
- College of Horticulture, Sichuan Agricultural University, Ya'an, China
| | - Q Chen
- College of Horticulture, Sichuan Agricultural University, Ya'an, China
| | - Y Luo
- College of Horticulture, Sichuan Agricultural University, Ya'an, China
| | - Z-L Huang
- College of Horticulture, Sichuan Agricultural University, Ya'an, China
| | - J Zhang
- College of Horticulture, Sichuan Agricultural University, Ya'an, China
| | - H-R Tang
- College of Horticulture, Sichuan Agricultural University, Ya'an, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - D-M Pan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - X-R Wang
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
40
|
Dang M, Liu ZX, Chen X, Zhang T, Zhou HJ, Hu YH, Zhao P. Identification, development, and application of 12 polymorphic EST-SSR markers for an endemic Chinese walnut (Juglans cathayensis L.) using next-generation sequencing technology. BIOCHEM SYST ECOL 2015. [DOI: 10.1016/j.bse.2015.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
41
|
Wheeler GL, Dorman HE, Buchanan A, Challagundla L, Wallace LE. A review of the prevalence, utility, and caveats of using chloroplast simple sequence repeats for studies of plant biology. APPLICATIONS IN PLANT SCIENCES 2014; 2:apps.1400059. [PMID: 25506520 PMCID: PMC4259455 DOI: 10.3732/apps.1400059] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 10/06/2014] [Indexed: 05/02/2023]
Abstract
Microsatellites occur in all plant genomes and provide useful markers for studies of genetic diversity and structure. Chloroplast microsatellites (cpSSRs) are frequently targeted because they are more easily isolated than nuclear microsatellites. Here, we quantified the frequency and uses of cpSSRs based on a literature review of over 400 studies published 1995-2013. These markers are an important and economical tool for plant biologists and continue to be used alongside modern genomics approaches to study genetic diversity and structure, evolutionary history, and hybridization in native and agricultural species. Studies using species-specific primers reported a greater number of polymorphic loci than those employing universal primers. A major disadvantage to cpSSRs is fragment size homoplasy; therefore, we documented its occurrence at several cpSSR loci within and between species of Acmispon (Fabaceae). Based on our empirical data set, we recommend targeted sequencing of a subset of samples combined with fragment genotyping as a cost-efficient, data-rich approach to the use of cpSSRs and as a test of homoplasy. The availability of genomic resources for plants aids in the development of primers for new study systems, thereby enhancing the utility of cpSSRs across plant biology.
Collapse
Affiliation(s)
- Gregory L. Wheeler
- Department of Biological Sciences, Mississippi State University, P.O. Box GY, Mississippi State, Mississippi 39762 USA
| | - Hanna E. Dorman
- Department of Biological Sciences, Mississippi State University, P.O. Box GY, Mississippi State, Mississippi 39762 USA
| | - Alenda Buchanan
- Department of Biological Sciences, Mississippi State University, P.O. Box GY, Mississippi State, Mississippi 39762 USA
| | - Lavanya Challagundla
- Department of Biological Sciences, Mississippi State University, P.O. Box GY, Mississippi State, Mississippi 39762 USA
| | - Lisa E. Wallace
- Department of Biological Sciences, Mississippi State University, P.O. Box GY, Mississippi State, Mississippi 39762 USA
| |
Collapse
|