1
|
Hiltunen Thorén M, Onuț-Brännström I, Alfjorden A, Pecková H, Swords F, Hooper C, Holzer AS, Bass D, Burki F. Comparative genomics of Ascetosporea gives new insight into the evolutionary basis for animal parasitism in Rhizaria. BMC Biol 2024; 22:103. [PMID: 38702750 PMCID: PMC11069148 DOI: 10.1186/s12915-024-01898-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/22/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Ascetosporea (Endomyxa, Rhizaria) is a group of unicellular parasites infecting aquatic invertebrates. They are increasingly being recognized as widespread and important in marine environments, causing large annual losses in invertebrate aquaculture. Despite their importance, little molecular data of Ascetosporea exist, with only two genome assemblies published to date. Accordingly, the evolutionary origin of these parasites is unclear, including their phylogenetic position and the genomic adaptations that accompanied the transition from a free-living lifestyle to parasitism. Here, we sequenced and assembled three new ascetosporean genomes, as well as the genome of a closely related amphizoic species, to investigate the phylogeny, origin, and genomic adaptations to parasitism in Ascetosporea. RESULTS Using a phylogenomic approach, we confirm the monophyly of Ascetosporea and show that Paramyxida group with Mikrocytida, with Haplosporida being sister to both groups. We report that the genomes of these parasites are relatively small (12-36 Mb) and gene-sparse (~ 2300-5200 genes), while containing surprisingly high amounts of non-coding sequence (~ 70-90% of the genomes). Performing gene-tree aware ancestral reconstruction of gene families, we demonstrate extensive gene losses at the origin of parasitism in Ascetosporea, primarily of metabolic functions, and little gene gain except on terminal branches. Finally, we highlight some functional gene classes that have undergone expansions during evolution of the group. CONCLUSIONS We present important new genomic information from a lineage of enigmatic but important parasites of invertebrates and illuminate some of the genomic innovations accompanying the evolutionary transition to parasitism in this lineage. Our results and data provide a genetic basis for the development of control measures against these parasites.
Collapse
Affiliation(s)
- Markus Hiltunen Thorén
- Department of Organismal Biology, Uppsala University, Norbyv. 18D, Uppsala, SE-752 36, Sweden.
- Present Address: Department of Ecology, Environment and Plant Sciences, Stockholm University, Svante Arrhenius V. 20 A, Stockholm, SE-114 18, Sweden.
- Present Address: The Royal Swedish Academy of Sciences, Stockholm, SE-114 18, Sweden.
| | - Ioana Onuț-Brännström
- Present Address: Department of Ecology and Genetics, Uppsala University, Norbyv. 18D, Uppsala, SE-752 36, Sweden
- Present Address: Natural History Museum, Oslo University, Oslo, 0562, Norway
| | - Anders Alfjorden
- Department of Organismal Biology, Uppsala University, Norbyv. 18D, Uppsala, SE-752 36, Sweden
| | - Hana Pecková
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, České Budějovice, 370 05, Czech Republic
| | - Fiona Swords
- Marine Institute, Rinville, Oranmore, H91R673, Ireland
| | - Chantelle Hooper
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth Laboratory, Weymouth, Dorset, DT4 8UB, UK
- Sustainable Aquaculture Futures, Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Astrid S Holzer
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, České Budějovice, 370 05, Czech Republic
- Division of Fish Health, University of Veterinary Medicine, Veterinärplatz 1, Vienna, 1210, Austria
| | - David Bass
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth Laboratory, Weymouth, Dorset, DT4 8UB, UK
- Sustainable Aquaculture Futures, Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
- Natural History Museum (NHM), Science, London, SW7 5BD, UK
| | - Fabien Burki
- Department of Organismal Biology, Uppsala University, Norbyv. 18D, Uppsala, SE-752 36, Sweden.
- Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
2
|
Rabelo LP, Sodré D, de Sousa RPC, Watanabe L, Gomes G, Sampaio I, Vallinoto M. SynGenes: a Python class for standardizing nomenclatures of mitochondrial and chloroplast genes and a web form for enhancing searches for evolutionary analyses. BMC Bioinformatics 2024; 25:160. [PMID: 38649820 PMCID: PMC11036621 DOI: 10.1186/s12859-024-05781-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/12/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND The reconstruction of the evolutionary history of organisms has been greatly influenced by the advent of molecular techniques, leading to a significant increase in studies utilizing genomic data from different species. However, the lack of standardization in gene nomenclature poses a challenge in database searches and evolutionary analyses, impacting the accuracy of results obtained. RESULTS To address this issue, a Python class for standardizing gene nomenclatures, SynGenes, has been developed. It automatically recognizes and converts different nomenclature variations into a standardized form, facilitating comprehensive and accurate searches. Additionally, SynGenes offers a web form for individual searches using different names associated with the same gene. The SynGenes database contains a total of 545 gene name variations for mitochondrial and 2485 for chloroplasts genes, providing a valuable resource for researchers. CONCLUSIONS The SynGenes platform offers a solution for standardizing gene nomenclatures of mitochondrial and chloroplast genes and providing a standardized search solution for specific markers in GenBank. Evaluation of SynGenes effectiveness through research conducted on GenBank and PubMedCentral demonstrated its ability to yield a greater number of outcomes compared to conventional searches, ensuring more comprehensive and accurate results. This tool is crucial for accurate database searches, and consequently, evolutionary analyses, addressing the challenges posed by non-standardized gene nomenclature.
Collapse
Affiliation(s)
- Luan Pinto Rabelo
- Laboratório de Evolução, IECOS, Universidade Federal do Pará, Campus de Bragança, Bragança, Brazil.
| | - Davidson Sodré
- Universidade Federal Rural da Amazônia (UFRA), Campus de Capitão Poço, Capitão Poço, Brazil
| | | | - Luciana Watanabe
- Laboratório de Evolução, IECOS, Universidade Federal do Pará, Campus de Bragança, Bragança, Brazil
| | - Grazielle Gomes
- Laboratório de Genética Aplicada (LAGA), IECOS, Universidade Federal do Pará, Campus de Bragança, Bragança, Brazil
| | - Iracilda Sampaio
- Laboratório de Evolução, IECOS, Universidade Federal do Pará, Campus de Bragança, Bragança, Brazil
| | - Marcelo Vallinoto
- Laboratório de Evolução, IECOS, Universidade Federal do Pará, Campus de Bragança, Bragança, Brazil
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Porto, Portugal
| |
Collapse
|
3
|
Lamża Ł. Diversity of 'simple' multicellular eukaryotes: 45 independent cases and six types of multicellularity. Biol Rev Camb Philos Soc 2023; 98:2188-2209. [PMID: 37475165 DOI: 10.1111/brv.13001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 07/22/2023]
Abstract
Multicellularity evolved multiple times in the history of life, with most reviewers agreeing that it appeared at least 20 times in eukaryotes. However, a specific list of multicellular eukaryotes with clear criteria for inclusion has not yet been published. Herein, an updated critical review of eukaryotic multicellularity is presented, based on current understanding of eukaryotic phylogeny and new discoveries in microbiology, phycology and mycology. As a result, 45 independent multicellular lineages are identified that fall into six distinct types. Functional criteria, as distinct from a purely topological definition of a cell, are introduced to bring uniformity and clarity to the existing definitions of terms such as colony, multicellularity, thallus or plasmodium. The category of clonal multicellularity is expanded to include: (i) septated multinucleated thalli found in Pseudofungi and early-branching Fungi such as Chytridiomycota and Blastocladiomycota; and (ii) multicellular reproductive structures formed by plasmotomy in intracellular parasites such as Phytomyxea. Furthermore, (iii) endogeneous budding, as found in Paramyxida, is described as a form of multicellularity. The best-known case of clonal multicellularity, i.e. (iv) non-separation of cells after cell division, as known from Metazoa and Ochrophyta, is also discussed. The category of aggregative multicellularity is expanded to include not only (v) pseudoplasmodial forms, such a sorocarp-forming Acrasida, but also (vi) meroplasmodial organisms, such as members of Variosea or Filoreta. A common set of topological, geometric, genetic and life-cycle criteria are presented that form a coherent, philosophically sound framework for discussing multicellularity. A possibility of a seventh type of multicellularity is discussed, that of multi-species superorganisms formed by protists with obligatory bacterial symbionts, such as some members of Oxymonada or Parabasalia. Its inclusion is dependent on the philosophical stance taken towards the concepts of individuality and organism in biology. Taxa that merit special attention are identified, such as colonial Centrohelea, and a new speculative form of multicellularity, possibly present in some reticulopodial amoebae, is briefly described. Because of insufficient phylogenetic and morphological data, not all lineages could be unequivocally identified, and the true total number of all multicellular eukaryotic lineages is therefore higher, likely close to a hundred.
Collapse
Affiliation(s)
- Łukasz Lamża
- Copernicus Center for Interdisciplinary Studies, Jagiellonian University, Szczepanska 1, Kraków, 31-011, Poland
| |
Collapse
|
4
|
Ariyadasa S, Taylor W, Weaver L, McGill E, Billington C, Pattis I. Nonbacterial Microflora in Wastewater Treatment Plants: an Underappreciated Potential Source of Pathogens. Microbiol Spectr 2023; 11:e0048123. [PMID: 37222623 PMCID: PMC10269893 DOI: 10.1128/spectrum.00481-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/09/2023] [Indexed: 05/25/2023] Open
Abstract
Wastewater treatment plants (WWTPs) receive and treat large volumes of domestic, industrial, and urban wastewater containing pathogenic and nonpathogenic microorganisms, chemical compounds, heavy metals, and other potentially hazardous substances. WWTPs play an essential role in preserving human, animal, and environmental health by removing many of these toxic and infectious agents, particularly biological hazards. Wastewater contains complex consortiums of bacterial, viral, archaeal, and eukaryotic species, and while bacteria in WWTP have been extensively studied, the temporal and spatial distribution of nonbacterial microflora (viruses, archaea, and eukaryotes) is less understood. In this study, we analyzed the viral, archaeal, and eukaryotic microflora in wastewater throughout a treatment plant (raw influent, effluent, oxidation pond water, and oxidation pond sediment) in Aotearoa (New Zealand) using Illumina shotgun metagenomic sequencing. Our results suggest a similar trend across many taxa, with an increase in relative abundance in oxidation pond samples compared to influent and effluent samples, except for archaea, which had the opposite trend. Additionally, some microbial families, such as Podoviridae bacteriophages and Apicomplexa alveolates, appeared largely unaffected by the treatment process, with their relative abundance remaining stable throughout. Several groups encompassing pathogenic species, such as Leishmania, Plasmodium, Toxoplasma, Apicomplexa, Cryptococcus, Botrytis, and Ustilago, were identified. If present, these potentially pathogenic species could be a threat to human and animal health and agricultural productivity; therefore, further investigation is warranted. These nonbacterial pathogens should be considered when assessing the potential for vector transmission, distribution of biosolids to land, and discharge of treated wastewater to waterways or land. IMPORTANCE Nonbacterial microflora in wastewater remain understudied compared to their bacterial counterparts despite their importance in the wastewater treatment process. In this study, we report the temporal and spatial distributions of DNA viruses, archaea, protozoa, and fungi in raw wastewater influent, effluent, oxidation pond water, and oxidation pond sediments by using shotgun metagenomic sequencing. Our study indicated the presence of groups of nonbacterial taxa which encompass pathogenic species that may have potential to cause disease in humans, animals, and agricultural crops. We also observed higher alpha diversity in viruses, archaea, and fungi in effluent samples than in influent samples. This suggests that the resident microflora in the wastewater treatment plant may be making a greater contribution to the diversity of taxa observed in wastewater effluent than previously thought. This study provides important insights to better understand the potential human, animal, and environmental health impacts of discharged treated wastewater.
Collapse
Affiliation(s)
- Sujani Ariyadasa
- Institute of Environmental Science and Research, Christchurch, New Zealand
| | - William Taylor
- Institute of Environmental Science and Research, Christchurch, New Zealand
| | - Louise Weaver
- Institute of Environmental Science and Research, Christchurch, New Zealand
| | - Erin McGill
- Institute of Environmental Science and Research, Christchurch, New Zealand
| | - Craig Billington
- Institute of Environmental Science and Research, Christchurch, New Zealand
| | - Isabelle Pattis
- Institute of Environmental Science and Research, Christchurch, New Zealand
| |
Collapse
|
5
|
A deep dive into the epibiotic communities on aquacultured sugar kelp Saccharina latissima in Southern New England. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
6
|
Abstract
This paper focuses on the flora of scale-bearing chrysophytes from eight provinces located in the central part of Vietnam. Khanh Hoa, Phu Yen, Binh Dinh, Thua Thien Hue, Quang Tri, and Quang Binh provinces are located in the coastal area of Vietnam. Lam Dong and Dak Lak provinces represent mountain territories with an elevation of 500–2000 metres above sea level. In total, 212 water bodies of different origins were studied. Samples were obtained from swamp areas, lakes, rivers, reservoirs, ponds, and small temporary water bodies. In total, 76 taxa were identified by electron microscopic observations of samples. A total of 54 taxa were found in the mountainous provinces, while 73 were found in the coastal provinces. Of these, 51 species are common for both areas. The most diverse was the genus Mallomonas with 66 species, varieties, and forms; followed by Synura with 7 taxa; Chrysosphaerella with 2; and Spiniferomonas with 1. Seven taxa of the genus Mallomonas were not identified to the lower rank. All these unidentified specimens may potentially represent new species for science. Ten taxa are reported for the first time in Vietnam.
Collapse
|
7
|
Cuesta EB, Coulibaly B, Bukhari T, Eiglmeier K, Kone R, Coulibaly MB, Zongo S, Barry M, Gneme A, Guelbeogo WM, Beavogui AH, Traore SF, Sagnon N, Vernick KD, Riehle MM. Comprehensive Ecological and Geographic Characterization of Eukaryotic and Prokaryotic Microbiomes in African Anopheles. Front Microbiol 2021; 12:635772. [PMID: 34054746 PMCID: PMC8153677 DOI: 10.3389/fmicb.2021.635772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 04/12/2021] [Indexed: 12/14/2022] Open
Abstract
Exposure of mosquitoes to numerous eukaryotic and prokaryotic microbes in their associated microbiomes has probably helped drive the evolution of the innate immune system. To our knowledge, a metagenomic catalog of the eukaryotic microbiome has not been reported from any insect. Here we employ a novel approach to preferentially deplete host 18S ribosomal RNA gene amplicons to reveal the composition of the eukaryotic microbial communities of Anopheles larvae sampled in Kenya, Burkina Faso and Republic of Guinea (Conakry). We identified 453 eukaryotic operational taxonomic units (OTUs) associated with Anopheles larvae in nature, but an average of 45% of the 18S rRNA sequences clustered into OTUs that lacked a taxonomic assignment in the Silva database. Thus, the Anopheles microbiome contains a striking proportion of novel eukaryotic taxa. Using sequence similarity matching and de novo phylogenetic placement, the fraction of unassigned sequences was reduced to an average of 4%, and many unclassified OTUs were assigned as relatives of known taxa. A novel taxon of the genus Ophryocystis in the phylum Apicomplexa (which also includes Plasmodium) is widespread in Anopheles larvae from East and West Africa. Notably, Ophryocystis is present at fluctuating abundance among larval breeding sites, consistent with the expected pattern of an epidemic pathogen. Species richness of the eukaryotic microbiome was not significantly different across sites from East to West Africa, while species richness of the prokaryotic microbiome was significantly lower in West Africa. Laboratory colonies of Anopheles coluzzii harbor 26 eukaryotic OTUs, of which 38% (n = 10) are shared with wild populations, while 16 OTUs are unique to the laboratory colonies. Genetically distinct An. coluzzii colonies co-housed in the same facility maintain different prokaryotic microbiome profiles, suggesting a persistent host genetic influence on microbiome composition. These results provide a foundation to understand the role of the Anopheles eukaryotic microbiome in vector immunity and pathogen transmission. We hypothesize that prevalent apicomplexans such as Ophryocystis associated with Anopheles could induce interference or competition against Plasmodium within the vector. This and other members of the eukaryotic microbiome may offer candidates for new vector control tools.
Collapse
Affiliation(s)
- Eugeni Belda Cuesta
- Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
- CNRS Unit of Evolutionary Genomics, Modeling, and Health (UMR2000), Institut Pasteur, Paris, France
| | - Boubacar Coulibaly
- Malaria Research and Training Centre, Faculty of Medicine and Dentistry, University of Mali, Bamako, Mali
| | - Tullu Bukhari
- International Centre of Insect Physiology and Ecology, Department of Human Health. Nairobi,Kenya
| | - Karin Eiglmeier
- Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
- CNRS Unit of Evolutionary Genomics, Modeling, and Health (UMR2000), Institut Pasteur, Paris, France
| | - Raymond Kone
- Centre de Formation et de Recherche en Santé Rurale de Mafèrinyah, Conakry, Guinea
| | - Mamadou B. Coulibaly
- Malaria Research and Training Centre, Faculty of Medicine and Dentistry, University of Mali, Bamako, Mali
| | - Soumanaba Zongo
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Mamadou Barry
- Centre de Formation et de Recherche en Santé Rurale de Mafèrinyah, Conakry, Guinea
| | - Awa Gneme
- Département de Biologie et Physiologie Animales, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
| | - Wamdaogo M. Guelbeogo
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Abdoul H. Beavogui
- Centre de Formation et de Recherche en Santé Rurale de Mafèrinyah, Conakry, Guinea
| | - Sekou F. Traore
- Malaria Research and Training Centre, Faculty of Medicine and Dentistry, University of Mali, Bamako, Mali
| | - N’Fale Sagnon
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Kenneth D. Vernick
- Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
- CNRS Unit of Evolutionary Genomics, Modeling, and Health (UMR2000), Institut Pasteur, Paris, France
| | - Michelle M. Riehle
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
8
|
Tria FDK, Brueckner J, Skejo J, Xavier JC, Kapust N, Knopp M, Wimmer JLE, Nagies FSP, Zimorski V, Gould SB, Garg SG, Martin WF. Gene Duplications Trace Mitochondria to the Onset of Eukaryote Complexity. Genome Biol Evol 2021; 13:evab055. [PMID: 33739376 PMCID: PMC8175051 DOI: 10.1093/gbe/evab055] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2021] [Indexed: 12/15/2022] Open
Abstract
The last eukaryote common ancestor (LECA) possessed mitochondria and all key traits that make eukaryotic cells more complex than their prokaryotic ancestors, yet the timing of mitochondrial acquisition and the role of mitochondria in the origin of eukaryote complexity remain debated. Here, we report evidence from gene duplications in LECA indicating an early origin of mitochondria. Among 163,545 duplications in 24,571 gene trees spanning 150 sequenced eukaryotic genomes, we identify 713 gene duplication events that occurred in LECA. LECA's bacterial-derived genes include numerous mitochondrial functions and were duplicated significantly more often than archaeal-derived and eukaryote-specific genes. The surplus of bacterial-derived duplications in LECA most likely reflects the serial copying of genes from the mitochondrial endosymbiont to the archaeal host's chromosomes. Clustering, phylogenies and likelihood ratio tests for 22.4 million genes from 5,655 prokaryotic and 150 eukaryotic genomes reveal no evidence for lineage-specific gene acquisitions in eukaryotes, except from the plastid in the plant lineage. That finding, and the functions of bacterial genes duplicated in LECA, suggests that the bacterial genes in eukaryotes are acquisitions from the mitochondrion, followed by vertical gene evolution and differential loss across eukaryotic lineages, flanked by concomitant lateral gene transfer among prokaryotes. Overall, the data indicate that recurrent gene transfer via the copying of genes from a resident mitochondrial endosymbiont to archaeal host chromosomes preceded the onset of eukaryotic cellular complexity, favoring mitochondria-early over mitochondria-late hypotheses for eukaryote origin.
Collapse
Affiliation(s)
- Fernando D K Tria
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Germany
| | - Julia Brueckner
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Germany
| | - Josip Skejo
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Germany
- Faculty of Science, University of Zagreb, Croatia
| | - Joana C Xavier
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Germany
| | - Nils Kapust
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Germany
| | - Michael Knopp
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Germany
| | - Jessica L E Wimmer
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Germany
| | - Falk S P Nagies
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Germany
| | - Verena Zimorski
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Germany
| | - Sven B Gould
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Germany
| | - Sriram G Garg
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Germany
| | - William F Martin
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Germany
| |
Collapse
|
9
|
Heterotrophic flagellates and centrohelid heliozoans from marine waters of Curacao, the Netherlands Antilles. Eur J Protistol 2020; 77:125758. [PMID: 33307359 DOI: 10.1016/j.ejop.2020.125758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/22/2020] [Accepted: 11/11/2020] [Indexed: 11/23/2022]
Abstract
Recent progress in understanding the early evolution of eukaryotes was tied to morphological identification of flagellates and heliozoans from natural samples, isolation of their culture and genomic and ultrastructural investigations. These protists are the smallest and least studied microbial eukaryotes but play an important role in the functioning of microbial food webs. Using light and electron microscopy, we have studied the diversity of heterotrophic flagellates and centrohelid heliozoans from marine waters of Curacao (The Netherlands Antilles), and provide micrographs and morphological descriptions of observed species. Among 86 flagellates and 3 centrohelids encountered in this survey, five heterotrophic flagellates and one сentrohelid heliozoan were not identified even to the genus. Some flagellate protists have a unique morphology, and may represent undescribed lineages of eukaryotes of high taxonomic rank. The vast majority (89%) of identified flagellates is characterized by wide geographical distribution and have been reported previously from all hemispheres and various climatic regions. More than half of the species were previously observed not only from marine, but also from freshwater habitats. The parameters of the species accumulation curve indicate that our species list obtained for the Curacao study sites is far from complete, and each new sample should yield new species.
Collapse
|
10
|
Bhattacharya D, Price DC. The Algal Tree of Life from a Genomics Perspective. PHOTOSYNTHESIS IN ALGAE: BIOCHEMICAL AND PHYSIOLOGICAL MECHANISMS 2020. [DOI: 10.1007/978-3-030-33397-3_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
11
|
Mathur V, Kolísko M, Hehenberger E, Irwin NAT, Leander BS, Kristmundsson Á, Freeman MA, Keeling PJ. Multiple Independent Origins of Apicomplexan-Like Parasites. Curr Biol 2019; 29:2936-2941.e5. [PMID: 31422883 DOI: 10.1016/j.cub.2019.07.019] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 05/28/2019] [Accepted: 07/08/2019] [Indexed: 01/08/2023]
Abstract
The apicomplexans are a group of obligate animal pathogens that include Plasmodium (malaria), Toxoplasma (toxoplasmosis), and Cryptosporidium (cryptosporidiosis) [1]. They are an extremely diverse and specious group but are nevertheless united by a distinctive suite of cytoskeletal and secretory structures related to infection, called the apical complex, which is used to recognize and gain entry into animal host cells. The apicomplexans are also known to have evolved from free-living photosynthetic ancestors and retain a relict plastid (the apicoplast), which is non-photosynthetic but houses a number of other essential metabolic pathways [2]. Their closest relatives include a mix of both photosynthetic algae (chromerids) and non-photosynthetic microbial predators (colpodellids) [3]. Genomic analyses of these free-living relatives have revealed a great deal about how the alga-parasite transition may have taken place, as well as origins of parasitism more generally [4]. Here, we show that, despite the surprisingly complex origin of apicomplexans from algae, this transition actually occurred at least three times independently. Using single-cell genomics and transcriptomics from diverse uncultivated parasites, we find that two genera previously classified within the Apicomplexa, Piridium and Platyproteum, form separately branching lineages in phylogenomic analyses. Both retain cryptic plastids with genomic and metabolic features convergent with apicomplexans. These findings suggest a predilection in this lineage for both the convergent loss of photosynthesis and transition to parasitism, resulting in multiple lineages of superficially similar animal parasites.
Collapse
Affiliation(s)
- Varsha Mathur
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| | - Martin Kolísko
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Institute of Parasitology, Biology Centre, Czech Acad. Sci., Branišovská 31, České Budějovice 370 05, Czech Republic
| | - Elisabeth Hehenberger
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; GEOMAR - Helmholtz Centre for Ocean Research, Duesternbrooker Weg 20, 24105 Kiel, Germany
| | - Nicholas A T Irwin
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Brian S Leander
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Árni Kristmundsson
- Institute for Experimental Pathology, University of Iceland, Keldur. Keldnavegur 3, 112 Reykjavík, Iceland
| | - Mark A Freeman
- Ross University School of Veterinary Medicine, PO Box 334, Basseterre, St. Kitts, West Indies
| | - Patrick J Keeling
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
12
|
Irwin NAT, Keeling PJ. Extensive Reduction of the Nuclear Pore Complex in Nucleomorphs. Genome Biol Evol 2019; 11:678-687. [PMID: 30715330 PMCID: PMC6411479 DOI: 10.1093/gbe/evz029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2019] [Indexed: 12/17/2022] Open
Abstract
The nuclear pore complex (NPC) is a large macromolecular assembly situated within the pores of the nuclear envelope. Through interactions between its subcomplexes and import proteins, the NPC mediates the transport of molecules into and out of the nucleus and facilitates dynamic chromatin regulation and gene expression. Accordingly, the NPC constitutes a highly integrated nuclear component that is ubiquitous and conserved among eukaryotes. Potential exceptions to this are nucleomorphs: Highly reduced, relict nuclei that were derived from green and red algae following their endosymbiotic integration into two lineages, the chlorarachniophytes and the cryptophyceans. A previous investigation failed to identify NPC genes in nucleomorph genomes suggesting that these genes have either been relocated to the host nucleus or lost. Here, we sought to investigate the composition of the NPC in nucleomorphs by using genomic and transcriptomic data to identify and phylogenetically classify NPC proteins in nucleomorph-containing algae. Although we found NPC proteins in all examined lineages, most of those found in chlorarachniophytes and cryptophyceans were single copy, host-related proteins that lacked signal peptides. Two exceptions were Nup98 and Rae1, which had clear nucleomorph-derived homologs. However, these proteins alone are likely insufficient to structure a canonical NPC and previous reports revealed that Nup98 and Rae1 have other nuclear functions. Ultimately, these data indicate that nucleomorphs represent eukaryotic nuclei without a canonical NPC, raising fundamental questions about their structure and function.
Collapse
Affiliation(s)
- Nicholas A T Irwin
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Patrick J Keeling
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|