1
|
Ansai S, Hiraki-Kajiyama T, Ueda R, Seki T, Yokoi S, Katsumura T, Takeuchi H. The Medaka Approach to Evolutionary Social Neuroscience. Neurosci Res 2024:S0168-0102(24)00125-1. [PMID: 39481546 DOI: 10.1016/j.neures.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
Previously, the integration of comparative biological and neuroscientific approaches has led to significant advancements in social neuroscience. This review elucidates the potential and future directions of evolutionary social neuroscience research utilizing medaka fishes (the family Adrianichthyidae) including Japanese medaka (Oryzias latipes). We focus on medaka's social cognitive capabilities and mate choice behavior, particularly emphasizing mate preference using visual cues. Medaka fishes are also advantageous due to their abundant genetic resources, extensive genomic information, and the relative ease of laboratory breeding and genetic manipulation. Here we present some research examples of both the conventional neuroscience approach and evolutionary approach involving medaka fishes and other species. We also discuss the prospects of uncovering the molecular and cellular mechanisms underlying the diversity of visual mate preference among species. Especially, we introduce that the single-cell transcriptome technology, particularly in conjunction with 'Adaptive Circuitry Census', is an innovative tool that bridges comparative biological methods and neuroscientific approaches. Evolutionary social neuroscience research using medaka has the potential to unveil fundamental principles in neuroscience and elucidate the mechanisms responsible for generating diversity in mating strategies.
Collapse
Affiliation(s)
- Satoshi Ansai
- Ushimado Marine Institute, Okayama University, 701-4303, Japan.
| | | | - Ryutaro Ueda
- Graduate School of Life Sciences, Tohoku University, 980-8577, Japan
| | - Takahide Seki
- Graduate School of Life Sciences, Tohoku University, 980-8577, Japan
| | - Saori Yokoi
- Faculty of Pharmaceutical Sciences, Hokkaido University, 060-0808, Japan
| | | | - Hideaki Takeuchi
- Graduate School of Life Sciences, Tohoku University, 980-8577, Japan.
| |
Collapse
|
2
|
Ueda R, Ansai S, Takeuchi H. Rapid body colouration changes in Oryzias celebensis as a social signal influenced by environmental background. Biol Lett 2024; 20:20240159. [PMID: 39044714 PMCID: PMC11267395 DOI: 10.1098/rsbl.2024.0159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 06/07/2024] [Accepted: 06/26/2024] [Indexed: 07/25/2024] Open
Abstract
Rapid body colouration changes in some animals, such as chameleons and octopuses, serve dual functions: camouflage and intraspecific communication. It has been hypothesized that these colouration changes originally evolved to provide camouflage and subsequently were co-opted as social signals; however, experimental model systems that are suitable for studying such evolutionary processes are limited. Here, we investigated the relationship between rapid colouration changes of the blackened markings and aggressive behaviours in male Oryzias celebensis, an Indonesian medaka fish, under triadic relationships (two males and one female) or three males conditions with two different environmental backgrounds. In an algae-covered tank, mimicking the common laboratory rearing conditions, males with blackened markings exhibited more frequent attacks towards different conspecific individuals compared with non-blackened males and females. The blackened males were seldom attacked by non-blackened males and females. By contrast, neither aggressive behaviours nor black colouration changes were observed in the transparent background condition with a brighter environment. These indicated that the blackened markings in O. celebensis serve as a social signal depending on the environmental backgrounds. Considering that such colouration changes for camouflage are widely conserved among teleost fishes, the traits are likely to be co-opted for displaying social signals in O. celebensis.
Collapse
Affiliation(s)
- Ryutaro Ueda
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Satoshi Ansai
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan
- Laboratory of Genome Editing Breeding, Graduate School of Agriculture, Kyoto University, Kyoto 606-8507, Japan
| | - Hideaki Takeuchi
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan
| |
Collapse
|
3
|
Dang HTT, Utama IV, Nagano AJ, Kobayashi H, Maeda K, Hoang HD, Tran HD, Yamahira K. Distribution and Population Genetic Structure of the Hau Giang Medaka, Oryzias haugiangensis, Along the East Coast of the Indochinese Peninsula. Zoolog Sci 2024; 41:251-256. [PMID: 38809863 DOI: 10.2108/zs230121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 01/06/2024] [Indexed: 05/31/2024]
Abstract
The east coast of the Indochinese Peninsula is a well-known transition zone from subtropical to tropical systems, yet only a small number of studies have been conducted on the biogeography and phylogeography of aquatic organisms in this region. The Hau Giang medaka, Oryzias haugiangensis, was originally described from the Mekong Delta in southern Vietnam, and later reported also from southeastern Thailand, west of the Mekong Delta region. However, the species' full geographic range and population genetic structures remain unknown. Field surveys showed a widespread distribution of this species along the east coast of the Indochinese Peninsula, as far as northern Vietnam. A mitochondrial gene phylogeny and population genetic structure analysis using genome-wide single nucleotide polymorphisms revealed that the populations of O. haugiangensis are highly structuralized along the east coast of Vietnam, with the southernmost Mekong Delta population clearly separated from three populations north of central Vietnam. Further field collections are necessary to determine the boundary between the southern and northern populations, and the presence or absence of a hybrid zone.
Collapse
Affiliation(s)
- Huong T T Dang
- Faculty of Biology, Hanoi National University of Education, Hanoi 100000, Vietnam
| | - Ilham V Utama
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa 903-0213, Japan
- Museum Zoologicum Bogoriense, Research Center for Biosystematics and Evolution, National Research and Innovation Agency, Cibinong 16911, Indonesia
| | - Atsushi J Nagano
- Faculty of Agriculture, Ryukoku University, Otsu 520-2194, Japan
- Institute for Advanced Biosciences, Keio University, Tsuruoka 997-0017, Japan
| | - Hirozumi Kobayashi
- Department of Zoology, National Museum of Nature and Science, Tsukuba 305-0005, Japan
| | - Ken Maeda
- Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Huy D Hoang
- Department of Ecology and Evolutionary Biology, University of Science, Ho Chi Minh City 700000, Vietnam
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Hau D Tran
- Faculty of Biology, Hanoi National University of Education, Hanoi 100000, Vietnam
| | - Kazunori Yamahira
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa 903-0213, Japan,
| |
Collapse
|
4
|
Ryu T, Okamoto K, Ansai S, Nakao M, Kumar A, Iguchi T, Ogino Y. Gene Duplication of Androgen Receptor As An Evolutionary Driving Force Underlying the Diversity of Sexual Characteristics in Teleost Fishes. Zoolog Sci 2024; 41:68-76. [PMID: 38587519 DOI: 10.2108/zs230098] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/15/2024] [Indexed: 04/09/2024]
Abstract
Sexual dimorphism allows species to meet their fitness optima based on the physiological availability of each sex. Although intralocus sexual conflict appears to be a genetic constraint for the evolution of sex-specific traits, sex-linked genes and the regulation of sex steroid hormones contribute to resolving this conflict by allowing sex-specific developments. Androgens and their receptor, androgen receptor (Ar), regulate male-biased phenotypes. In teleost fish, ar ohnologs have emerged as a result of teleost-specific whole genome duplication (TSGD). Recent studies have highlighted the evolutionary differentiation of ar ohnologs responsible for the development of sexual characteristics, which sheds light on the need for comparative studies on androgen regulation among different species. In this review, we discuss the importance of ar signaling as a regulator of male-specific traits in teleost species because teleost species are suitable experimental models for comparative studies owing to their great diversity in male-biased morphological and physiological traits. To date, both in vivo and in vitro studies on teleost ar ohnologs have shown a substantial influence of ars as a regulator of male-specific reproductive traits such as fin elongation, courtship behavior, and nuptial coloration. In addition to these sexual characteristics, ar substantially influences immunity, inducing a sex-biased immune response. This review aims to provide a comprehensive understanding of the current state of teleost ar studies and emphasizes the potential of teleost fishes, given their availability, to find molecular evidence about what gives rise to the spectacular diversity among fish species.
Collapse
Affiliation(s)
- Tsukasa Ryu
- Laboratory of Marine Biochemistry, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Keigo Okamoto
- Laboratory of Aquatic Molecular Developmental Biology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Satoshi Ansai
- Laboratory of Genome Editing Breeding, Graduate School of Agriculture, Kyoto University, Kyoto 606-8507, Japan
| | - Miki Nakao
- Laboratory of Marine Biochemistry, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
- Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Anu Kumar
- Commonwealth Scientific and Industrial Research Organization, CSIRO Environment, PMB2, Glen Osmond, 5064 South Australia, Australia
| | - Taisen Iguchi
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Kanagawa 236-0027, Japan
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Ishikawa 927-0553, Japan
| | - Yukiko Ogino
- Laboratory of Aquatic Molecular Developmental Biology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan,
- Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
5
|
Spanke T, Gabelaia M, Flury JM, Hilgers L, Wantania LL, Misof B, Wipfler B, Wowor D, Mokodongan DF, Herder F, Schwarzer J. A landmark-free analysis of the pelvic girdle in Sulawesi ricefishes (Adrianichthyidae): How 2D and 3D geometric morphometrics can complement each other in the analysis of a complex structure. Ecol Evol 2023; 13:e10613. [PMID: 37859830 PMCID: PMC10582673 DOI: 10.1002/ece3.10613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/29/2023] [Accepted: 09/27/2023] [Indexed: 10/21/2023] Open
Abstract
Geometric morphometrics (GM) enable the quantification of morphological variation on various scales. Recent technical advances allow analyzing complex three-dimensional shapes also in cases where landmark-based approaches are not appropriate. Pelvic girdle bones (basipterygia) of Sulawesi ricefishes are 3D structures that challenge traditional morphometrics. We hypothesize that the pelvic girdle of ricefishes experienced sex-biased selection pressures in species where females provide brood care by carrying fertilized eggs supported by elongated pelvic fins ("pelvic brooding"). We test this by comparing pelvic bone shapes of both sexes in species exhibiting pelvic brooding and the more common reproductive strategy "transfer brooding," by using landmark-free 2D and 3D GM, as well as qualitative shape descriptions. Both landmark-free approaches revealed significant interspecific pelvic bone variation in the lateral process, medial facing side of the pelvic bone, and overall external and internal wing shape. Within pelvic brooders, the three analyzed species are clearly distinct, while pelvic bones of the genus Adrianichthys are more similar to transfer brooding Oryzias. Female pelvic brooding Oryzias exhibit prominent, medially pointing tips extending from the internal wing and basipterygial plate that are reduced or absent in conspecific males, Adrianichthys and transfer brooding Oryzias, supporting our hypothesis that selection pressures affecting pelvic girdle shape are sex-biased in Sulawesi ricefishes. Furthermore, both sexes of pelvic brooding Oryzias have overall larger pelvic bones than other investigated ricefishes. Based on these differences, we characterized two reproductive strategy- and sex-dependent pelvic girdle types for Sulawesi ricefishes. Morphological differences between the investigated pelvic brooding genera Adrianichthys and Oryzias provide additional evidence for two independent origins of pelvic brooding. Overall, our findings add to a better understanding on traits related to pelvic brooding in ricefishes and provide a basis for upcoming studies on pelvic girdle function and morphology.
Collapse
Affiliation(s)
- Tobias Spanke
- Leibniz Institute for the Analysis of Biodiversity Change (LIB)Museum Koenig BonnBonnGermany
| | - Mariam Gabelaia
- Leibniz Institute for the Analysis of Biodiversity Change (LIB)Museum Koenig BonnBonnGermany
| | - Jana M. Flury
- Leibniz Institute for the Analysis of Biodiversity Change (LIB)Museum Koenig BonnBonnGermany
- Department of Environmental SciencesUniversity of BaselBaselSwitzerland
| | - Leon Hilgers
- Leibniz Institute for the Analysis of Biodiversity Change (LIB)Museum Koenig BonnBonnGermany
- LOEWE‐Zentrum für Translationale BiodiversitätsgenomikFrankfurtGermany
| | - Letha Louisiana Wantania
- Leibniz Institute for the Analysis of Biodiversity Change (LIB)Museum Koenig BonnBonnGermany
- Faculty of Fisheries and Marine ScienceSam Ratulangi UniversityManadoIndonesia
| | - Bernhard Misof
- Leibniz Institute for the Analysis of Biodiversity Change (LIB)Museum Koenig BonnBonnGermany
| | - Benjamin Wipfler
- Leibniz Institute for the Analysis of Biodiversity Change (LIB)Museum Koenig BonnBonnGermany
| | - Daisy Wowor
- Museum Zoologicum Bogoriense, Research Center for Biosystematics and EvolutionNational Research and Innovation Agency (BRIN)CibinongIndonesia
| | - Daniel F. Mokodongan
- Museum Zoologicum Bogoriense, Research Center for Biosystematics and EvolutionNational Research and Innovation Agency (BRIN)CibinongIndonesia
| | - Fabian Herder
- Leibniz Institute for the Analysis of Biodiversity Change (LIB)Museum Koenig BonnBonnGermany
| | - Julia Schwarzer
- Leibniz Institute for the Analysis of Biodiversity Change (LIB)Museum Koenig BonnBonnGermany
| |
Collapse
|
6
|
Yamahira K, Kobayashi H, Kakioka R, Montenegro J, Masengi KWA, Okuda N, Nagano AJ, Tanaka R, Naruse K, Tatsumoto S, Go Y, Ansai S, Kusumi J. Ghost introgression in ricefishes of the genus Adrianichthys in an ancient Wallacean lake. J Evol Biol 2023; 36:1484-1493. [PMID: 37737547 DOI: 10.1111/jeb.14223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/06/2023] [Accepted: 08/01/2023] [Indexed: 09/23/2023]
Abstract
Because speciation might have been promoted by ancient introgression from an extinct lineage, it is important to detect the existence of 'ghost introgression' in focal taxa and examine its contribution to their diversification. In this study, we examined possible ghost introgression and its contributions to the diversification of ricefishes of the genus Adrianichthys in Lake Poso, an ancient lake on Sulawesi Island, in which some extinctions are known to have occurred. Population-genomic analysis revealed that two extant Adrianichthys species, A. oophorus and A. poptae are reproductively isolated from each other. Comparisons of demographic models demonstrated that introgression from a ghost population, which diverged from the common ancestor of A. oophorus and A. poptae, is essential for reconstructing the demographic history of Adrianichthys. The best model estimated that the divergence of the ghost population greatly predated the divergence between A. oophorus and A. poptae, and that the ghost population secondarily contacted the two extant species within Lake Poso more recently. Genome scans and simulations detected a greatly divergent locus, which cannot be explained without ghost introgression. This locus was also completely segregated between A. oophorus and A. poptae. These findings suggest that variants that came from a ghost population have contributed to the divergence between A. oophorus and A. poptae, but the large time-lag between their divergence and ghost introgression indicates that the contribution of introgression may be restricted.
Collapse
Affiliation(s)
- Kazunori Yamahira
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| | - Hirozumi Kobayashi
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| | - Ryo Kakioka
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| | - Javier Montenegro
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| | | | - Noboru Okuda
- Research Center for Inland Seas, Kobe University, Kobe, Japan
| | - Atsushi J Nagano
- Faculty of Agriculture, Ryukoku University, Otsu, Japan
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Rieko Tanaka
- World Medaka Aquarium, Nagoya Higashiyama Zoo and Botanical Gardens, Nagoya, Japan
| | - Kiyoshi Naruse
- Laboratory of Bioresources, National Institute for Basic Biology, Okazaki, Japan
| | - Shoji Tatsumoto
- Cognitive Genomics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Japan
| | - Yasuhiro Go
- Cognitive Genomics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Japan
- Department of System Neuroscience, Division of Behavioral Development, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
- Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Hayama, Japan
| | - Satoshi Ansai
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Junko Kusumi
- Faculty of Social and Cultural Studies, Kyushu University, Fukuoka, Japan
| |
Collapse
|
7
|
Mcguire JA, Huang X, Reilly SB, Iskandar DT, Wang-Claypool CY, Werning S, Chong RA, Lawalata SZS, Stubbs AL, Frederick JH, Brown RM, Evans BJ, Arifin U, Riyanto A, Hamidy A, Arida E, Koo MS, Supriatna J, Andayani N, Hall R. Species Delimitation, Phylogenomics, and Biogeography of Sulawesi Flying Lizards: A Diversification History Complicated by Ancient Hybridization, Cryptic Species, and Arrested Speciation. Syst Biol 2023; 72:885-911. [PMID: 37074804 PMCID: PMC10405571 DOI: 10.1093/sysbio/syad020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 03/14/2023] [Accepted: 04/13/2023] [Indexed: 04/20/2023] Open
Abstract
The biota of Sulawesi is noted for its high degree of endemism and for its substantial levels of in situ biological diversification. While the island's long period of isolation and dynamic tectonic history have been implicated as drivers of the regional diversification, this has rarely been tested in the context of an explicit geological framework. Here, we provide a tectonically informed biogeographical framework that we use to explore the diversification history of Sulawesi flying lizards (the Draco lineatus Group), a radiation that is endemic to Sulawesi and its surrounding islands. We employ a framework for inferring cryptic speciation that involves phylogeographic and genetic clustering analyses as a means of identifying potential species followed by population demographic assessment of divergence-timing and rates of bi-directional migration as means of confirming lineage independence (and thus species status). Using this approach, phylogenetic and population genetic analyses of mitochondrial sequence data obtained for 613 samples, a 50-SNP data set for 370 samples, and a 1249-locus exon-capture data set for 106 samples indicate that the current taxonomy substantially understates the true number of Sulawesi Draco species, that both cryptic and arrested speciations have taken place, and that ancient hybridization confounds phylogenetic analyses that do not explicitly account for reticulation. The Draco lineatus Group appears to comprise 15 species-9 on Sulawesi proper and 6 on peripheral islands. The common ancestor of this group colonized Sulawesi ~11 Ma when proto-Sulawesi was likely composed of two ancestral islands, and began to radiate ~6 Ma as new islands formed and were colonized via overwater dispersal. The enlargement and amalgamation of many of these proto-islands into modern Sulawesi, especially during the past 3 Ma, set in motion dynamic species interactions as once-isolated lineages came into secondary contact, some of which resulted in lineage merger, and others surviving to the present. [Genomics; Indonesia; introgression; mitochondria; phylogenetics; phylogeography; population genetics; reptiles.].
Collapse
Affiliation(s)
- Jimmy A Mcguire
- Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, USA
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | - Xiaoting Huang
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qindao, Shandong, 266003, PR China
| | - Sean B Reilly
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95060, USA
| | - Djoko T Iskandar
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung, Indonesia
| | - Cynthia Y Wang-Claypool
- Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, USA
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | - Sarah Werning
- Department of Anatomy, Des Moines University, 3200 Grand Avenue, Des Moines, IA 50312-4198, USA
| | - Rebecca A Chong
- Department of Biology, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Shobi Z S Lawalata
- Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, USA
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
- United in Diversity Foundation, Jalan Hayam Wuruk, Jakarta, Indonesia
| | - Alexander L Stubbs
- Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, USA
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | - Jeffrey H Frederick
- Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, USA
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | - Rafe M Brown
- Biodiversity Institute and Department of Ecology and Evolutionary Biology, 1345 Jayhawk Blvd., University of Kansas, Lawrence, KS 66045, USA
| | - Ben J Evans
- Biology Department, McMaster University, Hamilton, Ontario, Canada
| | - Umilaela Arifin
- Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, USA
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung, Indonesia
- Center for Taxonomy and Morphology, Zoologisches Museum Hamburg, Leibniz Institute for the Analysis of Biodiversity Change, Martin-Luther-King-Platz 3, R230 20146 Hamburg, Germany
| | - Awal Riyanto
- Laboratory of Herpetology, Museum Zoologicum Bogoriense, Research Center for Biosystematics and Evolution, National Research and Innovation Agency of Indonesia (BRIN), Cibinong 16911, Indonesia
| | - Amir Hamidy
- Laboratory of Herpetology, Museum Zoologicum Bogoriense, Research Center for Biosystematics and Evolution, National Research and Innovation Agency of Indonesia (BRIN), Cibinong 16911, Indonesia
| | - Evy Arida
- Research Center for Applied Zoology, National Research and Innovation Agency of Indonesia (BRIN), Cibinong 16911, Indonesia
| | - Michelle S Koo
- Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, USA
| | - Jatna Supriatna
- Department of Biology, Institute for Sustainable Earth and Resources (I-SER), Gedung Laboratorium Multidisiplin, and Research Center for Climate Change (RCCC-UI), Gedung Laboratorium Multidisiplin, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok 16424, Indonesia
| | - Noviar Andayani
- Department of Biology, Institute for Sustainable Earth and Resources (I-SER), Gedung Laboratorium Multidisiplin, and Research Center for Climate Change (RCCC-UI), Gedung Laboratorium Multidisiplin, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok 16424, Indonesia
| | - Robert Hall
- SE Asia Research Group (SEARG), Department of Earth Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| |
Collapse
|
8
|
Flury JM, Meusemann K, Martin S, Hilgers L, Spanke T, Böhne A, Herder F, Mokodongan DF, Altmüller J, Wowor D, Misof B, Nolte AW, Schwarzer J. Potential Contribution of Ancient Introgression to the Evolution of a Derived Reproductive Strategy in Ricefishes. Genome Biol Evol 2023; 15:evad138. [PMID: 37493080 PMCID: PMC10465105 DOI: 10.1093/gbe/evad138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 06/28/2023] [Accepted: 07/13/2023] [Indexed: 07/27/2023] Open
Abstract
Transitions from no parental care to extensive care are costly and involve major changes in life history, behavior, and morphology. Nevertheless, in Sulawesi ricefishes, pelvic brooding evolved from transfer brooding in two distantly related lineages within the genera Adrianichthys and Oryzias, respectively. Females of pelvic brooding species carry their eggs attached to their belly until the fry hatches. Despite their phylogenetic distance, both pelvic brooding lineages share a set of external morphological traits. A recent study found no direct gene flow between pelvic brooding lineages, suggesting independent evolution of the derived reproductive strategy. Convergent evolution can, however, also rely on repeated sorting of preexisting variation of an admixed ancestral population, especially when subjected to similar external selection pressures. We thus used a multispecies coalescent model and D-statistics to identify gene-tree-species-tree incongruencies, to evaluate the evolution of pelvic brooding with respect to interspecific gene flow not only between pelvic brooding lineages but also between pelvic brooding lineages and other Sulawesi ricefish lineages. We found a general network-like evolution in Sulawesi ricefishes, and as previously reported, we detected no gene flow between the pelvic brooding lineages. Instead, we found hybridization between the ancestor of pelvic brooding Oryzias and the common ancestor of the Oryzias species from the Lake Poso area. We further detected signs of introgression within the confidence interval of a quantitative trait locus associated with pelvic brooding in O. eversi. Our results hint toward a contribution of ancient standing genetic variation to the evolution of pelvic brooding in Oryzias.
Collapse
Affiliation(s)
- Jana M Flury
- Leibniz-Institute for the Analysis of Biodiversity Change (LIB), Museum Koenig Bonn, Bonn, Germany
- Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Karen Meusemann
- Leibniz-Institute for the Analysis of Biodiversity Change (LIB), Museum Koenig Bonn, Bonn, Germany
| | - Sebastian Martin
- Leibniz-Institute for the Analysis of Biodiversity Change (LIB), Museum Koenig Bonn, Bonn, Germany
| | - Leon Hilgers
- Leibniz-Institute for the Analysis of Biodiversity Change (LIB), Museum Koenig Bonn, Bonn, Germany
| | - Tobias Spanke
- Leibniz-Institute for the Analysis of Biodiversity Change (LIB), Museum Koenig Bonn, Bonn, Germany
| | - Astrid Böhne
- Leibniz-Institute for the Analysis of Biodiversity Change (LIB), Museum Koenig Bonn, Bonn, Germany
| | - Fabian Herder
- Leibniz-Institute for the Analysis of Biodiversity Change (LIB), Museum Koenig Bonn, Bonn, Germany
| | - Daniel F Mokodongan
- Museum Zoologicum Bogoriense, Research Center for Biosystematics and Evolution, National Research and Innovation Agency (BRIN), Cibinong, West Java, Indonesia
| | - Janine Altmüller
- Cologne Center for Genomics (CCG), Cologne University, Cologne, Germany
| | - Daisy Wowor
- Museum Zoologicum Bogoriense, Research Center for Biosystematics and Evolution, National Research and Innovation Agency (BRIN), Cibinong, West Java, Indonesia
| | - Bernhard Misof
- Leibniz-Institute for the Analysis of Biodiversity Change (LIB), Museum Koenig Bonn, Bonn, Germany
| | - Arne W Nolte
- Department of Ecological Genomics, Carl von Ossietzky Universität, Oldenburg, Germany
| | - Julia Schwarzer
- Leibniz-Institute for the Analysis of Biodiversity Change (LIB), Museum Koenig Bonn, Bonn, Germany
| |
Collapse
|
9
|
Mandagi IF, K A Sumarto B, Nuryadi H, Mokodongan DF, Lawelle SA, W A Masengi K, Nagano AJ, Kakioka R, Kitano J, Ansai S, Kusumi J, Yamahira K. Multiple colonizations and hybridization of a freshwater fish group on a satellite island of Sulawesi. Mol Phylogenet Evol 2023; 184:107804. [PMID: 37120113 DOI: 10.1016/j.ympev.2023.107804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/27/2023] [Accepted: 04/24/2023] [Indexed: 05/01/2023]
Abstract
Repeated colonizations and resultant hybridization may increase lineage diversity on an island if introgression occurs only in a portion of the indigenous island lineage. Therefore, to precisely understand how island biodiversity was shaped, it is essential to reconstruct the history of secondary colonization and resultant hybridization both in time and space. In this study, we reconstructed the history of multiple colonizations of the Oryzias woworae species group, a freshwater fish group of the family Adrianichthyidae, from Sulawesi Island to its southeast satellite island, Muna Island. Phylogenetic and species tree analyses using genome-wide single-nucleotide polymorphisms revealed that all local populations on Muna Island were monophyletic, but that there were several genetically distinct lineages within the island. Population structure and phylogenetic network analyses demonstrated that colonization of this island occurred more than once, and that secondary colonization and resultant introgressive hybridization occurred only in one local population on the island. The spatially heterogeneous introgression induced by the multiple colonizations were also supported by differential admixture analyses. In addition, the differential admixture analyses detected reverse colonization from Muna Island to the Sulawesi mainland. Coalescence-based demographic inference estimated that these mutual colonizations occurred during the middle to late Quaternary period, during which sea level repeatedly declined; this indicates that the colonizations occurred via land bridges. We conclude that these mutual colonizations between Muna Island and the Sulawesi mainland, and the resultant spatially heterogeneous introgression shaped the current biodiversity of this species group in this area.
Collapse
Affiliation(s)
- Ixchel F Mandagi
- Faculty of Fisheries and Marine Science, Sam Ratulangi University, Manado 95115, Indonesia.
| | - Bayu K A Sumarto
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa 903-0213, Japan.
| | - Handung Nuryadi
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa 903-0213, Japan.
| | - Daniel F Mokodongan
- Museum Zoologicum Bogoriense, Research Center for Biology, National Research and Innovation Agency, Cibinong 16911, Indonesia.
| | - Sjamsu A Lawelle
- Faculty of Fisheries and Marine Science, Halu Oleo University, Kendari 93232, Indonesia.
| | - Kawilarang W A Masengi
- Faculty of Fisheries and Marine Science, Sam Ratulangi University, Manado 95115, Indonesia.
| | - Atsushi J Nagano
- Faculty of Agriculture, Ryukoku University, Otsu, Japan; Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan.
| | - Ryo Kakioka
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa 903-0213, Japan.
| | - Jun Kitano
- Ecological Genetics Laboratory, National Institute of Genetics, Mishima 411-8540, Japan.
| | - Satoshi Ansai
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan.
| | - Junko Kusumi
- Faculty of Social and Cultural Studies, Kyushu University, Fukuoka 819-0395, Japan.
| | - Kazunori Yamahira
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa 903-0213, Japan.
| |
Collapse
|
10
|
Evolutionary differentiation of androgen receptor is responsible for sexual characteristic development in a teleost fish. Nat Commun 2023; 14:1428. [PMID: 36918573 PMCID: PMC10014959 DOI: 10.1038/s41467-023-37026-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 02/28/2023] [Indexed: 03/16/2023] Open
Abstract
Teleost fishes exhibit complex sexual characteristics in response to androgens, such as fin enlargement and courtship display. However, the molecular mechanisms underlying their evolutionary acquisition remain largely unknown. To address this question, we analyse medaka (Oryzias latipes) mutants deficient in teleost-specific androgen receptor ohnologs (ara and arb). We discovered that neither ar ohnolog was required for spermatogenesis, whilst they appear to be functionally redundant for the courtship display in males. However, both were required for reproductive success: ara for tooth enlargement and the reproductive behaviour eliciting female receptivity, arb for male-specific fin morphogenesis and sexual motivation. We further showed that differences between the two ar ohnologs in their transcription, cellular localisation of their encoded proteins, and their downstream genetic programmes could be responsible for the phenotypic diversity between the ara and arb mutants. These findings suggest that the ar ohnologs have diverged in two ways: first, through the loss of their roles in spermatogenesis and second, through gene duplication followed by functional differentiation that has likely resolved the pleiotropic roles derived from their ancestral gene. Thus, our results provide insights into how genome duplication impacts the massive diversification of sexual characteristics in the teleost lineage.
Collapse
|
11
|
Fuke Y, Kano Y, Tun S, Yun L, Win SS, Watanabe K. Cryptic genetic divergence of the red dwarf rasbora, Microrasbora rubescens, in and around Inle Lake: implications for the origin of endemicity in the ancient lake in Myanmar. JOURNAL OF FISH BIOLOGY 2022; 101:1235-1247. [PMID: 36059127 DOI: 10.1111/jfb.15195] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Inle Lake, an ancient lake located in the Shan Plateau of Myanmar, is a biogeographically attractive region with high fish endemism. Some endemic species inhabit the lake as well as the surrounding areas. The genetic and ecological relationships between populations in the lake and surrounding areas provide important insights into the process underlying ichthyofaunal formation in Inle Lake. In this study, the authors focused on red dwarf rasbora Microrasbora rubescens, an endemic genus and species in this region, and estimated its population structure and evolutionary scenario based on genome-wide polymorphism, mtDNA and geometric morphometric analyses using samples from Inle Lake and three areas surrounding the lake. The results showed that M. rubescens comprises at least three genetically divergent lineages (Inle, Heho and Hopong) with distinct geographic structures consistent with nuclear and mtDNA data. In contrast, there was no clear regional differentiation in morphology. The divergence time estimation based on mtDNA suggests that the Hopong lineage diverged at 2.7 Ma and the Inle and Heho lineages diverged at 1.9 Ma - consistent with the nuclear DNA results. The deep divergence observed in the endemic species supports the ancient history of ichthyofaunal development in this region. The distinct regional differentiation and morphological conservatism of this species might have been shaped by niche conservatism in stagnant water environments that limit dispersal and morphological diversification. Future comprehensive genetic and morphological analyses and comparisons for other native species should reveal the geographic and ecological processes that shaped the ichthyofauna in this region.
Collapse
Affiliation(s)
- Yusuke Fuke
- Laboratory of Animal Ecology, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Yuichi Kano
- Institute of Decision Science for Sustainable Society, Kyushu University, Fukuoka, Japan
| | - Sein Tun
- Inlay Lake Wildlife Sanctuary, Nature and Wildlife Conservation Division, Forest Department, Ministry of Natural Resources and Environmental Conservation, Myanmar, Nyaung Shwe, Myanmar
- Natma Taung National Park, Kanpalet Township, Myanmar
| | - Lkc Yun
- Inlay Lake Wildlife Sanctuary, Nature and Wildlife Conservation Division, Forest Department, Ministry of Natural Resources and Environmental Conservation, Myanmar, Nyaung Shwe, Myanmar
- Hkakaborazi National Park, Putao, Myanmar
| | - Seint Seint Win
- Department of Zoology, Taunggyi University, Taunggyi, Myanmar
- Department of Zoology, Kyaing Tong University, Keng Tung, Myanmar
| | - Katsutoshi Watanabe
- Laboratory of Animal Ecology, Graduate School of Science, Kyoto University, Kyoto, Japan
| |
Collapse
|
12
|
Yao Z, Long S, Wang C, Huang C, Zhang H, Jian L, Huang J, Guo Y, Dong Z, Wang Z. Population genetic characteristics of Hainan medaka with whole-genome resequencing. Front Genet 2022; 13:946006. [PMID: 36313474 PMCID: PMC9597887 DOI: 10.3389/fgene.2022.946006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 09/26/2022] [Indexed: 11/30/2022] Open
Abstract
The DMY gene is deleted in all males of the Sanya population (SY-medaka) of the Hainan medaka, Oryzias curvinotus, as recently reported by us. However, due to limited knowledge regarding their population genetic background, it is difficult to explore the possible evolutionary pathway. Herein, we resequenced the whole genome of four populations, including SY-medaka. A total of 56 mitogenomes and 32,826,105 SNPs were identified. We found that the genetic differentiation is highest between SY-medaka and the other populations. The results of the population history of the O. curvinotus suggest that the SY-medaka has been in a bottleneck period recently. Further analysis shows that SY-medaka are the most strongly affected by environmental selection. Moreover, we screened some potential genomic regions, and the genes contained in these regions may explain the potential mechanism of the selection process of the SY-medaka. In conclusion, our study can provide new clues for the adaptation process of medaka in the new environment of Sanya.
Collapse
Affiliation(s)
- Zebin Yao
- Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Shuisheng Long
- Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Chun Wang
- Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Chengqin Huang
- Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Hairui Zhang
- Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Liao Jian
- Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Jingru Huang
- Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Yusong Guo
- Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Zhongdian Dong
- Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Zhongduo Wang
- Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang, China
- *Correspondence: Zhongduo Wang,
| |
Collapse
|
13
|
Ansai S, Montenegro J, Masengi KWA, Nagano AJ, Yamahira K, Kitano J. Diversity of sex chromosomes in Sulawesian medaka fishes. J Evol Biol 2022; 35:1751-1764. [DOI: 10.1111/jeb.14076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/30/2022] [Accepted: 07/14/2022] [Indexed: 12/16/2022]
Affiliation(s)
- Satoshi Ansai
- Graduate School of Life Sciences Tohoku University Sendai Japan
| | - Javier Montenegro
- Tropical Biosphere Research Center University of the Ryukyus Nishihara Japan
| | | | - Atsushi J. Nagano
- Faculty of Agriculture Ryukoku University Otsu Japan
- Institute for Advanced Biosciences Keio University Tsuruoka Japan
| | - Kazunori Yamahira
- Tropical Biosphere Research Center University of the Ryukyus Nishihara Japan
| | - Jun Kitano
- Ecological Genetics Laboratory National Institute of Genetics Shizuoka Japan
| |
Collapse
|
14
|
Nofrianto AB, Lawelle SA, Mokodongan DF, Masengi KWA, Inomata N, Hashiguchi Y, Kitano J, Sumarto BKA, Kakioka R, Yamahira K. Ancient Admixture in Freshwater Halfbeaks of the Genus Nomorhamphus in Southeast Sulawesi. Zoolog Sci 2022; 39:453-458. [DOI: 10.2108/zs220023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/23/2022] [Indexed: 11/17/2022]
Affiliation(s)
- Andy B. Nofrianto
- Faculty of Fisheries and Marine Science, Halu Oleo University, Kendari 93232, Indonesia
| | - Sjamsu A. Lawelle
- Faculty of Fisheries and Marine Science, Halu Oleo University, Kendari 93232, Indonesia
| | - Daniel F. Mokodongan
- Faculty of Fisheries and Marine Science, Halu Oleo University, Kendari 93232, Indonesia
| | | | - Nobuyuki Inomata
- Department of Environmental Science, Fukuoka Women's University, Fukuoka 813-8529, Japan
| | - Yasuyuki Hashiguchi
- Department of Biology, Osaka Medical and Pharmaceutical University, Osaka 569-8686, Japan
| | - Jun Kitano
- Ecological Genetics Laboratory, National Institute of Genetics, Mishima, Japan
| | - Bayu K. A. Sumarto
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa 903-0213, Japan
| | - Ryo Kakioka
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa 903-0213, Japan
| | - Kazunori Yamahira
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa 903-0213, Japan
| |
Collapse
|
15
|
Sudasinghe H, Ranasinghe T, Wijesooriya K, Pethiyagoda R, Rüber L, Meegaskumbura M. Molecular phylogeny and phylogeography of ricefishes (Teleostei: Adrianichthyidae: Oryzias) in Sri Lanka. Ecol Evol 2022; 12:e9043. [PMID: 35784081 PMCID: PMC9219105 DOI: 10.1002/ece3.9043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/20/2022] [Accepted: 06/06/2022] [Indexed: 12/02/2022] Open
Abstract
Ricefishes of the genus Oryzias occur commonly in the fresh and brackish waters in coastal lowlands ranging from India across Southeast Asia and on to Japan. Among the three species of Oryzias recorded from peninsular India, two widespread species, O. carnaticus and O. dancena, have previously been reported from Sri Lanka based on museum specimens derived from a few scattered localities. However, members of the genus are widespread in the coastal lowlands of Sri Lanka, a continental island separated from India by the shallow Palk Strait. Although recent molecular phylogenies of Adrianichthyidae represent near-complete taxon representation, they lack samples from Sri Lanka. Here, based on sampling at 13 locations representative of the entire geographic and climatic regions of the island's coastal lowlands, we investigate for the first time the molecular phylogenetic relationships and phylogeography of Sri Lankan Oryzias based on one nuclear and two mitochondrial markers. Sri Lankan Oryzias comprise two distinct non-sister lineages within the javanicus species group. One of these is represented by samples exclusively from the northern parts of the island; it is recognized as O. dancena. This lineage is recovered as the sister group to the remaining species in the javanicus group. The second lineage represents a species that is widespread across the island's coastal lowlands. It is recovered as the sister group of O. javanicus and is identified as O. cf. carnaticus. Ancestral-range estimates suggest two independent colonizations of Indian subcontinent and Sri Lanka by widespread ancestral species of Oryzias during two discrete temporal windows: late Miocene and Plio-Pleistocene. No phylogeographic structure is apparent in Sri Lankan Oryzias, suggesting that there are no strong barriers to gene flow and dispersal along the coastal floodplains, as is the case also for other generalist freshwater fishes in the island.
Collapse
Affiliation(s)
- Hiranya Sudasinghe
- Evolutionary Ecology and Systematics Laboratory, Department of Molecular Biology and BiotechnologyUniversity of PeradeniyaPeradeniyaSri Lanka
- Postgraduate Institute of ScienceUniversity of PeradeniyaPeradeniyaSri Lanka
- Evolutionary Ecology, Institute of Ecology and EvolutionUniversity of BernBernSwitzerland
- Naturhistorisches Museum BernBernSwitzerland
| | | | - Kumudu Wijesooriya
- Department of Zoology, Faculty of ScienceUniversity of PeradeniyaPeradeniyaSri Lanka
| | | | - Lukas Rüber
- Naturhistorisches Museum BernBernSwitzerland
- Aquatic Ecology and Evolution, Institute of Ecology and EvolutionBernSwitzerland
| | - Madhava Meegaskumbura
- Guangxi Key Laboratory for Forest Ecology and Conservation, College of ForestryGuangxi UniversityNanningChina
| |
Collapse
|
16
|
Montenegro J, Fujimoto S, Ansai S, Nagano AJ, Sato M, Maeda Y, Tanaka R, Masengi KWA, Kimura R, Kitano J, Yamahira K. Genetic basis for the evolution of pelvic-fin brooding, a new mode of reproduction, in a Sulawesian fish. Mol Ecol 2022; 31:3798-3811. [PMID: 35638236 DOI: 10.1111/mec.16555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 05/25/2022] [Indexed: 11/29/2022]
Abstract
Modes of reproduction in animals are diverse, with different modes having evolved independently in multiple lineages across a variety of taxa. However, an understanding of the genomic change driving the transition between different modes of reproduction is limited. Several ricefishes (Adrianichthyidae) on the island of Sulawesi have a unique mode of reproduction called "pelvic-fin brooding," wherein females carry externally fertilized eggs until hatching using their pelvic fins. Phylogenomic analysis demonstrated pelvic-fin brooders to have evolved at least twice in two distant clades of the Adrianichthyidae. We investigated the genetic architecture of the evolution of this unique mode of reproduction. Morphological analyses and laboratory observations revealed that females of pelvic-fin brooders have longer pelvic fins and a deeper abdominal concavity, and that they can carry an egg clutch for longer than non-brooding adrianichthyids, suggesting that these traits play important roles in this reproductive mode. Quantitative trait locus mapping using a cross between a pelvic-fin brooder Oryzias eversi and a non-brooding O. dopingdopingensis reveals different traits involved in pelvic-fin brooding to be controlled by different loci on different chromosomes. Genomic analyses of admixture detected no signatures of introgression between two lineages with pelvic-fin brooders, indicating that introgression is unlikely to be responsible for repeated evolution of pelvic-fin brooding. These findings suggest that multiple independent mutations may have contributed to the convergent evolution of this novel mode of reproduction.
Collapse
Affiliation(s)
- Javier Montenegro
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| | - Shingo Fujimoto
- Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan.,Present address: Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| | - Satoshi Ansai
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Atsushi J Nagano
- Faculty of Agriculture, Ryukoku University, Otsu, Japan.,Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Masahiro Sato
- World Medaka Aquarium, Nagoya Higashiyama Zoo and Botanical Gardens, Nagoya, Japan
| | - Yusuke Maeda
- World Medaka Aquarium, Nagoya Higashiyama Zoo and Botanical Gardens, Nagoya, Japan
| | - Rieko Tanaka
- World Medaka Aquarium, Nagoya Higashiyama Zoo and Botanical Gardens, Nagoya, Japan
| | | | - Ryosuke Kimura
- Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Jun Kitano
- Ecological Genetics Laboratory, National Institute of Genetics, Mishima, Japan
| | - Kazunori Yamahira
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| |
Collapse
|
17
|
Flury JM, Hilgers L, Herder F, Spanke T, Misof B, Wowor D, Boneka F, Wantania LL, Mokodongan DF, Mayer C, Nolte AW, Schwarzer J. The genetic basis of a novel reproductive strategy in Sulawesi ricefishes: How modularity and a low number of loci shape pelvic brooding. Evolution 2022; 76:1033-1051. [PMID: 35334114 DOI: 10.1111/evo.14475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 01/21/2022] [Accepted: 01/29/2022] [Indexed: 01/21/2023]
Abstract
The evolution of complex phenotypes like reproductive strategies is challenging to understand, as they often depend on multiple adaptations that only jointly result in a specific functionality. Sulawesi ricefishes (Adrianichthyidae) evolved a reproductive strategy termed as pelvic brooding. In contrast to the more common transfer brooding, female pelvic brooders carry an egg bundle connected to their body for weeks until the fry hatches. To examine the genetic architecture of pelvic brooding, we crossed the pelvic brooding Oryzias eversi and the transfer brooding Oryzias nigrimas (species divergence time: ∼3.6 my). We hypothesize, that a low number of loci and modularity have facilitated the rapid evolution of pelvic brooding. Traits associated to pelvic brooding, like rib length, pelvic fin length, and morphology of the genital papilla, were correlated in the parental species but correlations were reduced or lost in their F1 and F2 hybrids. Using the Castle-Wright estimator, we found that generally few loci underlie the studied traits. Further, both parental species showed modularity in their body plans. In conclusion, morphological traits related to pelvic brooding were based on a few loci and the mid-body region likely could evolve independently from the remaining body parts. Both factors presumably facilitated the evolution of pelvic brooding.
Collapse
Affiliation(s)
- Jana M Flury
- Leibniz Institute for the Analysis of Biodiversity Change, Zoological Research Museum Alexander Koenig, Bonn, Germany
| | - Leon Hilgers
- Leibniz Institute for the Analysis of Biodiversity Change, Zoological Research Museum Alexander Koenig, Bonn, Germany.,LOEWE Centre for Translational Biodiversity Genomics, Frankfurt, Germany
| | - Fabian Herder
- Leibniz Institute for the Analysis of Biodiversity Change, Zoological Research Museum Alexander Koenig, Bonn, Germany
| | - Tobias Spanke
- Leibniz Institute for the Analysis of Biodiversity Change, Zoological Research Museum Alexander Koenig, Bonn, Germany
| | - Bernhard Misof
- Leibniz Institute for the Analysis of Biodiversity Change, Zoological Research Museum Alexander Koenig, Bonn, Germany
| | - Daisy Wowor
- Museum Zoologicum Bogoriense, Research Center for Biosystematic and Evolution, National Research and Innovation Agency (BRIN), Cibinong, West Java, Indonesia
| | - Farnis Boneka
- Faculty of Fisheries and Marine Science, Sam Ratulangi University, Manado, Indonesia
| | - Letha Louisiana Wantania
- Leibniz Institute for the Analysis of Biodiversity Change, Zoological Research Museum Alexander Koenig, Bonn, Germany.,Faculty of Fisheries and Marine Science, Sam Ratulangi University, Manado, Indonesia
| | - Daniel F Mokodongan
- Museum Zoologicum Bogoriense, Research Center for Biosystematic and Evolution, National Research and Innovation Agency (BRIN), Cibinong, West Java, Indonesia
| | - Christoph Mayer
- Leibniz Institute for the Analysis of Biodiversity Change, Zoological Research Museum Alexander Koenig, Bonn, Germany
| | - Arne W Nolte
- Carl von Ossietzky Universität, Oldenburg, Germany
| | - Julia Schwarzer
- Leibniz Institute for the Analysis of Biodiversity Change, Zoological Research Museum Alexander Koenig, Bonn, Germany
| |
Collapse
|
18
|
Deeply divergent freshwater fish species within a single river system in central Sulawesi. Mol Phylogenet Evol 2022; 173:107519. [DOI: 10.1016/j.ympev.2022.107519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 01/02/2023]
|
19
|
Hilgers L, Roth O, Nolte AW, Schüller A, Spanke T, Flury JM, Utama IV, Altmüller J, Wowor D, Misof B, Herder F, Böhne A, Schwarzer J. Inflammation and convergent placenta gene co-option contributed to a novel reproductive tissue. Curr Biol 2021; 32:715-724.e4. [PMID: 34932936 PMCID: PMC8837275 DOI: 10.1016/j.cub.2021.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/27/2021] [Accepted: 12/01/2021] [Indexed: 12/13/2022]
Abstract
The evolution of pregnancy exposes parental tissues to new, potentially stressful conditions, which can trigger inflammation.1 Inflammation is costly2,3 and can induce embryo rejection, which constrains the evolution of pregnancy.1 In contrast, inflammation can also promote morphological innovation at the maternal-embryonic interface as exemplified by co-option of pro-inflammatory signaling for eutherian embryo implantation.1,4,5 Given its dual function, inflammation could be a key process explaining how innovations such as pregnancy and placentation evolved many times convergently. Pelvic brooding ricefishes evolved a novel “plug” tissue,6,7 which forms inside the female gonoduct after spawning, anchors egg-attaching filaments, and enables pelvic brooders to carry eggs externally until hatching.6,8 Compared to pregnancy, i.e., internal bearing of embryos, external bearing should alleviate constraints on inflammation in the reproductive tract. We thus hypothesized that an ancestral inflammation triggered by the retention of attaching filaments gave rise to pathways orchestrating plug formation. In line with our hypothesis, histological sections of the developing plug revealed signs of gonoduct injuries by egg-attaching filaments in the pelvic brooding ricefish Oryzias eversi. Tissue-specific transcriptomes showed that inflammatory signaling dominates the plug transcriptome and inflammation-induced genes controlling vital processes for plug development such as tissue growth and angiogenesis were overexpressed in the plug. Finally, mammalian placenta genes were enriched in the plug transcriptome, indicating convergent gene co-option for building, attaching, and sustaining a transient tissue in the female reproductive tract. This study highlights the role of gene co-option and suggests that recruiting inflammatory signaling into physiological processes provides a fast-track to evolutionary innovation. Pelvic brooding induces tissue-specific changes in gene expression Inflammatory signaling characterizes transcriptome of the egg-anchoring plug Similar to embryo implantation, the plug likely evolved from an inflammatory response Mammalian placenta genes were independently co-opted into the plug
Collapse
Affiliation(s)
- Leon Hilgers
- Zoological Research Museum Alexander Koenig (ZFMK), Leibniz Institute for the Analysis of Biodiversity Change (LIB), Bonn, Germany; LOEWE Centre for Translational Biodiversity Genomics (TBG), Frankfurt, Germany.
| | - Olivia Roth
- Helmholtz Centre for Ocean Research Kiel (GEOMAR), Kiel, Germany; Marine Evolutionary Biology, Kiel University, Kiel, Germany
| | | | - Alina Schüller
- Zoological Research Museum Alexander Koenig (ZFMK), Leibniz Institute for the Analysis of Biodiversity Change (LIB), Bonn, Germany
| | - Tobias Spanke
- Zoological Research Museum Alexander Koenig (ZFMK), Leibniz Institute for the Analysis of Biodiversity Change (LIB), Bonn, Germany
| | - Jana M Flury
- Zoological Research Museum Alexander Koenig (ZFMK), Leibniz Institute for the Analysis of Biodiversity Change (LIB), Bonn, Germany
| | - Ilham V Utama
- Museum Zoologicum Bogoriense, Research Centre for Biology, National Research and Innovation Agency, Cibinong, Indonesia
| | - Janine Altmüller
- Cologne Center for Genomics (CCG), Cologne University, Cologne, Germany
| | - Daisy Wowor
- Museum Zoologicum Bogoriense, Research Centre for Biology, National Research and Innovation Agency, Cibinong, Indonesia
| | - Bernhard Misof
- Zoological Research Museum Alexander Koenig (ZFMK), Leibniz Institute for the Analysis of Biodiversity Change (LIB), Bonn, Germany
| | - Fabian Herder
- Zoological Research Museum Alexander Koenig (ZFMK), Leibniz Institute for the Analysis of Biodiversity Change (LIB), Bonn, Germany
| | - Astrid Böhne
- Zoological Research Museum Alexander Koenig (ZFMK), Leibniz Institute for the Analysis of Biodiversity Change (LIB), Bonn, Germany
| | - Julia Schwarzer
- Zoological Research Museum Alexander Koenig (ZFMK), Leibniz Institute for the Analysis of Biodiversity Change (LIB), Bonn, Germany.
| |
Collapse
|
20
|
Downer-Bartholomew BMB, Rodd FH. Female preference for color-enhanced males: a test of the sensory bias model in medaka, a drab fish. Behav Ecol 2021. [DOI: 10.1093/beheco/arab131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Sexual selection research has long focused on the evolution of female mate preferences. Most of the models that have been developed posit that mate preferences evolve in a mating context. In contrast, the sensory bias model proposes that mate choice preferences arise in a non-mating context, as a by-product of natural selection acting on a female’s perceptual system. Recent research has shown that many species of fishes, from across a large clade including poeciliids, goodeids, and medaka, have a bias for long wavelength (LW) colors (yellow, orange, red) in a non-mating context. Even species that do not have LW-colored ornaments, apparently because they have been lost secondarily, retain this latent bias for LW colors. Here, we predicted that female Oryzias latipes (Japanese medaka), a drab species with a latent preference for LW colors, would show a mate choice preference for males with an artificial secondary sexual trait—a colored stripe added to their flank. We confirmed that females were more responsive to red and orange objects in a non-mating context than to other colors. We also showed that females were less resistant towards males with an LW-colored stripe than to those enhanced with a non-LW stripe and that, for many females, responses towards specific LW colors were consistent across these non-mating and mating contexts. Therefore, our results provide support for the sensory bias model by providing a link between a sensory bias in a non-mating context and a mate choice preference in a drab species like medaka.
Collapse
Affiliation(s)
| | - F Helen Rodd
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
21
|
Mandagi IF, Kakioka R, Montenegro J, Kobayashi H, Masengi KWA, Inomata N, Nagano AJ, Toyoda A, Ansai S, Matsunami M, Kimura R, Kitano J, Kusumi J, Yamahira K. Species divergence and repeated ancient hybridization in a Sulawesian lake system. J Evol Biol 2021; 34:1767-1780. [PMID: 34532915 DOI: 10.1111/jeb.13932] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 09/09/2021] [Indexed: 01/02/2023]
Abstract
An increasing volume of empirical studies demonstrated that hybridization between distant lineages may have promoted speciation in various taxa. However, the timing, extent and direction of introgressive hybridization remain unknown in many cases. Here, we report a possible case in which repeated hybridization promoted divergence of Oryzias ricefishes (Adrianichthyidae) on Sulawesi, an island of Wallacea. Four Oryzias species are endemic to the Malili Lake system in central Sulawesi, which is composed of five tectonic lakes; of these, one lake is inhabited by two species. Morphological and population genomic analyses of genome-wide single-nucleotide polymorphisms revealed that these two sympatric species are phylogenetically sister to but substantially reproductively isolated from each other. Analyses of admixture and comparison of demographic models revealed that the two sympatric species experienced several substantial introgressions from outgroup populations that probably occurred soon after they had secondary contact with each other in the lake. However, the ratio of migrants from the outgroups was estimated to be different between the two species, which is consistent with the hypothesis that these introgressions aided their divergence or prevented them from forming a hybrid swarm. Repeated lake fragmentations and fusions may have promoted diversification of this freshwater fish species complex that is endemic to this ancient lake system.
Collapse
Affiliation(s)
- Ixchel F Mandagi
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan.,Faculty of Fisheries and Marine Science, Sam Ratulangi University, Manado, Indonesia
| | - Ryo Kakioka
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| | - Javier Montenegro
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| | - Hirozumi Kobayashi
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| | | | - Nobuyuki Inomata
- Department of Environmental Science, Fukuoka Women's University, Fukuoka, Japan
| | - Atsushi J Nagano
- Faculty of Agriculture, Ryukoku University, Otsu, Japan.,Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Japan
| | - Satoshi Ansai
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | | | - Ryosuke Kimura
- Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Jun Kitano
- Ecological Genetics Laboratory, National Institute of Genetics, Mishima, Japan
| | - Junko Kusumi
- Faculty of Social and Cultural Studies, Kyushu University, Fukuoka, Japan
| | - Kazunori Yamahira
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| |
Collapse
|
22
|
Horoiwa M, Mandagi IF, Sutra N, Montenegro J, Tantu FY, Masengi KWA, Nagano AJ, Kusumi J, Yasuda N, Yamahira K. Mitochondrial introgression by ancient admixture between two distant lacustrine fishes in Sulawesi Island. PLoS One 2021; 16:e0245316. [PMID: 34111145 PMCID: PMC8192020 DOI: 10.1371/journal.pone.0245316] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/05/2021] [Indexed: 12/12/2022] Open
Abstract
Sulawesi, an island located in a biogeographical transition zone between Indomalaya and Australasia, is famous for its high levels of endemism. Ricefishes (family Adrianichthyidae) are an example of taxa that have uniquely diversified on this island. It was demonstrated that habitat fragmentation due to the Pliocene juxtaposition among tectonic subdivisions of this island was the primary factor that promoted their divergence; however, it is also equally probable that habitat fusions and resultant admixtures between phylogenetically distant species may have frequently occurred. Previous studies revealed that some individuals of Oryzias sarasinorum endemic to a tectonic lake in central Sulawesi have mitochondrial haplotypes that are similar to the haplotypes of O. eversi, which is a phylogenetically related but geologically distant (ca. 190 km apart) adrianichthyid endemic to a small fountain. In this study, we tested if this reflects ancient admixture of O. eversi and O. sarasinorum. Population genomic analyses of genome-wide single-nucleotide polymorphisms revealed that O. eversi and O. sarasinorum are substantially reproductively isolated from each other. Comparison of demographic models revealed that the models assuming ancient admixture from O. eversi to O. sarasinorum was more supported than the models assuming no admixture; this supported the idea that the O. eversi-like mitochondrial haplotype in O. sarasinorum was introgressed from O. eversi. This study is the first to demonstrate ancient admixture of lacustrine or pond organisms in Sulawesi beyond 100 km. The complex geological history of this island enabled such island-wide admixture of lacustrine organisms, which usually experience limited migration.
Collapse
Affiliation(s)
- Mizuki Horoiwa
- Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Ixchel F. Mandagi
- Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa, Japan
- Faculty of Fisheries and Marine Science, Sam Ratulangi University, Manado, Indonesia
| | - Nobu Sutra
- Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa, Japan
- Graduate School of Hasanuddin University, Makassar, Indonesia
| | - Javier Montenegro
- Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Fadly Y. Tantu
- Faculty of Animal Husbandry and Fisheries, Tadulako University, Palu, Indonesia
| | | | | | - Junko Kusumi
- Faculty of Social and Cultural Studies, Kyushu University, Fukuoka, Japan
| | - Nina Yasuda
- Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Kazunori Yamahira
- Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa, Japan
| |
Collapse
|
23
|
Dong Z, Li X, Yao Z, Wang C, Guo Y, Wang Q, Shao C, Wang Z. Oryzias curvinotus in Sanya Does Not Contain the Male Sex-Determining Gene dmy. Animals (Basel) 2021; 11:ani11051327. [PMID: 34066583 PMCID: PMC8148570 DOI: 10.3390/ani11051327] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/24/2021] [Accepted: 05/03/2021] [Indexed: 01/18/2023] Open
Abstract
Hainan medaka (Oryzias curvinotus) is distributed in the coastal waters of the South China Sea and is able to adapt to a wide range of salinities. In this study, we characterized O. curvinotus in Sanya River (SY-medaka), which lacks dmy (a male sex-determining gene in O. latipes and O. curvinotus). In a comparison of SY-medaka and Gaoqiao medaka (GQ-medaka), the morphological difference between the two populations does not reach the subspecies level and they can be considered two geographic populations of O. curvinotus. A mitochondrial cytochrome oxidase subunit I (CoI) sequence alignment showed that the sequence identities between SY-medaka and other geographic populations of O. curvinotus are as high as 95%. A phylogenetic analysis of the mitochondrial genome also indicated that SY-medaka belongs to O. curvinotus. Molecular marker-based genetic sex assays and whole genome re-sequencing showed that SY-medaka does not contain dmy. Further, in RNA-Seq analyses of the testis and ovaries of sexually mature SY-medaka, dmy expression was not detected. We speculate that high temperatures resulted in the loss of dmy in SY-medaka during evolution, or the lineage has another sex-determining gene. This study provides a valuable dataset for elucidating the mechanism underlying sex determination in Oryzias genus and advances research on functional genomics or reproduction biology in O. curvinotus.
Collapse
Affiliation(s)
- Zhongdian Dong
- Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524025, China; (X.L.); (Z.Y.); (C.W.); (Y.G.)
- Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Fisheries College, Guangdong Ocean University, Zhanjiang 524025, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524025, China
- Correspondence: (Z.D.); (Z.W.)
| | - Xueyou Li
- Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524025, China; (X.L.); (Z.Y.); (C.W.); (Y.G.)
| | - Zebin Yao
- Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524025, China; (X.L.); (Z.Y.); (C.W.); (Y.G.)
| | - Chun Wang
- Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524025, China; (X.L.); (Z.Y.); (C.W.); (Y.G.)
| | - Yusong Guo
- Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524025, China; (X.L.); (Z.Y.); (C.W.); (Y.G.)
- Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Fisheries College, Guangdong Ocean University, Zhanjiang 524025, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524025, China
| | - Qian Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Qingdao 266071, China; (Q.W.); (C.S.)
| | - Changwei Shao
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Qingdao 266071, China; (Q.W.); (C.S.)
| | - Zhongduo Wang
- Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524025, China; (X.L.); (Z.Y.); (C.W.); (Y.G.)
- Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Fisheries College, Guangdong Ocean University, Zhanjiang 524025, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524025, China
- State Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University School, Changsha 410081, China
- Correspondence: (Z.D.); (Z.W.)
| |
Collapse
|
24
|
Spanke T, Hilgers L, Wipfler B, Flury JM, Nolte AW, Utama IV, Misof B, Herder F, Schwarzer J. Complex sexually dimorphic traits shape the parallel evolution of a novel reproductive strategy in Sulawesi ricefishes (Adrianichthyidae). BMC Ecol Evol 2021; 21:57. [PMID: 33879056 PMCID: PMC8056572 DOI: 10.1186/s12862-021-01791-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 04/09/2021] [Indexed: 11/24/2022] Open
Abstract
Background Pelvic brooding is a form of uni-parental care, and likely evolved in parallel in two lineages of Sulawesi ricefishes. Contrary to all other ricefishes, females of pelvic brooding species do not deposit eggs at a substrate (transfer brooding), but carry them until the fry hatches. We assume that modifications reducing the costs of egg carrying are beneficial for pelvic brooding females, but likely disadvantageous in conspecific males, which might be resolved by the evolution of sexual dimorphism via sexual antagonistic selection. Thus we hypothesize that the evolution of pelvic brooding gave rise to female-specific skeletal adaptations that are shared by both pelvic brooding lineages, but are absent in conspecific males and transfer brooding species. To tackle this, we combine 3D-imaging and morphometrics to analyze skeletal adaptations to pelvic brooding. Results The morphology of skeletal traits correlated with sex and brooding strategy across seven ricefish species. Pelvic brooding females have short ribs caudal of the pelvic girdle forming a ventral concavity and clearly elongated and thickened pelvic fins compared to both sexes of transfer brooding species. The ventral concavity limits the body cavity volume in female pelvic brooders. Thus body volumes are smaller compared to males in pelvic brooding species, a pattern sharply contrasted by transfer brooding species. Conclusions We showed in a comparative framework that highly similar, sexually dimorphic traits evolved in parallel in both lineages of pelvic brooding ricefish species. Key traits, present in all pelvic brooding females, were absent or much less pronounced in conspecific males and both sexes of transfer brooding species, indicating that they are non-beneficial or even maladaptive for ricefishes not providing extended care. We assume that the combination of ventral concavity and robust, elongated fins reduces drag of brooding females and provides protection and stability to the egg cluster. Thus ricefishes are one of the rare examples where environmental factors rather than sexual selection shaped the evolution of sexually dimorphic skeletal adaptations. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-021-01791-z.
Collapse
Affiliation(s)
- Tobias Spanke
- Zoologisches Forschungsmuseum Alexander Koenig, Adenauerallee 160, 53113, Bonn, Germany
| | - Leon Hilgers
- Zoologisches Forschungsmuseum Alexander Koenig, Adenauerallee 160, 53113, Bonn, Germany
| | - Benjamin Wipfler
- Zoologisches Forschungsmuseum Alexander Koenig, Adenauerallee 160, 53113, Bonn, Germany
| | - Jana M Flury
- Zoologisches Forschungsmuseum Alexander Koenig, Adenauerallee 160, 53113, Bonn, Germany
| | - Arne W Nolte
- Carl Von Ossietzky Universität Oldenburg, AG Ökologische Genomik, Carl von Ossietzky-Str. 9-11, 26111, Oldenburg, Germany
| | - Ilham V Utama
- Ichthyology Laboratory, Indonesian Institute of Sciences (LIPI), JL. Raya Jakarta-Bogor Km. 46, Cibinong, 16911, Indonesia
| | - Bernhard Misof
- Zoologisches Forschungsmuseum Alexander Koenig, Adenauerallee 160, 53113, Bonn, Germany
| | - Fabian Herder
- Zoologisches Forschungsmuseum Alexander Koenig, Adenauerallee 160, 53113, Bonn, Germany
| | - Julia Schwarzer
- Zoologisches Forschungsmuseum Alexander Koenig, Adenauerallee 160, 53113, Bonn, Germany.
| |
Collapse
|
25
|
Ansai S, Mochida K, Fujimoto S, Mokodongan DF, Sumarto BKA, Masengi KWA, Hadiaty RK, Nagano AJ, Toyoda A, Naruse K, Yamahira K, Kitano J. Genome editing reveals fitness effects of a gene for sexual dichromatism in Sulawesian fishes. Nat Commun 2021; 12:1350. [PMID: 33649298 PMCID: PMC7921647 DOI: 10.1038/s41467-021-21697-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 02/02/2021] [Indexed: 01/31/2023] Open
Abstract
Sexual selection drives rapid phenotypic diversification of mating traits. However, we know little about the causative genes underlying divergence in sexually selected traits. Here, we investigate the genetic basis of male mating trait diversification in the medaka fishes (genus Oryzias) from Sulawesi, Indonesia. Using linkage mapping, transcriptome analysis, and genome editing, we identify csf1 as a causative gene for red pectoral fins that are unique to male Oryzias woworae. A cis-regulatory mutation enables androgen-induced expression of csf1 in male fins. csf1-knockout males have reduced red coloration and require longer for mating, suggesting that coloration can contribute to male reproductive success. Contrary to expectations, non-red males are more attractive to a predatory fish than are red males. Our results demonstrate that integrating genomics with genome editing enables us to identify causative genes underlying sexually selected traits and provides a new avenue for testing theories of sexual selection.
Collapse
Affiliation(s)
- Satoshi Ansai
- grid.288127.60000 0004 0466 9350Ecological Genetics Laboratory, Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Shizuoka, Japan ,grid.419396.00000 0004 0618 8593Laboratory of Bioresources, National Institute for Basic Biology, Okazaki, Aichi, Japan ,grid.69566.3a0000 0001 2248 6943Present Address: Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi Japan
| | - Koji Mochida
- grid.267625.20000 0001 0685 5104Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa, Japan ,grid.26091.3c0000 0004 1936 9959Department of Biology, Keio University, Yokohama, Kanagawa, Japan
| | - Shingo Fujimoto
- grid.267625.20000 0001 0685 5104Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa, Japan ,grid.267625.20000 0001 0685 5104Present Address: Department of Human Biology and Anatomy, Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa Japan
| | - Daniel F. Mokodongan
- grid.267625.20000 0001 0685 5104Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa, Japan ,grid.249566.a0000 0004 0644 6054Present Address: Museum Zoologicum Bogoriense (MZB), Zoology Division of Research Center for Biology, Indonesian Institute of Science (LIPI), Cibinong, Indonesia
| | - Bayu Kreshna Adhitya Sumarto
- grid.267625.20000 0001 0685 5104Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Kawilarang W. A. Masengi
- grid.412381.d0000 0001 0702 3254Faculty of Fisheries and Marine Science, Sam Ratulangi University, Manado, Indonesia
| | - Renny K. Hadiaty
- grid.249566.a0000 0004 0644 6054Research Center for Biology, Indonesian Institute of Science (LIPI), Cibinong, Indonesia
| | - Atsushi J. Nagano
- grid.440926.d0000 0001 0744 5780Faculty of Agriculture, Ryukoku University, Ohtsu, Shiga, Japan
| | - Atsushi Toyoda
- grid.288127.60000 0004 0466 9350Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Kiyoshi Naruse
- grid.419396.00000 0004 0618 8593Laboratory of Bioresources, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Kazunori Yamahira
- grid.267625.20000 0001 0685 5104Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Jun Kitano
- grid.288127.60000 0004 0466 9350Ecological Genetics Laboratory, Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Shizuoka, Japan
| |
Collapse
|
26
|
Sumarto BKA, Kobayashi H, Kakioka R, Tanaka R, Maeda K, Tran HD, Koizumi N, Morioka S, Bounsong V, Watanabe K, Musikasinthorn P, Tun S, Yun LKC, Anoop VK, Raghavan R, Masengi KWA, Fujimoto S, Yamahira K. Latitudinal variation in sexual dimorphism in a freshwater fish group. Biol J Linn Soc Lond 2020. [DOI: 10.1093/biolinnean/blaa166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Abstract
Tropical animals are characterized by showy ornaments and conspicuous body colours as compared with their temperate relatives. Some recent studies have hypothesized that sexual selection pressures are stronger in the tropics than in the temperate zone. Although negative correlations between latitude and the degree of sexual dimorphism would support this hypothesis, phylogeny should be taken into account in such comparative studies. Comparisons of the degree of sexual dimorphism in body size and fin lengths among species of the Adrianichthyidae, a freshwater fish family having a wide geographical range throughout Southeast and East Asia, revealed that lower latitude species are sexually more dimorphic in all characters than higher latitude species. Phylogenetic generalized least squares analyses using a mitochondrial DNA phylogeny demonstrated that the negative correlations between latitude and the degree of sexual dimorphism become non-significant when phylogeny is considered, but that the variance in the degree of sexual dimorphism is explained not only by phylogeny but also almost equally by latitude. Ancestral state reconstruction indicated that sexual dimorphisms have evolved independently even within major clades. These findings are consistent with the view that tropical species are exposed to stronger sexual selection pressures than temperate species. We discuss possible causes of the latitudinal variation in sexual selection pressure.
Collapse
Affiliation(s)
- Bayu K A Sumarto
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| | - Hirozumi Kobayashi
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| | - Ryo Kakioka
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| | - Rieko Tanaka
- World Medaka Aquarium, Nagoya Higashiyama Zoo and Botanical Gardens, Nagoya, Japan
| | - Ken Maeda
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Hau D Tran
- Faculty of Biology, Hanoi National University of Education, Hanoi, Vietnam
| | - Noriyuki Koizumi
- Institute for Rural Engineering, National Agriculture and Food Research Organization, Ibaraki, Japan
| | - Shinsuke Morioka
- Fisheries Division, Japan International Research Center for Agricultural Sciences, Ibaraki, Japan
| | | | | | | | - Sein Tun
- Inlay Lake Wildlife Sanctuary, Nature and Wildlife Conservation Division, Forest Department, Ministry of Natural Resources and Environmental Conservation, Myanmar
| | - L K C Yun
- Inlay Lake Wildlife Sanctuary, Nature and Wildlife Conservation Division, Forest Department, Ministry of Natural Resources and Environmental Conservation, Myanmar
| | - V K Anoop
- School of Ocean Science and Technology, Kerala University of Fisheries and Ocean Studies, Kochi, India
| | - Rajeev Raghavan
- Department of Fisheries Resource Management, Kerala University of Fisheries and Ocean Studies, Kochi, India
| | | | - Shingo Fujimoto
- Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Kazunori Yamahira
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| |
Collapse
|
27
|
Gauffre-Autelin P, Stelbrink B, von Rintelen T, Albrecht C. Miocene geologic dynamics of the Australian Sahul Shelf determined the biogeographic patterns of freshwater planorbid snails (Miratestinae) in the Indo-Australian Archipelago. Mol Phylogenet Evol 2020; 155:107004. [PMID: 33157207 DOI: 10.1016/j.ympev.2020.107004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 09/01/2020] [Accepted: 10/28/2020] [Indexed: 11/30/2022]
Abstract
The complex geological and climatic processes that have shaped the Indo-Australian Archipelago since the Cenozoic likely also gave rise to its species-rich biota. Strictly freshwater organisms might be particularly suitable for understanding the influence of these abiotic factors on their biogeography in such a insular setting as their distribution may reflect past abiotic events at large and small geographical scales. We here investigate the historical biogeography of the Miratestinae, a subfamily of Planorbidae. These freshwater gastropods are widely distributed in the eastern IAA from Australia, New Guinea, the Moluccas, and Sulawesi to the Philippines. The first comprehensive molecular phylogeny of the Miratestinae was inferred based on two mitochondrial and two nuclear genetic markers using maximum likelihood and Bayesian inference. Four species delimitation methods were applied to identify molecular operational taxonomic units (MOTUs). Divergence times were inferred using an uncorrelated lognormal relaxed-clock model by applying a taxon- and marker-specific substitution rate. Ancestral geographic ranges were estimated based on the dated phylogeny using BioGeoBEARS. The species delimitation revealed a total of 23 MOTUs, 16 of which might represent species new to science. The BioGeoBEARS analyses suggest an Australian origin for the Miratestinae at c. 22 Ma and identified jump dispersal to be the main process of colonization. The first colonization events from Australia to the IAA occurred in the Middle-Late Miocene (12-13 Ma), whereas intra-island diversification took mainly place since the Late Miocene-Pliocene. Colonization and diversification events remarkably coincide with major geologic events that shaped the geography of the region. The increasing availability of landmasses along the Sahul Shelf likely promoted stepping-stone dispersal to New Guinea, Sulawesi and the Philippines as early as the islands emerged. Major geological and climatic events such as the amalgamation of the island Sulawesi, the regional aridification in Australia or the uplift of massive mountain ranges in New Guinea likely played a considerable role for intra-island diversification.
Collapse
Affiliation(s)
- Pauline Gauffre-Autelin
- Department of Animal Ecology and Systematics, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32 (IFZ), 35392 Giessen, Germany.
| | - Björn Stelbrink
- Department of Animal Ecology and Systematics, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32 (IFZ), 35392 Giessen, Germany
| | - Thomas von Rintelen
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstr. 43, 10115 Berlin, Germany
| | - Christian Albrecht
- Department of Animal Ecology and Systematics, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32 (IFZ), 35392 Giessen, Germany
| |
Collapse
|
28
|
Kobayashi H, Masengi KWA, Yamahira K. A New “Beakless” Halfbeak of the Genus Nomorhamphus from Sulawesi (Teleostei: Zenarchopteridae). COPEIA 2020. [DOI: 10.1643/ci-19-313] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Hirozumi Kobayashi
- Graduate School of Engineering and Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan; . Send reprint requests to this address
| | | | - Kazunori Yamahira
- Tropical Biosphere Research Center, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan; (KY)
| |
Collapse
|
29
|
Genome Sequence of the Euryhaline Javafish Medaka, Oryzias javanicus: A Small Aquarium Fish Model for Studies on Adaptation to Salinity. G3-GENES GENOMES GENETICS 2020; 10:907-915. [PMID: 31988161 PMCID: PMC7056978 DOI: 10.1534/g3.119.400725] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The genus Oryzias consists of 35 medaka-fish species each exhibiting various ecological, morphological and physiological peculiarities and adaptations. Beyond of being a comprehensive phylogenetic group for studying intra-genus evolution of several traits like sex determination, behavior, morphology or adaptation through comparative genomic approaches, all medaka species share many advantages of experimental model organisms including small size and short generation time, transparent embryos and genome editing tools for reverse and forward genetic studies. The Java medaka, Oryzias javanicus, is one of the two species of medaka perfectly adapted for living in brackish/sea-waters. Being an important component of the mangrove ecosystem, O. javanicus is also used as a valuable marine test-fish for ecotoxicology studies. Here, we sequenced and assembled the whole genome of O. javanicus, and anticipate this resource will be catalytic for a wide range of comparative genomic, phylogenetic and functional studies. Complementary sequencing approaches including long-read technology and data integration with a genetic map allowed the final assembly of 908 Mbp of the O. javanicus genome. Further analyses estimate that the O. javanicus genome contains 33% of repeat sequences and has a heterozygosity of 0.96%. The achieved draft assembly contains 525 scaffolds with a total length of 809.7 Mbp, a N50 of 6,3 Mbp and a L50 of 37 scaffolds. We identified 21454 predicted transcripts for a total transcriptome size of 57, 146, 583 bps. We provide here a high-quality chromosome scale draft genome assembly of the euryhaline Javafish medaka (321 scaffolds anchored on 24 chromosomes (representing 97.7% of the total bases)), and give emphasis on the evolutionary adaptation to salinity.
Collapse
|
30
|
Sutra N, Kusumi J, Montenegro J, Kobayashi H, Fujimoto S, Masengi KWA, Nagano AJ, Toyoda A, Matsunami M, Kimura R, Yamahira K. Evidence for sympatric speciation in a Wallacean ancient lake. Evolution 2019; 73:1898-1915. [DOI: 10.1111/evo.13821] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 08/03/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Nobu Sutra
- Tropical Biosphere Research CenterUniversity of the Ryukyus Okinawa 903‐0213 Japan
| | - Junko Kusumi
- Faculty of Social and Cultural StudiesKyushu University Fukuoka 819‐0395 Japan
| | - Javier Montenegro
- Tropical Biosphere Research CenterUniversity of the Ryukyus Okinawa 903‐0213 Japan
| | - Hirozumi Kobayashi
- Tropical Biosphere Research CenterUniversity of the Ryukyus Okinawa 903‐0213 Japan
| | - Shingo Fujimoto
- Graduate School of MedicineUniversity of the Ryukyus Okinawa 903‐0125 Japan
| | | | | | - Atsushi Toyoda
- Comparative Genomics LaboratoryNational Institute of Genetics Mishima 411‐8540 Japan
| | | | - Ryosuke Kimura
- Graduate School of MedicineUniversity of the Ryukyus Okinawa 903‐0125 Japan
| | - Kazunori Yamahira
- Tropical Biosphere Research CenterUniversity of the Ryukyus Okinawa 903‐0213 Japan
| |
Collapse
|
31
|
Hilgers L, Schwarzer J. The untapped potential of medaka and its wild relatives. eLife 2019; 8:46994. [PMID: 31287418 PMCID: PMC6615862 DOI: 10.7554/elife.46994] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 06/12/2019] [Indexed: 01/04/2023] Open
Abstract
The medaka is a fish that has served as a model organism for over a century, yet there is still much to learn about its life in the wild. Here we summarize the current knowledge, highlight recent progress and outline remaining gaps in our understanding of the natural history of medaka. It has also become clear over time that rather than being a single species, medaka comprises an entire species complex, so disentangling the species boundaries is an important goal for future research. Moreover, medaka and other ricefishes exhibit striking functional diversity, little of which has been investigated to date. As such, there are opportunities to use the resources developed for medaka to study other ricefishes, and to learn more about medaka itself in an evolutionary context.
Collapse
Affiliation(s)
- Leon Hilgers
- Zoological Research Museum Alexander Koenig, Bonn, Germany
| | | |
Collapse
|
32
|
Montenegro J, Mochida K, Matsui K, Mokodongan DF, Sumarto BKA, Lawelle SA, Nofrianto AB, Hadiaty RK, Masengi KWA, Yong L, Inomata N, Irie T, Hashiguchi Y, Terai Y, Kitano J, Yamahira K. Convergent evolution of body color between sympatric freshwater fishes via different visual sensory evolution. Ecol Evol 2019; 9:6389-6398. [PMID: 31236229 PMCID: PMC6580282 DOI: 10.1002/ece3.5211] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/05/2019] [Accepted: 04/11/2019] [Indexed: 12/18/2022] Open
Abstract
Although there are many examples of color evolution potentially driven by sensory drive, only few studies have examined whether distinct species inhabiting the same environments evolve similar body colors via shared sensory mechanisms. In this study, we tested whether two sympatric freshwater fish taxa, halfbeaks of the genus Nomorhamphus and ricefishes of the genus Oryzias in Sulawesi Island, converge in both body color and visual sensitivity. After reconstructing the phylogeny separately for Nomorhamphus and Oryzias using transcriptome-wide sequences, we demonstrated positive correlations of body redness between these two taxa across environments, even after phylogenetic corrections, which support convergent evolution. However, substantial differences were observed in the expression profiles of opsin genes in the eyes between Nomorhamphus and Oryzias. Particularly, the expression levels of the long wavelength-sensitive genes were negatively correlated between the taxa, indicating that they have different visual sensitivities despite living in similar light environments. Thus, the convergence of body colorations between these two freshwater fish taxa was not accompanied by convergence in opsin sensitivities. This system presents a case in which body color convergence can occur between sympatric species via different mechanisms.
Collapse
Affiliation(s)
- Javier Montenegro
- Tropical Biosphere Research CenterUniversity of the RyukyusOkinawaJapan
| | - Koji Mochida
- Department of BiologyKeio UniversityYokohamaJapan
| | - Kumi Matsui
- School of Veterinary MedicineAzabu UniversitySagamiharaJapan
| | - Daniel F. Mokodongan
- Tropical Biosphere Research CenterUniversity of the RyukyusOkinawaJapan
- Faculty of Fisheries and Marine ScienceHalu Oleo UniversityKendariIndonesia
| | | | - Sjamsu A. Lawelle
- Faculty of Fisheries and Marine ScienceHalu Oleo UniversityKendariIndonesia
| | - Andy B. Nofrianto
- Faculty of Fisheries and Marine ScienceHalu Oleo UniversityKendariIndonesia
| | | | | | - Lengxob Yong
- Ecological Genetics LaboratoryNational Institute of GeneticsMishimaJapan
- Center for Ecology and Conservation, College of Life and Environmental SciencesUniversity of ExeterCornwallUK
| | - Nobuyuki Inomata
- Department of Environmental ScienceFukuoka Women's UniversityFukuokaJapan
| | | | | | - Yohey Terai
- Department of Evolutionary Studies of BiosystemsThe Graduate University for Advanced StudiesHayamaJapan
| | - Jun Kitano
- Ecological Genetics LaboratoryNational Institute of GeneticsMishimaJapan
| | - Kazunori Yamahira
- Tropical Biosphere Research CenterUniversity of the RyukyusOkinawaJapan
| |
Collapse
|
33
|
Mandagi IF, Mokodongan DF, Tanaka R, Yamahira K. A New Riverine Ricefish of the GenusOryzias(Beloniformes, Adrianichthyidae) from Malili, Central Sulawesi, Indonesia. COPEIA 2018. [DOI: 10.1643/ci-17-704] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
34
|
Myosho T, Takahashi H, Yoshida K, Sato T, Hamaguchi S, Sakamoto T, Sakaizumi M. Hyperosmotic tolerance of adult fish and early embryos are determined by discrete, single loci in the genus Oryzias. Sci Rep 2018; 8:6897. [PMID: 29720646 PMCID: PMC5932013 DOI: 10.1038/s41598-018-24621-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 03/29/2018] [Indexed: 11/09/2022] Open
Abstract
The acquisition of environmental osmolality tolerance traits in individuals and gametes is an important event in the evolution and diversification of organisms. Although teleost fish exhibit considerable intra- and interspecific variation in salinity tolerance, the genetic mechanisms underlying this trait remain unclear. Oryzias celebensis survives in sea and fresh water during both the embryonic and adult stages, whereas its close relative Oryzias woworae cannot survive in sea water at either stage. A linkage analysis using backcross progeny identified a single locus responsible for adult hyperosmotic tolerance on a fused chromosome that corresponds to O. latipes linkage groups (LGs) 6 and 23. Conversely, O. woworae eggs fertilised with O. celebensis sperm died in sea water at the cleavage stages, whereas O. celebensis eggs fertilised with O. woworae sperm developed normally, demonstrating that maternal factor(s) from O. celebensis are responsible for hyperosmotic tolerance during early development. A further linkage analysis using backcrossed females revealed a discrete single locus relating to the maternal hyperosmotic tolerance factor in a fused chromosomal region homologous to O. latipes LGs 17 and 19. These results indicate that a maternal factor governs embryonic hyperosmotic tolerance and maps to a locus distinct from that associated with adult hyperosmotic tolerance.
Collapse
Affiliation(s)
- Taijun Myosho
- Laboratory of Molecular Reproductive Biology, Institute for Environmental Science, University of Shizuoka, Shizuoka, 422-8526, Japan. .,Department of Environmental Science, Institute of Science and Technology, Niigata University, Ikarashi, Niigata, 950-2181, Japan.
| | - Hideya Takahashi
- Department of Environmental Science, Institute of Science and Technology, Niigata University, Ikarashi, Niigata, 950-2181, Japan.,Ushimado Marine Institute, Faculty of Science, Okayama University, Setouchi, Okayama, 701-4303, Japan
| | - Kento Yoshida
- Department of Environmental Science, Institute of Science and Technology, Niigata University, Ikarashi, Niigata, 950-2181, Japan
| | - Tadashi Sato
- Department of Environmental Science, Institute of Science and Technology, Niigata University, Ikarashi, Niigata, 950-2181, Japan
| | - Satoshi Hamaguchi
- Department of Environmental Science, Institute of Science and Technology, Niigata University, Ikarashi, Niigata, 950-2181, Japan
| | - Tatsuya Sakamoto
- Ushimado Marine Institute, Faculty of Science, Okayama University, Setouchi, Okayama, 701-4303, Japan
| | - Mitsuru Sakaizumi
- Department of Environmental Science, Institute of Science and Technology, Niigata University, Ikarashi, Niigata, 950-2181, Japan
| |
Collapse
|
35
|
Mokodongan DF, Montenegro J, Mochida K, Fujimoto S, Ishikawa A, Kakioka R, Yong L, Mulis, Hadiaty RK, Mandagi IF, Masengi KW, Wachi N, Hashiguchi Y, Kitano J, Yamahira K. Phylogenomics reveals habitat-associated body shape divergence in Oryzias woworae species group (Teleostei: Adrianichthyidae). Mol Phylogenet Evol 2018; 118:194-203. [DOI: 10.1016/j.ympev.2017.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 09/11/2017] [Accepted: 10/04/2017] [Indexed: 12/24/2022]
|
36
|
Wallis GP, Cameron-Christie SR, Kennedy HL, Palmer G, Sanders TR, Winter DJ. Interspecific hybridization causes long-term phylogenetic discordance between nuclear and mitochondrial genomes in freshwater fishes. Mol Ecol 2017; 26:3116-3127. [DOI: 10.1111/mec.14096] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 02/22/2017] [Accepted: 03/01/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Graham P. Wallis
- Department of Zoology; University of Otago; PO Box 56 Dunedin 9054 New Zealand
| | - Sophia R. Cameron-Christie
- Women's and Children's Health; Paediatrics & Child Health; Dunedin School of Medicine; University of Otago; PO Box 56 Dunedin 9054 New Zealand
| | - Hannah L. Kennedy
- Molecular Pathology Laboratory; Canterbury Health Laboratories; PO Box 151 Christchurch 8140 New Zealand
- Department of Pathology; University of Otago; Riccarton Avenue PO Box 4345 Christchurch 8140 New Zealand
| | - Gemma Palmer
- Melbourne IVF; Suite 10 320 Victoria Parade East Melbourne Vic. 3002 Australia
| | - Tessa R. Sanders
- National Institutes of Health; 9000 Rockville Pike Bethesda MD 20892 USA
| | - David J. Winter
- Institute of Fundamental Sciences; Massey University; Private Bag 11 222 Palmerston North 4442 New Zealand
| |
Collapse
|
37
|
Molecular phylogeny and historical biogeography of the Indonesian freshwater fish Rasbora lateristriata species complex (Actinopterygii: Cyprinidae): Cryptic species and west-to-east divergences. Mol Phylogenet Evol 2016; 105:212-223. [DOI: 10.1016/j.ympev.2016.08.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/27/2016] [Accepted: 08/22/2016] [Indexed: 12/19/2022]
|
38
|
Genetic Architecture of the Variation in Male-Specific Ossified Processes on the Anal Fins of Japanese Medaka. G3-GENES GENOMES GENETICS 2015; 5:2875-84. [PMID: 26511497 PMCID: PMC4683658 DOI: 10.1534/g3.115.021956] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Traits involved in reproduction evolve rapidly and show great diversity among closely related species. However, the genetic mechanisms that underlie the diversification of courtship traits are mostly unknown. Japanese medaka fishes (Oryzias latipes) use anal fins to attract females and to grasp females during courtship; the males have longer anal fins with male-specific ossified papillary processes on the fin rays. However, anal fin morphology varies between populations: the southern populations tend to have longer anal fins and more processes than the northern populations. In the present study, we conducted quantitative trait locus (QTL) mapping to investigate the genetic architecture underlying the variation in the number of papillary processes of Japanese medaka fish and compared the QTL with previously identified QTL controlling anal fin length. First, we found that only a few QTL were shared between anal fin length and papillary process number. Second, we found that the numbers of papillary processes on different fin rays often were controlled by different QTL. Finally, we produced another independent cross and found that some QTL were repeatable between the two crosses, whereas others were specific to only one cross. These results suggest that variation in the number of papillary processes is polygenic and controlled by QTL that are distinct from those controlling anal fin length. Thus, different courtship traits in Japanese medaka share a small number of QTL and have the potential for independent evolution.
Collapse
|
39
|
Abstract
Sex chromosomes and the sex-determining (SD) gene are variable in vertebrates. In particular, medaka fishes in the genus Oryzias show an extremely large diversity in sex chromosomes and the SD gene, providing a good model to study the evolutionary process by which they turnover. Here, we investigated the sex determination system and sex chromosomes in six celebensis group species. Our sex-linkage analysis demonstrated that all species had an XX-XY sex determination system, and that the Oryzias marmoratus and O. profundicola sex chromosomes were homologous to O. latipes linkage group (LG) 10, while those of the other four species, O. celebensis, O. matanensis, O. wolasi, and O. woworae, were homologous to O. latipes LG 24. The phylogenetic relationship suggested a turnover of the sex chromosomes from O. latipes LG 24 to LG 10 within this group. Six sex-linkage maps showed that the former two and the latter four species shared a common SD locus, respectively, suggesting that the LG 24 acquired the SD function in a common ancestor of the celebensis group, and that the LG 10 SD function appeared in a common ancestor of O. marmoratus and O. profundicola after the divergence of O. matanensis. Additionally, fine mapping and association analysis in the former two species revealed that Sox3 on the Y chromosome is a prime candidate for the SD gene, and that the Y-specific 430-bp insertion might be involved in its SD function.
Collapse
|
40
|
Mokodongan DF, Yamahira K. Mitochondrial and nuclear phylogenetic trees and divergence time estimations of Sulawesi endemic Adrianichthyidae. Data Brief 2015; 5:281-4. [PMID: 26543892 PMCID: PMC4589798 DOI: 10.1016/j.dib.2015.08.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 08/15/2015] [Accepted: 08/25/2015] [Indexed: 11/29/2022] Open
Abstract
This data article is related to the research article entitled “Origin and intra-island diversification of Sulawesi endemic Adrianichthyidae” by Mokodongan and Yamahira [1]. In this data article, we present phylogenetic trees of Sulawesi adrianichthyids separately reconstructed using mitochondrial (cytochrome b: cyt b and NADH dehydrogenase subunit 2: ND2) and nuclear (tyrosinase) sequences. We also present Bayesian chronograms of Sulawesi adrianichthyids separately estimated using a substitution rate for cyt b and for ND2.
Collapse
Affiliation(s)
- Daniel F Mokodongan
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa 903-0213, Japan
| | - Kazunori Yamahira
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa 903-0213, Japan
| |
Collapse
|