1
|
Shi BY, Pan D, Zhang KQ, Gu TY, Yeo DCJ, Ng PKL, Cumberlidge N, Sun HY. Diversification of freshwater crabs on the sky islands in the Hengduan Mountains Region, China. Mol Phylogenet Evol 2024; 190:107955. [PMID: 37898294 DOI: 10.1016/j.ympev.2023.107955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
The numerous naturally-fragmented sky islands (SIs) in the Hengduan Mountains Region (HMR) of southwestern China constitute discontinuous landscapes where montane habitats are isolated by dry-hot valleys which have fostered exceptional species diversification and endemicity. However, studies documenting the crucial role of SI on the speciation dynamics of native freshwater organisms are scarce. Here we used a novel set of comprehensive genetic markers (24 nuclear DNA sequences and complete mitogenomes), morphological characters, and biogeographical information to reveal the evolutionary history and speciation mechanisms of a group of small-bodied montane potamids in the genus Tenuipotamon. Our results provide a robustly supported phylogeny, and suggest that the vicariance events of these montane crabs correlate well with the emergence of SIs due to the uplift of the HMR during the Late Oligocene. Furthermore, ancestrally, mountain ridges provided corridors for the dispersal of these montane crabs that led to the colonization of moist montane-specific habitats, aided by past climatic conditions that were the crucial determinants of their evolutionary history. The present results illustrated that the mechanisms isolating SIs are reinforced by the harsh-dry isolating climatic features of dry-hot valleys separating SIs and continue to affect local diversification. This offers insights into the causes of the high biodiversity and endemism shown by the freshwater crabs of the HMR-SIs in southwestern China.
Collapse
Affiliation(s)
- Bo-Yang Shi
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Da Pan
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| | - Kang-Qin Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Tian-Yu Gu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Darren C J Yeo
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Republic of Singapore; Lee Kong Chian Natural History Museum, National University of Singapore, 2 Conservatory Drive, Singapore 117377, Republic of Singapore
| | - Peter K L Ng
- Lee Kong Chian Natural History Museum, National University of Singapore, 2 Conservatory Drive, Singapore 117377, Republic of Singapore
| | - Neil Cumberlidge
- Department of Biology, Northern Michigan University, Marquette, MI 49855, USA
| | - Hong-Ying Sun
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
2
|
Lu YB, Zhang YX, Zou JX. The systematic position of Cryptopotamonanacoluthon (Kemp, 1918), with the description of a new species of Sinolapotamon Tai & Sung, 1975 (Crustacea, Decapoda, Brachyura, Potamidae) from southern China. Zookeys 2023; 1166:155-173. [PMID: 37333901 PMCID: PMC10273140 DOI: 10.3897/zookeys.1166.101737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/17/2023] [Indexed: 06/20/2023] Open
Abstract
The systematics of the potamid freshwater crab Cryptopotamonanacoluthon (Kemp, 1918) is clarified, and its generic position in Sinolapotamon Tai & Sung, 1975, is confirmed based on morphological comparisons, geographical information and phylogenetic analyses. A new species of Sinolapotamon, Sinolapotamoncirratumsp. nov. is described from the Guangxi Zhuang Autonomous Region of China. Sinolapotamoncirratumsp. nov. is distinguished from its congeners by the combination of characters of its carapace, third maxilliped, anterolateral margin, and unique male first gonopod. Phylogenetic analyses based on partial COX1, 16S rRNA and 28S rRNA genes also support the species as new.
Collapse
Affiliation(s)
- Yuan-Biao Lu
- Research Laboratory of Freshwater Crustacean Decapoda & Paragonimus, School of Basic Medical Sciences, Nanchang University, Nanchang City, Jiangxi Province, ChinaNanchang UniversityNanchang CityChina
| | - Yi-Xuan Zhang
- Research Laboratory of Freshwater Crustacean Decapoda & Paragonimus, School of Basic Medical Sciences, Nanchang University, Nanchang City, Jiangxi Province, ChinaNanchang UniversityNanchang CityChina
| | - Jie-Xin Zou
- Research Laboratory of Freshwater Crustacean Decapoda & Paragonimus, School of Basic Medical Sciences, Nanchang University, Nanchang City, Jiangxi Province, ChinaNanchang UniversityNanchang CityChina
- Jiangxi Provincial Key Laboratory of Experimental Animals, Nanchang City, Jiangxi Province, ChinaJiangxi Provincial Key Laboratory of Experimental AnimalsNanchang CityChina
| |
Collapse
|
3
|
Ji YT, Zhou XJ, Yang Q, Lu YB, Wang J, Zou JX. Adaptive evolution characteristics of mitochondrial genomes in genus Aparapotamon (Brachyura, Potamidae) of freshwater crabs. BMC Genomics 2023; 24:193. [PMID: 37041498 PMCID: PMC10091551 DOI: 10.1186/s12864-023-09290-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 04/01/2023] [Indexed: 04/13/2023] Open
Abstract
BACKGROUND Aparapotamon, a freshwater crab genus endemic to China, includes 13 species. The distribution of Aparapotamon spans the first and second tiers of China's terrain ladder, showing great altitudinal differences. To study the molecular mechanisms of adaptive evolution in Aparapotamon, we performed evolutionary analyses, including morphological, geographical, and phylogenetic analyses and divergence time estimation. We sequenced the mitogenomes of Aparapotamon binchuanense and Aparapotamon huizeense for the first time and resequenced three other mitogenomes of Aparapotamon grahami and Aparapotamon gracilipedum. These sequences were combined with NCBI sequences to perform comparative mitogenome analysis of all 13 Aparapotamon species, revealing mitogenome arrangement and the characteristics of protein-coding and tRNA genes. RESULTS A new species classification scheme of the genus Aparapotamon has been detected and verified by different aspects, including geographical, morphological, phylogenetics and comparative mitogenome analyses. Imprints from adaptive evolution were discovered in the mitochondrial genomes of group A, including the same codon loss at position 416 of the ND6 gene and the unique arrangement pattern of the tRNA-Ile gene. Multiple tRNA genes conserved or involved in adaptive evolution were detected. Two genes associated with altitudinal adaptation, ATP8 and ND6, which experienced positive selection, were identified for the first time in freshwater crabs. CONCLUSIONS Geological movements of the Qinghai-Tibet Plateau and Hengduan Mountains likely strongly impacted the speciation and differentiation of the four Aparapotamon groups. After some group A species dispersed from the Hengduan Mountain Range, new evolutionary characteristics emerged in their mitochondrial genomes, facilitating adaptation to the low-altitude environment of China's second terrain tier. Ultimately, group A species spread to high latitudes along the upper reaches of the Yangtze River, showing faster evolutionary rates, higher species diversity and the widest distribution.
Collapse
Affiliation(s)
- Yu-Tong Ji
- Research Laboratory of Freshwater Crustacean Decapoda & Paragonimus, School of Basic Medical Sciences, Nanchang University, 461 Bayi Avenue, Nanchang City, 330006, Jiangxi Province, China
| | - Xiao-Juan Zhou
- Research Laboratory of Freshwater Crustacean Decapoda & Paragonimus, School of Basic Medical Sciences, Nanchang University, 461 Bayi Avenue, Nanchang City, 330006, Jiangxi Province, China
| | - Qian Yang
- Research Laboratory of Freshwater Crustacean Decapoda & Paragonimus, School of Basic Medical Sciences, Nanchang University, 461 Bayi Avenue, Nanchang City, 330006, Jiangxi Province, China
| | - Yuan-Biao Lu
- Research Laboratory of Freshwater Crustacean Decapoda & Paragonimus, School of Basic Medical Sciences, Nanchang University, 461 Bayi Avenue, Nanchang City, 330006, Jiangxi Province, China
| | - Jun Wang
- Research Laboratory of Freshwater Crustacean Decapoda & Paragonimus, School of Basic Medical Sciences, Nanchang University, 461 Bayi Avenue, Nanchang City, 330006, Jiangxi Province, China
| | - Jie-Xin Zou
- Research Laboratory of Freshwater Crustacean Decapoda & Paragonimus, School of Basic Medical Sciences, Nanchang University, 461 Bayi Avenue, Nanchang City, 330006, Jiangxi Province, China.
- Department of Parasitology, School of Basic Medical Science, Nanchang University, 461 Bayi Avenue, Nanchang City, 330006, Jiangxi Province, China.
| |
Collapse
|
4
|
Liu C, Liu M, Wang Y, Shi B, Pan D. Insights into the Gut Microbiota of the Freshwater Crab Sinopotamon planum across Three Seasons and Its Associations with the Surrounding Aquatic Microbiota. DIVERSITY 2023. [DOI: 10.3390/d15040519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Gut microbiota is closely related to the health of the host and its adaptation to environmental changes. Sinopotamon planum is a species of freshwater crab that lives in the water for three seasons and plays a key role in freshwater ecosystems as a benthic macroinvertebrate, an important indicator of aquatic ecological health. In this study, we sequenced 60 gut microbial samples of S. planum and nine microbial samples from the surrounding water in spring, summer, and autumn based on the 16S rRNA gene. The results showed that gut microbiota had the highest alpha diversity in summer, which may be related to increased adaptability in summer. Firmicutes, Proteobacteria, and Bacteroidota were the most dominant phyla of gut microbiota across three seasons, with Candidatus Hepatoplasma and Candidatus Bacilloplasma being the main genera. These main phyla and genera may be key to maintaining a stable function of the intestinal environment. Firmicutes was the phylum with the highest relative abundance, which is probably related to the carnivorous behaviour of S. planum. The abundant C. Hepatoplasma may be related to the starvation of S. planum in the wild. In both gut and water microbiota, beta diversity analyses showed significant differences across seasons. Comparative analysis of gut microbes and surrounding water microbes showed significant differences in microbial diversity and composition between gut and surrounding water. In conclusion, the structure of the gut microbial community of S. planum differed significantly between the studied seasons, but the water microbial community around S. planum was less variable and significantly different from the gut microbes. The seasonal differences in gut microbes are more likely the result of self-internal adaptation to changes in water temperature and food resources between seasons.
Collapse
Affiliation(s)
- Caixin Liu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Meijun Liu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Yifan Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Boyang Shi
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Da Pan
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
5
|
Shen Y, Li Q, Cheng R, Luo Y, Zhang Y, Zuo Q. Mitochondrial genomic characterization of two endemic Chinese freshwater crabs of the genus Sinopotamon (Brachyura: Potamidae) and implications for biogeography analysis of Potamidae. Ecol Evol 2023; 13:e9858. [PMID: 36911301 PMCID: PMC9994612 DOI: 10.1002/ece3.9858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/04/2023] [Accepted: 02/10/2023] [Indexed: 03/14/2023] Open
Abstract
As an endemic freshwater crab group in China, the phylogenetic relationships within Sinopotamon are still controversial because of the limited taxon samples. In this study, the complete mitogenomes of Sinopotamon chishuiense with 17,311 bp and the nearly complete mitogenomes of S. wushanense with 16,785 bp were firstly sequenced and analyzed. Compared with other reported mitogenomes of Potamidae, some novel patterns of gene rearrangement were detected in these two Sinopotamon mitogenomes, which could be illuminated by the mechanisms of tandem duplication-random loss, recombination, and translocation. Phylogenetic analyses showed the nonmonophyly of the Sinopotamon and a sister group relationship with Tenuilapotamon. These crabs from the eastern and southern of the Yangtze River basin were more closely related while other crabs form the plateau areas formed a separate clade. Divergence time indicated that the Sinopotamon and its sister group Tenuilapotamon diverged from other potamiscine freshwater crabs approximately 42.65 Mya, which belongs to the recent main uplifts period of the Tibetan Plateau in the Late Miocene. Combined with the similar evolutionary rates and relatively stable habitat altitude of these Sinopotamon species, these results implied that the ecological environment may be relatively stable during the speciation. Overall, our study yielded worthy perceptions for the evolutionary and taxonomic relationship of Sinopotamon and will help to better clarify the gene rearrangement events of the invertebrate mitogenome and lay the foundation for further phylogenetic study of Sinopotamon. Overall, our study yielded valuable insights into the evolutionary history and taxonomic relationship of Sinopotamon and these results will help to better explain the gene rearrangement events of the invertebrate mitogenome and lay the foundation for further phylogenetic study of Sinopotamon.
Collapse
Affiliation(s)
- Yanjun Shen
- Laboratory of Water Ecological Health and Environmental Safety, School of Life SciencesChongqing Normal UniversityChongqingChina
| | - Qinghua Li
- Laboratory of Water Ecological Health and Environmental Safety, School of Life SciencesChongqing Normal UniversityChongqingChina
| | - Ruli Cheng
- Laboratory of Water Ecological Health and Environmental Safety, School of Life SciencesChongqing Normal UniversityChongqingChina
| | - Yang Luo
- Laboratory of Water Ecological Health and Environmental Safety, School of Life SciencesChongqing Normal UniversityChongqingChina
| | - Yufeng Zhang
- Laboratory of Water Ecological Health and Environmental Safety, School of Life SciencesChongqing Normal UniversityChongqingChina
| | - Qing Zuo
- Laboratory of Water Ecological Health and Environmental Safety, School of Life SciencesChongqing Normal UniversityChongqingChina
- Key Laboratory of Eco‐Environments in Three Gorges Reservoir Region (Ministry of Education), School of Life SciencesSouthwest UniversityChongqingChina
| |
Collapse
|
6
|
Ghanavi HR, Rahimi P, Tavana M, Rezaei Tavabe K, Jouladeh-Roudbar A, Doadrio I. The evolutionary journey of freshwater crabs of the genus Potamon (Decapoda: Brachyura: Potamidae). Mol Phylogenet Evol 2023; 180:107690. [PMID: 36586544 DOI: 10.1016/j.ympev.2022.107690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/30/2022]
Abstract
AIM Freshwater ecosystems host a rich biodiversity, including freshwater crabs. The family Potamidae is a diverse group of freshwater crabs with a Palearctic and Oriental distribution. Specifically, the genus Potamon is found in the Middle East, Southern Europe, and Northern Africa. Potamon species are considered true freshwater crabs due to their total independence from the marine environment, which makes them idea organisms to study historical freshwater connectivity dynamics. In this study we aim to elucidate the phylogenetic relationships of the genus Potamon and discuss the historical freshwater connectivity in the Mediterranean region. METHODS Here we use up to eleven genetic markers to reconstruct a robust phylogenetic tree of the group and use Bayesian methods to time-calibrate the tree. We further use historical biogeography methods implemented in a Bayesian framework to assess the ancestral distribution ranges of the group. RESULTS In this study we generate the most complete dataset for the group, covering practically the whole distribution range of the genus. We obtained a robust phylogenetic hypothesis and evaluated the times of divergence of the group. The result of the historical biogeography shows the evolution of historical distribution ranges of species of Potamon. MAIN CONCLUSIONS The Mediterranean Sea is placed in a key intersection for the exchange of fauna and flora. Here we present evidence for the potential of freshwater fauna exchange, through the Mediterranean Sea after a period of desiccation and the loss of contact with the ocean. The origin of Potamon genus is found to be in Western Asia, probably Eastern Iran.
Collapse
Affiliation(s)
| | - Paniz Rahimi
- Museo Nacional de Ciencias Naturales, MNCN-CSIC, Madrid, Spain
| | - Mina Tavana
- Fisheries Department, University of Tehran, Karaj, Iran
| | | | | | - Ignacio Doadrio
- Museo Nacional de Ciencias Naturales, MNCN-CSIC, Madrid, Spain
| |
Collapse
|
7
|
Tan QH, Zhou XJ, Zou JX. Two new species of freshwater crab of the genus Aparapotamon Dai & Chen, 1985 (Crustacea, Brachyura, Potamidae) from Yunnan, China. Zookeys 2021; 1056:149-171. [PMID: 34522153 PMCID: PMC8397694 DOI: 10.3897/zookeys.1056.63755] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 07/26/2021] [Indexed: 11/23/2022] Open
Abstract
Two new species of freshwater crab of the genus Potamid Aparapotamon Dai & Chen, 1985 are described from Yunnan Province, southwest China. Morphological comparisons were made between the two new species and type materials of other 11 species of Aparapotamon. Aparapotamonbinchuanensesp. nov. and A.huizeensesp. nov. can be separated from their congeners by the shape of the epibranchial tooth, the frontal view of the cephalothorax, the male first gonopod, and the female vulvae. The molecular analyses based on partial mitochondrial 16S rRNA gene are also included. This study brings the number of Aparapotamon species to 13.
Collapse
Affiliation(s)
- Qi-Hong Tan
- Research Laboratory of Freshwater Crustacean Decapoda & Paragonimus, School of Basic Medical Sciences, Nanchang University, 461 Bayi Avenue, Nanchang City, Jiangxi Province 330006, China Nanchang University Nanchang China
| | - Xiao-Juan Zhou
- Research Laboratory of Freshwater Crustacean Decapoda & Paragonimus, School of Basic Medical Sciences, Nanchang University, 461 Bayi Avenue, Nanchang City, Jiangxi Province 330006, China Nanchang University Nanchang China
| | - Jie-Xin Zou
- Research Laboratory of Freshwater Crustacean Decapoda & Paragonimus, School of Basic Medical Sciences, Nanchang University, 461 Bayi Avenue, Nanchang City, Jiangxi Province 330006, China Nanchang University Nanchang China.,Key laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, 1299 Xuefu Avenue, Nanchang City, Jiangxi Province 330031, China Nanchang University Nanchang China
| |
Collapse
|
8
|
Pan D, Shi B, Du S, Gu T, Wang R, Xing Y, Zhang Z, Chen J, Cumberlidge N, Sun H. Mitogenome phylogeny reveals Indochina Peninsula origin and spatiotemporal diversification of freshwater crabs (Potamidae: Potamiscinae) in China. Cladistics 2021; 38:1-12. [DOI: 10.1111/cla.12475] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2021] [Indexed: 02/02/2023] Open
Affiliation(s)
- Da Pan
- Jiangsu Key Laboratory for Biodiversity and Biotechnology College of Life Sciences Nanjing Normal University Nanjing210024China
| | - Boyang Shi
- Jiangsu Key Laboratory for Biodiversity and Biotechnology College of Life Sciences Nanjing Normal University Nanjing210024China
| | - Shiyu Du
- Jiangsu Key Laboratory for Biodiversity and Biotechnology College of Life Sciences Nanjing Normal University Nanjing210024China
| | - Tianyu Gu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology College of Life Sciences Nanjing Normal University Nanjing210024China
| | - Ruxiao Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology College of Life Sciences Nanjing Normal University Nanjing210024China
| | - Yuhui Xing
- Jiangsu Key Laboratory for Biodiversity and Biotechnology College of Life Sciences Nanjing Normal University Nanjing210024China
| | - Zhan Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology College of Life Sciences Nanjing Normal University Nanjing210024China
| | - Jiajia Chen
- Jiangsu Key Laboratory for Biodiversity and Biotechnology College of Life Sciences Nanjing Normal University Nanjing210024China
| | - Neil Cumberlidge
- Department of Biology Northern Michigan University Marquette MI49855USA
| | - Hongying Sun
- Jiangsu Key Laboratory for Biodiversity and Biotechnology College of Life Sciences Nanjing Normal University Nanjing210024China
| |
Collapse
|
9
|
Wang SB, Xu YY, Zou JX. Description of two new species of the genus Heterochelamon Türkay & Dai, 1997 (Crustacea: Decapoda: Brachyura: Potamidae), from southern China. PeerJ 2020; 8:e9565. [PMID: 32765968 PMCID: PMC7382368 DOI: 10.7717/peerj.9565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/26/2020] [Indexed: 11/20/2022] Open
Abstract
This study describes two new species of freshwater crab of the genus Heterochelamon Türkay & Dai, 1997 from southern China, H. huidongense from Guangdong Province and H. jinxiuense from Guangxi Zhuang Autonomous Region. The two new species can be differentiated from congeners by characters derived from the shape of the epibranchial tooth, external orbital angle, cheliped proportions and structure of the male first gonopod. The present study brings the number of Heterochelamon species to seven. We used the mitochondrial 16S rRNA gene for a molecular analysis and the results are consistent with the morphological features that support the recognition of two new taxa.
Collapse
Affiliation(s)
- Song-Bo Wang
- Research Laboratory of Freshwater Crustacean Decapoda & Paragonimus, School of Basic Medical Sciences, Nanchang University, Nanchang City, Jiangxi Province, China
| | - Yi-Yang Xu
- Research Laboratory of Freshwater Crustacean Decapoda & Paragonimus, School of Basic Medical Sciences, Nanchang University, Nanchang City, Jiangxi Province, China
- Jiangxi Agricultural University, Nanchang City, Jiangxi Province, China
| | - Jie-Xin Zou
- Research Laboratory of Freshwater Crustacean Decapoda & Paragonimus, School of Basic Medical Sciences, Nanchang University, Nanchang City, Jiangxi Province, China
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang City, Jiangxi Province, China
| |
Collapse
|
10
|
Lang L, Bao M, Jing W, Chen W, Wang L. Clone, identification and functional characterization of a novel toll (Shtoll1) from the freshwater crab Sinopotamon henanense in response to cadmium exposure and Aeromonas hydrophila infection. FISH & SHELLFISH IMMUNOLOGY 2020; 98:401-413. [PMID: 31953198 DOI: 10.1016/j.fsi.2020.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/31/2019] [Accepted: 01/05/2020] [Indexed: 06/10/2023]
Abstract
Toll is essential in innate immune system which is important for defense against bacterial, fungal and viral infections in invertebrates. Our previous study showed that cadmium (Cd) could change the expression pattern of ShToll3 in the epithelium (gills and midgut from the freshwater crab Sinopotamon henanense) infected by Aeromonas hydrophila. To investigate the diverse innate immune roles of crustacean homolog Tolls, in this study, we cloned Shtoll1 from S. henanense. The full-length cDNA of Shtoll1 was 4746 bp, with an ORF of 3033 bp encoding a putative protein of 111 amino acids, a 5'-untranslated region of 255 bp and a 3'-untranslated region of 1713 bp. Phylogenetic analysis showed that ShToll1 was clustered into the group of DmToll1, DmToll 4 and DmToll 5. In addition, the tissue distribution results showed that Shtoll1 was expressed widely in different tissues, with the highest expression in heamocytes. Besides, Shtoll1 expressions were upregulated in heamocytes and hepatopancreas after A. hydrophila infection. At the same time, the increase of Shtoll1 expressions were examined in heamocytes in response to Cd exposure and A. hydrophila infection in combination. Through western blotting and immunohistochemical analysis, the ShToll1 expressions in heamocytes were increased in response to A. hydrophila and Cd independently as well as in combination. Moreover, the mRNA level of three antimicrobial peptides (AMPs) alf5, alf6, and c-lys, which possibly responded to Cd and A. hydrophila stimulation through Shtoll1, were analyzed. Thus, we conclude that Cd expand the susceptibility of ShToll1 to A. hydrophila infection in heamocytes. This suggest that ShToll1 may contribute to the innate immune defense of S. henanense against A. hydrophila and Cd in heamocytes.
Collapse
Affiliation(s)
- Lang Lang
- School of Life Science, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, China
| | - Minnan Bao
- School of Life Science, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, China
| | - Weixin Jing
- School of Life Science, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, China
| | - Wei Chen
- Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
| | - Lan Wang
- School of Life Science, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, China.
| |
Collapse
|
11
|
Phylogenetic implications of mitogenome rearrangements in East Asian potamiscine freshwater crabs (Brachyura: Potamidae). Mol Phylogenet Evol 2020; 143:106669. [DOI: 10.1016/j.ympev.2019.106669] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/31/2019] [Accepted: 10/31/2019] [Indexed: 11/18/2022]
|
12
|
Yao F, Shi B, Wang X, Pan D, Bai M, Yan J, Cumberlidge N, Sun H. Rapid divergent coevolution of Sinopotamon freshwater crab genitalia facilitates a burst of species diversification. Integr Zool 2019; 15:174-186. [PMID: 31773900 PMCID: PMC7216907 DOI: 10.1111/1749-4877.12424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
One of the most striking radiations in brachyuran evolution is the considerable morphological diversification of the external reproductive structures of primary freshwater crabs: the male first gonopod (G1) and the female vulva (FV). However, the lack of quantitative studies, especially the lack of data on female genitalia, has seriously limited our understanding of genital evolution in these lineages. Here we examined 69 species of the large Chinese potamid freshwater crab genus Sinopotamon Bott, 1967 (more than 80% of the described species). We used a landmark-based geometric morphometric approach to analyze variation in the shape of the G1 and FV, and to compare the relative degree of variability of the genitalia with non-reproductive structures (the third maxillipeds). We found rapid divergent evolution of the genitalia among species of Sinopotamon when compared to non-reproductive traits. In addition, the reconstruction of ancestral groundplans, together with plotting analyses, indicated that the FV show the most rapid divergence, and that changes in FV traits correlate with changes in G1 traits. Here we provide new evidence for coevolution between the male and female external genitalia of Sinopotamon that has likely contributed to rapid divergent evolution and an associated burst of speciation in this lineage.
Collapse
Affiliation(s)
- Fengxin Yao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Boyang Shi
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xiaoqi Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Da Pan
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Ming Bai
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jie Yan
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Neil Cumberlidge
- Department of Biology, Northern Michigan University, Marquette, Michigan, USA
| | - Hongying Sun
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
13
|
Zou JX, Bai J, Zhou XM. A new species of karst-dwelling freshwater crab of the genus Chinapotamon Dai & Naiyanetr, 1994 (Crustacea: Decapoda: Brachyura: Potamidae), from Guizhou, southwest China. PeerJ 2018; 6:e5947. [PMID: 30498635 PMCID: PMC6252246 DOI: 10.7717/peerj.5947] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 10/17/2018] [Indexed: 01/03/2023] Open
Abstract
Chinapotamon maolanense sp. n. from Maolan National Nature Reserve, Guizhou, southwest China, is described. C. maolanense sp. n. has diagnostic features of Chinapotamon, such as a slender and sinuous male first gonopod, prominently convex carapace, and one-third ratio of frons to carapace width. This new species can be distinguished from congeners by the combination of the following characters: relatively slender subterminal segment of the first gonopods, nearly oval-shaped carapace, anterolateral margin cristate of carapace and an oval-shaped gap between the fingers of the male major chela. In addition, we used a 16S rRNA gene fragment to explore the relationship between C. maolanense sp. n. and C. glabrum, C. depressum and other freshwater crabs distributed in Guizhou; the results support the new species being assigned to Chinapotamon and clearly different from other species used in the analysis.
Collapse
Affiliation(s)
- Jie-Xin Zou
- Research Laboratory of Freshwater Crustacean Decapoda & Paragonimus, School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi Province, People's Republic of China
| | - Jun Bai
- Research Laboratory of Freshwater Crustacean Decapoda & Paragonimus, School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi Province, People's Republic of China
| | - Xian-Min Zhou
- Research Laboratory of Freshwater Crustacean Decapoda & Paragonimus, School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi Province, People's Republic of China.,Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, Jiangxi Province, People's Republic of China
| |
Collapse
|
14
|
Lang L, Zhang Z, Jing W, Hwang JS, Lee SC, Wang L. Identification of a novel toll gene (Shtoll3) from the freshwater crab Sinopotamon henanense and its expression pattern changes in response to cadmium followed by Aeromonas hydrophila infection. FISH & SHELLFISH IMMUNOLOGY 2017; 71:177-190. [PMID: 29017939 DOI: 10.1016/j.fsi.2017.10.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 10/03/2017] [Accepted: 10/06/2017] [Indexed: 06/07/2023]
Abstract
Toll signaling is essential for expression of immune genes which are important for defense against bacterial, fungal and viral infections in invertebrates. Although several toll genes have been identified in the crustaceans, none of them has been investigated in freshwater crab Sinopotamon henanense. Moreover, the effect of cadmium (Cd) on toll gene expression has never been examined on the freshwater crabs which live in the sediments and are prone to heavy metal bioaccumulation. Our transcriptomic analysis of hepatopancreas tissue reveals that toll3 gene expression has been decreased when treated with Cd. In this study, we cloned one toll gene (hereby designated Shtoll3) from the crab. The full-length cDNA of Shtoll3 was 4488 bp, with an ORF of 3693 bp encoding a putative protein of 1230 amino acids, a 5'-untranslated region of 414 bp and a 3'-untranslated region of 781 bp. Phylogenetic analysis showed that ShToll3 was clustered into the group of DmToll8. The tissue distribution results showed that Shtoll3 was expressed widely in different tissues, with the highest in gills, and the lowest in hemocytes. Shtoll3 expression was down-regulated only in midguts after Aeromonas hydrophila infection. With Cd presence, Shtoll3 expression in response to A. hydrophila were up-regulated in midguts and gills, which was further confirmed by western blotting analysis. Moreover, the mRNA level of two antimicrobial peptides (AMPs) crustin and c-lys, which possibly responded to Cd and A. hydrophila stimulation through Shtoll3, were analysised. Thus, we conclude that Cd changes the susceptibility of Shtoll3 to A. hydrophila infection in gills and midguts. This suggest that Shtoll3 may contribute to the innate immune defense of S. henanense to A. hydrophila and Cd can modify the immune function in epithelium.
Collapse
Affiliation(s)
- Lang Lang
- School of Life Science, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China
| | - Zuobing Zhang
- School of Life Science, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China
| | - Weixin Jing
- School of Life Science, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China
| | - Jiang-Shiou Hwang
- Institute of Marine Biology, National Taiwan Ocean University, Keelung 20224, Taiwan, ROC
| | - Shao-Chin Lee
- School of Life Science, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China
| | - Lan Wang
- School of Life Science, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China.
| |
Collapse
|
15
|
Yuhui X, Lijun Z, Yue H, Xiaoqi W, Chen Z, Zhang Huilun, Ruoran W, Da P, Hongying S. Complete mitochondrial genomes from two species of Chinese freshwater crabs of the genus Sinopotamon recovered using next-generation sequencing reveal a novel gene order (Brachyura, Potamidae). Zookeys 2017; 705:41-60. [PMID: 29118611 PMCID: PMC5674035 DOI: 10.3897/zookeys.705.11852] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 08/04/2017] [Indexed: 01/26/2023] Open
Abstract
Recent morphological and molecular evidence has challenged classical interpretations of eubrachyuran phylogeny and evolution. Complete mitochondrial genomes of two species of potamid freshwater crabs, Sinopotamon yaanense and Sinopotamon yangtsekiense were obtained using next-generation sequencing. The results revealed a novel gene order with translocations of a five-gene block and a tRNA gene in comparison to available brachyuran mitochondrial genomes. DNA sequence comparisons position the Potamidae, a primary freshwater crab family, outside of the clade for the traditional heterotreme families, and closer to the clade that includes the thoracotreme families of grapsoid and ocypodoid crabs. Mitogenomic comparisons using rapid next-generation sequencing and a much wider taxonomic sample are required for a high-resolution examination of the phylogenetic relationships within the Eubrachyura.
Collapse
Affiliation(s)
- Xing Yuhui
- Jiangsu Key Laboratory for Biodiversity and Biotechnology,
| | - Zhou Lijun
- Jiangsu Key Laboratory for Biodiversity and Biotechnology,
| | - Hou Yue
- Jiangsu Key Laboratory for Biodiversity and Biotechnology,
| | - Wang Xiaoqi
- Jiangsu Key Laboratory for Biodiversity and Biotechnology,
| | - Zhang Chen
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Zhang Huilun
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Wang Ruoran
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Pan Da
- Jiangsu Key Laboratory for Biodiversity and Biotechnology,
| | - Sun Hongying
- Jiangsu Key Laboratory for Biodiversity and Biotechnology,
| |
Collapse
|