1
|
Dornburg A, Zapfe KL, Williams R, Alfaro ME, Morris R, Adachi H, Flores J, Santini F, Near TJ, Frédérich B. Considering Decoupled Phenotypic Diversification Between Ontogenetic Phases in Macroevolution: An Example Using Triggerfishes (Balistidae). Syst Biol 2024; 73:434-454. [PMID: 38490727 DOI: 10.1093/sysbio/syae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/27/2024] [Accepted: 03/14/2024] [Indexed: 03/17/2024] Open
Abstract
Across the Tree of Life, most studies of phenotypic disparity and diversification have been restricted to adult organisms. However, many lineages have distinct ontogenetic phases that differ from their adult forms in morphology and ecology. Focusing disproportionately on the evolution of adult forms unnecessarily hinders our understanding of the pressures shaping evolution over time. Non-adult disparity patterns are particularly important to consider for coastal ray-finned fishes, which can have juvenile phases with distinct phenotypes. These juvenile forms are often associated with sheltered nursery environments, with phenotypic shifts between adults and juvenile stages that are readily apparent in locomotor morphology. Whether this ontogenetic variation in locomotor morphology reflects a decoupling of diversification dynamics between life stages remains unknown. Here we investigate the evolutionary dynamics of locomotor morphology between adult and juvenile triggerfishes. We integrate a time-calibrated phylogenetic framework with geometric morphometric approaches and measurement data of fin aspect ratio and incidence, and reveal a mismatch between morphospace occupancy, the evolution of morphological disparity, and the tempo of trait evolution between life stages. Collectively, our results illuminate how the heterogeneity of morpho-functional adaptations can decouple the mode and tempo of morphological diversification between ontogenetic stages.
Collapse
Affiliation(s)
- Alex Dornburg
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Katerina L Zapfe
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Rachel Williams
- School of Environmental and Natural Sciences, Bangor University, Bangor LL57 2UR, UK
| | - Michael E Alfaro
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA
| | - Richard Morris
- North Carolina Museum of Natural Sciences, Raleigh, NC 27601, USA
| | - Haruka Adachi
- North Carolina Museum of Natural Sciences, Raleigh, NC 27601, USA
| | - Joseph Flores
- North Carolina Museum of Natural Sciences, Raleigh, NC 27601, USA
| | - Francesco Santini
- Associazione Italiana per lo Studio della Biodiversità, Pisa 56100, Italy
| | - Thomas J Near
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
| | - Bruno Frédérich
- Laboratory of Evolutionary Ecology, FOCUS, University of Liège, Quartier AGORA, Allée du six Août 11 (B6c), 4000 Liège, Belgium
| |
Collapse
|
2
|
Huang WC, Evacitas FC, Balisco RA, Nañola CL, Chou TK, Jhuang WC, Chang CW, Shen KN, Shao KT, Liao TY. DNA barcoding of marine teleost fishes (Teleostei) in Cebu, the Philippines, a biodiversity hotspot of the coral triangle. Sci Rep 2023; 13:14867. [PMID: 37684303 PMCID: PMC10491795 DOI: 10.1038/s41598-023-41832-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
A morphology-based barcoding library of market teleost fishes (Teleostei) in Cebu is built based on cytochrome c oxidase subunit I (COI) sequences and voucher specimens which aimed to establish a reliable reference of frequently traded fishes in the province, a biodiversity hotspot at the center of the Philippine archipelago. A total of 1721 specimens were collected from 18 fish markets and landing sites around the province, in which 538 specimens were sequenced belonging to 393 species from 229 genera, 86 families, and 37 orders. Most speciose families are coral reef or reef-related shallow-water species. Twelve species from 11 families are newly recorded in the Philippine waters, among which 7 species are deep-sea inhabitants, while 3 species have expanded their distribution range. Only 20 taxa could not be identified to the species level due to the difficulty in morphological examinations, absence of matched reference sequences in online databases, and/or problematic species awaiting further studies. This first comprehensive DNA barcoding survey of Cebu fishes can facilitate further taxonomic research as well as the conservation and management of fisheries in the Philippines.
Collapse
Affiliation(s)
- Wen-Chien Huang
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung, Taiwan
- Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei, Taiwan
| | - Florence Chan Evacitas
- Department of Biology and Environmental Science, University of the Philippines Cebu, Cebu City, Philippines
| | - Rodulf Anthony Balisco
- Department of Oceanography, National Sun Yat-sen University, Kaohsiung, Taiwan
- College of Fisheries and Aquatic Sciences, Western Philippines University, Puerto Princesa, Philippines
| | - Cleto L Nañola
- Department of Biological Sciences and Environmental Studies, University of the Philippines Mindanao, Davao City, Philippines
| | - Tak-Kei Chou
- Department of Oceanography, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Wei-Cheng Jhuang
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung, Taiwan
- Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei, Taiwan
| | - Chih-Wei Chang
- Department of Oceanography, National Sun Yat-sen University, Kaohsiung, Taiwan
- Marine Ecology and Conservation Research Center, National Academy of Marine Research, Kaohsiung, Taiwan
- Institute of Marine Ecology and Conservation, National Sun Yat-sen University, Kaohsiung, Taiwan
- National Museum of Marine Biology and Aquarium, Pingtung, Taiwan
- Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung, Taiwan
| | - Kang-Ning Shen
- Marine Ecology and Conservation Research Center, National Academy of Marine Research, Kaohsiung, Taiwan
| | - Kwang-Tsao Shao
- Department of Oceanography, National Sun Yat-sen University, Kaohsiung, Taiwan
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Te-Yu Liao
- Department of Oceanography, National Sun Yat-sen University, Kaohsiung, Taiwan.
| |
Collapse
|
3
|
Magro L, Cutmore SC, Carrasson M, Cribb TH. Integrated characterisation of nine species of the Schistorchiinae (Trematoda: Apocreadiidae) from Indo-Pacific fishes: two new species, a new genus, and a resurrected but 'cryptic' genus. Syst Parasitol 2023:10.1007/s11230-023-10093-5. [PMID: 37160818 DOI: 10.1007/s11230-023-10093-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 04/12/2023] [Indexed: 05/11/2023]
Abstract
We report nine species of the Schistorchiinae Yamaguti, 1942 (Apocreadiidae Skrjabin, 1942) from Indo-Pacific marine fishes. Molecular data (ITS2 and 28S rDNA and cox1 mtDNA) are provided for all species and the genus-level classification of the subfamily is revised. For Schistorchis Lühe, 1906, we report the type-species Sch. carneus Lühe, 1906 and Sch. skrjabini Parukhin, 1963. For Sphinteristomum Oshmarin, Mamaev & Parukhin, 1961 we report the type-species, Sph. acollum Oshmarin, Mamaev & Parukhin, 1961. We report and re-recognise Lobatotrema Manter, 1963, for the type and only species, L. aniferum Manter, 1963, previously a synonym of Sph. acollum. Lobatotrema aniferum is phylogenetically distant from, but morphologically similar to, Sph. acollum and Lobatotrema is recognised as a 'cryptic genus'. We propose Blendiella n. gen. for B. trigintatestis n. sp. and B. tridecimtestis n. sp. These species are broadly consistent with the present morphological concept of Schistorchis but are phylogenetically distant from the type-species; a larger number of testes and some other subtle morphological characters in species of Blendiella serve to distinguish the two genera. We report three species of Paraschistorchis Blend, Karar & Dronen, 2017: P. stenosoma (Hanson, 1953) Blend, Karar & Dronen, 2017 (type-species), P. seychellesiensis (Toman, 1989) Blend, Karar & Dronen, 2017, and P. zancli (Hanson, 1953) Blend, Karar & Dronen, 2017. Lobatotrema aniferum, P. stenosoma, and Sch. carneus each have two distinct cox1 populations either over geographical range or in sympatry. Available evidence suggests that most of these species, but not all, are widespread in the tropical Indo-Pacific.
Collapse
Affiliation(s)
- Lori Magro
- School of Biological Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Scott C Cutmore
- Queensland Museum, Biodiversity and Geosciences Program, South Brisbane, QLD, 4101, Australia
| | - Maite Carrasson
- Departament de Biologia Animal, de Biologia Vegetal i d'Ecologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Thomas H Cribb
- School of Biological Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
4
|
A phylogeographic assessment of the greater kudu (Tragelaphus strepsiceros) across South Africa. CONSERV GENET 2022. [DOI: 10.1007/s10592-022-01464-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Samayoa AP, Struthers CD, Trnski T, Roberts CD, Liggins L. Molecular phylogenetics reveals the evolutionary history of marine fishes (Actinopterygii) endemic to the subtropical islands of the Southwest Pacific. Mol Phylogenet Evol 2022; 176:107584. [PMID: 35843570 DOI: 10.1016/j.ympev.2022.107584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/03/2022] [Accepted: 05/12/2022] [Indexed: 11/16/2022]
Abstract
Remote oceanic islands of the Pacific host elevated levels of actinopterygian (ray-finned fishes) endemism. Characterizing the evolutionary histories of these endemics has provided insight into the generation and maintenance of marine biodiversity in many regions. The subtropical islands of Lord Howe, Norfolk, and Rangitāhua (Kermadec) in the Southwest Pacific are yet to be comprehensively studied. Here, we characterize the spatio-temporal diversification of marine fishes endemic to these Southwest Pacific islands by combining molecular phylogenies and the geographic distribution of species. We built Bayesian ultrametric trees based on open-access and newly generated sequences for five mitochondrial and ten nuclear loci, and using fossil data for time calibration. We present the most comprehensive phylogenies to date for marine ray-finned fish genera, comprising 34 species endemic to the islands, including the first phylogenetic placements for 11 endemics. Overall, our topologies confirm the species status of all endemics, including three undescribed taxa. Our phylogenies highlight the predominant affinity of these endemics with the Australian fish fauna (53%), followed by the East Pacific (15%), and individual cases where the closest sister taxon of our endemic is found in the Northwest Pacific and wider Indo-Pacific. Nonetheless, for a quarter of our focal endemics, their geographic affinity remains unresolved due to sampling gaps within their genera. Our divergence time estimates reveal that the majority of endemic lineages (67.6%) diverged after the emergence of Lord Howe (6.92 Ma), the oldest subtropical island in the Southwest Pacific, suggesting that these islands have promoted diversification. However, divergence ages of some endemics pre-date the emergence of the islands, suggesting they may have originated outside of these islands, or, in some cases, ages may be overestimated due to unsampled taxa. To fully understand the role of the Southwest Pacific subtropical islands as a 'cradle' for diversification, our study advocates for further regional surveys focused on tissue collection for DNA analysis.
Collapse
Affiliation(s)
- André P Samayoa
- School of Natural Sciences, Massey University, Auckland 0745, New Zealand.
| | - Carl D Struthers
- Museum of New Zealand Te Papa Tongarewa, P.O. Box 467, Wellington, New Zealand.
| | - Thomas Trnski
- Natural Sciences, Auckland Museum Tāmaki Paenga Hira, Auckland 1010, New Zealand.
| | - Clive D Roberts
- Museum of New Zealand Te Papa Tongarewa, P.O. Box 467, Wellington, New Zealand.
| | - Libby Liggins
- School of Natural Sciences, Massey University, Auckland 0745, New Zealand; Natural Sciences, Auckland Museum Tāmaki Paenga Hira, Auckland 1010, New Zealand.
| |
Collapse
|
6
|
McCord CL, Nash CM, Cooper WJ, Westneat MW. Phylogeny of the damselfishes (Pomacentridae) and patterns of asymmetrical diversification in body size and feeding ecology. PLoS One 2021; 16:e0258889. [PMID: 34705840 PMCID: PMC8550381 DOI: 10.1371/journal.pone.0258889] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 10/07/2021] [Indexed: 11/18/2022] Open
Abstract
The damselfishes (family Pomacentridae) inhabit near-shore communities in tropical and temperature oceans as one of the major lineages in coral reef fish assemblages. Our understanding of their evolutionary ecology, morphology and function has often been advanced by increasingly detailed and accurate molecular phylogenies. Here we present the next stage of multi-locus, molecular phylogenetics for the group based on analysis of 12 nuclear and mitochondrial gene sequences from 345 of the 422 damselfishes. The resulting well-resolved phylogeny helps to address several important questions about higher-level damselfish relationships, their evolutionary history and patterns of divergence. A time-calibrated phylogenetic tree yields a root age for the family of 55.5 mya, refines the age of origin for a number of diverse genera, and shows that ecological changes during the Eocene-Oligocene transition provided opportunities for damselfish diversification. We explored the idea that body size extremes have evolved repeatedly among the Pomacentridae, and demonstrate that large and small body sizes have evolved independently at least 40 times and with asymmetric rates of transition among size classes. We tested the hypothesis that transitions among dietary ecotypes (benthic herbivory, pelagic planktivory and intermediate omnivory) are asymmetric, with higher transition rates from intermediate omnivory to either planktivory or herbivory. Using multistate hidden-state speciation and extinction models, we found that both body size and dietary ecotype are significantly associated with patterns of diversification across the damselfishes, and that the highest rates of net diversification are associated with medium body size and pelagic planktivory. We also conclude that the pattern of evolutionary diversification in feeding ecology, with frequent and asymmetrical transitions between feeding ecotypes, is largely restricted to the subfamily Pomacentrinae in the Indo-West Pacific. Trait diversification patterns for damselfishes across a fully resolved phylogeny challenge many recent general conclusions about the evolution of reef fishes.
Collapse
Affiliation(s)
- Charlene L. McCord
- College of Natural and Behavioral Sciences, California State University Dominguez Hills, Carson, California, United States of America
| | - Chloe M. Nash
- Department of Organismal Biology and Anatomy, and Committee on Evolutionary Biology, University of Chicago, Chicago, Illinois, United States of America
- Division of Fishes, Field Museum of Natural History, Chicago, Illinois, United States of America
| | - W. James Cooper
- Department of Biology and Program in Marine and Coastal Science, Western Washington University, Bellingham, Washington, United States of America
| | - Mark W. Westneat
- Department of Organismal Biology and Anatomy, and Committee on Evolutionary Biology, University of Chicago, Chicago, Illinois, United States of America
- Division of Fishes, Field Museum of Natural History, Chicago, Illinois, United States of America
| |
Collapse
|
7
|
Influence of historical changes in tropical reef habitat on the diversification of coral reef fishes. Sci Rep 2021; 11:20731. [PMID: 34671048 PMCID: PMC8528860 DOI: 10.1038/s41598-021-00049-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 09/28/2021] [Indexed: 11/11/2022] Open
Abstract
Past environmental changes are expected to have profoundly impacted diversity dynamics through time. While some previous studies showed an association between past climate changes or tectonic events and important shifts in lineage diversification, it is only recently that past environmental changes have been explicitly integrated in diversification models to test their influence on diversification rates. Here, we used a global reconstruction of tropical reef habitat dynamics during the Cenozoic and phylogenetic diversification models to test the influence of (i) major geological events, (ii) reef habitat fragmentation and (iii) reef area on the diversification of 9 major clades of tropical reef fish (Acanthuridae, Balistoidea, Carangoidea, Chaetodontidae, Haemulinae, Holocentridae, Labridae, Pomacentridae and Sparidae). The diversification models revealed a weak association between paleo-habitat changes and diversification dynamics. Specifically, the fragmentation of tropical reef habitats over the Cenozoic was found to be a driver of tropical reef fish diversification for 2 clades. However, overall, our approach did not allow the identification of striking associations between diversification dynamics and paleo-habitat fragmentation in contrast with theoretical model's predictions.
Collapse
|
8
|
Love MS, Bizzarro JJ, Cornthwaite AM, Frable BW, Maslenikov KP. Checklist of marine and estuarine fishes from the AlaskaYukon Border, Beaufort Sea, to Cabo San Lucas, Mexico. Zootaxa 2021; 5053:1-285. [PMID: 34810850 DOI: 10.11646/zootaxa.5053.1.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Indexed: 11/04/2022]
Abstract
This paper is a checklist of the fishes that have been documented, through both published and unpublished sources, in marine and estuarine waters, and out 200 miles, from the United States-Canadian border on the Beaufort Sea to Cabo San Lucas, Mexico. A minimum of 241 families and 1,644 species are known within this range, including both native and nonnative species. For each of these species, we include maximum size, geographic and depth ranges, whether it is native or nonnative, as well as a brief mention of any taxonomic issues.
Collapse
Affiliation(s)
- Milton S Love
- Marine Science Institute, University of California, Santa Barbara, CA 93106.
| | - Joseph J Bizzarro
- Cooperative Institute for Marine Ecosystems and Climate, University of California, Santa Cruz, 110 McAllister Way, Santa Cruz, CA 95060. .
| | - A Maria Cornthwaite
- Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Road, Nanaimo, BC, V9T 6N7, Canada .
| | - Benjamin W Frable
- Marine Vertebrate Collection, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0244, USA. .
| | - Katherine P Maslenikov
- University of Washington Fish Collection, School of Aquatic and Fishery Sciences and Burke Museum of Natural History and Culture, 1122 NE Boat St., Seattle, WA 98105.
| |
Collapse
|
9
|
George AB, Westneat MW. Functional morphology of endurance swimming performance and gait transition strategies in balistoid fishes. J Exp Biol 2019; 222:jeb.194704. [DOI: 10.1242/jeb.194704] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 04/02/2019] [Indexed: 11/20/2022]
Abstract
Triggerfishes and filefishes (Balistoidea) use balistiform locomotion to power steady swimming with their dorsal and anal fins and transition to a gait dominated by body and caudal fin (BCF) kinematics at high speeds. Fin and body shapes are predicted to be strong determinants of swimming performance and gait transitions. The goal of this study was to combine morphometrics and critical swimming tests to explore relationships between fin and body shapes and swimming performance in a phylogenetic context in order to understand the evolution of balistiform swimming. Among 13 species of balistoid fishes, those with high aspect ratio fins tended to achieve higher critical swimming speeds than fishes with low aspect ratio fins. Species with long, large median fins and wide caudal peduncles used the balistiform gait alone for a larger percentage of their total critical swimming speed than fishes with short, small median fins and narrow caudal peduncles. Although analyses revealed overall positive relationships between median fin aspect ratios and gait transition speeds, fishes on both ends of the aspect ratio spectrum achieved higher swimming speeds using the balistiform gait alone than fishes with median fins of intermediate aspect ratios. Each species is specialized for taking advantage of one gait, with balistiform specialists possessing long, large median fins capable of the large power requirements of high-speed swimming using the median fins alone, while BCF specialists possess short, small median fins, ill-suited for powering high-speed balistiform locomotion, but narrow caudal peduncles capable of efficient caudal fin oscillations to power high-speed locomotion.
Collapse
Affiliation(s)
- Andrew B. George
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois 60615, USA
| | - Mark W. Westneat
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois 60615, USA
| |
Collapse
|
10
|
Arcila D, Tyler JC. Mass extinction in tetraodontiform fishes linked to the Palaeocene-Eocene thermal maximum. Proc Biol Sci 2018; 284:rspb.2017.1771. [PMID: 29118135 DOI: 10.1098/rspb.2017.1771] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 10/09/2017] [Indexed: 12/18/2022] Open
Abstract
Integrative evolutionary analyses based upon fossil and extant species provide a powerful approach for understanding past diversification events and for assessing the tempo of evolution across the Tree of Life. Herein, we demonstrate the importance of integrating fossil and extant species for inferring patterns of lineage diversification that would otherwise be masked in analyses that examine only one source of evidence. We infer the phylogeny and macroevolutionary history of the Tetraodontiformes (triggerfishes, pufferfishes and allies), a group with one of the most extensive fossil records among fishes. Our analyses combine molecular and morphological data, based on an expanded matrix that adds newly coded fossil species and character states. Beyond confidently resolving the relationships and divergence times of tetraodontiforms, our diversification analyses detect a major mass-extinction event during the Palaeocene-Eocene Thermal Maximum (PETM), followed by a marked increase in speciation rates. This pattern is consistently obtained when fossil and extant species are integrated, whereas examination of the fossil occurrences alone failed to detect major diversification changes during the PETM. When taking into account non-homogeneous models, our analyses also detect a rapid lineage diversification increase in one of the groups (tetraodontoids) during the middle Miocene, which is considered a key period in the evolution of reef fishes associated with trophic changes and ecological opportunity. In summary, our analyses show distinct diversification dynamics estimated from phylogenies and the fossil record, suggesting that different episodes shaped the evolution of tetraodontiforms during the Cenozoic.
Collapse
Affiliation(s)
- Dahiana Arcila
- Department of Biological Sciences, The George Washington University, 2023 G Street NW, Washington, DC 20052, USA
| | - James C Tyler
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, PO Box 37012, MRC 121, Washington, DC 20013, USA
| |
Collapse
|
11
|
Divya D, Bhattacharya TK, Gnana Prakash M, Chatterjee RN, Shukla R, Guru Vishnu PB, Vinoth A, Dushyanth K. Molecular characterization and expression profiling of BMP 3 gene in broiler and layer chicken. Mol Biol Rep 2018; 45:477-495. [DOI: 10.1007/s11033-018-4184-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 04/04/2018] [Indexed: 11/29/2022]
|
12
|
Community assembly of coral reef fishes along the Melanesian biodiversity gradient. PLoS One 2017; 12:e0186123. [PMID: 29069096 PMCID: PMC5656311 DOI: 10.1371/journal.pone.0186123] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 09/26/2017] [Indexed: 11/19/2022] Open
Abstract
The Indo-Pacific is home to Earth’s most biodiverse coral reefs. Diversity on these reefs decreases from the Coral Triangle east through the islands of Melanesia. Despite this pattern having been identified during the early 20th century, our knowledge about the interaction between pattern and process remains incomplete. To evaluate the structure of coral reef fish communities across Melanesia, we obtained distributional records for 396 reef fish species in five taxa across seven countries. We used hierarchical clustering, nestedness, and multiple linear regression analyses to evaluate the community structure. We also compiled data on life history traits (pelagic larval duration, body size and schooling behavior) to help elucidate the ecological mechanisms behind community structure. Species richness for these taxa along the gradient was significantly related to longitude but not habitat area. Communities are significantly nested, indicating that species-poor communities are largely composed of subsets of the species found on species rich reefs. These trends are robust across taxonomic groups except for the Pomacentridae, which exhibit an anti-nested pattern, perhaps due to a large number of endemic species. Correlations between life history traits and the number of reefs on which species occurred indicate that dispersal and survival ability contribute to determining community structure. We conclude that distance from the Coral Triangle dominates community structure in reef fish; however, conservation of the most species-rich areas will not be sufficient alone to conserve the vivid splendor of this region.
Collapse
|
13
|
Xavier R, David L, Loïc K, Colleye O, Bertucci F, Éric P. Sound production mechanism in triggerfish (Balistidae): a synapomorphy. J Exp Biol 2017; 221:jeb.168948. [DOI: 10.1242/jeb.168948] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/19/2017] [Indexed: 11/20/2022]
Abstract
The ability to produce sounds for acoustic communication is known in different Balistidae species but the eventual synapomorphic aspect of the mechanism remains to be shown. In Rhinecanthus aculeatus, sounds result from alternate sweeping movements of the right and left pectoral fins, which push a system of three scutes against the swim bladder wall. In this study, we made a comparison between the sounds produced by this species and two additional ones (Balistapus undulatus and Rhinecanthus rectangulus) using hand held specimens to provide a description of the sound mechanism in B. undulatus. Results highlighted that the sound production mechanism is similar in the three species. According to recent phylogenetic data and shared morphological features, it means this mechanism could be common to the majority of the family members and that all Balistidae species could be all able of sound production using pectoral fins.
Collapse
Affiliation(s)
- Raick Xavier
- Laboratory of Functional and Evolutionary Morphology, University of Liège. Allée de la chimie 3, 4000 Liège, Belgium
| | - Lecchini David
- PSL Research University: EPHE-UPVD-CNRS, USR3278 CRIOBE & Laboratoire d'Excellence «CORAIL», BP 1013, 98729 Papetoai, Moorea, French Polynesia
| | - Kéver Loïc
- Laboratory of Functional and Evolutionary Morphology, University of Liège. Allée de la chimie 3, 4000 Liège, Belgium
| | - Orphal Colleye
- Laboratory of Functional and Evolutionary Morphology, University of Liège. Allée de la chimie 3, 4000 Liège, Belgium
| | - Frédéric Bertucci
- Laboratory of Functional and Evolutionary Morphology, University of Liège. Allée de la chimie 3, 4000 Liège, Belgium
- PSL Research University: EPHE-UPVD-CNRS, USR3278 CRIOBE & Laboratoire d'Excellence «CORAIL», BP 1013, 98729 Papetoai, Moorea, French Polynesia
| | - Parmentier Éric
- Laboratory of Functional and Evolutionary Morphology, University of Liège. Allée de la chimie 3, 4000 Liège, Belgium
| |
Collapse
|
14
|
McCord CL, Westneat MW. Evolutionary patterns of shape and functional diversification in the skull and jaw musculature of triggerfishes (Teleostei: Balistidae). J Morphol 2016; 277:737-52. [DOI: 10.1002/jmor.20531] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 02/17/2016] [Accepted: 02/21/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Charlene L. McCord
- Department of Organismal Biology and Anatomy; University of Chicago; Chicago, Illinois 60637
- Field Museum of Natural History, Division of Fishes; Chicago Illlinois 60605
| | - Mark W. Westneat
- Department of Organismal Biology and Anatomy; University of Chicago; Chicago, Illinois 60637
- Field Museum of Natural History, Division of Fishes; Chicago Illlinois 60605
| |
Collapse
|