1
|
Yu K, Zhang F, Wang Y, Maddison WP, Zhang J. Robust phylogenomics settles controversies of classification and reveals evolution of male embolic complex of the Laufeia clade (Araneae, Salticidae, Euophryini). Cladistics 2024; 40:618-635. [PMID: 39315706 DOI: 10.1111/cla.12597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/19/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024] Open
Abstract
The Laufeia clade is a peculiar lineage of euophryine jumping spiders showing rapid divergence of male genital structures, especially the embolic complex that directly interacts with female genitalia during sperm transfer. With the rapid growth of species discovery and the perplexing morphology of male genitalia in the Laufeia clade, the controversy in its classification has become a crucial problem. In this study, we applied a phylogenomic approach using ultra-conserved elements data to infer the phylogeny of the Laufeia clade with extensive taxon sampling. A comparative morphological study was performed to evaluate diagnostic characters and understand the evolution of the male embolic complex within the Laufeia clade. The evolution of microhabitats (foliage, tree trunk, rock and surface litter) was also investigated to uncover the potential link between the microhabitat shifts and male embolic complex divergence. The results provide a strongly supported phylogenetic framework and updated generic concepts for the Laufeia clade. The synapomorphies for the updated genera within the Laufeia clade were identified through character mapping on the phylogeny. Ancestral state reconstruction analyses revealed that the Type I embolic complex (characterized by a disc-like embolic disc with a lamina as its outer edge) was ancestral and gradually evolved into the Type II (without lamina of embolic disc, base of embolic complex often modified into a functional "conductor") and Type III (lacking lamina of embolic disc and base of embolic complex) embolic complex, and that some embolic shapes evolved multiple times independently in different lineages of the Laufeia clade. The shift from foliage-dwelling to tree trunk-dwelling in the common ancestor of the Laufeia clade may have facilitated the divergent evolution of male embolic complex in the Laufeia clade. This study provides a solid foundation for future studies of systematics and evolution of this group.
Collapse
Affiliation(s)
- Kun Yu
- Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China
- Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, Hebei, 071002, China
| | - Feng Zhang
- Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China
- Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, Hebei, 071002, China
| | - Yaozhuo Wang
- Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China
- Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, Hebei, 071002, China
| | - Wayne P Maddison
- Department of Zoology and Botany and Beaty Biodiversity Museum, University of British Columbia, 6270 University Boulevard, Vancouver, BC, V6T 1Z4, Canada
| | - Junxia Zhang
- Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China
- Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, Hebei, 071002, China
| |
Collapse
|
2
|
Opatova V, Bourguignon K, Bond JE. Species delimitation with limited sampling: An example from rare trapdoor spider genus Cyclocosmia (Mygalomorphae, Halonoproctidae). Mol Ecol Resour 2024; 24:e13894. [PMID: 37971187 DOI: 10.1111/1755-0998.13894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/24/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023]
Abstract
The outcome of species delimitation depends on many factors, including conceptual framework, study design, data availability, methodology employed and subjective decision making. Obtaining sufficient taxon sampling in endangered or rare taxa might be difficult, particularly when non-lethal tissue collection cannot be utilized. The need to avoid overexploitation of the natural populations may thus limit methodological framework available for downstream data analyses and bias the results. We test species boundaries in rare North American trapdoor spider genus Cyclocosmia Ausserer (1871) inhabiting the Southern Coastal Plain biodiversity hotspot with the use of genomic data and two multispecies coalescent model methods. We evaluate the performance of each methodology within a limited sampling framework. To mitigate the risk of species over splitting, common in taxa with highly structured populations, we subsequently implement a species validation step via genealogical diversification index (gdi), which accounts for both genetic isolation and gene flow. We delimited eight geographically restricted lineages within sampled North American Cyclocosmia, suggesting that major river drainages in the region are likely barriers to dispersal. Our results suggest that utilizing BPP in the species discovery step might be a good option for datasets comprising hundreds of loci, but fewer individuals, which may be a common scenario for rare taxa. However, we also show that such results should be validated via gdi, in order to avoid over splitting.
Collapse
Affiliation(s)
- Vera Opatova
- Department of Zoology, Faculty of Sciences, Charles University, Prague 2, Czech Republic
| | - Kellie Bourguignon
- Department of Biological Sciences, Auburn University, Auburn, Alabama, USA
| | - Jason E Bond
- Department of Entomology and Nematology, University of California, Davis, California, USA
| |
Collapse
|
3
|
Wood HM, Wunderlich J. Burma Terrane Amber Fauna Shows Connections to Gondwana and Transported Gondwanan Lineages to the Northern Hemisphere (Araneae: Palpimanoidea). Syst Biol 2023; 72:1233-1246. [PMID: 37527553 DOI: 10.1093/sysbio/syad047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/24/2023] [Accepted: 07/31/2023] [Indexed: 08/03/2023] Open
Abstract
Burmese amber is a significant source of fossils that documents the mid-Cretaceous biota. This deposit was formed around 99 Ma on the Burma Terrane, which broke away from Gondwana and later collided with Asia, although the timing is disputed. Palpimanoidea is a dispersal-limited group that was a dominant element of the Mesozoic spider fauna, and has an extensive fossil record, particularly from Burmese amber. Using morphological and molecular data, evolutionary relationships of living and fossil Palpimanoidea are examined. Divergence dating with fossils as terminal tips shows timing of diversification is contemporaneous with continental breakup.Ancestral range estimations show widespread ancestral ranges that divide into lineages that inherit different Pangean fragments, consistent with vicariance. Our results suggest that the Burmese amber fauna has ties to Gondwana due to a historical connection in the Early Cretaceous, and that the Burma Terrane facilitated biotic exchange by transporting lineages from Gondwana into the Holarctic in the Cretaceous.
Collapse
Affiliation(s)
- Hannah M Wood
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, 10th & Constitution Ave. NW, Washington, DC 20560, USA
| | - Jörg Wunderlich
- Oberer Häuselbergweg 24, 69493 Hirschberg an der Bergstraße, Germany
| |
Collapse
|
4
|
Kulkarni S, Wood HM, Hormiga G. Advances in the reconstruction of the spider tree of life: A roadmap for spider systematics and comparative studies. Cladistics 2023; 39:479-532. [PMID: 37787157 DOI: 10.1111/cla.12557] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 07/27/2023] [Accepted: 08/17/2023] [Indexed: 10/04/2023] Open
Abstract
In the last decade and a half, advances in genetic sequencing technologies have revolutionized systematics, transforming the field from studying morphological characters or a few genetic markers, to genomic datasets in the phylogenomic era. A plethora of molecular phylogenetic studies on many taxonomic groups have come about, converging on, or refuting prevailing morphology or legacy-marker-based hypotheses about evolutionary affinities. Spider systematics has been no exception to this transformation and the inter-relationships of several groups have now been studied using genomic data. About 51 500 extant spider species have been described, all with a conservative body plan, but innumerable morphological and behavioural peculiarities. Inferring the spider tree of life using morphological data has been a challenging task. Molecular data have corroborated many hypotheses of higher-level relationships, but also resulted in new groups that refute previous hypotheses. In this review, we discuss recent advances in the reconstruction of the spider tree of life and highlight areas where additional effort is needed with potential solutions. We base this review on the most comprehensive spider phylogeny to date, representing 131 of the 132 spider families. To achieve this sampling, we combined six Sanger-based markers with newly generated and publicly available genome-scale datasets. We find that some inferred relationships between major lineages of spiders (such as Austrochiloidea, Palpimanoidea and Synspermiata) are robust across different classes of data. However, several new hypotheses have emerged with different classes of molecular data. We identify and discuss the robust and controversial hypotheses and compile this blueprint to design future studies targeting systematic revisions of these problematic groups. We offer an evolutionary framework to explore comparative questions such as evolution of venoms, silk, webs, morphological traits and reproductive strategies.
Collapse
Affiliation(s)
- Siddharth Kulkarni
- Department of Biological Sciences, The George Washington University, 2029 G St. NW, Washington, DC, 20052, USA
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, 1000 Constitution Avenue NW, Washington, DC, 20560, USA
| | - Hannah M Wood
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, 1000 Constitution Avenue NW, Washington, DC, 20560, USA
| | - Gustavo Hormiga
- Department of Biological Sciences, The George Washington University, 2029 G St. NW, Washington, DC, 20052, USA
| |
Collapse
|
5
|
Derkarabetian S, Lord A, Angier K, Frigyik E, Giribet G. An Opiliones-specific ultraconserved element probe set with a near-complete family-level phylogeny. Mol Phylogenet Evol 2023; 187:107887. [PMID: 37479049 DOI: 10.1016/j.ympev.2023.107887] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/23/2023] [Accepted: 07/17/2023] [Indexed: 07/23/2023]
Abstract
Sequence capture of ultraconserved elements (UCEs) has transformed molecular systematics across many taxa, with arachnids being no exception. The probe set available for Arachnida has been repeatedly used across multiple arachnid lineages and taxonomic levels, however more specific probe sets for spiders have demonstrated that more UCEs can be recovered with higher probe specificity. In this study, we develop an Opiliones-specific UCE probe set targeting 1915 UCEs using a combination of probes designed from genomes and transcriptomes, as well as the most useful probes from the Arachnida probe set. We demonstrate the effectiveness of this probe set across Opiliones with the most complete family-level phylogeny made to date, including representatives from 61 of 63 currently described families. We also test UCE recovery from historical specimens with degraded DNA, examine population-level data sets, and assess "backwards compatibility" with samples hybridized with the Arachnida probe set. The resulting phylogenies - which include specimens hybridized using both the Opiliones and Arachnida probe sets, historical specimens, and transcriptomes - are largely congruent with previous multi-locus and phylogenomic analyses. The probe set is also "backwards compatible", increasing the number of loci obtained in samples previously hybridized with the Arachnida probe set, and shows high utility down to shallow population-level divergences. This probe set has the potential to further transform Opiliones molecular systematics, resolving many long-standing taxonomic issues plaguing this lineage.
Collapse
Affiliation(s)
- Shahan Derkarabetian
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.
| | - Arianna Lord
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Katherine Angier
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Ella Frigyik
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Gonzalo Giribet
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
6
|
Zhang J, Li Z, Lai J, Zhang Z, Zhang F. A novel probe set for the phylogenomics and evolution of RTA spiders. Cladistics 2023; 39:116-128. [PMID: 36719825 DOI: 10.1111/cla.12523] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/10/2022] [Accepted: 12/21/2022] [Indexed: 02/01/2023] Open
Abstract
Spiders are important models for evolutionary studies of web building, sexual selection and adaptive radiation. The recent development of probes for UCE (ultra-conserved element)-based phylogenomic studies has shed light on the phylogeny and evolution of spiders. However, the two available UCE probe sets for spider phylogenomics (Spider and Arachnida probe sets) have relatively low capture efficiency within spiders, and are not optimized for the retrolateral tibial apophysis (RTA) clade, a hyperdiverse lineage that is key to understanding the evolution and diversification of spiders. In this study, we sequenced 15 genomes of species in the RTA clade, and using eight reference genomes, we developed a new UCE probe set (41 845 probes targeting 3802 loci, labelled as the RTA probe set). The performance of the RTA probes in resolving the phylogeny of the RTA clade was compared with the Spider and Arachnida probes through an in-silico test on 19 genomes. We also tested the new probe set empirically on 28 spider species of major spider lineages. The results showed that the RTA probes recovered twice and four times as many loci as the other two probe sets, and the phylogeny from the RTA UCEs provided higher support for certain relationships. This newly developed UCE probe set shows higher capture efficiency empirically and is particularly advantageous for phylogenomic and evolutionary studies of RTA clade and jumping spiders.
Collapse
Affiliation(s)
- Junxia Zhang
- Key Laboratory of Zoological Systematics and Application of Hebei Province, Institute of Life Science and Green Development, College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Zhaoyi Li
- Key Laboratory of Zoological Systematics and Application of Hebei Province, Institute of Life Science and Green Development, College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Jiaxing Lai
- Key Laboratory of Zoological Systematics and Application of Hebei Province, Institute of Life Science and Green Development, College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Zhisheng Zhang
- School of Life Sciences, Southwest University, Chongqing, 400700, China
| | - Feng Zhang
- Key Laboratory of Zoological Systematics and Application of Hebei Province, Institute of Life Science and Green Development, College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China
| |
Collapse
|
7
|
Nunes R, Storer C, Doleck T, Kawahara AY, Pierce NE, Lohman DJ. Predictors of sequence capture in a large-scale anchored phylogenomics project. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.943361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
Abstract
Next-generation sequencing (NGS) technologies have revolutionized phylogenomics by decreasing the cost and time required to generate sequence data from multiple markers or whole genomes. Further, the fragmented DNA of biological specimens collected decades ago can be sequenced with NGS, reducing the need for collecting fresh specimens. Sequence capture, also known as anchored hybrid enrichment, is a method to produce reduced representation libraries for NGS sequencing. The technique uses single-stranded oligonucleotide probes that hybridize with pre-selected regions of the genome that are sequenced via NGS, culminating in a dataset of numerous orthologous loci from multiple taxa. Phylogenetic analyses using these sequences have the potential to resolve deep and shallow phylogenetic relationships. Identifying the factors that affect sequence capture success could save time, money, and valuable specimens that might be destructively sampled despite low likelihood of sequencing success. We investigated the impacts of specimen age, preservation method, and DNA concentration on sequence capture (number of captured sequences and sequence quality) while accounting for taxonomy and extracted tissue type in a large-scale butterfly phylogenomics project. This project used two probe sets to extract 391 loci or a subset of 13 loci from over 6,000 butterfly specimens. We found that sequence capture is a resilient method capable of amplifying loci in samples of varying age (0–111 years), preservation method (alcohol, papered, pinned), and DNA concentration (0.020 ng/μl - 316 ng/ul). Regression analyses demonstrate that sequence capture is positively correlated with DNA concentration. However, sequence capture and DNA concentration are negatively correlated with sample age and preservation method. Our findings suggest that sequence capture projects should prioritize the use of alcohol-preserved samples younger than 20 years old when available. In the absence of such specimens, dried samples of any age can yield sequence data, albeit with returns that diminish with increasing age.
Collapse
|
8
|
Roycroft E, Moritz C, Rowe KC, Moussalli A, Eldridge MDB, Portela Miguez R, Piggott MP, Potter S. Sequence Capture From Historical Museum Specimens: Maximizing Value for Population and Phylogenomic Studies. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.931644] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The application of high-throughput, short-read sequencing to degraded DNA has greatly increased the feasibility of generating genomic data from historical museum specimens. While many published studies report successful sequencing results from historical specimens; in reality, success and quality of sequence data can be highly variable. To examine predictors of sequencing quality, and methodological approaches to improving data accuracy, we generated and analyzed genomic sequence data from 115 historically collected museum specimens up to 180 years old. Data span both population genomic and phylogenomic scales, including historically collected specimens from 34 specimens of four species of Australian rock-wallabies (genus Petrogale) and 92 samples from 79 specimens of Australo-Papuan murine rodents (subfamily Murinae). For historical rodent specimens, where the focus was sampling for phylogenomics, we found that regardless of specimen age, DNA sequence libraries prepared from toe pad or bone subsamples performed significantly better than those taken from the skin (in terms of proportion of reads on target, number of loci captured, and data accuracy). In total, 93% of DNA libraries from toe pad or bone subsamples resulted in reliable data for phylogenetic inference, compared to 63% of skin subsamples. For skin subsamples, proportion of reads on target weakly correlated with collection year. Then using population genomic data from rock-wallaby skins as a test case, we found substantial improvement in final data quality by mapping to a high-quality “closest sister” de novo assembly from fresh tissues, compared to mapping to a sample-specific historical de novo assembly. Choice of mapping approach also affected final estimates of the number of segregating sites and Watterson's θ, both important parameters for population genomic inference. The incorporation of accurate and reliable sequence data from historical specimens has important outcomes for evolutionary studies at both population and phylogenomic scales. By assessing the outcomes of different approaches to specimen subsampling, library preparation and bioinformatic processing, our results provide a framework for increasing sequencing success for irreplaceable historical specimens.
Collapse
|
9
|
Bernstein JM, Ruane S. Maximizing Molecular Data From Low-Quality Fluid-Preserved Specimens in Natural History Collections. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.893088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Over the past decade, museum genomics studies have focused on obtaining DNA of sufficient quality and quantity for sequencing from fluid-preserved natural history specimens, primarily to be used in systematic studies. While these studies have opened windows to evolutionary and biodiversity knowledge of many species worldwide, published works often focus on the success of these DNA sequencing efforts, which is undoubtedly less common than obtaining minimal or sometimes no DNA or unusable sequence data from specimens in natural history collections. Here, we attempt to obtain and sequence DNA extracts from 115 fresh and 41 degraded samples of homalopsid snakes, as well as from two degraded samples of a poorly known snake, Hydrablabes periops. Hydrablabes has been suggested to belong to at least two different families (Natricidae and Homalopsidae) and with no fresh tissues known to be available, intractable museum specimens currently provide the only opportunity to determine this snake’s taxonomic affinity. Although our aim was to generate a target-capture dataset for these samples, to be included in a broader phylogenetic study, results were less than ideal due to large amounts of missing data, especially using the same downstream methods as with standard, high-quality samples. However, rather than discount results entirely, we used mapping methods with references and pseudoreferences, along with phylogenetic analyses, to maximize any usable molecular data from our sequencing efforts, identify the taxonomic affinity of H. periops, and compare sequencing success between fresh and degraded tissue samples. This resulted in largely complete mitochondrial genomes for five specimens and hundreds to thousands of nuclear loci (ultra-conserved loci, anchored-hybrid enrichment loci, and a variety of loci frequently used in squamate phylogenetic studies) from fluid-preserved snakes, including a specimen of H. periops from the Field Museum of Natural History collection. We combined our H. periops data with previously published genomic and Sanger-sequenced datasets to confirm the familial designation of this taxon, reject previous taxonomic hypotheses, and make biogeographic inferences for Hydrablabes. A second H. periops specimen, despite being seemingly similar for initial raw sequencing results and after being put through the same protocols, resulted in little usable molecular data. We discuss the successes and failures of using different pipelines and methods to maximize the products from these data and provide expectations for others who are looking to use DNA sequencing efforts on specimens that likely have degraded DNA.Life Science Identifier (Hydrablabes periops)urn:lsid:zoobank.org:pub:F2AA44 E2-D2EF-4747-972A-652C34C2C09D.
Collapse
|
10
|
Van Dam AR, Covas Orizondo JO, Lam AW, McKenna DD, Van Dam MH. Metagenomic clustering reveals microbial contamination as an essential consideration in ultraconserved element design for phylogenomics with insect museum specimens. Ecol Evol 2022; 12:e8625. [PMID: 35342556 PMCID: PMC8932080 DOI: 10.1002/ece3.8625] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 01/03/2022] [Accepted: 01/17/2022] [Indexed: 11/30/2022] Open
Abstract
Phylogenomics via ultraconserved elements (UCEs) has led to improved phylogenetic reconstructions across the tree of life. However, inadvertently incorporating non-targeted DNA into the UCE marker design will lead to misinformation being incorporated into subsequent analyses. To date, the effectiveness of basic metagenomic filtering strategies has not been assessed in arthropods. Designing markers from museum specimens requires careful consideration of methods due to the high levels of microbial contamination typically found in such specimens. We investigate if contaminant sequences are carried forward into a UCE marker set we developed from insect museum specimens using a standard bioinformatics pipeline. We find that the methods currently employed by most researchers do not exclude contamination from the final set of targets. Lastly, we highlight several paths forward for reducing contamination in UCE marker design.
Collapse
Affiliation(s)
- Alex R. Van Dam
- Department of BiologyUniversity of Puerto Rico MayagüezMayagüezPuerto Rico
| | | | - Athena W. Lam
- Department of EntomologyCalifornia Academy of SciencesSan FranciscoCaliforniaUSA
| | - Duane D. McKenna
- Department of Biological SciencesUniversity of MemphisMemphisTennesseeUSA
- Center for Biodiversity ResearchUniversity of MemphisMemphisTennesseeUSA
| | - Matthew H. Van Dam
- Department of EntomologyCalifornia Academy of SciencesSan FranciscoCaliforniaUSA
| |
Collapse
|
11
|
Dylus D, Nevers Y, Altenhoff AM, Gürtler A, Dessimoz C, Glover NM. How to build phylogenetic species trees with OMA. F1000Res 2022; 9:511. [PMID: 35722083 PMCID: PMC9194518 DOI: 10.12688/f1000research.23790.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/11/2022] [Indexed: 12/21/2022] Open
Abstract
Knowledge of species phylogeny is critical to many fields of biology. In an era of genome data availability, the most common way to make a phylogenetic species tree is by using multiple protein-coding genes, conserved in multiple species. This methodology is composed of several steps: orthology inference, multiple sequence alignment and inference of the phylogeny with dedicated tools. This can be a difficult task, and orthology inference, in particular, is usually computationally intensive and error prone if done
ad hoc. This tutorial provides protocols to make use of OMA Orthologous Groups, a set of genes all orthologous to each other, to infer a phylogenetic species tree. It is designed to be user-friendly and computationally inexpensive, by providing two options: (1) Using only precomputed groups with species available on the OMA Browser, or (2) Computing orthologs using OMA Standalone for additional species, with the option of using precomputed orthology relations for those present in OMA. A protocol for downstream analyses is provided as well, including creating a supermatrix, tree inference, and visualization. All protocols use publicly available software, and we provide scripts and code snippets to facilitate data handling. The protocols are accompanied with practical examples.
Collapse
Affiliation(s)
- David Dylus
- Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland
- Department of Computational Biology, University of Lausanne, Lausanne, 1015, Switzerland
- Center for Integrative Genomics, University of Lausanne, Lausanne, 1015, Switzerland
| | - Yannis Nevers
- Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland
- Department of Computational Biology, University of Lausanne, Lausanne, 1015, Switzerland
- Center for Integrative Genomics, University of Lausanne, Lausanne, 1015, Switzerland
| | - Adrian M Altenhoff
- Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland
- Department of Computer Science, ETH Zurich, Zurich, 8092, Switzerland
| | - Antoine Gürtler
- Department of Computational Biology, University of Lausanne, Lausanne, 1015, Switzerland
- Center for Integrative Genomics, University of Lausanne, Lausanne, 1015, Switzerland
| | - Christophe Dessimoz
- Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland
- Department of Computational Biology, University of Lausanne, Lausanne, 1015, Switzerland
- Center for Integrative Genomics, University of Lausanne, Lausanne, 1015, Switzerland
- Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
- Department of Computer Science, University College London, London, WC1E 6BT, UK
| | - Natasha M Glover
- Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland
- Department of Computational Biology, University of Lausanne, Lausanne, 1015, Switzerland
- Center for Integrative Genomics, University of Lausanne, Lausanne, 1015, Switzerland
| |
Collapse
|
12
|
Phylogeny and secondary sexual trait evolution in Schizocosa wolf spiders (Araneae, Lycosidae) shows evidence for multiple gains and losses of ornamentation and species delimitation uncertainty. Mol Phylogenet Evol 2022; 169:107397. [PMID: 35031456 DOI: 10.1016/j.ympev.2022.107397] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/27/2021] [Accepted: 12/27/2021] [Indexed: 12/18/2022]
Abstract
Members of the Nearctic spider genus Schizocosa Chamberlin, 1904 have garnered much attention in behavioral studies and over many decades, a number of species have developed as model systems for investigating patterns of sexual selection and multimodal communication. Many of these studies have employed a comparative approach using putative, but not rigorously tested, sister species pairs that have distinctive morphological traits and attendant behaviors. Despite past emphasis on the efficacy of these presumably comparative-based studies of closely related species, generating a robust phylogenetic hypothesis for Schizocosa has been an ongoing challenge. Here, we apply a phylogenomic approach using anchored hybrid enrichment to generate a data set comprising over 400 loci representing a comprehensive taxonomic sample of 23 Nearctic Schizocosa. Our sampling also includes numerous outgroup lycosid genera that allow for a robust evaluation of genus monophyly. Based on analyses using concatenation and coalescent-based methods, we recover a well-supported phylogeny that infers the following: 1) The New World Schizocosa do not form a monophyletic group; 2) Previous hypotheses of North American species require reconsideration along with the composition of species groups; 3) Multiple longstanding model species are not genealogically exclusive and thus are not "good" species; 4) This updated phylogenetic framework establishes a new working paradigm for studying the evolution of characters associated with reproductive communication and mating. Ancestral character state reconstructions show a complex pattern of homoplasy that has likely obfuscated previous attempts to reconstruct relationships and delimit species. Important characters presumably related to sexual selection, such as foreleg pigmentation and dense bristle formation, have undergone repeated gain and loss events, many of which have led to increased morphological divergence between sister-species. Evaluation of these traits in a comparative framework illuminates how sexual selection and natural selection influence character evolution and provides a model for future studies of multimodal communication evolution and function.
Collapse
|
13
|
Rix MG, Wood HM, Harvey MS, Michalik P. Micro-Computed Tomography Reveals a Remarkable Twin Intromittent Organ in Spiders – A Novelty for Arachnids With Direct Sperm Transfer. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.794708] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The modification of male pedipalps into secondary sexual intromittent organs is one of the hallmark characteristics of spiders, yet understanding the development and evolution of male genitalia across the order remains a challenging prospect. The embolus – the sclerite bearing the efferent spermatic duct or spermophor, and used to deliver sperm directly to the female genitalia during copulation – has always been considered the single unambiguously homologous palpal sclerite shared by all spider species, fundamental to the bauplan of the order and to the evolution and functional morphology of spider reproductive systems. Indeed, after two centuries of comparative research on spider reproduction, the presence of a single spermophor and embolus on each of a male spider’s two pedipalps remains a central tenet of evolutionary arachnology. Our findings challenge this premise, and reveal a remarkable twin intromittent organ sperm transfer system in a lineage of Australian palpimanoid spiders, characterized by a bifurcate spermophor and the presence of two efferent ducts leading to a pair of embolic sclerites on each pedipalp. This is the first time such a remarkable conformation has been observed in any group of arachnids with direct sperm transfer, complicating our understanding of palpal sclerite homologies, and challenging ideas about the evolution of spider genitalia.
Collapse
|
14
|
Ortiz D, Pekár S, Dianat M. Phylogenomics and loci dropout patterns of deeply diverged Zodarion ant-eating spiders suggest a high potential of RAD-seq for genus-level spider phylogenetics. Cladistics 2021; 38:320-334. [PMID: 34699083 DOI: 10.1111/cla.12493] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2021] [Indexed: 11/28/2022] Open
Abstract
RAD sequencing yields large amounts of genome-wide data at a relatively low cost and without requiring previous taxon-specific information, making it ideal for evolutionary studies of highly diversified and neglected organisms. However, concerns about information decay with phylogenetic distance have discouraged its use for assessing supraspecific relationships. Here, using Double Digest Restriction Associated DNA (ddRAD) data, we perform the first deep-level approach to the phylogeny of Zodarion, a highly diversified spider genus. We explore the impact of loci and taxon filtering across concatenated and multispecies coalescent reconstruction methods and investigate the patterns of information dropout in reference to both the time of divergence and the mitochondrial divergence between taxa. We found that relaxed loci-filtering and nested taxon-filtering strategies maximized the amount of molecular information and improved phylogenetic inference. As expected, there was a clear pattern of allele dropout towards deeper time and mitochondrial divergences, but the phylogenetic signal remained strong throughout the phylogeny. Therefore, we inferred topologies that were almost fully resolved, highly supported, and noticeably congruent between setups and inference methods, which highlights overall inconsistency in the taxonomy of Zodarion. Because Zodarion appears to be among the oldest and most mitochondrially diversified spider genera, our results suggest that ddRAD data show high potential for inferring intra-generic relationships across spiders and probably also in other taxonomic groups.
Collapse
Affiliation(s)
- David Ortiz
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czechia
| | - Stano Pekár
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czechia
| | - Malahat Dianat
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czechia
| |
Collapse
|
15
|
Houston DD, Satler JD, Stack TK, Carroll HM, Bevan AM, Moya AL, Alexander KD. A phylogenomic perspective on the evolutionary history of the stonefly genus Suwallia (Plecoptera: Chloroperlidae) revealed by ultraconserved genomic elements. Mol Phylogenet Evol 2021; 166:107320. [PMID: 34626810 DOI: 10.1016/j.ympev.2021.107320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 09/20/2021] [Accepted: 10/04/2021] [Indexed: 11/18/2022]
Abstract
Evolutionary biologists have long sought to disentangle phylogenetic relationships among taxa spanning the tree of life, an increasingly important task as anthropogenic influences accelerate population declines and species extinctions, particularly in insects. Phylogenetic analyses are commonly used to identify unique evolutionary lineages, to clarify taxonomic designations of the focal taxa, and to inform conservation decisions. Advances in DNA sequencing techniques have increasingly facilitated the ability of researchers to apply genomic methods to phylogenetic analyses, even for non-model organisms. Stoneflies are non-model insects that are important bioindicators of the quality of freshwater habitats and landscape disturbance as they spend the immature stages of their life cycles in fresh water, and the adult stages in terrestrial environments. Phylogenetic relationships within the stonefly genus Suwallia (Insecta: Plecoptera: Chloroperlidae) are poorly understood, and have never been assessed using molecular data. We used DNA sequence data from genome-wide ultraconserved element loci to generate the first molecular phylogeny for the group and assess its monophyly. We found that Palearctic and Nearctic Suwallia do not form reciprocally monophyletic clades, and that a biogeographic history including dispersal, vicariance, and founder event speciation via jump dispersal best explains the geographic distribution of this group. Our results also strongly suggest that Neaviperla forcipata (Neave, 1929) is nested within Suwallia, and the concept of the genus Suwallia should be revised to include it. Thus, we formally propose a new taxonomic combination wherein Neaviperla forcipata (Neave, 1929) is reclassified as Suwallia forcipata (Neave, 1929). Moreover, some Suwallia species (e.g., S. amoenacolens, S. kerzhneri, S. marginata, S. pallidula, and S. starki) exhibit pronounced cryptic diversity that is worthy of further investigation. These findings provide a first glimpse into the evolutionary history of Suwallia, improve our understanding of stonefly diversity in the tribe Suwallini, and highlight areas where additional research is needed.
Collapse
Affiliation(s)
- Derek D Houston
- Department of Natural and Environmental Sciences, Western Colorado University, Gunnison, CO, USA.
| | - Jordan D Satler
- Department of Ecology Evolution and Organismal Biology, Iowa State University, Ames, IA, USA.
| | - Taylor K Stack
- Department of Natural and Environmental Sciences, Western Colorado University, Gunnison, CO, USA.
| | - Hannah M Carroll
- Department of Ecology Evolution and Organismal Biology, Iowa State University, Ames, IA, USA; Department of Earth Planetary and Space Sciences, University of California-Los Angeles, CA, USA.
| | - Alissa M Bevan
- Department of Natural and Environmental Sciences, Western Colorado University, Gunnison, CO, USA.
| | - Autumn L Moya
- Department of Natural and Environmental Sciences, Western Colorado University, Gunnison, CO, USA.
| | - Kevin D Alexander
- Department of Natural and Environmental Sciences, Western Colorado University, Gunnison, CO, USA.
| |
Collapse
|
16
|
Gut-content analysis in four species, combined with comparative analysis of trophic traits, suggests an araneophagous habit for the entire family Palpimanidae (Araneae). ORG DIVERS EVOL 2021. [DOI: 10.1007/s13127-021-00525-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Hahn EE, Alexander MR, Grealy A, Stiller J, Gardiner DM, Holleley CE. Unlocking inaccessible historical genomes preserved in formalin. Mol Ecol Resour 2021; 22:2130-2147. [PMID: 34549888 DOI: 10.1111/1755-0998.13505] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 11/27/2022]
Abstract
Museum specimens represent an unparalleled record of historical genomic data. However, the widespread practice of formalin preservation has thus far impeded genomic analysis of a large proportion of specimens. Limited DNA sequencing from formalin-preserved specimens has yielded low genomic coverage with unpredictable success. We set out to refine sample processing methods and to identify specimen characteristics predictive of sequencing success. With a set of taxonomically diverse specimens collected between 1962 and 2006 and ranging in preservation quality, we compared the efficacy of several end-to-end whole genome sequencing workflows alongside a k-mer-based trimming-free read alignment approach to maximize mapping of endogenous sequence. We recovered complete mitochondrial genomes and up to 3× nuclear genome coverage from formalin-preserved tissues. Hot alkaline lysis coupled with phenol-chloroform extraction out-performed proteinase K digestion in recovering DNA, while library preparation method had little impact on sequencing success. The strongest predictor of DNA yield was overall specimen condition, which additively interacts with preservation conditions to accelerate DNA degradation. Here, we demonstrate a significant advance in capability beyond limited recovery of a small number of loci via PCR or target-capture sequencing. To facilitate strategic selection of suitable specimens for genomic sequencing, we present a decision-making framework that utilizes independent and nondestructive assessment criteria. Sequencing of formalin-preserved specimens will contribute to a greater understanding of temporal trends in genetic adaptation, including those associated with a changing climate. Our work enhances the value of museum collections worldwide by unlocking genomes of specimens that have been disregarded as a valid molecular resource.
Collapse
Affiliation(s)
- Erin E Hahn
- National Research Collections Australia, Commonwealth Scientific Industrial Research Organisation, Canberra, ACT, Australia
| | - Marina R Alexander
- National Research Collections Australia, Commonwealth Scientific Industrial Research Organisation, Canberra, ACT, Australia
| | - Alicia Grealy
- National Research Collections Australia, Commonwealth Scientific Industrial Research Organisation, Canberra, ACT, Australia
| | - Jiri Stiller
- Agriculture and Food, Commonwealth Scientific Industrial Research Organisation, St Lucia, Qld, Australia
| | - Donald M Gardiner
- Agriculture and Food, Commonwealth Scientific Industrial Research Organisation, St Lucia, Qld, Australia
| | - Clare E Holleley
- National Research Collections Australia, Commonwealth Scientific Industrial Research Organisation, Canberra, ACT, Australia
| |
Collapse
|
18
|
Stringer DN, Bertozzi T, Meusemann K, Delean S, Guzik MT, Tierney SM, Mayer C, Cooper SJB, Javidkar M, Zwick A, Austin AD. Development and evaluation of a custom bait design based on 469 single-copy protein-coding genes for exon capture of isopods (Philosciidae: Haloniscus). PLoS One 2021; 16:e0256861. [PMID: 34534224 PMCID: PMC8448321 DOI: 10.1371/journal.pone.0256861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 08/17/2021] [Indexed: 12/02/2022] Open
Abstract
Transcriptome-based exon capture approaches, along with next-generation sequencing, are allowing for the rapid and cost-effective production of extensive and informative phylogenomic datasets from non-model organisms for phylogenetics and population genetics research. These approaches generally employ a reference genome to infer the intron-exon structure of targeted loci and preferentially select longer exons. However, in the absence of an existing and well-annotated genome, we applied this exon capture method directly, without initially identifying intron-exon boundaries for bait design, to a group of highly diverse Haloniscus (Philosciidae), paraplatyarthrid and armadillid isopods, and examined the performance of our methods and bait design for phylogenetic inference. Here, we identified an isopod-specific set of single-copy protein-coding loci, and a custom bait design to capture targeted regions from 469 genes, and analysed the resulting sequence data with a mapping approach and newly-created post-processing scripts. We effectively recovered a large and informative dataset comprising both short (<100 bp) and longer (>300 bp) exons, with high uniformity in sequencing depth. We were also able to successfully capture exon data from up to 16-year-old museum specimens along with more distantly related outgroup taxa, and efficiently pool multiple samples prior to capture. Our well-resolved phylogenies highlight the overall utility of this methodological approach and custom bait design, which offer enormous potential for application to future isopod, as well as broader crustacean, molecular studies.
Collapse
Affiliation(s)
- Danielle N. Stringer
- Australian Centre for Evolutionary Biology and Biodiversity, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
- South Australian Museum, Adelaide, South Australia, Australia
- * E-mail:
| | - Terry Bertozzi
- Australian Centre for Evolutionary Biology and Biodiversity, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
- South Australian Museum, Adelaide, South Australia, Australia
| | - Karen Meusemann
- Evolutionary Biology and Ecology, Institute for Biology I, University of Freiburg, Freiburg, Germany
- Australian National Insect Collection, CSIRO National Research Collections Australia, Acton, Australian Capital Territory, Australia
- Center for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, Bonn, Germany
| | - Steven Delean
- School of Biological Sciences and the Environment Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Michelle T. Guzik
- Australian Centre for Evolutionary Biology and Biodiversity, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Simon M. Tierney
- Australian Centre for Evolutionary Biology and Biodiversity, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
| | - Christoph Mayer
- Center for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, Bonn, Germany
| | - Steven J. B. Cooper
- Australian Centre for Evolutionary Biology and Biodiversity, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
- South Australian Museum, Adelaide, South Australia, Australia
| | - Mohammad Javidkar
- Australian Centre for Evolutionary Biology and Biodiversity, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Andreas Zwick
- Australian National Insect Collection, CSIRO National Research Collections Australia, Acton, Australian Capital Territory, Australia
| | - Andrew D. Austin
- Australian Centre for Evolutionary Biology and Biodiversity, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
- South Australian Museum, Adelaide, South Australia, Australia
| |
Collapse
|
19
|
Kallal RJ, Kulkarni SS, Dimitrov D, Benavides LR, Arnedo MA, Giribet G, Hormiga G. Converging on the orb: denser taxon sampling elucidates spider phylogeny and new analytical methods support repeated evolution of the orb web. Cladistics 2021; 37:298-316. [PMID: 34478199 DOI: 10.1111/cla.12439] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2020] [Indexed: 12/20/2022] Open
Abstract
High throughput sequencing and phylogenomic analyses focusing on relationships among spiders have both reinforced and upturned long-standing hypotheses. Likewise, the evolution of spider webs-perhaps their most emblematic attribute-is being understood in new ways. With a matrix including 272 spider species and close arachnid relatives, we analyze and evaluate the relationships among these lineages using a variety of orthology assessment methods, occupancy thresholds, tree inference methods and support metrics. Our analyses include families not previously sampled in transcriptomic analyses, such as Symphytognathidae, the only araneoid family absent in such prior works. We find support for the major established spider lineages, including Mygalomorphae, Araneomorphae, Synspermiata, Palpimanoidea, Araneoidea and the Retrolateral Tibial Apophysis Clade, as well as the uloborids, deinopids, oecobiids and hersiliids Grade. Resulting trees are evaluated using bootstrapping, Shimodaira-Hasegawa approximate likelihood ratio test, local posterior probabilities and concordance factors. Using structured Markov models to assess the evolution of spider webs while accounting for hierarchically nested traits, we find multiple convergent occurrences of the orb web across the spider tree-of-life. Overall, we provide the most comprehensive spider tree-of-life to date using transcriptomic data and use new methods to explore controversial issues of web evolution, including the origins and multiple losses of the orb web.
Collapse
Affiliation(s)
- Robert J Kallal
- Department of Biological Sciences, The George Washington University, 2029 G St. NW, Washington, DC, 20052, USA.,Department of Entomology, National Museum of Natural History, 10th & Constitution Ave. NW, Washington, DC, 20560, USA
| | - Siddharth S Kulkarni
- Department of Biological Sciences, The George Washington University, 2029 G St. NW, Washington, DC, 20052, USA.,Department of Entomology, National Museum of Natural History, 10th & Constitution Ave. NW, Washington, DC, 20560, USA
| | - Dimitar Dimitrov
- Department of Natural History, University Museum of Bergen, University of Bergen, P.O. Box 7800, Bergen, 5020, Norway
| | - Ligia R Benavides
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA
| | - Miquel A Arnedo
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Biodiversity Research Institute (IRBio), Universitat de Barcelona, Avinguda Diagonal 643, Barcelona, Spain
| | - Gonzalo Giribet
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA
| | - Gustavo Hormiga
- Department of Biological Sciences, The George Washington University, 2029 G St. NW, Washington, DC, 20052, USA
| |
Collapse
|
20
|
Mining museums for historical DNA: advances and challenges in museomics. Trends Ecol Evol 2021; 36:1049-1060. [PMID: 34456066 DOI: 10.1016/j.tree.2021.07.009] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 01/22/2023]
Abstract
Historical DNA (hDNA), obtained from museum and herbarium specimens, has yielded spectacular new insights into the history of organisms. This includes documenting historical genetic erosion and extinction, discovering species new to science, resolving evolutionary relationships, investigating epigenetic effects, and determining origins of infectious diseases. However, the development of best-practices in isolating, processing, and analyzing hDNA remain under-explored, due to the substantial diversity of specimen preparation types, tissue sources, archival ages, and collecting histories. Thus, for hDNA to reach its full potential, and justify the destructive sampling of the rarest specimens, more experimental work using time-series collections, and the development of improved methods to correct for data asymmetries and biases due to DNA degradation are required.
Collapse
|
21
|
O'Connell KA, Mulder KP, Wynn A, de Queiroz K, Bell RC. Genomic library preparation and hybridization capture of formalin-fixed tissues and allozyme supernatant for population genomics and considerations for combining capture- and RADseq-based single nucleotide polymorphism data sets. Mol Ecol Resour 2021; 22:487-502. [PMID: 34329532 DOI: 10.1111/1755-0998.13481] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/10/2021] [Accepted: 07/14/2021] [Indexed: 12/17/2022]
Abstract
Until recently many historical museum specimens were largely inaccessible to genomic inquiry, but high-throughput sequencing (HTS) approaches have allowed researchers to successfully sequence genomic DNA from dried and fluid-preserved museum specimens. In addition to preserved specimens, many museums contain large series of allozyme supernatant samples, but the amenability of these samples to HTS has not yet been assessed. Here, we compared the performance of a target-capture approach using alternative sources of genomic DNA from 10 specimens of spring salamanders (Plethodontidae: Gyrinophilus porphyriticus) collected between 1985 and 1990: allozyme supernatants, allozyme homogenate pellets and formalin-fixed tissues. We designed capture probes based on double-digest restriction-site associated sequencing (RADseq) derived loci from frozen blood samples available for seven of the specimens and assessed the success and consistency of capture and RADseq approaches. This study design enabled direct comparisons of data quality and potential biases among the different data sets for phylogenomic and population genomic analyses. We found that in phylogenetic analyses, all enrichment types for a given specimen clustered together. In principal component space all capture-based samples clustered together, but RADseq samples did not cluster with corresponding capture-based samples. Single nucleotide polymorphism calls were on average 18.3% different between enrichment types for a given individual, but these discrepancies were primarily due to differences in heterozygous/homozygous single nucleotide polymorphism calls. We demonstrate that both allozyme supernatant and formalin-fixed samples can be successfully used for population genomic analyses and we discuss ways to identify and reduce biases associated with combining capture and RADseq data.
Collapse
Affiliation(s)
- Kyle A O'Connell
- Global Genome Initiative, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, USA.,Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, USA.,Department of Biological Sciences, The George Washington University, Washington, District of Columbia, USA.,Biomedical Data Science Lab, Deloitte Consulting LLP, Arlington, Virginia, USA
| | - Kevin P Mulder
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, USA.,CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal.,Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, District of Columbia, USA
| | - Addison Wynn
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, USA
| | - Kevin de Queiroz
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, USA
| | - Rayna C Bell
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, USA.,Department of Herpetology, California Academy of Sciences, San Francisco, California, USA
| |
Collapse
|
22
|
Miranda I, Giska I, Farelo L, Pimenta J, Zimova M, Bryk J, Dalén L, Mills LS, Zub K, Melo-Ferreira J. Museomics dissects the genetic basis for adaptive seasonal colouration in the least weasel. Mol Biol Evol 2021; 38:4388-4402. [PMID: 34157721 PMCID: PMC8476133 DOI: 10.1093/molbev/msab177] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Dissecting the link between genetic variation and adaptive phenotypes provides outstanding opportunities to understand fundamental evolutionary processes. Here, we use a museomics approach to investigate the genetic basis and evolution of winter coat colouration morphs in least weasels (Mustela nivalis), a repeated adaptation for camouflage in mammals with seasonal pelage colour moults across regions with varying winter snow. Whole-genome sequence data was obtained from biological collections and mapped onto a newly assembled reference genome for the species. Sampling represented two replicate transition zones between nivalis and vulgaris colouration morphs in Europe, which typically develop white or brown winter coats, respectively. Population analyses showed that the morph distribution across transition zones is not a by-product of historical structure. Association scans linked a 200 kb genomic region to colouration morph, which was validated by genotyping museum specimens from inter-morph experimental crosses. Genotyping the wild populations narrowed down the association to pigmentation gene MC1R and pinpointed a candidate amino acid change co-segregating with colouration morph. This polymorphism replaces an ancestral leucine residue by lysine at the start of the first extracellular loop of the protein in the vulgaris morph. A selective sweep signature overlapped the association region in vulgaris, suggesting that past adaptation favoured winter-brown morphs and can anchor future adaptive responses to decreasing winter snow. Using biological collections as valuable resources to study natural adaptations, our study showed a new evolutionary route generating winter colour variation in mammals and that seasonal camouflage can be modulated by changes at single key genes.
Collapse
Affiliation(s)
- Inês Miranda
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, 4485-661, Portugal.,Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, 4169-007, Portugal
| | - Iwona Giska
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, 4485-661, Portugal
| | - Liliana Farelo
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, 4485-661, Portugal
| | - João Pimenta
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, 4485-661, Portugal
| | - Marketa Zimova
- School for Environment and Sustainability, University of Michigan, Dana Natural Resources Building, 440 Church St, Ann Arbor, MI, 49109, USA
| | - Jarosław Bryk
- School of Applied Sciences, University of Huddersfield, Quennsgate, Huddersfield, UK
| | - Love Dalén
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, Stockholm, SE-10691, Sweden.,Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Box 50007, Stockholm, SE-10405, Sweden
| | - L Scott Mills
- Wildlife Biology Program, University of Montana, Missoula, MT, 59812, USA.,Office of Research and Creative Scholarship, University of Montana, Missoula, MT, 59812, USA
| | - Karol Zub
- Mammal Research Institute, Polish Academy of Sciences, Stoczek 1, Białowieża 17-230, Poland
| | - José Melo-Ferreira
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, 4485-661, Portugal.,Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, 4169-007, Portugal
| |
Collapse
|
23
|
Guo X, Selden PA, Ren D. New specimens from Mid-Cretaceous Myanmar amber illuminate the phylogenetic placement of Lagonomegopidae (Arachnida: Araneae). Zool J Linn Soc 2021. [DOI: 10.1093/zoolinnean/zlab027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
New lagonomegopid spiders are described from Mid-Cretaceous Myanmar (Burmese) amber. Two new genera and species based on single specimens, Scopomegops fax gen. & sp. nov. and Hiatomegops spinalis gen. & sp. nov. are described. Two specimens belonging to Lineaburmops beigeli are further described. Additionally, after re-examining the holotype of Odontomegops titan, a detailed description of its basal ventral abdomen is added here. A phylogenetic analysis was performed to investigate the phylogenetic placement of Lagonomegopidae. A matrix of 79 morphological characters, scored for six lagonomegopid taxa and 26 non-lagonomegopid taxa, was analysed through parsimony and Bayesian phylogenetic inference. Our results recover extant Palpimanoidea as a monophyletic group and partly suggest that Lagonomegopidae is the sister-group to extant Palpimanoidea. The external sexual organs, retrolateral tibial apophysis on the male palp and tracheal spiracle in lagonomegopids are discussed.
Collapse
Affiliation(s)
- Xiangbo Guo
- College of Life Sciences and Academy for Multidisciplinary Studies, Capital Normal University , Xisanhuanbeilu, Haidian District, Beijing , China
| | - Paul A Selden
- College of Life Sciences and Academy for Multidisciplinary Studies, Capital Normal University , Xisanhuanbeilu, Haidian District, Beijing , China
- Department of Geology, University of Kansas , Jayhawk Boulevard, Lawrence KS , USA
- Natural History Museum , London , UK
| | - Dong Ren
- College of Life Sciences and Academy for Multidisciplinary Studies, Capital Normal University , Xisanhuanbeilu, Haidian District, Beijing , China
| |
Collapse
|
24
|
Toussaint EFA, Gauthier J, Bilat J, Gillett CPDT, Gough HM, Lundkvist H, Blanc M, Muñoz-Ramírez CP, Alvarez N. HyRAD-X Exome Capture Museomics Unravels Giant Ground Beetle Evolution. Genome Biol Evol 2021; 13:6275686. [PMID: 33988685 PMCID: PMC8480185 DOI: 10.1093/gbe/evab112] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2021] [Indexed: 12/27/2022] Open
Abstract
Advances in phylogenomics contribute toward resolving long-standing evolutionary questions. Notwithstanding, genetic diversity contained within more than a billion biological specimens deposited in natural history museums remains recalcitrant to analysis owing to challenges posed by its intrinsically degraded nature. Yet that tantalizing resource could be critical in overcoming taxon sampling constraints hindering our ability to address major evolutionary questions. We addressed this impediment by developing phyloHyRAD, a new bioinformatic pipeline enabling locus recovery at a broad evolutionary scale from HyRAD-X exome capture of museum specimens of low DNA integrity using a benchtop RAD-derived exome-complexity-reduction probe set developed from high DNA integrity specimens. Our new pipeline can also successfully align raw RNAseq transcriptomic and ultraconserved element reads with the RAD-derived probe catalog. Using this method, we generated a robust timetree for Carabinae beetles, the lack of which had precluded study of macroevolutionary trends pertaining to their biogeography and wing-morphology evolution. We successfully recovered up to 2,945 loci with a mean of 1,788 loci across the exome of specimens of varying age. Coverage was not significantly linked to specimen age, demonstrating the wide exploitability of museum specimens. We also recovered fragmentary mitogenomes compatible with Sanger-sequenced mtDNA. Our phylogenomic timetree revealed a Lower Cretaceous origin for crown group Carabinae, with the extinct Aplothorax Waterhouse, 1841 nested within the genus Calosoma Weber, 1801 demonstrating the junior synonymy of Aplothorax syn. nov., resulting in the new combination Calosoma burchellii (Waterhouse, 1841) comb. nov. This study compellingly illustrates that HyRAD-X and phyloHyRAD efficiently provide genomic-level data sets informative at deep evolutionary scales.
Collapse
Affiliation(s)
| | | | - Julia Bilat
- Natural History Museum of Geneva, Switzerland
| | - Conrad P D T Gillett
- University of Hawai'i Insect Museum, University of Hawai'i at Mānoa, Honolulu, Hawaii, USA
| | - Harlan M Gough
- Florida Natural History Museum, University of Florida, Gainesville, Florida, USA
| | | | | | - Carlos P Muñoz-Ramírez
- Instituto de Entomología, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile.,Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS), Universidad Católica de la Santísima Concepción, Chile
| | - Nadir Alvarez
- Natural History Museum of Geneva, Switzerland.,Department of Genetics and Evolution, University of Geneva, Switzerland
| |
Collapse
|
25
|
Buenaventura E. Museomics and phylogenomics with protein-encoding ultraconserved elements illuminate the evolution of life history and phallic morphology of flesh flies (Diptera: Sarcophagidae). BMC Ecol Evol 2021; 21:70. [PMID: 33910519 PMCID: PMC8082969 DOI: 10.1186/s12862-021-01797-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/19/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The common name of the Flesh flies (Sarcophagidae) usually relates them with organisms feeding on decomposing organic matter, although the biology of one of the largest radiations among insects also includes predation, coprophagy, and even kleptoparasitism. The question of whether the ancestor of all sarcophagids was a predator or a decomposer, or in association to which host have sarcophagids evolved, has thus always piqued the curiosity of flesh fly specialists. Such curiosity has often been hindered by both the impossibility of having a well-supported phylogeny of Sarcophagidae and its sister group to trace live habits and the scarcity of information on the biology of the group. Using a phylogenomic dataset of protein-encoding ultraconserved elements from representatives of all three subfamilies of Sarcophagidae as ingroup and a large Calyptratae outgroup, a robust phylogenetic framework and timescale are generated to understand flesh fly systematics and the evolution of their life histories. RESULTS The evolutionary history for Sarcophagidae reconstructed here differs considerably from previous hypotheses. Within subfamily Sarcophaginae, a group of predatory flies, including genera Lepidodexia and Boettcheria, emerged as sister-group to the rest of Sarcophaginae. The genera Oxysarcodexia, Ravinia, and Tricharaea, long considered archaic and early-branching coprophagous and sarcosaprophagous lineages, were found nested well within the Sarcophaginae as sister-group to the sarcosaprophagous Microcerella. Predation on invertebrates is suggested as the ancestral and dominant strategy throughout the early evolution of flesh flies. Several transitions from predation to sarcosaprophagy and coprophagy occur across the sarcophagid phylogenetic tree, in contrast with almost no transitions from sarcosaprophagy or coprophagy to predatory habits. Regarding the morphological evolution of flesh flies, there might be a concerted evolution of male genitalia traits, such as the phallotrema position and the juxta, or the vesica and the folding of the phallotrema. One diversification rate shift was inferred in the evolution of sarcophagids, which is related to the origin of genus Sarcophaga. CONCLUSIONS This study has a significant impact on understanding sarcophagid evolution and highlights the importance of having a robust phylogenetic framework to reconstruct the ancestral character state of biological and morphological characters. I discuss the evolution of life histories of the family in relation to their hosts or substrates and outline how sarcosaprophagy, coprophagy, and kleptoparasitism behavior on various hosts may have evolved from predation on invertebrates. This study provides a phylogenetic framework for further physiological and comparative genomic work between predatory, sarcosaprophagous, coprophagous, and kleptoparasitic lineages, which could also have significant implications for the evolution of diverse life histories in other Diptera.
Collapse
Affiliation(s)
- Eliana Buenaventura
- Center for Integrative Biodiversity Discovery, Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstraße 43, 10115, Berlin, Germany.
- National Museum of Natural History, Smithsonian Institution, Washington, DC, 20013, USA.
| |
Collapse
|
26
|
Kulkarni S, Kallal RJ, Wood H, Dimitrov D, Giribet G, Hormiga G. Interrogating Genomic-Scale Data to Resolve Recalcitrant Nodes in the Spider Tree of Life. Mol Biol Evol 2021; 38:891-903. [PMID: 32986823 PMCID: PMC7947752 DOI: 10.1093/molbev/msaa251] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Genome-scale data sets are converging on robust, stable phylogenetic hypotheses for many lineages; however, some nodes have shown disagreement across classes of data. We use spiders (Araneae) as a system to identify the causes of incongruence in phylogenetic signal between three classes of data: exons (as in phylotranscriptomics), noncoding regions (included in ultraconserved elements [UCE] analyses), and a combination of both (as in UCE analyses). Gene orthologs, coded as amino acids and nucleotides (with and without third codon positions), were generated by querying published transcriptomes for UCEs, recovering 1,931 UCE loci (codingUCEs). We expected that congeners represented in the codingUCE and UCEs data would form clades in the presence of phylogenetic signal. Noncoding regions derived from UCE sequences were recovered to test the stability of relationships. Phylogenetic relationships resulting from all analyses were largely congruent. All nucleotide data sets from transcriptomes, UCEs, or a combination of both recovered similar topologies in contrast with results from transcriptomes analyzed as amino acids. Most relationships inferred from low-occupancy data sets, containing several hundreds of loci, were congruent across Araneae, as opposed to high occupancy data matrices with fewer loci, which showed more variation. Furthermore, we found that low-occupancy data sets analyzed as nucleotides (as is typical of UCE data sets) can result in more congruent relationships than high occupancy data sets analyzed as amino acids (as in phylotranscriptomics). Thus, omitting data, through amino acid translation or via retention of only high occupancy loci, may have a deleterious effect in phylogenetic reconstruction.
Collapse
Affiliation(s)
- Siddharth Kulkarni
- Department of Biological Sciences, The George Washington University, Washington, DC
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC
| | - Robert J Kallal
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC
| | - Hannah Wood
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC
| | - Dimitar Dimitrov
- Department of Natural History, University Museum of Bergen, University of Bergen, Bergen, Norway
| | - Gonzalo Giribet
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA
| | - Gustavo Hormiga
- Department of Biological Sciences, The George Washington University, Washington, DC
| |
Collapse
|
27
|
Baveja P, Garg KM, Chattopadhyay B, Sadanandan KR, Prawiradilaga DM, Yuda P, Lee JGH, Rheindt FE. Using historical genome-wide DNA to unravel the confused taxonomy in a songbird lineage that is extinct in the wild. Evol Appl 2021; 14:698-709. [PMID: 33767745 PMCID: PMC7980273 DOI: 10.1111/eva.13149] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/13/2020] [Indexed: 11/29/2022] Open
Abstract
Urgent conservation action for terminally endangered species is sometimes hampered by taxonomic uncertainty, especially in illegally traded animals that are often cross-bred in captivity. To overcome these problems, we used a genomic approach to analyze historical DNA from museum samples across the Asian Pied Starling (Gracupica contra) complex in tropical Asia, a popular victim of the ongoing songbird crisis whose distinct Javan population ("Javan Pied Starling") is extinct in the wild and subject to admixture in captivity. Comparing genomic profiles across the entire distribution, we detected three deeply diverged lineages at the species level characterized by a lack of genomic intermediacy near areas of contact. Our study demonstrates that the use of historical DNA can be instrumental in delimiting species in situations of taxonomic uncertainty, especially when modern admixture may obfuscate species boundaries. Results of our research will enable conservationists to commence a dedicated ex situ breeding program for the Javan Pied Starling, and serve as a blueprint for similar conservation problems involving terminally endangered species subject to allelic infiltration from close congeners.
Collapse
Affiliation(s)
- Pratibha Baveja
- Department of Biological SciencesNational University of SingaporeSingaporeSingapore
| | - Kritika M. Garg
- Department of Biological SciencesNational University of SingaporeSingaporeSingapore
- Institute of Bioinformatics and Applied BiotechnologyBangaloreIndia
| | - Balaji Chattopadhyay
- Department of Biological SciencesNational University of SingaporeSingaporeSingapore
| | - Keren R. Sadanandan
- Department of Biological SciencesNational University of SingaporeSingaporeSingapore
- Max Planck Institute for OrnithologySeewiesenGermany
| | | | - Pramana Yuda
- Fakultas TeknobiologiUniversitas Atma Jaya YogyakartaYogyakartaIndonesia
| | - Jessica G. H. Lee
- Department of Conservation and ResearchWildlife Reserves SingaporeSingaporeSingapore
| | - Frank E. Rheindt
- Department of Biological SciencesNational University of SingaporeSingaporeSingapore
| |
Collapse
|
28
|
Ballesteros JA, Setton EVW, Santibáñez-López CE, Arango CP, Brenneis G, Brix S, Corbett KF, Cano-Sánchez E, Dandouch M, Dilly GF, Eleaume MP, Gainett G, Gallut C, McAtee S, McIntyre L, Moran AL, Moran R, López-González PJ, Scholtz G, Williamson C, Woods HA, Zehms JT, Wheeler WC, Sharma PP. Phylogenomic Resolution of Sea Spider Diversification through Integration of Multiple Data Classes. Mol Biol Evol 2021; 38:686-701. [PMID: 32915961 PMCID: PMC7826184 DOI: 10.1093/molbev/msaa228] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Despite significant advances in invertebrate phylogenomics over the past decade, the higher-level phylogeny of Pycnogonida (sea spiders) remains elusive. Due to the inaccessibility of some small-bodied lineages, few phylogenetic studies have sampled all sea spider families. Previous efforts based on a handful of genes have yielded unstable tree topologies. Here, we inferred the relationships of 89 sea spider species using targeted capture of the mitochondrial genome, 56 conserved exons, 101 ultraconserved elements, and 3 nuclear ribosomal genes. We inferred molecular divergence times by integrating morphological data for fossil species to calibrate 15 nodes in the arthropod tree of life. This integration of data classes resolved the basal topology of sea spiders with high support. The enigmatic family Austrodecidae was resolved as the sister group to the remaining Pycnogonida and the small-bodied family Rhynchothoracidae as the sister group of the robust-bodied family Pycnogonidae. Molecular divergence time estimation recovered a basal divergence of crown group sea spiders in the Ordovician. Comparison of diversification dynamics with other marine invertebrate taxa that originated in the Paleozoic suggests that sea spiders and some crustacean groups exhibit resilience to mass extinction episodes, relative to mollusk and echinoderm lineages.
Collapse
Affiliation(s)
- Jesús A Ballesteros
- Department of Integrative Biology, University of Wisconsin–Madison, Madison, WI
| | - Emily V W Setton
- Department of Integrative Biology, University of Wisconsin–Madison, Madison, WI
| | | | - Claudia P Arango
- Queensland Museum, Biodiversity Program, Brisbane, QLD, Australia
| | - Georg Brenneis
- Zoologisches Institut und Museum, Cytologie und Evolutionsbiologie, Universität Greifswald, Greifswald, Germany
| | - Saskia Brix
- Senckenberg am Meer, German Centre for Marine Biodiversity Research (DZMB), c/o Biocenter Grindel (CeNak), Martin-Luther-King-Platz 3, Hamburg, Germany
| | - Kevin F Corbett
- Department of Integrative Biology, University of Wisconsin–Madison, Madison, WI
| | - Esperanza Cano-Sánchez
- Biodiversidad y Ecología Acuática, Departamento de Zoología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Merai Dandouch
- Department of Biology, California State University-Channel Islands, Camarillo, CA
| | - Geoffrey F Dilly
- Department of Biology, California State University-Channel Islands, Camarillo, CA
| | - Marc P Eleaume
- Départment Milieux et Peuplements Aquatiques, Muséum National d’Histoire Naturelle, Paris, France
| | - Guilherme Gainett
- Department of Integrative Biology, University of Wisconsin–Madison, Madison, WI
| | - Cyril Gallut
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Concarneau, France
| | - Sean McAtee
- Department of Biology, California State University-Channel Islands, Camarillo, CA
| | - Lauren McIntyre
- Department of Biology, California State University-Channel Islands, Camarillo, CA
| | - Amy L Moran
- Department of Biology, University of Hawai’I at Mānoa, Honolulu, HI
| | - Randy Moran
- Department of Biology, California State University-Channel Islands, Camarillo, CA
| | - Pablo J López-González
- Biodiversidad y Ecología Acuática, Departamento de Zoología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Gerhard Scholtz
- Institut für Biologie, Vergleichende Zoologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Clay Williamson
- Department of Biology, California State University-Channel Islands, Camarillo, CA
| | - H Arthur Woods
- Division of Biological Sciences, University of Montana, Missoula, MT
| | - Jakob T Zehms
- Department of Integrative Biology, University of Wisconsin–Madison, Madison, WI
| | - Ward C Wheeler
- Division of Invertebrate Zoology, American Museum of Natural History, New York City, NY
| | - Prashant P Sharma
- Department of Integrative Biology, University of Wisconsin–Madison, Madison, WI
| |
Collapse
|
29
|
Opatova V, Hamilton CA, Hedin M, De Oca LM, Král J, Bond JE. Phylogenetic Systematics and Evolution of the Spider Infraorder Mygalomorphae Using Genomic Scale Data. Syst Biol 2021; 69:671-707. [PMID: 31841157 DOI: 10.1093/sysbio/syz064] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 09/10/2019] [Indexed: 12/19/2022] Open
Abstract
The infraorder Mygalomorphae is one of the three main lineages of spiders comprising over 3000 nominal species. This ancient group has a worldwide distribution that includes among its ranks large and charismatic taxa such as tarantulas, trapdoor spiders, and highly venomous funnel-web spiders. Based on past molecular studies using Sanger-sequencing approaches, numerous mygalomorph families (e.g., Hexathelidae, Ctenizidae, Cyrtaucheniidae, Dipluridae, and Nemesiidae) have been identified as non-monophyletic. However, these data were unable to sufficiently resolve the higher-level (intra- and interfamilial) relationships such that the necessary changes in classification could be made with confidence. Here, we present a comprehensive phylogenomic treatment of the spider infraorder Mygalomorphae. We employ 472 loci obtained through anchored hybrid enrichment to reconstruct relationships among all the mygalomorph spider families and estimate the timeframe of their diversification. We sampled nearly all currently recognized families, which has allowed us to assess their status, and as a result, propose a new classification scheme. Our generic-level sampling has also provided an evolutionary framework for revisiting questions regarding silk use in mygalomorph spiders. The first such analysis for the group within a strict phylogenetic framework shows that a sheet web is likely the plesiomorphic condition for mygalomorphs, as well as providing insights to the ancestral foraging behavior for all spiders. Our divergence time estimates, concomitant with detailed biogeographic analysis, suggest that both ancient continental-level vicariance and more recent dispersal events have played an important role in shaping modern day distributional patterns. Based on our results, we relimit the generic composition of the Ctenizidae, Cyrtaucheniidae, Dipluridae, and Nemesiidae. We also elevate five subfamilies to family rank: Anamidae (NEW RANK), Euagridae (NEW RANK), Ischnothelidae (NEW RANK), Pycnothelidae (NEW RANK), and Bemmeridae (NEW RANK). Three families Entypesidae (NEW FAMILY), Microhexuridae (NEW FAMILY), and Stasimopidae (NEW FAMILY), and one subfamily Australothelinae (NEW SUBFAMILY) are newly proposed. Such a major rearrangement in classification, recognizing nine newly established family-level rank taxa, is the largest the group has seen in over three decades. [Biogeography; molecular clocks; phylogenomics; spider web foraging; taxonomy.].
Collapse
Affiliation(s)
- Vera Opatova
- Department of Entomology and Nematology, University of California, 1282 Academic Surge, One Shields Avenue, Davis, CA 95616, USA
| | - Chris A Hamilton
- Department of Entomology, Plant Pathology & Nematology, University of Idaho, 875 Perimeter Dr. MS 2329, Moscow ID 83844-2329, USA
| | - Marshal Hedin
- Department of Biology, LSN 204E, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-4614, USA
| | - Laura Montes De Oca
- Departamento de Ecología y Biología Evolutiva, Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia 3318, Montevideo 11600, Uruguay
| | - Jiři Král
- Department of Genetics and Microbiology, Faculty of Sciences, Charles University, Viničná 5, Prague 2 128 44, Czech Republic
| | - Jason E Bond
- Department of Entomology and Nematology, University of California, 1282 Academic Surge, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
30
|
Ledford J, Derkarabetian S, Ribera C, Starrett J, Bond JE, Griswold C, Hedin M. Phylogenomics and biogeography of leptonetid spiders (Araneae:Leptonetidae). INVERTEBR SYST 2021. [DOI: 10.1071/is20065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Leptonetidae are rarely encountered spiders, usually associated with caves and mesic habitats, and are disjunctly distributed across the Holarctic. Data from ultraconserved elements (UCEs) were used in concatenated and coalescent-based analyses to estimate the phylogenetic history of the family. Our taxon sample included close outgroups, and 90% of described leptonetid genera, with denser sampling in North America and Mediterranean Europe. Two data matrices were assembled and analysed; the first ‘relaxed’ matrix includes the maximum number of loci and the second ‘strict’ matrix is limited to the same set of core orthologs but with flanking introns mostly removed. A molecular dating analysis incorporating fossil and geological calibration points was used to estimate divergence times, and dispersal–extinction–cladogenesis analysis (DEC) was used to infer ancestral distributions. Analysis of both data matrices using maximum likelihood and coalescent-based methods supports the monophyly of Archoleptonetinae and Leptonetinae. However, relationships among Archoleptonetinae, Leptonetinae, and Austrochiloidea are poorly supported and remain unresolved. Archoleptonetinae is elevated to family rank Archoleptonetidae (new rank) and Leptonetidae (new status) is restricted to include only members of the subfamily Leptonetinae; a taxonomic review with morphological diagnoses is provided for both families. Four well supported lineages within Leptonetidae (new status) are recovered: (1) the Calileptoneta group, (2) the Leptoneta group, (3) the Paraleptoneta group, and (4) the Protoleptoneta group. Most genera within Leptonetidae are monophyletic, although Barusia, Cataleptoneta, and Leptoneta include misplaced species and require taxonomic revision. The origin of Archoleptonetidae (new rank), Leptonetidae, and the four main lineages within Leptonetidae date to the Cretaceous. DEC analysis infers the Leptoneta and Paraleptoneta groups to have ancestral distributions restricted to Mediterranean Europe, whereas the Calileptoneta and Protoleptoneta groups include genera with ancestral distributions spanning eastern and western North America, Mediterranean Europe, and east Asia. Based on a combination of biology, estimated divergence times, and inferred ancestral distributions we hypothesise that Leptonetidae was once widespread across the Holarctic and their present distributions are largely the result of vicariance. Given the wide disjunctions between taxa, we broadly interpret the family as a Holarctic relict fauna and hypothesise that they were once part of the Boreotropical forest ecosystem.
Collapse
|
31
|
Salazar K, Nattier R. New Light on Historical Specimens Reveals a New Species of Ladybird (Coleoptera: Coccinellidae): Morphological, Museomic, and Phylogenetic Analyses. INSECTS 2020; 11:E766. [PMID: 33172182 PMCID: PMC7694756 DOI: 10.3390/insects11110766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 11/22/2022]
Abstract
Natural history collections house an important source of genetic data from yet unexplored biological diversity. Molecular data from museum specimens remain underexploited, which is mainly due to the degradation of DNA from specimens over time. However, Next-Generation Sequencing (NGS) technology can now be used to sequence "old" specimens. Indeed, many of these specimens are unique samples of nomenclatural types and can be crucial for resolving systematic or biogeographic scientific questions. Two ladybird beetle specimens from Patagonia corresponding to a new species of the genus Eriopis Mulsant were found in the collections of the Muséum national d'Histoire naturelle (MNHN), Paris. Here, we describe Eriopis patagonia Salazar, sp. nov. Total DNA of one of the two specimens was sequenced by NGS using a paired-end Illumina approach. We reconstruct and characterize the mitochondrial genome of this species (16,194 bp). Then, the protein-coding genes (PCGs) and ribosomal RNAs (rRNAs) were used to infer by maximum likelihood and Bayesian Inference the phylogenetic position of E. patagonia among 27 representatives of Coccinellidae. Phylogenetic analysis confirmed the position of Eriopis as sister group to Cycloneda Crotch. Hence, we highlight the high potential of sequencing technology for extracting molecular information from old specimens, which are used here for the systematic study of a genus, while demonstrating the importance of preserving biological collections.
Collapse
Affiliation(s)
- Karen Salazar
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d’Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP 50, 75005 Paris, France;
- Grupo de Investigación Insectos de Colombia, Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Ciudad Universitaria, Bogotá 111321, Colombia
| | - Romain Nattier
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d’Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP 50, 75005 Paris, France;
| |
Collapse
|
32
|
Wood HM. Morphology and performance of the 'trap-jaw' cheliceral strikes in spiders (Araneae, Mecysmaucheniidae). J Exp Biol 2020; 223:jeb219899. [PMID: 32561635 DOI: 10.1242/jeb.219899] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 06/02/2020] [Indexed: 08/26/2023]
Abstract
Mecysmaucheniidae spiders have evolved ultra-fast cheliceral strikes 4 times independently. The mechanism for producing these high-speed strikes is likely due to a latch/spring system that allows for stored energy to be rapidly released. This study examined two different sister lineages: Zearchaea has ultra-fast cheliceral strikes and Aotearoa, based on external morphology of the clypeus, is hypothesized to have slower strikes. Using high-speed videography, I first gathered kinematic data on each taxon. Then, using histology and data from micro-computed tomography scanning, I examined internal cheliceral muscle morphology to test whether shifts in muscle anatomy correspond to performance differences in cheliceral strike. Results from high-speed video analysis revealed that Zearchaea achieves peak angular velocities of 25.0×103±4.8×103 rad s-1 (mean±s.d.) in durations of 0.0843±0.017 ms. The fastest recorded strike had a peak angular and linear velocity of 30.8×103 rad s-1 and 18.2 m s-1, respectively. The slower striking sister species, Aotearoa magna, was three orders of magnitude slower in velocity and longer in duration. Histology revealed sarcomere length differences, with some muscles optimized for force, and other muscles for speed. 3D printed models revealed structural differences that explain how the chelicerae hinge open and close. Combining all of this evidence, I put forth a hypothesis for the ultra-fast trap-jaw mechanism. This research documents the morphological shifts that accompany ultra-fast movements that result in increased rotation in joints and increased muscle specialization.
Collapse
Affiliation(s)
- Hannah M Wood
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA
| |
Collapse
|
33
|
Patzold F, Zilli A, Hundsdoerfer AK. Advantages of an easy-to-use DNA extraction method for minimal-destructive analysis of collection specimens. PLoS One 2020; 15:e0235222. [PMID: 32639972 PMCID: PMC7343169 DOI: 10.1371/journal.pone.0235222] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 06/10/2020] [Indexed: 11/19/2022] Open
Abstract
Here we present and justify an approach for minimal-destructive DNA extraction from historic insect specimens for next generation sequencing applications. An increasing number of studies use insects from museum collections for biodiversity research. However, the availability of specimens for molecular analyses has been limited by the degraded nature of the DNA gained from century-old museum material and the consumptive nature of most DNA extraction procedures. The method described in this manuscript enabled us to successfully extract DNA from specimens as old as 241 years using a minimal-destructive approach. The direct comparison of the DNeasy extraction Kit and the Monarch® PCR & DNA Clean-up Kit showed a significant increase of 17.3-fold higher DNA yield extracted with the Monarch Oligo protocol on average. By using an extraction protocol originally designed for oligonucleotide clean-up, we were able to combine overcoming the restrictions by target fragment size and strand state, with minimising time consumption and labour-intensity. The type specimens used for the minimal-destructive DNA extraction exhibited no significant external change or post-extraction damage, while sufficient DNA was retrieved for analyses.
Collapse
Affiliation(s)
- Franziska Patzold
- Museum of Zoology (Museum für Tierkunde), Senckenberg Natural History Collections Dresden, Dresden, Germany
| | - Alberto Zilli
- Division Insects, Department Life Sciences, Natural History Museum, London, United Kingdom
| | - Anna K. Hundsdoerfer
- Museum of Zoology (Museum für Tierkunde), Senckenberg Natural History Collections Dresden, Dresden, Germany
| |
Collapse
|
34
|
Ramírez MJ, Magalhaes ILF, Derkarabetian S, Ledford J, Griswold CE, Wood HM, Hedin M. Sequence Capture Phylogenomics of True Spiders Reveals Convergent Evolution of Respiratory Systems. Syst Biol 2020; 70:14-20. [PMID: 32497195 DOI: 10.1093/sysbio/syaa043] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 05/16/2020] [Accepted: 05/27/2020] [Indexed: 12/25/2022] Open
Abstract
The common ancestor of spiders likely used silk to line burrows or make simple webs, with specialized spinning organs and aerial webs originating with the evolution of the megadiverse "true spiders" (Araneomorphae). The base of the araneomorph tree also concentrates the greatest number of changes in respiratory structures, a character system whose evolution is still poorly understood, and that might be related to the evolution of silk glands. Emphasizing a dense sampling of multiple araneomorph lineages where tracheal systems likely originated, we gathered genomic-scale data and reconstructed a phylogeny of true spiders. This robust phylogenomic framework was used to conduct maximum likelihood and Bayesian character evolution analyses for respiratory systems, silk glands, and aerial webs, based on a combination of original and published data. Our results indicate that in true spiders, posterior book lungs were transformed into morphologically similar tracheal systems six times independently, after the evolution of novel silk gland systems and the origin of aerial webs. From these comparative data, we put forth a novel hypothesis that early-diverging web-building spiders were faced with new energetic demands for spinning, which prompted the evolution of similar tracheal systems via convergence; we also propose tests of predictions derived from this hypothesis.[Book lungs; discrete character evolution; respiratory systems; silk; spider web evolution; ultraconserved elements.].
Collapse
Affiliation(s)
- Martín J Ramírez
- Division of Arachnology, Museo Argentino de Ciencias Naturales "Bernardino Rivadavia", Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Buenos Aires, Argentina
| | - Ivan L F Magalhaes
- Division of Arachnology, Museo Argentino de Ciencias Naturales "Bernardino Rivadavia", Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Buenos Aires, Argentina
| | - Shahan Derkarabetian
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Joel Ledford
- Department of Plant Biology, University of California, Davis, CA 95616 USA
| | - Charles E Griswold
- Entomology, California Academy of Sciences, San Francisco, CA, 94118, USA
| | - Hannah M Wood
- National Museum of Natural History, Smithsonian Institution, Washington DC 20560-0188, USA
| | - Marshal Hedin
- Department of Biology, San Diego State University, San Diego, CA 92182-4614, USA
| |
Collapse
|
35
|
Colella JP, Tigano A, MacManes MD. A linked-read approach to museomics: Higher quality de novo genome assemblies from degraded tissues. Mol Ecol Resour 2020; 20:856-870. [PMID: 32153100 PMCID: PMC7496956 DOI: 10.1111/1755-0998.13155] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 03/03/2020] [Accepted: 03/06/2020] [Indexed: 12/20/2022]
Abstract
High-throughput sequencing technologies are a proposed solution for accessing the molecular data in historical specimens. However, degraded DNA combined with the computational demands of short-read assemblies has posed significant laboratory and bioinformatics challenges for de novo genome assembly. Linked-read or "synthetic long-read" sequencing technologies, such as 10× Genomics, may provide a cost-effective alternative solution to assemble higher quality de novo genomes from degraded tissue samples. Here, we compare assembly quality (e.g., genome contiguity and completeness, presence of orthogroups) between four new deer mouse (Peromyscus spp.) genomes assembled using linked-read technology and four published genomes assembled from a single shotgun library. At a similar price-point, these approaches produce vastly different assemblies, with linked-read assemblies having overall higher contiguity and completeness, measured by larger N50 values and greater number of genes assembled, respectively. As a proof-of-concept, we used annotated genes from the four Peromyscus linked-read assemblies and eight additional rodent taxa to generate a phylogeny, which reconstructed the expected relationships among species with 100% support. Although not without caveats, our results suggest that linked-read sequencing approaches are a viable option to build de novo genomes from degraded tissues, which may prove particularly valuable for taxa that are extinct, rare or difficult to collect.
Collapse
Affiliation(s)
- Jocelyn P Colella
- Molecular, Cellular, and Biomedical Sciences Department, University of New Hampshire, Durham, NH, USA.,Hubbard Center for Genome Studies, University of New Hampshire, Durham, NH, USA
| | - Anna Tigano
- Molecular, Cellular, and Biomedical Sciences Department, University of New Hampshire, Durham, NH, USA.,Hubbard Center for Genome Studies, University of New Hampshire, Durham, NH, USA
| | - Matthew D MacManes
- Molecular, Cellular, and Biomedical Sciences Department, University of New Hampshire, Durham, NH, USA.,Hubbard Center for Genome Studies, University of New Hampshire, Durham, NH, USA
| |
Collapse
|
36
|
Analyzing drivers of speciation in the Southern Ocean using the sea spider species complex Colossendeis megalonyx as a test case. Polar Biol 2020. [DOI: 10.1007/s00300-020-02636-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
AbstractColossendeis megalonyx Hoek, 1881 has the broadest distribution of all sea spiders in the Southern Ocean. Previous studies have detected several evolutionarily young lineages within this taxon and interpreted them as a result of allopatric speciation in a few shelf refuges during glacial maxima. However, alternative scenarios such as ecological speciation in sympatry have rarely been considered or tested. Here, we generated the most extensive genomic and morphometric data set on the C. megalonyx species complex to (i) comprehensively describe species diversity, (ii) explore intraspecific connectivity between populations located around Antarctica, and (iii) systematically test for positive selection indicative of adaptive speciation. We successfully applied a target hybrid enrichment approach and recovered all 1607 genes targeted. Phylogenomic analysis was consistent with previous findings and, moreover, increased the resolution of branching within lineages. We found specimens of phylogenetically well-separated lineages occurring in sympatry to be genetically distinct from each other and gene flow between geographically separated populations of the same lineages to be restricted. Evidence for positive selection was found for four genes associated with structural and neuronal functions. Hence, there is an indication for positive selection in the C. megalonyx species complex, yet its specific contribution to the speciation process remains to be explored further. Finally, morphometric analyses revealed multiple significant differences between lineages, but a clear separation proved difficult. Our study highlights the relevance of positive selection as a potential driver for speciation in the Southern Ocean.
Collapse
|
37
|
McGaughran A. Effects of sample age on data quality from targeted sequencing of museum specimens: what are we capturing in time? BMC Genomics 2020; 21:188. [PMID: 32111157 PMCID: PMC7048091 DOI: 10.1186/s12864-020-6594-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 02/19/2020] [Indexed: 01/04/2023] Open
Abstract
Background Next generation sequencing (NGS) can recover DNA data from valuable extant and extinct museum specimens. However, archived or preserved DNA is difficult to sequence because of its fragmented, damaged nature, such that the most successful NGS methods for preserved specimens remain sub-optimal. Improving wet-lab protocols and comprehensively determining the effects of sample age on NGS library quality are therefore of vital importance. Here, I examine the relationship between sample age and several indicators of library quality following targeted NGS sequencing of ~ 1300 loci using 271 samples of pinned moth specimens (Helicoverpa armigera) ranging in age from 5 to 117 years. Results I find that older samples have lower DNA concentrations following extraction and thus require a higher number of indexing PCR cycles during library preparation. When sequenced reads are aligned to a reference genome or to only the targeted region, older samples have a lower number of sequenced and mapped reads, lower mean coverage, and lower estimated library sizes, while the percentage of adapters in sequenced reads increases significantly as samples become older. Older samples also show the poorest capture success, with lower enrichment and a higher improved coverage anticipated from further sequencing. Conclusions Sample age has significant, measurable impacts on the quality of NGS data following targeted enrichment. However, incorporating a uracil-removing enzyme into the blunt end-repair step during library preparation could help to repair DNA damage, and using a method that prevents adapter-dimer formation may result in improved data yields.
Collapse
Affiliation(s)
- Angela McGaughran
- Australian National University, Research School of Biology, Division of Ecology and Evolution, Acton, Canberra, ACT, 2600, Australia. .,CSIRO Land and Water, Integrated Omics Team, Black Mountain Laboratories, Canberra, ACT, 2600, Australia.
| |
Collapse
|
38
|
Kulkarni S, Wood H, Lloyd M, Hormiga G. Spider-specific probe set for ultraconserved elements offers new perspectives on the evolutionary history of spiders (Arachnida, Araneae). Mol Ecol Resour 2019; 20:185-203. [PMID: 31599100 DOI: 10.1111/1755-0998.13099] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/11/2019] [Accepted: 09/24/2019] [Indexed: 11/29/2022]
Abstract
Phylogenomic methods have proven useful for resolving deep nodes and recalcitrant groups in the spider tree of life. Across arachnids, transcriptomic approaches may generate thousands of loci, and target-capture methods, using the previously designed arachnid-specific probe set, can target a maximum of about 1,000 loci. Here, we develop a specialized target-capture probe set for spiders that contains over 2,000 ultraconserved elements (UCEs) and then demonstrate the utility of this probe set through sequencing and phylogenetic analysis. We designed the 'spider-specific' probe set using three spider genomes (Loxosceles, Parasteatoda and Stegodyphus) and ensured that the newly designed probe set includes UCEs from the previously designed Arachnida probe set. The new 'spider-specific' probes were used to sequence UCE loci in 51 specimens. The remaining samples included five spider genomes and taxa that were enriched using Arachnida probe set. The 'spider-specific' probes were also used to gather loci from a total of 84 representative taxa across Araneae. On mapping these 84 taxa to the Arachnida probe set, we captured at most 710 UCE loci, while the spider-specific probe set captured up to 1,547 UCE loci from the same taxon sample. Phylogenetic analyses using maximum likelihood and coalescent methods corroborate most nodes resolved by recent transcriptomic analyses, but not all (e.g. UCE data suggest monophyly of 'symphytognathoids'). Our preferred hypothesis based on topology tests, suggests monophyly of the 'symphytognathoids' (the miniature orb weavers), which in previous studies has only been supported by a combination of morphological and behavioural characters.
Collapse
Affiliation(s)
- Siddharth Kulkarni
- Department of Biological Sciences, The George Washington University, Washington, DC, USA
| | - Hannah Wood
- Department of Entomology, Smithsonian Institution, National Museum of Natural History, Washington, DC, USA
| | - Michael Lloyd
- Department of Entomology, Smithsonian Institution, National Museum of Natural History, Washington, DC, USA.,The Jackson Laboratory, Bar Harbor, ME, USA
| | - Gustavo Hormiga
- Department of Biological Sciences, The George Washington University, Washington, DC, USA
| |
Collapse
|
39
|
Benavides LR, Cosgrove JG, Harvey MS, Giribet G. Phylogenomic interrogation resolves the backbone of the Pseudoscorpiones tree of life. Mol Phylogenet Evol 2019; 139:106509. [DOI: 10.1016/j.ympev.2019.05.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 05/18/2019] [Accepted: 05/21/2019] [Indexed: 01/03/2023]
|
40
|
Tsai WLE, Schedl ME, Maley JM, McCormack JE. More than skin and bones: Comparing extraction methods and alternative sources of DNA from avian museum specimens. Mol Ecol Resour 2019; 20:1220-1227. [PMID: 31478338 DOI: 10.1111/1755-0998.13077] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/11/2019] [Accepted: 07/23/2019] [Indexed: 11/28/2022]
Abstract
Next-generation sequencing has greatly expanded the utility and value of museum collections by revealing specimens as genomic resources. As the field of museum genomics grows, so does the need for extraction methods that maximize DNA yields. For avian museum specimens, the established method of extracting DNA from toe pads works well for most specimens. However, for some specimens, especially those of birds that are very small or very large, toe pads can be a poor source of DNA. In this study, we apply two DNA extraction methods (phenol-chloroform and silica column) to three different sources of DNA (toe pad, skin punch and bone) from 10 historical avian museum specimens. We show that a modified phenol-chloroform protocol yielded significantly more DNA than a silica column protocol (e.g., Qiagen DNeasy Blood & Tissue Kit) across all tissue types. However, extractions using the silica column protocol contained longer fragments on average than those using the phenol-chloroform protocol, probably as a result of loss of small fragments through the silica column. While toe pads yielded more DNA than skin punches and bone fragments, skin punches proved to be a reliable alternative source of DNA and might be especially appealing when toe pad extractions are impractical. Overall, we found that historical bird museum specimens contain substantial amounts of DNA for genomic studies under most extraction scenarios, but that a phenol-chloroform protocol consistently provides the high quantities of DNA required for most current genomic protocols.
Collapse
Affiliation(s)
- Whitney L E Tsai
- Moore Laboratory of Zoology, Occidental College, Los Angeles, California
| | - Margaret E Schedl
- Moore Laboratory of Zoology, Occidental College, Los Angeles, California
| | - James M Maley
- Moore Laboratory of Zoology, Occidental College, Los Angeles, California
| | - John E McCormack
- Moore Laboratory of Zoology, Occidental College, Los Angeles, California.,Biology Department, Occidental College, Los Angeles, California
| |
Collapse
|
41
|
Derkarabetian S, Benavides LR, Giribet G. Sequence capture phylogenomics of historical ethanol‐preserved museum specimens: Unlocking the rest of the vault. Mol Ecol Resour 2019; 19:1531-1544. [DOI: 10.1111/1755-0998.13072] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/22/2019] [Accepted: 07/31/2019] [Indexed: 11/28/2022]
Affiliation(s)
- Shahan Derkarabetian
- Museum of Comparative Zoology Department of Organismic and Evolutionary Biology Harvard University Cambridge MA USA
| | - Ligia R. Benavides
- Museum of Comparative Zoology Department of Organismic and Evolutionary Biology Harvard University Cambridge MA USA
| | - Gonzalo Giribet
- Museum of Comparative Zoology Department of Organismic and Evolutionary Biology Harvard University Cambridge MA USA
| |
Collapse
|
42
|
Kuntner M, Hamilton CA, Cheng RC, Gregorič M, Lupše N, Lokovšek T, Lemmon EM, Lemmon AR, Agnarsson I, Coddington JA, Bond JE. Golden Orbweavers Ignore Biological Rules: Phylogenomic and Comparative Analyses Unravel a Complex Evolution of Sexual Size Dimorphism. Syst Biol 2019; 68:555-572. [PMID: 30517732 PMCID: PMC6568015 DOI: 10.1093/sysbio/syy082] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 11/20/2018] [Accepted: 11/26/2018] [Indexed: 11/14/2022] Open
Abstract
Instances of sexual size dimorphism (SSD) provide the context for rigorous tests of biological rules of size evolution, such as Cope's rule (phyletic size increase), Rensch's rule (allometric patterns of male and female size), as well as male and female body size optima. In certain spider groups, such as the golden orbweavers (Nephilidae), extreme female-biased SSD (eSSD, female:male body length $\ge$2) is the norm. Nephilid genera construct webs of exaggerated proportions, which can be aerial, arboricolous, or intermediate (hybrid). First, we established the backbone phylogeny of Nephilidae using 367 anchored hybrid enrichment markers, then combined these data with classical markers for a reference species-level phylogeny. Second, we used the phylogeny to test Cope and Rensch's rules, sex specific size optima, and the coevolution of web size, type, and features with female and male body size and their ratio, SSD. Male, but not female, size increases significantly over time, and refutes Cope's rule. Allometric analyses reject the converse, Rensch's rule. Male and female body sizes are uncorrelated. Female size evolution is random, but males evolve toward an optimum size (3.2-4.9 mm). Overall, female body size correlates positively with absolute web size. However, intermediate sized females build the largest webs (of the hybrid type), giant female Nephila and Trichonephila build smaller webs (of the aerial type), and the smallest females build the smallest webs (of the arboricolous type). We propose taxonomic changes based on the criteria of clade age, monophyly and exclusivity, classification information content, and diagnosability. Spider families, as currently defined, tend to be between 37 million years old and 98 million years old, and Nephilidae is estimated at 133 Ma (97-146), thus deserving family status. We, therefore, resurrect the family Nephilidae Simon 1894 that contains Clitaetra Simon 1889, the Cretaceous GeratonephilaPoinar and Buckley (2012), Herennia Thorell 1877, IndoetraKuntner 2006, new rank, Nephila Leach 1815, Nephilengys L. Koch 1872, Nephilingis Kuntner 2013, Palaeonephila Wunderlich 2004 from Tertiary Baltic amber, and TrichonephilaDahl 1911, new rank. We propose the new clade Orbipurae to contain Araneidae Clerck 1757, Phonognathidae Simon 1894, new rank, and Nephilidae. Nephilid female gigantism is a phylogenetically ancient phenotype (over 100 Ma), as is eSSD, though their magnitudes vary by lineage.
Collapse
Affiliation(s)
- Matjaž Kuntner
- Evolutionary Zoology Laboratory, Department of Organisms and Ecosystems Research, National Institute of Biology, Večna pot 111, SI-1000 Ljubljana, Slovenia
- Evolutionary Zoology Laboratory, Biological Institute ZRC SAZU, Novi trg 2, SI-1001 Ljubljana, Slovenia
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, 10th and Constitution, NW, Washington, DC 20560-0105, USA
- Centre for Behavioural Ecology and Evolution, College of Life Sciences, Hubei University, 368 Youyi Road, Wuhan, Hubei 430062, China
| | - Chris A Hamilton
- Department of Entomology, Plant Pathology, & Nematology, University of Idaho, 875 Perimeter Dr. MS 2329, Moscow, ID 83844-2329, USA
| | - Ren-Chung Cheng
- Evolutionary Zoology Laboratory, Biological Institute ZRC SAZU, Novi trg 2, SI-1001 Ljubljana, Slovenia
- Department of Life Sciences, National Chung Hsing University, No.145 Xingda Rd., South Dist., Taichung City 402, Taiwan
| | - Matjaž Gregorič
- Evolutionary Zoology Laboratory, Biological Institute ZRC SAZU, Novi trg 2, SI-1001 Ljubljana, Slovenia
| | - Nik Lupše
- Evolutionary Zoology Laboratory, Biological Institute ZRC SAZU, Novi trg 2, SI-1001 Ljubljana, Slovenia
- Division of Animal Evolutionary Biology, Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 44 Prague, Czech Republic
| | - Tjaša Lokovšek
- Evolutionary Zoology Laboratory, Biological Institute ZRC SAZU, Novi trg 2, SI-1001 Ljubljana, Slovenia
| | - Emily Moriarty Lemmon
- Department of Biological Science, Florida State University, 319 Stadium Dr., Tallahassee, FL 32306-4295, USA
| | - Alan R Lemmon
- Department of Scientific Computing, Florida State University, 400 Dirac Science Library, Tallahassee, FL 32306-4120, USA
| | - Ingi Agnarsson
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, 10th and Constitution, NW, Washington, DC 20560-0105, USA
- Department of Biology, University of Vermont, 316 Marsh Life Science Building, 109 Carrigan Drive, Burlington, VT 05405-0086, USA
| | - Jonathan A Coddington
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, 10th and Constitution, NW, Washington, DC 20560-0105, USA
| | - Jason E Bond
- Department of Entomology and Nematology, University of California Davis, 1 Shields Drive, Davis, CA 95616, USA
| |
Collapse
|
43
|
Hedin M, Derkarabetian S, Alfaro A, Ramírez MJ, Bond JE. Phylogenomic analysis and revised classification of atypoid mygalomorph spiders (Araneae, Mygalomorphae), with notes on arachnid ultraconserved element loci. PeerJ 2019; 7:e6864. [PMID: 31110925 PMCID: PMC6501763 DOI: 10.7717/peerj.6864] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 03/28/2019] [Indexed: 12/18/2022] Open
Abstract
The atypoid mygalomorphs include spiders from three described families that build a diverse array of entrance web constructs, including funnel-and-sheet webs, purse webs, trapdoors, turrets and silken collars. Molecular phylogenetic analyses have generally supported the monophyly of Atypoidea, but prior studies have not sampled all relevant taxa. Here we generated a dataset of ultraconserved element loci for all described atypoid genera, including taxa (Mecicobothrium and Hexurella) key to understanding familial monophyly, divergence times, and patterns of entrance web evolution. We show that the conserved regions of the arachnid UCE probe set target exons, such that it should be possible to combine UCE and transcriptome datasets in arachnids. We also show that different UCE probes sometimes target the same protein, and under the matching parameters used here show that UCE alignments sometimes include non-orthologs. Using multiple curated phylogenomic matrices we recover a monophyletic Atypoidea, and reveal that the family Mecicobothriidae comprises four separate and divergent lineages. Fossil-calibrated divergence time analyses suggest ancient Triassic (or older) origins for several relictual atypoid lineages, with late Cretaceous/early Tertiary divergences within some genera indicating a high potential for cryptic species diversity. The ancestral entrance web construct for atypoids, and all mygalomorphs, is reconstructed as a funnel-and-sheet web.
Collapse
Affiliation(s)
- Marshal Hedin
- Department of Biology, San Diego State University, San Diego, CA, United States of America
| | - Shahan Derkarabetian
- Department of Biology, San Diego State University, San Diego, CA, United States of America
- Department of Biology, University of California, Riverside, Riverside, CA, United States of America
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, United States of America
| | - Adan Alfaro
- Department of Biology, San Diego State University, San Diego, CA, United States of America
| | - Martín J. Ramírez
- Division of Arachnology, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Jason E. Bond
- Department of Entomology and Nematology, University of California, Davis, CA, United States of America
| |
Collapse
|
44
|
Scharff N, Coddington JA, Blackledge TA, Agnarsson I, Framenau VW, Szűts T, Hayashi CY, Dimitrov D. Phylogeny of the orb‐weaving spider family Araneidae (Araneae: Araneoidea). Cladistics 2019; 36:1-21. [DOI: 10.1111/cla.12382] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2019] [Indexed: 11/29/2022] Open
Affiliation(s)
- Nikolaj Scharff
- Center for Macroecology, Evolution and Climate Natural History Museum of Denmark University of Copenhagen Copenhagen Denmark
- Smithsonian Institution National Museum of Natural History 10th and Constitution NW Washington DC 20560‐0105 USA
| | - Jonathan A. Coddington
- Smithsonian Institution National Museum of Natural History 10th and Constitution NW Washington DC 20560‐0105 USA
| | - Todd A. Blackledge
- Integrated Bioscience Program Department of Biology University of Akron Akron OH USA
| | - Ingi Agnarsson
- Smithsonian Institution National Museum of Natural History 10th and Constitution NW Washington DC 20560‐0105 USA
- Department of Biology University of Vermont 109 Carrigan Drive Burlington VT 05405‐0086 USA
| | - Volker W. Framenau
- Department of Terrestrial Zoology Western Australian Museum Locked Bag 49 Welshpool DC WA 6986 Australia
- School of Animal Biology University of Western Australia Crawley WA 6009 Australia
- Harry Butler Institute Murdoch University 90 South St. Murdoch WA 6150 Australia
| | - Tamás Szűts
- Center for Macroecology, Evolution and Climate Natural History Museum of Denmark University of Copenhagen Copenhagen Denmark
- Department of Ecology University of Veterinary Medicine Budapest H1077 Budapest Hungary
| | - Cheryl Y. Hayashi
- Division of Invertebrate Zoology and Sackler Institute for Comparative Genomics American Museum of Natural History New York NY 10024 USA
| | - Dimitar Dimitrov
- Center for Macroecology, Evolution and Climate Natural History Museum of Denmark University of Copenhagen Copenhagen Denmark
- Natural History Museum University of Oslo PO Box 1172, Blindern NO‐0318 Oslo Norway
- Department of Natural History University Museum of Bergen University of Bergen Bergen Norway
| |
Collapse
|
45
|
Wood HM, Parkinson DY. Comparative morphology of cheliceral muscles using high-resolution X-ray microcomputed-tomography in palpimanoid spiders (Araneae, Palpimanoidea). J Morphol 2019; 280:232-243. [PMID: 30653717 DOI: 10.1002/jmor.20939] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 11/29/2018] [Accepted: 12/07/2018] [Indexed: 11/06/2022]
Abstract
Spiders are important predators in terrestrial ecosystems, yet we know very little about the principal feeding structures of spiders, the chelicerae, which are functionally equivalent to "jaws" or "mandibles" and are an extremely important aspect of spider biology. In particular, members of Palpimanoidea have evolved highly unusual cheliceral morphologies and functions, including high-speed, ballistic movements in mecysmaucheniid spiders, the fastest arachnid movements known thus far, and the elongated, highly maneuverable chelicerae of archaeids that use an attack-at-a-distance strategy. Here, using micro-Computed-Tomography scanning techniques, we perform a comparative study to examine cheliceral muscle morphology in six different spider specimens representing five palpimanoid families. We provide a hypothesis for homology in palpimanoid cheliceral muscles and then compare and contrast these findings with previous studies on other non-palpimanoid spiders. We document and discuss two sets of cheliceral muscles in palpimanoids that have not been previously observed in other spiders or which may represent a position shift compared to other spiders. In the palpimanoids, Palpimanus sp., Huttonia sp., and Colopea sp. showed similar cheliceral muscle anatomy. In Eriauchenius ranavalona, which has highly maneuverable chelicerae, some of the muscles have a more horizontal orientation, and there is a greater degree of cheliceral muscle divergence. In Zearchaea sp. and Aotearoa magna, some muscles have also shifted to a more horizontal orientation, and in Zearchaea sp., a species with a ballistic, high-speed predatory strike, there is a loss of cheliceral muscles. This research is a first step toward understanding cheliceral form and function across spiders.
Collapse
Affiliation(s)
- Hannah M Wood
- Department Entomology, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia
| | - Dilworth Y Parkinson
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California
| |
Collapse
|
46
|
A simple strategy for recovering ultraconserved elements, exons, and introns from low coverage shotgun sequencing of museum specimens: Placement of the partridge genus Tropicoperdix within the galliformes. Mol Phylogenet Evol 2018; 129:304-314. [DOI: 10.1016/j.ympev.2018.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 07/23/2018] [Accepted: 09/06/2018] [Indexed: 11/19/2022]
|