1
|
Lubna, Asaf S, Jan R, Asif S, Bilal S, Khan AL, Kim KM, Lee IJ, Al-Harrasi A. Plastome diversity and evolution in mosses: Insights from structural characterization, comparative genomics, and phylogenetic analysis. Int J Biol Macromol 2024; 257:128608. [PMID: 38065441 DOI: 10.1016/j.ijbiomac.2023.128608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 11/09/2023] [Accepted: 11/27/2023] [Indexed: 01/27/2024]
Abstract
Mosses play a significant role in ecology, evolution, and the economy. They belong to the nonvascular plant kingdom and are considered the closest living relatives of the first terrestrial plants. The circular chloroplast DNA molecules (plastomes) of mosses contain all the genetic information essential for chloroplast functions and represent the source of the evolutionary history of these organisms. This study comprehensively analyzed the plastomes of 47 moss species belonging to 14 orders, focusing on their size, GC content, gene loss, gene content, synteny, and evolution. The findings revealed great differences among plastome sizes, with Takakia lepidozioides (Takakiopsida) and Funaria hygrometrica (Funariales) having the largest and smallest plastomes, respectively. Moss plastomes included 69 to 89 protein-coding genes, 8 rRNA genes, and 34 to 42 tRNA genes, resulting in the total number of genes in a plastome ranging between 115 and 138. Various genes have been lost from the plastomes of different moss species, with Atrichum angustatum lacking the highest number of genes. This study also examined plastome synteny and moss evolution using comparative genomics and repeat sequence analysis. The results demonstrated that synteny and similarity levels varied across the 47 moss examined species, with some exhibiting structure similarity and others displaying structural inversions. Maximum likelihood and Bayesian approaches were used to construct a phylogenetic tree using 36 concatenated protein-coding genes, and the results revealed that the genera Sphagnum and Takakia are sister groups to the other mosses. Additionally, it was found that Tetraphidales, Polytrichales, Buxbaumiales, and Diphysciales are closely related. This research describes the evolutionary diversity of mosses and offers guidelines for future studies in this field. The findings also highlight the need for more investigations into the factors regulating plastome size variation in these plants.
Collapse
Affiliation(s)
- Lubna
- Natural and Medical Science Research Center, University of Nizwa, 616 Nizwa, Oman
| | - Sajjad Asaf
- Natural and Medical Science Research Center, University of Nizwa, 616 Nizwa, Oman.
| | - Rahmatullah Jan
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Saleem Asif
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Saqib Bilal
- Natural and Medical Science Research Center, University of Nizwa, 616 Nizwa, Oman
| | - Abdul Latif Khan
- Department of Engineering Technology, University of Houston, Sugar Land, TX, 77479, USA
| | - Kyung-Min Kim
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Ahmed Al-Harrasi
- Natural and Medical Science Research Center, University of Nizwa, 616 Nizwa, Oman.
| |
Collapse
|
2
|
Sadamitsu A, Inoue Y, Sakakibara K, Tsubota H, Yamaguchi T, Deguchi H, Nishiyama T, Shimamura M. The complete plastid genome sequence of the enigmatic moss, Takakia lepidozioides (Takakiopsida, Bryophyta): evolutionary perspectives on the largest collection of genes in mosses and the intensive RNA editing. PLANT MOLECULAR BIOLOGY 2021; 107:431-449. [PMID: 34817767 DOI: 10.1007/s11103-021-01214-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
Complete chloroplast genome sequence of a moss, Takakia lepidozioides (Takakiopsida) is reported. The largest collection of genes in mosses and the intensive RNA editing were discussed from evolutionary perspectives. We assembled the entire plastid genome sequence of Takakia lepidozioides (Takakiopsida), emerging from the first phylogenetic split among extant mosses. The genome sequences were assembled into a circular molecule 149,016 bp in length, with a quadripartite structure comprising a large and a small single-copy region separated by inverted repeats. It contained 88 genes coding for proteins, 32 for tRNA, four for rRNA, two open reading frames, and at least one pseudogene (tufA). This is the largest number of genes of all sequenced plastid genomes in mosses and Takakia is the only moss that retains the seven coding genes ccsA, cysA, cysT, petN rpoA, rps16 and trnPGGG. Parsimonious interpretation of gene loss suggests that the last common ancestor of bryophytes had all seven genes and that mosses lost at least three of them during their diversification. Analyses of the plastid transcriptome identified the extraordinary frequency of RNA editing with more than 1100 sites. We indicated a close correlation between the monoplastidy of vegetative tissue and the intensive RNA editing sites in the plastid genome in land plant lineages. Here, we proposed a hypothesis that the small population size of plastids in each vegetative cell of some early diverging land plants, including Takakia, might cause the frequent fixation of mutations in plastid genome through the intracellular genetic drift and that deleterious mutations might be continuously compensated by RNA editing during or following transcription.
Collapse
Affiliation(s)
- Atsushi Sadamitsu
- Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-hiroshima, Hiroshima, 739-8526, Japan
| | - Yuya Inoue
- Department of Botany, National Museum of Nature and Science, 4-1-1 Amakubo, Tsukuba, Ibaraki, 305-0005, Japan
- Hattori Botanical Laboratory, 6-1-26 Obi, Nichinan, Miyazaki, 889-2535, Japan
| | - Keiko Sakakibara
- Department of Life Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo, 171-8501, Japan
| | - Hiromi Tsubota
- Miyajima Natural Botanical Garden, Graduate School of Integrated Sciences for Life, Hiroshima University, 1156-2, Mitsumaruko-yama, Miyajima-cho, Hatsukaichi, Hiroshima, 739-0543, Japan
| | - Tomio Yamaguchi
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-hiroshima, Hiroshima, 739-8526, Japan
| | - Hironori Deguchi
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-hiroshima, Hiroshima, 739-8526, Japan
| | - Tomoaki Nishiyama
- Research Center for Experimental Modeling of Human Disease, Kanazawa University, Kanazawa, 920-0934, Japan
| | - Masaki Shimamura
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-hiroshima, Hiroshima, 739-8526, Japan.
| |
Collapse
|
3
|
Commisso M, Guarino F, Marchi L, Muto A, Piro A, Degola F. Bryo-Activities: A Review on How Bryophytes Are Contributing to the Arsenal of Natural Bioactive Compounds against Fungi. PLANTS (BASEL, SWITZERLAND) 2021; 10:203. [PMID: 33494524 PMCID: PMC7911284 DOI: 10.3390/plants10020203] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 01/05/2023]
Abstract
Usually regarded as less evolved than their more recently diverged vascular sisters, which currently dominate vegetation landscape, bryophytes seem having nothing to envy to the defensive arsenal of other plants, since they had acquired a suite of chemical traits that allowed them to adapt and persist on land. In fact, these closest modern relatives of the ancestors to the earliest terrestrial plants proved to be marvelous chemists, as they traditionally were a popular remedy among tribal people all over the world, that exploit their pharmacological properties to cure the most different diseases. The phytochemistry of bryophytes exhibits a stunning assortment of biologically active compounds such as lipids, proteins, steroids, organic acids, alcohols, aliphatic and aromatic compounds, polyphenols, terpenoids, acetogenins and phenylquinones, thus it is not surprising that substances obtained from various species belonging to such ancestral plants are widely employed as antitumor, antipyretic, insecticidal and antimicrobial. This review explores in particular the antifungal potential of the three Bryophyta divisions-mosses (Musci), hornworts (Anthocerotae) and liverworts (Hepaticae)-to be used as a sources of interesting bioactive constituents for both pharmaceutical and agricultural areas, providing an updated overview of the latest relevant insights.
Collapse
Affiliation(s)
- Mauro Commisso
- Department of Biotechnology, University of Verona, Cà Vignal 1, Strada Le Grazie 15, 37134 Verona (VR), Italy;
| | - Francesco Guarino
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano (SA), Italy;
| | - Laura Marchi
- Department of Medicine and Surgery, Respiratory Disease and Lung Function Unit, University of Parma, Via Gramsci 14, 43125 Parma (PR), Italy;
| | - Antonella Muto
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Via Ponte P. Bucci 6b, Arcavacata di Rende, 87036 Cosenza (CS), Italy;
| | - Amalia Piro
- Laboratory of Plant Biology and Plant Proteomics (Lab.Bio.Pro.Ve), Department of Chemistry and Chemical Technologies, University of Calabria, Ponte P. Bucci 12 C, Arcavacata di Rende, 87036 Cosenza (CS), Italy;
| | - Francesca Degola
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco delle Scienze 11/A, 43124 Parma (PR), Italy
| |
Collapse
|
4
|
Cevallos MA, Guerrero G, Ríos S, Arroyo A, Villalobos MA, Porta H. The chloroplast genome of the desiccation-tolerant moss Pseudocrossidium replicatum (Taylor) R.H. Zander. Genet Mol Biol 2019; 42:488-493. [PMID: 31323081 PMCID: PMC6726147 DOI: 10.1590/1678-4685-gmb-2018-0184] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 11/14/2018] [Indexed: 11/29/2022] Open
Abstract
Mosses in conjunction with hornworts and liverworts are collectively referred to
as bryophytes. These seedless, nonvascular plants are the closest extant
relatives of early terrestrial plants and their study is essential to understand
the evolutionary first steps of land plants. Here we report the complete
chloroplast (cp) genome sequence of Pseudocrossidium
replicatum, a moss belonging to the Pottiaceae family that is
common in the central highlands of Mexico, in South America, in southern USA,
and in Kenia. The cp genome (plastome) of P. replicatum is
123,512 bp in size, comprising inverted repeats of 9,886 bp and single-copy
regions of 85,146 bp (LSC) and 18,594 bp (SSC). The plastome encodes 82
different proteins, 31 different tRNAs, and 4 different rRNAs. Phylogenetic
analysis using 16 cp protein-coding genes demonstrated that P.
replicatum is closely related to Syntrichia
ruralis, and the most basal mosses are Takakia
lepidozioides followed by Sphagnum palustre. Our
analysis indicates that during the evolution of the mosses’ plastome, eight
genes were lost. The complete plastome sequence reported here can be useful in
evolutionary and population genetics.
Collapse
Affiliation(s)
- Miguel A Cevallos
- Centro de Ciencias Genómicas, Programa de Genómica Evolutiva, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Gabriela Guerrero
- Centro de Ciencias Genómicas, Programa de Genómica Evolutiva, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Selma Ríos
- Centro de Investigación en Biotecnología Aplicada, Laboratorio de Biología Molecular y Biotecnología de Plantas, Instituto Politécnico Nacional. Tepetitla de Lardizabal, Tlaxcala, Mexico
| | - Analilia Arroyo
- Centro de Investigación en Biotecnología Aplicada, Laboratorio de Biología Molecular y Biotecnología de Plantas, Instituto Politécnico Nacional. Tepetitla de Lardizabal, Tlaxcala, Mexico
| | - Miguel Angel Villalobos
- Centro de Investigación en Biotecnología Aplicada, Laboratorio de Biología Molecular y Biotecnología de Plantas, Instituto Politécnico Nacional. Tepetitla de Lardizabal, Tlaxcala, Mexico
| | - Helena Porta
- Instituto de Biotecnología, Departamento de Biología Molecular de Plantas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| |
Collapse
|
5
|
Park M, Park H, Lee H, Lee BH, Lee J. The Complete Plastome Sequence of an Antarctic Bryophyte Sanionia uncinata (Hedw.) Loeske. Int J Mol Sci 2018; 19:ijms19030709. [PMID: 29494552 PMCID: PMC5877570 DOI: 10.3390/ijms19030709] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/26/2018] [Accepted: 02/27/2018] [Indexed: 11/16/2022] Open
Abstract
Organellar genomes of bryophytes are poorly represented with chloroplast genomes of only four mosses, four liverworts and two hornworts having been sequenced and annotated. Moreover, while Antarctic vegetation is dominated by the bryophytes, there are few reports on the plastid genomes for the Antarctic bryophytes. Sanionia uncinata (Hedw.) Loeske is one of the most dominant moss species in the maritime Antarctic. It has been researched as an important marker for ecological studies and as an extremophile plant for studies on stress tolerance. Here, we report the complete plastome sequence of S. uncinata, which can be exploited in comparative studies to identify the lineage-specific divergence across different species. The complete plastome of S. uncinata is 124,374 bp in length with a typical quadripartite structure of 114 unique genes including 82 unique protein-coding genes, 37 tRNA genes and four rRNA genes. However, two genes encoding the α subunit of RNA polymerase (rpoA) and encoding the cytochrome b6/f complex subunit VIII (petN) were absent. We could identify nuclear genes homologous to those genes, which suggests that rpoA and petN might have been relocated from the chloroplast genome to the nuclear genome.
Collapse
Affiliation(s)
- Mira Park
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon 21990, Korea.
- Department of Life Science, Sogang University, Seoul 04107, Korea.
| | - Hyun Park
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon 21990, Korea.
- Polar Science, University of Science & Technology, Daejeon 34113, Korea.
| | - Hyoungseok Lee
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon 21990, Korea.
- Polar Science, University of Science & Technology, Daejeon 34113, Korea.
| | - Byeong-Ha Lee
- Department of Life Science, Sogang University, Seoul 04107, Korea.
| | - Jungeun Lee
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon 21990, Korea.
- Polar Science, University of Science & Technology, Daejeon 34113, Korea.
| |
Collapse
|
6
|
Myszczyński K, Bączkiewicz A, Buczkowska K, Ślipiko M, Szczecińska M, Sawicki J. The extraordinary variation of the organellar genomes of the Aneura pinguis revealed advanced cryptic speciation of the early land plants. Sci Rep 2017; 7:9804. [PMID: 28852146 PMCID: PMC5575236 DOI: 10.1038/s41598-017-10434-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 08/09/2017] [Indexed: 11/09/2022] Open
Abstract
Aneura pinguis is known as a species complex with several morphologically indiscernible species, which are often reproductively isolated from each other and show distinguishable genetic differences. Genetic dissimilarity of cryptic species may be detected by genomes comparison. This study presents the first complete sequences of chloroplast and mitochondrial genomes of six cryptic species of A. pinguis complex: A. pinguis A, B, C, E, F, J. These genomes have been compared to each other in order to reconstruct phylogenetic relationships and to gain better understanding of the evolutionary process of cryptic speciation in this complex. The chloroplast genome with the nucleotide diversity 0.05111 and 1537 indels is by far more variable than mitogenome with π value 0.00233 and number of indels 1526. Tests of selection evidenced that on about 36% of chloroplast genes and on 10% of mitochondrial genes of A. pinguis acts positive selection. It suggests an advanced speciation of species. The phylogenetic analyses based on genomes show that A. pinguis is differentiated and forms three distinct clades. Moreover, on the cpDNA trees, Aneura mirabilis is nested among the cryptic species of A. pinguis. This indicates that the A. pinguis cryptic species do not derive directly from one common ancestor.
Collapse
Affiliation(s)
- Kamil Myszczyński
- Department of Botany and Nature Protection, University of Warmia and Mazury, Plac Łódzki 1, 10-727, Olsztyn, Poland.
| | - Alina Bączkiewicz
- Department of Biology, Institute of Experimental Biology, Adam Mickiewicz University in Poznań, Umultowska 89, 61-614, Poznań, Poland
| | - Katarzyna Buczkowska
- Department of Biology, Institute of Experimental Biology, Adam Mickiewicz University in Poznań, Umultowska 89, 61-614, Poznań, Poland
| | - Monika Ślipiko
- Department of Botany and Nature Protection, University of Warmia and Mazury, Plac Łódzki 1, 10-727, Olsztyn, Poland
| | - Monika Szczecińska
- Department of Botany and Nature Protection, University of Warmia and Mazury, Plac Łódzki 1, 10-727, Olsztyn, Poland
| | - Jakub Sawicki
- Department of Botany and Nature Protection, University of Warmia and Mazury, Plac Łódzki 1, 10-727, Olsztyn, Poland
| |
Collapse
|
7
|
Sawicki J, Plášek V, Ochyra R, Szczecińska M, Ślipiko M, Myszczyński K, Kulik T. Mitogenomic analyses support the recent division of the genus Orthotrichum (Orthotrichaceae, Bryophyta). Sci Rep 2017; 7:4408. [PMID: 28667304 PMCID: PMC5493672 DOI: 10.1038/s41598-017-04833-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 05/22/2017] [Indexed: 11/22/2022] Open
Abstract
A recently presented taxonomical arrangement of the moss genus Orthotrichum Hedw. s.l. substantially changed the traditional view of the taxon that had been accepted throughout the twentieth century. This paper provides the results of mitogenomic studies that strongly support the new taxonomical concept. Comparative analyses presented in this study confirmed the stable structure of moss mitogenomes. Moreover, 17 complete mitogenome sequences were used to identify the major evolutionary groups, including 11 newly sequenced ones, for this study. The analysis of mitochondrial hotspots revealed intron 4 of the cox1 gene to be the most variable non-coding region. The most variable protein-coding genes in the tribe Orthotricheae were ccmFC and tatC. The intergenic and intronic hotspots of Orthotrichum s.l. identified in the present study do not correspond to those described in vascular plant mitogenomes.
Collapse
Affiliation(s)
- Jakub Sawicki
- Department of Botany and Nature Protection, University of Warmia and Mazury, Plac Łódzki 1, 10-727, Olsztyn, Poland.
- Department of Biology and Ecology, University of Ostrava, Chittussiho 10, 710 00, Ostrava, Czech Republic.
| | - Vítězslav Plášek
- Department of Biology and Ecology, University of Ostrava, Chittussiho 10, 710 00, Ostrava, Czech Republic
| | - Ryszard Ochyra
- Laboratory of Bryology, Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512, Kraków, Poland
| | - Monika Szczecińska
- Department of Botany and Nature Protection, University of Warmia and Mazury, Plac Łódzki 1, 10-727, Olsztyn, Poland
| | - Monika Ślipiko
- Department of Botany and Nature Protection, University of Warmia and Mazury, Plac Łódzki 1, 10-727, Olsztyn, Poland
| | - Kamil Myszczyński
- Department of Botany and Nature Protection, University of Warmia and Mazury, Plac Łódzki 1, 10-727, Olsztyn, Poland
| | - Tomasz Kulik
- Department of Botany and Nature Protection, University of Warmia and Mazury, Plac Łódzki 1, 10-727, Olsztyn, Poland
| |
Collapse
|
8
|
Jonathan Shaw A, Devos N, Liu Y, Cox CJ, Goffinet B, Flatberg KI, Shaw B. Organellar phylogenomics of an emerging model system: Sphagnum (peatmoss). ANNALS OF BOTANY 2016; 118:185-96. [PMID: 27268484 PMCID: PMC4970357 DOI: 10.1093/aob/mcw086] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 01/11/2016] [Accepted: 03/28/2016] [Indexed: 05/09/2023]
Abstract
BACKGROUND AND AIMS Sphagnum-dominated peatlands contain approx. 30 % of the terrestrial carbon pool in the form of partially decomposed plant material (peat), and, as a consequence, Sphagnum is currently a focus of studies on biogeochemistry and control of global climate. Sphagnum species differ in ecologically important traits that scale up to impact ecosystem function, and sequencing of the genome from selected Sphagnum species is currently underway. As an emerging model system, these resources for Sphagnum will facilitate linking nucleotide variation to plant functional traits, and through those traits to ecosystem processes. A solid phylogenetic framework for Sphagnum is crucial to comparative analyses of species-specific traits, but relationships among major clades within Sphagnum have been recalcitrant to resolution because the genus underwent a rapid radiation. Herein a well-supported hypothesis for phylogenetic relationships among major clades within Sphagnum based on organellar genome sequences (plastid, mitochondrial) is provided. METHODS We obtained nucleotide sequences (273 753 nucleotides in total) from the two organellar genomes from 38 species (including three outgroups). Phylogenetic analyses were conducted using a variety of methods applied to nucleotide and amino acid sequences. The Sphagnum phylogeny was rooted with sequences from the related Sphagnopsida genera, Eosphagnum and Flatbergium KEY RESULTS Phylogenetic analyses of the data converge on the following subgeneric relationships: (Rigida (((Subsecunda) (Cuspidata)) ((Sphagnum) (Acutifolia))). All relationships were strongly supported. Species in the two major clades (i.e. Subsecunda + Cuspidata and Sphagnum + Acutifolia), which include >90 % of all Sphagnum species, differ in ecological niches and these differences correlate with other functional traits that impact biogeochemical cycling. Mitochondrial intron presence/absence are variable among species and genera of the Sphagnopsida. Two new nomenclatural combinations are made, in the genera Eosphagnum and Flatbergium CONCLUSIONS Newly resolved relationships now permit phylogenetic analyses of morphological, biochemical and ecological traits among Sphagnum species. The results clarify long-standing disagreements about subgeneric relationships and intrageneric classification.
Collapse
Affiliation(s)
- A Jonathan Shaw
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Nicolas Devos
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Yang Liu
- Department of Ecology and Evolutionary Biology, 75 North Eagleville Road, Storrs, CT 06269, USA
| | - Cymon J Cox
- Centro de Ciências do Mar, Universidade do Algarve, Campus de Gambelas, Edif. 7, 8005-139 Faro, Portugal
| | - Bernard Goffinet
- Department of Ecology and Evolutionary Biology, 75 North Eagleville Road, Storrs, CT 06269, USA
| | - Kjell Ivar Flatberg
- NTNU University Museum, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Blanka Shaw
- Department of Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
9
|
Vigalondo B, Liu Y, Draper I, Lara F, Garilleti R, Mazimpaka V, Goffinet B. Comparing three complete mitochondrial genomes of the moss genus Orthotrichum Hedw. Mitochondrial DNA B Resour 2016; 1:168-170. [PMID: 33473448 PMCID: PMC7799453 DOI: 10.1080/23802359.2016.1149784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 01/20/2016] [Accepted: 01/31/2016] [Indexed: 11/28/2022] Open
Abstract
Here, we present a comparative analysis of the mitochondrial genome of three representatives of Orthotrichum Hedw (Bryophyta): two populations of O. diaphanum and one of the related species, namely O. macrocephalum. Their mitochondrial genomes share the same gene content and gene order, and are furthermore structurally identical to those of other arthrodontous mosses. The mitogenome of the allopatric samples of O. diaphanum differ in 0.1% of their sequence, with protein coding genes holding five mutations, including two non-synonymous changes. The divergence between the mitogenomes of the two species, O. diaphanum and O. macrocephalum, is 0.4%. Within a broader sampling of the Orthotrichaceae, patterns of genome divergence are consistent with phylogenetic relationships.
Collapse
Affiliation(s)
- Beatriz Vigalondo
- Departamento de Biología (Botánica), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Yang Liu
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Isabel Draper
- Departamento de Biología (Botánica), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Francisco Lara
- Departamento de Biología (Botánica), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ricardo Garilleti
- Departamento de Botánica, Facultad de Farmacia, Universidad de Valencia, Burjassot, Spain
| | - Vicente Mazimpaka
- Departamento de Biología (Botánica), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Bernard Goffinet
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| |
Collapse
|