1
|
Lee GE, Condamine FL, Bechteler J, Pérez-Escobar OA, Scheben A, Schäfer-Verwimp A, Pócs T, Heinrichs J. An ancient tropical origin, dispersals via land bridges and Miocene diversification explain the subcosmopolitan disjunctions of the liverwort genus Lejeunea. Sci Rep 2020; 10:14123. [PMID: 32839508 PMCID: PMC7445168 DOI: 10.1038/s41598-020-71039-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/30/2020] [Indexed: 12/20/2022] Open
Abstract
Understanding the biogeographical and diversification processes explaining current diversity patterns of subcosmopolitan-distributed groups is challenging. We aimed at disentangling the historical biogeography of the subcosmopolitan liverwort genus Lejeunea with estimation of ancestral areas of origin and testing if sexual system and palaeotemperature variations can be factors of diversification. We assembled a dense taxon sampling for 120 species sampled throughout the geographical distribution of the genus. Lejeunea diverged from its sister group after the Paleocene-Eocene boundary (52.2 Ma, 95% credibility intervals 50.1-54.2 Ma), and the initial diversification of the crown group occurred in the early to middle Eocene (44.5 Ma, 95% credibility intervals 38.5-50.8 Ma). The DEC model indicated that (1) Lejeunea likely originated in an area composed of the Neotropics and the Nearctic, (2) dispersals through terrestrial land bridges in the late Oligocene and Miocene allowed Lejeunea to colonize the Old World, (3) the Boreotropical forest covering the northern regions until the late Eocene did not facilitate Lejeunea dispersals, and (4) a single long-distance dispersal event was inferred between the Neotropics and Africa. Biogeographical and diversification analyses show the Miocene was an important period when Lejeunea diversified globally. We found slight support for higher diversification rates of species with both male and female reproductive organs on the same individual (monoicy), and a moderate positive influence of palaeotemperatures on diversification. Our study shows that an ancient origin associated with a dispersal history facilitated by terrestrial land bridges and not long-distance dispersals are likely to explain the subcosmopolitan distribution of Lejeunea. By enhancing the diversification rates, monoicy likely favoured the colonisations of new areas, especially in the Miocene that was a key epoch shaping the worldwide distribution.
Collapse
Affiliation(s)
- Gaik Ee Lee
- Faculty of Science and Marine Environment, University Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia.
- Institute of Tropical Biodiversity and Sustainable Development, University Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia.
| | - Fabien L Condamine
- CNRS, UMR 5554 Institut des Sciences de l'Evolution de Montpellier, Place Eugène Bataillon, 34095, Montpellier, France.
| | - Julia Bechteler
- Nees Institute for Biodiversity of Plants, University of Bonn, 53115, Bonn, Germany
| | | | - Armin Scheben
- School of Biological Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | | | - Tamás Pócs
- Botany Department, Institute of Biology, Eszterházy University, Pf. 43, Eger, 3301, Hungary
| | - Jochen Heinrichs
- Department of Biology I, Systematic Botany and Mycology, Geobio-Center, University of Munich (LMU), Menzinger Str. 67, 80638, Munich, Germany
| |
Collapse
|
2
|
Vigalondo B, Garilleti R, Vanderpoorten A, Patiño J, Draper I, Calleja JA, Mazimpaka V, Lara F. Do mosses really exhibit so large distribution ranges? Insights from the integrative taxonomic study of the Lewinskya affinis complex (Orthotrichaceae, Bryopsida). Mol Phylogenet Evol 2019; 140:106598. [PMID: 31430552 DOI: 10.1016/j.ympev.2019.106598] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 07/30/2019] [Accepted: 08/15/2019] [Indexed: 02/07/2023]
Abstract
The strikingly lower number of bryophyte species, and in particular of endemic species, and their larger distribution ranges in comparison with angiosperms, have traditionally been interpreted in terms of their low diversification rates associated with a high long-distance dispersal capacity. This hypothesis is tested here with Lewinskya affinis (≡ Orthotrichum affine), a moss species widely spread across Europe, North and East Africa, southwestern Asia, and western North America. We tested competing taxonomic hypotheses derived from separate and combined analyses of multilocus sequence data, morphological characters, and geographical distributions. The best hypothesis, selected by a Bayes factor molecular delimitation analysis, established that L. affinis is a complex of no less than seven distinct species, including L. affinis s.str., L. fastigiata and L. leptocarpa, which were previously reduced into synonymy with L. affinis, and four new species. Discriminant analyses indicated that each of the seven species within L. affinis s.l. can be morphologically identified with a minimal error rate. None of these species exhibit a trans-oceanic range, suggesting that the broad distributions typically exhibited by moss species largely result from a taxonomic artefact. The presence of three sibling western North American species on the one hand, and four Old World sibling species on the other, suggests that there is a tendency for within-continent diversification rather than recurrent dispersal following speciation. The faster rate of diversification as compared to intercontinental migration reported here is in sharp contrast with earlier views of bryophyte species with wide ranges and low speciation rates.
Collapse
Affiliation(s)
- B Vigalondo
- Departamento de Biología (Botánica), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid 28049, Spain.
| | - R Garilleti
- Departamento de Botánica y Geología, Facultad de Farmacia, Universidad de Valencia, Burjassot, 46100, Spain
| | - A Vanderpoorten
- Institute of Botany, University of Liège, B22 Sart Tilman, B-4000 Liège, Belgium
| | - J Patiño
- Plant Conservation and Biogeography, Departamento de Botánica, Ecología y Fisiología Vegetal, Universidad de La Laguna, La Laguna 38071, Spain; Island Ecology and Evolution Research Group, Instituto de Productos Naturales & Agrobiología (IPNA-CSIC), La Laguna, Tenerife, Spain
| | - I Draper
- Departamento de Biología (Botánica), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | | | - V Mazimpaka
- Departamento de Biología (Botánica), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - F Lara
- Departamento de Biología (Botánica), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid 28049, Spain
| |
Collapse
|