1
|
Ossowska EA, Guzow-Krzemińska B, Kukwa M, Malíček J, Schiefelbein U, Thell A, Kosecka M. The application of haplotypes instead of species-level ranks modifies the interpretation of ecological preferences in lichen symbiont interactions in Parmelia. Sci Rep 2024; 14:19682. [PMID: 39181961 PMCID: PMC11344855 DOI: 10.1038/s41598-024-70667-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024] Open
Abstract
The analysis of the interaction between main bionts (mycobiont and photobiont) in the lichen symbiosis delivers substantial information about their preferences in the selection of symbiotic partners, and their ecological preferences. The selectivity in the Parmelia genus has been defined as strong so far. However, data on this lichen genus, which includes several widely distributed species, are biogeographically limited. Therefore, using specialization indicators and extended sampling, in this study, we estimated the interactions between the main bionts of selected Parmelia spp., using two levels of estimation (species/OTU and haplotype). A comparison of mycobiont-photobiont interactions at different levels showed that considering only mycobiont species and Trebouxia OTUs, greater specialization is found, while Parmelia species studied in this work present a more generalistic strategy in photobiont choice when haplotypes are considered. Despite the uneven sampling of Parmelia species, the interpretation of specialization within species and individuals of the genus leads to a more precise and accurate interpretation of their adaptation strategies. Furthermore, the data from P. sulcata indicate the existence of a different pool of compatible haplotypes in some geographical regions compared to neighboring areas. This observation suggests the potential influence of climatic factors.
Collapse
Affiliation(s)
- Emilia Anna Ossowska
- Department of Plant Taxonomy and Nature Conservation, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Beata Guzow-Krzemińska
- Department of Plant Taxonomy and Nature Conservation, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Martin Kukwa
- Department of Plant Taxonomy and Nature Conservation, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Jiří Malíček
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czech Republic
| | - Ulf Schiefelbein
- Botanical Garden, University of Rostock, Schwaansche Straße 2, 18055, Rostock, Germany
| | - Arne Thell
- Biological Museum, Botanical Collections, Lund University, Box 117, 22100, Lund, Sweden
| | - Magdalena Kosecka
- Department of Plant Taxonomy and Nature Conservation, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland.
| |
Collapse
|
2
|
Chen X, Feng J, Yu L, Zhang T. Diversity of lichen mycobionts and photobionts and their relationships in the Ny-Ålesund region (Svalbard, High Arctic). Extremophiles 2024; 28:40. [PMID: 39179679 DOI: 10.1007/s00792-024-01355-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/12/2024] [Indexed: 08/26/2024]
Abstract
Lichens are dual organisms, with one major mycobiont and one major photobiont in each lichen symbiosis, which can survive extreme environmental conditions in the Arctic. However, the diversity and distribution of lichen photobionts in the Arctic remain poorly understood compared to their mycobiont partners. This study explored the diversity of lichen mycobionts and photobionts in 197 lichen samples collected from the Ny-Ålesund region (Svalbard, High Arctic). The nuclear ribosomal internal transcribed spacer (ITS) regions were sequenced and phylogenetic analyses were performed. The relationships between mycobionts and photobionts, as well as the association patterns, were also investigated. A total of 48 species of lichen mycobionts (16 families, nine orders) and 31 species/lineages of photobionts were identified. These 31 photobiont species belonged to one class (Trebouxiophyceae) and five genera, including 22 species of Trebouxia, five species of Asterochloris, two species of Chloroidium, one species of Symbiochloris, and one species of Coccomyxa. The results indicated that most analyzed lichen mycobionts could associate with multiple photobiont species, and the photobionts also exhibited a similar pattern. The results provided an important reference dataset for characterizing the diversity of lichen mycobionts and photobionts in the High Arctic region.
Collapse
Affiliation(s)
- Xiufei Chen
- China Pharmaceutical Culture Collection, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Jianju Feng
- China Pharmaceutical Culture Collection, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Liyan Yu
- China Pharmaceutical Culture Collection, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, People's Republic of China.
| | - Tao Zhang
- China Pharmaceutical Culture Collection, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, People's Republic of China.
| |
Collapse
|
3
|
Yang C, Zhou Q, Shen Y, Liu L, Cao Y, Tian H, Cao S, Liu C. The co-dispersal strategy of Endocarpon (Verrucariaceae) shapes an unusual lichen population structure. MYCOSCIENCE 2024; 65:138-150. [PMID: 39233758 PMCID: PMC11369309 DOI: 10.47371/mycosci.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 09/06/2024]
Abstract
The reproduction and dispersal strategies of lichens play a major role in shaping their population structure and photobiont diversity. Sexual reproduction, which is common, leads to high lichen genetic diversity and low photobiont selectivity. However, the lichen genus Endocarpon adopts a special co-dispersal model in which algal cells from the photobiont and ascospores from the mycobiont are released together into the environment. To explore the dispersal strategy impact on population structures, a total of 62 Endocarpon individuals and 12 related Verrucariaceae genera individuals, representing co-dispersal strategy and conventional independent dispersal mode were studied. Phylogenetic analysis revealed that Endocarpon, with a large-scale geographical distribution, showed an extremely high specificity of symbiotic associations with their photobiont. Furthermore, three types of group I intron at 1769 site have been found in most Endocarpon mycobionts, which showed a high variety of group I intron in the same insertion site even in the same species collected from one location. This study suggested that the ascospore-alga co-dispersal mode of Endocarpon resulted in this unusual mycobiont-photobiont relationship; also provided an evidence for the horizontal transfer of group I intron that may suggest the origin of the complexity and diversity of lichen symbiotic associations.
Collapse
Affiliation(s)
- ChunYan Yang
- School of Life Science and Technology, Harbin Institute of Technology
| | | | - Yue Shen
- Key Laboratory for Polar Science, State Ocean Administration, Polar Research Institute of China
| | - LuShan Liu
- Emergency Department of China Rehabilitation Research Center, Capital medical University
| | - YunShu Cao
- Inner Mongolia Vocational and Technical College of Communications
| | - HuiMin Tian
- Department of Physiology, Medical College, Chifeng University
| | - ShuNan Cao
- Key Laboratory for Polar Science, State Ocean Administration, Polar Research Institute of China
| | - ChuanPeng Liu
- School of Life Science and Technology, Harbin Institute of Technology
| |
Collapse
|
4
|
Blázquez M, Ortiz-Álvarez R, Gasulla F, Pérez-Vargas I, Pérez-Ortega S. Bacterial communities associated with an island radiation of lichen-forming fungi. PLoS One 2024; 19:e0298599. [PMID: 38498492 PMCID: PMC10947700 DOI: 10.1371/journal.pone.0298599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/28/2024] [Indexed: 03/20/2024] Open
Abstract
Evolutionary radiations are one of the most striking processes biologists have studied in islands. A radiation is often sparked by the appearance of ecological opportunity, which can originate in processes like trophic niche segregation or the evolution of key innovations. Another recently proposed mechanism is facilitation mediated by the bacterial communities associated with the radiating species. Here we explore the role of the bacterial communities in a radiation of lichen-forming fungi endemic to Macaronesia. Bacterial diversity was quantified by high throughput sequencing of the V1-V2 hyper-variable region of 172 specimens. We characterized the taxonomic and phylogenetic diversity of the bacterial communities associated with the different species, tested for compositional differences between these communities, carried out a functional prediction, explored the relative importance of different factors in bacterial community structure, searched for phylosymbiosis and tried to identify the origin of this pattern. The species of the radiation differed in the composition of their bacterial communities, which were mostly comprised of Alphaproteobacteria and Acidobacteriia, but not in the functionality of those communities. A phylosimbiotic pattern was detected, but it was probably caused by environmental filtering. These findings are congruent with the combined effect of secondary chemistry and mycobiont identity being the main driver of bacterial community structure. Altogether, our results suggest that the associated bacterial communities are not the radiation's main driver. There is one possible exception, however, a species that has an abnormally diverse core microbiome and whose bacterial communities could be subject to a specific environmental filter at the functional level.
Collapse
Affiliation(s)
| | | | - Francisco Gasulla
- Department of Life Sciences, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Israel Pérez-Vargas
- Department of Botany, Ecology and Plant Physiology, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | | |
Collapse
|
5
|
Pino-Bodas R, Blázquez M, de los Ríos A, Pérez-Ortega S. Myrmecia, Not Asterochloris, Is the Main Photobiont of Cladonia subturgida ( Cladoniaceae, Lecanoromycetes). J Fungi (Basel) 2023; 9:1160. [PMID: 38132761 PMCID: PMC10744234 DOI: 10.3390/jof9121160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/24/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023] Open
Abstract
This study explores the diversity of photobionts associated with the Mediterranean lichen-forming fungus Cladonia subturgida. For this purpose, we sequenced the whole ITS rDNA region by Sanger using a metabarcoding method for ITS2. A total of 41 specimens from Greece, Italy, France, Portugal, and Spain were studied. Additionally, two specimens from Spain were used to generate four cultures. Our molecular studies showed that the genus Myrmecia is the main photobiont of C. subturgida throughout its geographic distribution. This result contrasts with previous studies, which indicated that the main photobiont for most Cladonia species is Asterochloris. The identity of Myrmecia was also confirmed by ultrastructural studies of photobionts within the lichen thalli and cultures. Photobiont cells showed a parietal chloroplast lacking a pyrenoid, which characterizes the species in this genus. Phylogenetic analyses indicate hidden diversity within this genus. The results of amplicon sequencing showed the presence of multiple ASVs in 58.3% of the specimens studied.
Collapse
Affiliation(s)
- Raquel Pino-Bodas
- Biodiversity and Conservation Area, Department of Biology and Geology, Physics and Inorganic Chemistry, Rey Juan Carlos University, C/Tulipán s/n, 28933 Móstoles, Spain
- Royal Botanic Gardens, Kew, Richmond, London TW9 3DS, UK
| | - Miguel Blázquez
- Department of Mycology, Real Jardín Botánico (CSIC), 28014 Madrid, Spain; (M.B.); (S.P.-O.)
| | | | - Sergio Pérez-Ortega
- Department of Mycology, Real Jardín Botánico (CSIC), 28014 Madrid, Spain; (M.B.); (S.P.-O.)
| |
Collapse
|
6
|
Zuo YB, Han DY, Wang YY, Yang QX, Ren Q, Liu XZ, Wei XL. Fungal-Algal Association Drives Lichens' Mutualistic Symbiosis: A Case Study with Trebouxia-Related Lichens. PLANTS (BASEL, SWITZERLAND) 2023; 12:3172. [PMID: 37687418 PMCID: PMC10490544 DOI: 10.3390/plants12173172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023]
Abstract
Biotic and abiotic factors influence the formation of fungal-algal pairings in lichen symbiosis. However, the specific determinants of these associations, particularly when distantly related fungi are involved, remain poorly understood. In this study, we investigated the impact of different drivers on the association patterns between taxonomically diverse lichenized fungi and their trebouxioid symbiotic partners. We collected 200 samples from four biomes and identified 41 species of lichenized fungi, associating them with 16 species of trebouxioid green algae, of which 62% were previously unreported. The species identity of both the fungal and algal partners had the most significant effect on the outcome of the symbiosis, compared to abiotic factors like climatic variables and geographic distance. Some obviously specific associations were observed in the temperate zone; however, the nestedness value was lower in arid regions than in cold, polar, and temperate regions according to interaction network analysis. Cophylogenetic analyses revealed congruent phylogenies between trebouxioid algae and associated fungi, indicating a tendency to reject random associations. The main evolutionary mechanisms contributing to the observed phylogenetic patterns were "loss" and "failure to diverge" of the algal partners. This study broadens our knowledge of fungal-algal symbiotic patterns in view of Trebouxia-associated fungi.
Collapse
Affiliation(s)
| | | | | | | | | | - Xin-Zhan Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xin-Li Wei
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
7
|
Nguyen NH, Nguyen PT, Otake H, Nagata A, Hirano N, Imanishi-Shimizu Y, Shimizu K. Biodiversity of Basidiomycetous Yeasts Associated with Cladonia rei Lichen in Japan, with a Description of Microsporomyces cladoniophilus sp. nov. J Fungi (Basel) 2023; 9:jof9040473. [PMID: 37108927 PMCID: PMC10145395 DOI: 10.3390/jof9040473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/08/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
For more than a century, lichens have been used as an example of dual-partner symbiosis. Recently, this has been challenged by the discovery of various basidiomycetous yeasts that coexist in multiple lichen species, among which Cladonia lichens from Europe and the United States were discovered to be highly specifically associated with the basidiomycetous yeast of the family Microsporomycetaceae. To verify this highly specific relationship, we investigated the diversity of basidiomycetous yeasts associated with Cladonia rei, a widely distributed lichen in Japan, by applying two approaches: yeast isolation from the lichen thalli and meta-barcoding analysis. We obtained 42 cultures of Cystobasidiomycetous yeast which were grouped into six lineages within the family Microsporomycetaceae. Unexpectedly, although the cystobasidiomycetes-specific primer was used, not only the cystobasidiomycetous yeasts but species from other classes were also detected via the meta-barcoding dataset; in particular, pucciniomycetous yeasts were found at a high frequency in some samples. Further, Halobasidium xiangyangense, which was detected in every sample with high abundance, is highly likely a generalist epiphytic fungus that has the ability to associate with C. rei. In the pucciniomycetous group, most of the detected species belong to the scale insect-associated yeast Septobasidium genus. In conclusion, even though Microsporomyces species are not the only yeast group associated with Cladonia lichen, our study demonstrated that the thalli of Cladonia rei lichen could be a suitable habit for them.
Collapse
Affiliation(s)
- Ngoc-Hung Nguyen
- Department of Biological Science and Technology, Tokyo University of Science, Niijuku 6-3-1, Katsushika, Tokyo 125-8585, Japan
| | - Phuong-Thao Nguyen
- Department of Biological Science and Technology, Tokyo University of Science, Niijuku 6-3-1, Katsushika, Tokyo 125-8585, Japan
| | - Hitomi Otake
- Department of Biological Science and Technology, Tokyo University of Science, Niijuku 6-3-1, Katsushika, Tokyo 125-8585, Japan
| | - Ayana Nagata
- Department of Biological Science and Technology, Tokyo University of Science, Niijuku 6-3-1, Katsushika, Tokyo 125-8585, Japan
| | - Nobuharu Hirano
- Department of Biological Science and Technology, Tokyo University of Science, Niijuku 6-3-1, Katsushika, Tokyo 125-8585, Japan
| | - Yumi Imanishi-Shimizu
- College of Science and Engineering, Kanto Gakuin University, Mutsuura-higashi 1-50-1, Kanazawa-ku, Yokohama 236-8501, Kanagawa, Japan
| | - Kiminori Shimizu
- Department of Biological Science and Technology, Tokyo University of Science, Niijuku 6-3-1, Katsushika, Tokyo 125-8585, Japan
- Medical Mycology Research Center, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8673, Chiba, Japan
| |
Collapse
|
8
|
Alonso-García M, Pino-Bodas R, Villarreal A JC. Co-dispersal of symbionts in the lichen Cladonia stellaris inferred from genomic data. FUNGAL ECOL 2022. [DOI: 10.1016/j.funeco.2022.101165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Allen JL, Lendemer JC. A call to reconceptualize lichen symbioses. Trends Ecol Evol 2022; 37:582-589. [PMID: 35397954 DOI: 10.1016/j.tree.2022.03.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 12/23/2022]
Abstract
Several decades of research across disciplines have overturned historical perspectives of symbioses dominated by binary characterizations of highly specific species-species interactions. This paradigm shift has unlocked the previously underappreciated and overlooked dynamism of fungal mutualisms such as mycorrhizae. Lichens are another example of important fungal mutualisms where reconceptualization is urgently needed to realize their potential as model systems. This reconceptualization requires both an objective synthesis of new data and envisioning a revised integrative approach that unifies the spectrum of ecology and evolution. We propose a ten-theme framework that if pursued would propel lichens to the vanguard of symbiotic theory.
Collapse
Affiliation(s)
- Jessica L Allen
- Eastern Washington University, Biology Department, Cheney, WA 99004, USA.
| | - James C Lendemer
- Institute of Systematic Botany, The New York Botanical Garden, Bronx, NY 10458-5126, USA.
| |
Collapse
|
10
|
De Carolis R, Cometto A, Moya P, Barreno E, Grube M, Tretiach M, Leavitt SD, Muggia L. Photobiont Diversity in Lichen Symbioses From Extreme Environments. Front Microbiol 2022; 13:809804. [PMID: 35422771 PMCID: PMC9002315 DOI: 10.3389/fmicb.2022.809804] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/27/2022] [Indexed: 11/19/2022] Open
Abstract
Fungal–algal relationships—both across evolutionary and ecological scales—are finely modulated by the presence of the symbionts in the environments and by the degree of selectivity and specificity that either symbiont develop reciprocally. In lichens, the green algal genus Trebouxia Puymaly is one of the most frequently recovered chlorobionts. Trebouxia species-level lineages have been recognized on the basis of their morphological and phylogenetic diversity, while their ecological preferences and distribution are still only partially unknown. We selected two cosmopolitan species complexes of lichen-forming fungi as reference models, i.e., Rhizoplaca melanophthalma and Tephromela atra, to investigate the diversity of their associated Trebouxia spp. in montane habitats across their distributional range worldwide. The greatest diversity of Trebouxia species-level lineages was recovered in the altitudinal range 1,000–2,500 m a.s.l. A total of 10 distinct Trebouxia species-level lineages were found to associate with either mycobiont, for which new photobionts are reported. One previously unrecognized Trebouxia species-level lineage was identified and is here provisionally named Trebouxia “A52.” Analyses of cell morphology and ultrastructure were performed on axenically isolated strains to fully characterize the new Trebouxia “A52” and three other previously recognized lineages, i.e., Trebouxia “A02,” T. vagua “A04,” and T. vagua “A10,” which were successfully isolated in culture during this study. The species-level diversity of Trebouxia associating with the two lichen-forming fungi in extreme habitats helps elucidate the evolutionary pathways that this lichen photobiont genus traversed to occupy varied climatic and vegetative regimes.
Collapse
Affiliation(s)
| | - Agnese Cometto
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Patricia Moya
- Botánica, ICBIBE, Faculty of CC. Biológicas, Universitat de València, Valencia, Spain
| | - Eva Barreno
- Botánica, ICBIBE, Faculty of CC. Biológicas, Universitat de València, Valencia, Spain
| | - Martin Grube
- Institute of Biology, University of Graz, Graz, Austria
| | - Mauro Tretiach
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Steven D Leavitt
- Department of Biology, Brigham Young University, Provo, UT, United States
| | - Lucia Muggia
- Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
11
|
Kosecka M, Kukwa M, Jabłońska A, Flakus A, Rodriguez-Flakus P, Ptach Ł, Guzow-Krzemińska B. Phylogeny and Ecology of Trebouxia Photobionts From Bolivian Lichens. Front Microbiol 2022; 13:779784. [PMID: 35418958 PMCID: PMC8996191 DOI: 10.3389/fmicb.2022.779784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
In the past few years, new phylogenetic lineages in Trebouxia were detected as a result of molecular approaches. These studies included symbiont selectivity in lichen communities, transects along altitudinal gradients at local and global scales and the photobiont diversity in local populations of lichen-forming fungal species. In most of these studies, phylogenetic and haplotype analyses based on the internal transcribed spacer (ITS) locus have continuously allowed the recognition of new monophyletic lineages, which suggests that still numerous undiscovered Trebouxia lineages can be hidden in lichens from unexplored areas, especially in the tropics. Here, we estimated the biodiversity of photobionts in Bolivian Andean vegetation and assessed their specificity. About 403 lichen samples representing 42 genera, e.g., Haematomma, Heterodermia, Hypotrachyna, Lecanora, Lepra, Leucodermia, Parmotrema, Pertusaria, Polyblastidium, and Usnea, containing Trebouxia photobionts, were analyzed. ITS ribosomal DNA (rDNA) and rbcL markers were used. We obtained Trebouxia sequences from Bolivian samples belonging to already described clades A, C, I, and S. Thirty-nine Trebouxia lineages were distinguished within these clades, while 16 were new. To reveal the structure of the community of Bolivian photobionts and their relationships with mycobionts, the comparative effects of climate, altitude, geographical distances, substrate, and habitat type, as well as functional traits of lichens such as growth forms, propagation mode and secondary metabolites, were analyzed. Furthermore, new Bolivian records were included in analysis on a global scale. In our study, the mycobiont genus or even species are the most important factors correlated with photobiont identity. Moreover, we revealed that the community of Bolivian photobionts is shaped by altitude.
Collapse
Affiliation(s)
- Magdalena Kosecka
- Department of Plant Taxonomy and Nature Conservation, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Martin Kukwa
- Department of Plant Taxonomy and Nature Conservation, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Agnieszka Jabłońska
- Department of Plant Taxonomy and Nature Conservation, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Adam Flakus
- W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków, Poland
| | | | - Łucja Ptach
- Department of Plant Taxonomy and Nature Conservation, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Beata Guzow-Krzemińska
- Department of Plant Taxonomy and Nature Conservation, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
12
|
Steinová J, Holien H, Košuthová A, Škaloud P. An Exception to the Rule? Could Photobiont Identity Be a Better Predictor of Lichen Phenotype than Mycobiont Identity? J Fungi (Basel) 2022; 8:jof8030275. [PMID: 35330277 PMCID: PMC8953480 DOI: 10.3390/jof8030275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/02/2022] [Accepted: 03/07/2022] [Indexed: 11/16/2022] Open
Abstract
With rare exceptions, the shape and appearance of lichen thalli are determined by the fungal partner; thus, mycobiont identity is normally used for lichen identification. However, it has repeatedly been shown in recent decades that phenotypic data often does not correspond with fungal gene evolution. Here, we report such a case in a three-species complex of red-fruited Cladonia lichens, two of which clearly differ morphologically, chemically, ecologically and in distribution range. We analysed 64 specimens of C. bellidiflora, C. polydactyla and C. umbricola, mainly collected in Europe, using five variable mycobiont-specific and two photobiont-specific molecular markers. All mycobiont markers exhibited very low variability and failed to separate the species. In comparison, photobiont identity corresponded better with lichen phenotype and separated esorediate C. bellidiflora from the two sorediate taxa. These results can be interpreted either as an unusual case of lichen photomorphs or as an example of recent speciation, in which phenotypic differentiation precedes the separation of the molecular markers. We hypothesise that association with different photobionts, which is probably related to habitat differentiation, may have triggered speciation in the mycobiont species.
Collapse
Affiliation(s)
- Jana Steinová
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, 128 01 Prague, Czech Republic;
- Correspondence:
| | - Håkon Holien
- Faculty of Biosciences and Aquaculture, Nord University, Pb 2501, NO-7729 Steinkjer, Norway;
| | - Alica Košuthová
- Department of Botany, Swedish Museum of Natural History, P.O. Box 50007, SE-104 05 Stockholm, Sweden;
| | - Pavel Škaloud
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, 128 01 Prague, Czech Republic;
| |
Collapse
|
13
|
Škvorová Z, Černajová I, Steinová J, Peksa O, Moya P, Škaloud P. Promiscuity in Lichens Follows Clear Rules: Partner Switching in Cladonia Is Regulated by Climatic Factors and Soil Chemistry. Front Microbiol 2022; 12:781585. [PMID: 35173688 PMCID: PMC8841807 DOI: 10.3389/fmicb.2021.781585] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/23/2021] [Indexed: 11/13/2022] Open
Abstract
Climatic factors, soil chemistry and geography are considered as major factors affecting lichen distribution and diversity. To determine how these factors limit or support the associations between the symbiotic partners, we revise the lichen symbiosis as a network of relationships here. More than one thousand thalli of terricolous Cladonia lichens were collected at sites with a wide range of soil chemical properties from seven biogeographical regions of Europe. A total of 18 OTUs of the algal genus Asterochloris and 181 OTUs of Cladonia mycobiont were identified. We displayed all realized pairwise mycobiont-photobiont relationships and performed modularity analysis. It revealed four virtually separated modules of cooperating OTUs. The modules differed in mean annual temperature, isothermality, precipitation, evapotranspiration, soil pH, nitrogen, and carbon contents. Photobiont switching was strictly limited to algae from one module, i.e., algae of similar ecological preferences, and only few mycobionts were able to cooperate with photobionts from different modules. Thus, Cladonia mycobionts generally cannot widen their ecological niches through photobiont switching. The modules also differed in the functional traits of the mycobionts, e.g., sexual reproduction rate, presence of soredia, and thallus type. These traits may represent adaptations to the environmental conditions that drive the differentiation of the modules. In conclusion, the promiscuity in Cladonia mycobionts is strictly limited by climatic factors and soil chemistry.
Collapse
Affiliation(s)
- Zuzana Škvorová
- Department of Botany, Faculty of Science, Charles University, Prague, Czechia
| | - Ivana Černajová
- Department of Botany, Faculty of Science, Charles University, Prague, Czechia
| | - Jana Steinová
- Department of Botany, Faculty of Science, Charles University, Prague, Czechia
| | - Ondřej Peksa
- Museum of West Bohemia in Pilsen, Pilsen, Czechia
| | - Patricia Moya
- Botánica, ICBIBE, Fac. CC. Biológicas, Universitat de València, Valencia, Spain
| | - Pavel Škaloud
- Department of Botany, Faculty of Science, Charles University, Prague, Czechia
| |
Collapse
|
14
|
Vančurová L, Malíček J, Steinová J, Škaloud P. Choosing the Right Life Partner: Ecological Drivers of Lichen Symbiosis. Front Microbiol 2022; 12:769304. [PMID: 34970234 PMCID: PMC8712729 DOI: 10.3389/fmicb.2021.769304] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/10/2021] [Indexed: 11/24/2022] Open
Abstract
Lichens are an iconic example of symbiotic systems whose ecology is shaped by the requirements of the symbionts. Previous studies suggest that fungal (mycobionts) as well as photosynthesizing (phycobionts or cyanobionts) partners have a specific range of acceptable symbionts that can be chosen according to specific environmental conditions. This study aimed to investigate the effects of climatic conditions and mycobiont identity on phycobiont distribution within the lichen genera Stereocaulon, Cladonia, and Lepraria. The study area comprised the Canary Islands, Madeira, Sicily, and the Aeolian Islands, spanning a wide range of climatic conditions. These islands are known for their unique and diverse fauna and flora; however, lichen phycobionts have remained unstudied in most of these areas. In total, we genetically analyzed 339 lichen samples. The phycobiont pool differed significantly from that outside the studied area. Asterochloris mediterranea was identified as the most abundant phycobiont. However, its distribution was limited by climatic constraints. Other species of Asterochloris and representatives of the genera Chloroidium, Vulcanochloris, and Myrmecia were also recovered as phycobionts. The selection of symbiotic partners from the local phycobiont pool was driven by mycobiont specificity (i.e., the taxonomic range of acceptable partners) and the environmental conditions, mainly temperature. Interestingly, the dominant fungal species responded differently in their selection of algal symbionts along the environmental gradients. Cladonia rangiformis associated with its phycobiont A. mediterranea in a broader range of temperatures than Stereocaulon azoreum, which favors other Asterochloris species along most of the temperature gradient. Stereocaulon vesuvianum associated with Chloroidium spp., which also differed in their temperature optima. Finally, we described Stereocaulon canariense as a new endemic species ecologically distinct from the other Stereocaulon species on the Canary Islands.
Collapse
Affiliation(s)
- Lucie Vančurová
- Department of Botany, Faculty of Science, Charles University, Prague, Czechia
| | - Jiří Malíček
- Institute of Botany, The Czech Academy of Sciences, Průhonice, Czechia
| | - Jana Steinová
- Department of Botany, Faculty of Science, Charles University, Prague, Czechia
| | - Pavel Škaloud
- Department of Botany, Faculty of Science, Charles University, Prague, Czechia
| |
Collapse
|
15
|
OUP accepted manuscript. FEMS Microbiol Ecol 2022; 98:6522171. [DOI: 10.1093/femsec/fiac008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/30/2022] [Accepted: 02/02/2022] [Indexed: 11/13/2022] Open
|
16
|
Moya P, Molins A, Škaloud P, Divakar PK, Chiva S, Dumitru C, Molina MC, Crespo A, Barreno E. Biodiversity Patterns and Ecological Preferences of the Photobionts Associated With the Lichen-Forming Genus Parmelia. Front Microbiol 2021; 12:765310. [PMID: 35003003 PMCID: PMC8739953 DOI: 10.3389/fmicb.2021.765310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/26/2021] [Indexed: 11/17/2022] Open
Abstract
The worldwide, ecologically relevant lichen-forming genus Parmelia currently includes 41 accepted species, of which the Parmelia sulcata group (PSULgp) and the Parmelia saxatilis group (PSAXgp) have received considerable attention over recent decades; however, phycobiont diversity is poorly known in Parmelia s. lat. Here, we studied the diversity of Trebouxia microalgae associated with 159 thalli collected from 30 locations, including nine Parmelia spp.: P. barrenoae, P. encryptata, P. ernstiae, P. mayi, P. omphalodes, P. saxatilis, P. serrana, P. submontana, and P. sulcata. The mycobionts were studied by carrying out phylogenetic analyses of the nrITS. Microalgae genetic diversity was examined by using both nrITS and LSU rDNA markers. To evaluate putative species boundaries, three DNA species delimitation analyses were performed on Trebouxia and Parmelia. All analyses clustered the mycobionts into two main groups: PSULgp and PSAXgp. Species delimitation identified 13 fungal and 15 algal species-level lineages. To identify patterns in specificity and selectivity, the diversity and abundance of the phycobionts were identified for each Parmelia species. High specificity of each Parmelia group for a given Trebouxia clade was observed; PSULgp associated only with clade I and PSAXgp with clade S. However, the degree of specificity is different within each group, since the PSAXgp mycobionts were less specific and associated with 12 Trebouxia spp., meanwhile those of PSULgp interacted only with three Trebouxia spp. Variation-partitioning analyses were conducted to detect the relative contributions of climate, geography, and symbiotic partner to phycobiont and mycobiont distribution patterns. Both analyses explained unexpectedly high portions of variability (99 and 98%) and revealed strong correlations between the fungal and algal diversity. Network analysis discriminated seven ecological clusters. Even though climatic conditions explained the largest proportion of the variation among these clusters, they seemed to show indifference relative to climatic parameters. However, the cluster formed by P. saxatilis A/P. saxatilis B/Trebouxia sp. 2/Trebouxia sp. S02/Trebouxia sp. 3A was identified to prefer cold-temperate as well as humid summer environments.
Collapse
Affiliation(s)
- Patricia Moya
- Botánica, Instituto Cavanilles de Biodiversidad y Biología Evolutiva (ICBIBE), Fac. CC. Biológicas, Universitat de València, Valencia, Spain
| | - Arantzazu Molins
- Botánica, Instituto Cavanilles de Biodiversidad y Biología Evolutiva (ICBIBE), Fac. CC. Biológicas, Universitat de València, Valencia, Spain
| | - Pavel Škaloud
- Department of Botany, Faculty of Science, Charles University, Prague, Czechia
| | - Pradeep K. Divakar
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Salvador Chiva
- Botánica, Instituto Cavanilles de Biodiversidad y Biología Evolutiva (ICBIBE), Fac. CC. Biológicas, Universitat de València, Valencia, Spain
| | - Cristina Dumitru
- Botánica, Instituto Cavanilles de Biodiversidad y Biología Evolutiva (ICBIBE), Fac. CC. Biológicas, Universitat de València, Valencia, Spain
| | - Maria Carmen Molina
- Departamento de Biología, Geología, Física y Química Inorgánica, Escuela Superior de Ciencias Experimentales y Tecnología (ESCET), Universidad Rey Juan Carlos, Madrid, Spain
| | - Ana Crespo
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Eva Barreno
- Botánica, Instituto Cavanilles de Biodiversidad y Biología Evolutiva (ICBIBE), Fac. CC. Biológicas, Universitat de València, Valencia, Spain
| |
Collapse
|
17
|
Pino-Bodas R, Stenroos S. Global Biodiversity Patterns of the Photobionts Associated with the Genus Cladonia (Lecanorales, Ascomycota). MICROBIAL ECOLOGY 2021; 82:173-187. [PMID: 33150498 PMCID: PMC8282589 DOI: 10.1007/s00248-020-01633-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/22/2020] [Indexed: 05/31/2023]
Abstract
The diversity of lichen photobionts is not fully known. We studied here the diversity of the photobionts associated with Cladonia, a sub-cosmopolitan genus ecologically important, whose photobionts belong to the green algae genus Asterochloris. The genetic diversity of Asterochloris was screened by using the ITS rDNA and actin type I regions in 223 specimens and 135 species of Cladonia collected all over the world. These data, added to those available in GenBank, were compiled in a dataset of altogether 545 Asterochloris sequences occurring in 172 species of Cladonia. A high diversity of Asterochloris associated with Cladonia was found. The commonest photobiont lineages associated with this genus are A. glomerata, A. italiana, and A. mediterranea. Analyses of partitioned variation were carried out in order to elucidate the relative influence on the photobiont genetic variation of the following factors: mycobiont identity, geographic distribution, climate, and mycobiont phylogeny. The mycobiont identity and climate were found to be the main drivers for the genetic variation of Asterochloris. The geographical distribution of the different Asterochloris lineages was described. Some lineages showed a clear dominance in one or several climatic regions. In addition, the specificity and the selectivity were studied for 18 species of Cladonia. Potentially specialist and generalist species of Cladonia were identified. A correlation was found between the sexual reproduction frequency of the host and the frequency of certain Asterochloris OTUs. Some Asterochloris lineages co-occur with higher frequency than randomly expected in the Cladonia species.
Collapse
Affiliation(s)
- Raquel Pino-Bodas
- Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Richmond, TW9 3DS, UK.
| | - Soili Stenroos
- Finnish Museum of Natural History, University of Helsinki, P.O. Box 7, Helsinki, 00014, Finland
| |
Collapse
|
18
|
Molins A, Moya P, Muggia L, Barreno E. Thallus Growth Stage and Geographic Origin Shape Microalgal Diversity in Ramalina farinacea Lichen Holobionts. JOURNAL OF PHYCOLOGY 2021; 57:975-987. [PMID: 33528835 DOI: 10.1111/jpy.13140] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 05/26/2023]
Abstract
Lichen symbioses are microecosystems hosting many other living organisms besides the two major lichen symbionts (i.e., lichenized fungi [the mycobiont] and green microalgae or cyanobacteria [the photobiont]). Recent investigations evidenced that other fungi, non-photosynthetic bacteria, and microalgae co-inhabit within the lichen thalli, but their diversity and their roles are still underinvestigated. Here we present an ad hoc stratified sampling design and in-depth Illumina paired-end metabarcoding approach to explore microalgal diversity in lichen thalli of the model species Ramalina farinacea from different ecologies. Lichen thalli were surveyed according to three different sizes, and different thallus parts were considered for molecular, bioinformatics, and community diversity analyses. The results revealed that microalgal diversity strongly depends on the growth stage of the thalli, the geographic area, and the habitat type. The results also show that microalgal diversity does not vary along the thallus branches (lacinias)-that is, it does not correlate with the apical growth and founder effects-and that there is no balanced co-presence of two main photobionts as previously established in R. farinacea. The sampling design performed here minimizes bias in the assessment of photobiont diversity in lichens and is proposed to be reliable and applicable to further study microalgal diversity in lichen symbioses.
Collapse
Affiliation(s)
- Arantzazu Molins
- Instituto "Cavanilles" de Biodiversidad y Biología Evolutiva, Botánica, Fac. CC. Biológicas, Universitat de València, 46100, Burjassot, Valencia, Spain
| | - Patricia Moya
- Instituto "Cavanilles" de Biodiversidad y Biología Evolutiva, Botánica, Fac. CC. Biológicas, Universitat de València, 46100, Burjassot, Valencia, Spain
| | - Lucia Muggia
- Department of Life Sciences, University of Trieste, via L. Giorgieri 10, 34127, Trieste, Italy
| | - Eva Barreno
- Instituto "Cavanilles" de Biodiversidad y Biología Evolutiva, Botánica, Fac. CC. Biológicas, Universitat de València, 46100, Burjassot, Valencia, Spain
| |
Collapse
|
19
|
Kosecka M, Guzow-Krzemińska B, Černajová I, Škaloud P, Jabłońska A, Kukwa M. New lineages of photobionts in Bolivian lichens expand our knowledge on habitat preferences and distribution of Asterochloris algae. Sci Rep 2021; 11:8701. [PMID: 33888793 PMCID: PMC8062552 DOI: 10.1038/s41598-021-88110-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 04/08/2021] [Indexed: 12/11/2022] Open
Abstract
We studied the biodiversity of Asterochloris photobionts found in Bolivian lichens to better understand their global spatial distribution and adaptation strategies in the context of a worldwide phylogeny of the genus. Based on nuclear ITS rDNA, the chloroplast rbcL gene and the actin type I gene we reconstructed a phylogenetic tree that recovered nine new Asterochloris lineages, while 32 Bolivian photobiont samples were assigned to 12 previously recognized Asterochloris lineages. We also show that some previously discovered Asterochloris photobiont species and lineages may occur in a broader spectrum of climatic conditions, and mycobiont species and photobionts may show different preferences along an altitude gradient. To reveal general patterns of of mycobiont specificity towards the photobiont in Asterochloris, we tested the influence of climate, altitude, geographical distance and effects of symbiotic partner (mycobiont) at the species level of three genera of lichen forming fungi: Stereocaulon, Cladonia and Lepraria. Further, we compared the specificity of mycobionts towards Asterochloris photobionts in cosmopolitan, Neotropical, and Pantropical lichen forming fungi. Interestingly, cosmopolitan species showed the lowest specificity to their photobionts, but also the lowest haplotype diversity. Neotropical and Paleotropical mycobionts, however, were more specific.
Collapse
Affiliation(s)
- Magdalena Kosecka
- Department of Plant Taxonomy and Nature Conservation, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80308, Gdańsk, Poland.
| | - Beata Guzow-Krzemińska
- Department of Plant Taxonomy and Nature Conservation, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80308, Gdańsk, Poland
| | - Ivana Černajová
- Faculty of Science, Department of Botany, Charles University, Benatska 2, 12801, Praha 2, Czech Republic
| | - Pavel Škaloud
- Faculty of Science, Department of Botany, Charles University, Benatska 2, 12801, Praha 2, Czech Republic
| | - Agnieszka Jabłońska
- Department of Plant Taxonomy and Nature Conservation, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80308, Gdańsk, Poland
| | - Martin Kukwa
- Department of Plant Taxonomy and Nature Conservation, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80308, Gdańsk, Poland
| |
Collapse
|
20
|
Rola K, Lenart-Boroń A, Boroń P, Osyczka P. Heavy-metal pollution induces changes in the genetic composition and anatomical properties of photobionts in pioneer lichens colonising post-industrial habitats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 750:141439. [PMID: 32882488 DOI: 10.1016/j.scitotenv.2020.141439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 06/11/2023]
Abstract
Certain lichens are effective colonisers of polluted sites. However, little is known about the tolerance of photobionts and the degree of mycobiont selectivity to photobionts relative to metal pollution. The present study recognises the genetic and anatomical diversity of Asterochloris photobionts in epigeic lichens, i.e. Cladonia cariosa, C. rei, and Diploschistes muscorum, in relation to a wide spectrum of soil pollution. In accordance with phylogenetic analysis, photobionts were clustered in 7 moderately- to well-supported clades, including 19 haplotypes. The mycobionts of all studied lichens demonstrated a low level of selectivity and were capable of associating with various Asterochloris lineages. This tendency was also expressed by the frequent (~25%) occurrence of multiple algal genotypes in a single thallus. This indicates that identified Asterochloris lineages are generally tolerant to heavy-metal pollution, and the low level of selectivity of mycobionts enables them to select the most suitable and/or available partner. The trend of increasing incidence of certain Asterochloris lineages and decreasing frequency of others along with increasing soil pollution was observed. This proves the superior adaptation of some photobionts to polluted sites. Such symbiotic plasticity constitute an adaptive feature necessary for the successful colonisation. High number of haplotypes at polluted sites could be the result of multiple introduction events from different areas during the initial stages of spontaneous succession. Regardless of the genetic pattern, Asterochloris cells were considerably smaller, and the density and compaction of cells in the algal layer were higher, in lichen specimens from polluted sites, indicating that photobiont characteristics may be closely dependent on heavy-metal pollution.
Collapse
Affiliation(s)
- Kaja Rola
- Institute of Botany, Faculty of Biology, Jagiellonian University, Gronostajowa 3, 30-387 Kraków, Poland
| | - Anna Lenart-Boroń
- Department of Microbiology and Biomonitoring, Faculty of Agriculture and Economics, University of Agriculture in Kraków, Adam Mickiewicz Ave. 24/28, 31-059 Kraków, Poland
| | - Piotr Boroń
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Kraków, 29 Listopada Ave. 46, 31-425 Kraków, Poland
| | - Piotr Osyczka
- Institute of Botany, Faculty of Biology, Jagiellonian University, Gronostajowa 3, 30-387 Kraków, Poland.
| |
Collapse
|
21
|
Multidisciplinary approach to describe Trebouxia diversity within lichenized fungi Buellia zoharyi from the Canary Islands. Symbiosis 2020. [DOI: 10.1007/s13199-020-00722-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
22
|
|
23
|
Metagenomic data reveal diverse fungal and algal communities associated with the lichen symbiosis. Symbiosis 2020. [DOI: 10.1007/s13199-020-00699-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
24
|
|
25
|
|
26
|
Mark K, Laanisto L, Bueno CG, Niinemets Ü, Keller C, Scheidegger C. Contrasting co-occurrence patterns of photobiont and cystobasidiomycete yeast associated with common epiphytic lichen species. THE NEW PHYTOLOGIST 2020; 227:1362-1375. [PMID: 32034954 DOI: 10.1111/nph.16475] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 02/04/2020] [Indexed: 06/10/2023]
Abstract
The popular dual definition of lichen symbiosis is under question with recent findings of additional microbial partners living within the lichen body. Here we compare the distribution and co-occurrence patterns of lichen photobiont and recently described secondary fungus (Cyphobasidiales yeast) to evaluate their dependency on lichen host fungus (mycobiont). We sequenced the nuclear internal transcribed spacer (ITS) strands for mycobiont, photobiont, and yeast from six widespread northern hemisphere epiphytic lichen species collected from 25 sites in Switzerland and Estonia. Interaction network analyses and multivariate analyses were conducted on operational taxonomic units based on ITS sequence data. Our study demonstrates the frequent presence of cystobasidiomycete yeasts in studied lichens and shows that they are much less mycobiont-specific than the photobionts. Individuals of different lichen species growing on the same tree trunk consistently hosted the same or closely related mycobiont-specific Trebouxia lineage over geographic distances while the cystobasidiomycete yeasts were unevenly distributed over the study area - contrasting communities were found between Estonia and Switzerland. These results contradict previous findings of high mycobiont species specificity of Cyphobasidiales yeast at large geographic scales. Our results suggest that the yeast might not be as intimately associated with the symbiosis as is the photobiont.
Collapse
Affiliation(s)
- Kristiina Mark
- Chair of Crop Science and Plant Biology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Fr. R. Kreutzwaldi 5, Tartu, 51006, Estonia
- Department of Biodiversity and Conservation Biology, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, Birmensdorf, 8903, Switzerland
| | - Lauri Laanisto
- Chair of Crop Science and Plant Biology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Fr. R. Kreutzwaldi 5, Tartu, 51006, Estonia
| | - C Guillermo Bueno
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51005, Estonia
| | - Ülo Niinemets
- Chair of Crop Science and Plant Biology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Fr. R. Kreutzwaldi 5, Tartu, 51006, Estonia
- Estonian Academy of Sciences, Kohtu 6, Tallinn, 10130, Estonia
| | - Christine Keller
- Department of Biodiversity and Conservation Biology, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, Birmensdorf, 8903, Switzerland
| | - Christoph Scheidegger
- Department of Biodiversity and Conservation Biology, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, Birmensdorf, 8903, Switzerland
| |
Collapse
|
27
|
Moya P, Molins A, Chiva S, Bastida J, Barreno E. Symbiotic microalgal diversity within lichenicolous lichens and crustose hosts on Iberian Peninsula gypsum biocrusts. Sci Rep 2020; 10:14060. [PMID: 32820199 PMCID: PMC7441164 DOI: 10.1038/s41598-020-71046-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/05/2020] [Indexed: 11/16/2022] Open
Abstract
This study analyses the interactions among crustose and lichenicolous lichens growing on gypsum biocrusts. The selected community was composed of Acarospora nodulosa, Acarospora placodiiformis, Diploschistes diacapsis, Rhizocarpon malenconianum and Diplotomma rivas-martinezii. These species represent an optimal system for investigating the strategies used to share phycobionts because Acarospora spp. are parasites of D. diacapsis during their first growth stages, while in mature stages, they can develop independently. R. malenconianum is an obligate lichenicolous lichen on D. diacapsis, and D. rivas-martinezii occurs physically close to D. diacapsis. Microalgal diversity was studied by Sanger sequencing and 454-pyrosequencing of the nrITS region, and the microalgae were characterized ultrastructurally. Mycobionts were studied by performing phylogenetic analyses. Mineralogical and macro- and micro-element patterns were analysed to evaluate their influence on the microalgal pool available in the substrate. The intrathalline coexistence of various microalgal lineages was confirmed in all mycobionts. D. diacapsis was confirmed as an algal donor, and the associated lichenicolous lichens acquired their phycobionts in two ways: maintenance of the hosts' microalgae and algal switching. Fe and Sr were the most abundant microelements in the substrates but no significant relationship was found with the microalgal diversity. The range of associated phycobionts are influenced by thallus morphology.
Collapse
Affiliation(s)
- Patricia Moya
- Botánica, ICBIBE, Fac. CC. Biológicas, Universitat de València, C/ Dr. Moliner, 50, 46100, Burjassot, Valencia, Spain.
| | - Arantzazu Molins
- Botánica, ICBIBE, Fac. CC. Biológicas, Universitat de València, C/ Dr. Moliner, 50, 46100, Burjassot, Valencia, Spain
| | - Salvador Chiva
- Botánica, ICBIBE, Fac. CC. Biológicas, Universitat de València, C/ Dr. Moliner, 50, 46100, Burjassot, Valencia, Spain
| | - Joaquín Bastida
- Geología, Fac. CC. Biológicas, Universitat de València, C/ Dr. Moliner, 50, 46100, Burjassot, Valencia, Spain
| | - Eva Barreno
- Botánica, ICBIBE, Fac. CC. Biológicas, Universitat de València, C/ Dr. Moliner, 50, 46100, Burjassot, Valencia, Spain
| |
Collapse
|
28
|
Lindgren H, Moncada B, Lücking R, Magain N, Simon A, Goffinet B, Sérusiaux E, Nelsen MP, Mercado-Díaz JA, Widhelm TJ, Lumbsch HT. Cophylogenetic patterns in algal symbionts correlate with repeated symbiont switches during diversification and geographic expansion of lichen-forming fungi in the genus Sticta (Ascomycota, Peltigeraceae). Mol Phylogenet Evol 2020; 150:106860. [PMID: 32473336 DOI: 10.1016/j.ympev.2020.106860] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/10/2020] [Accepted: 05/21/2020] [Indexed: 12/19/2022]
Abstract
Species in the fungal genus Sticta form symbiotic associations primarily with either green algae or cyanobacteria, but tripartite associations or photosymbiodemes involving both types of photobionts occur in some species. Sticta is known to associate with green algae in the genus Symbiochloris. However, previous studies have shown that algae from other genera, such as Heveochlorella, may also be suitable partners for Sticta. We examined the diversity of green algal partners in the genus Sticta and assessed the patterns of association between the host fungus and its algal symbiont. We used multi-locus sequence data from multiple individuals collected in Australia, Cuba, Madagascar, Mauritius, New Zealand, Reunion and South America to infer phylogenies for fungal and algal partners and performed tests of congruence to assess coevolution between the partners. In addition, event-based methods were implemented to examine which cophylogenetic processes have led to the observed association patterns in Sticta and its green algal symbionts. Our results show that in addition to Symbiochloris, Sticta associates with green algae from the genera Chloroidium, Coccomyxa, Elliptochloris and Heveochlorella, the latter being the most common algal symbiont associated with Sticta in this study. Geography plays a strong role in shaping fungal-algal association patterns in Sticta as mycobionts associate with different algal lineages in different geographic locations. While fungal and algal phylogenies were mostly congruent, event-based methods did not find any evidence for cospeciation between the partners. Instead, the association patterns observed in Sticta and associated algae, were largely explained by other cophylogenetic events such as host-switches, losses of symbiont and failure of the symbiont to diverge with its host. Our results also show that tripartite associations with green algae evolved multiple times in Sticta.
Collapse
Affiliation(s)
- Hanna Lindgren
- Science and Education, The Field Museum, 1400 South Lake Shore Drive, Chicago, IL 60605, United States.
| | - Bibiana Moncada
- Licenciatura en Biología, Universidad Distrital Francisco José de Caldas, Cra. 4 No. 26D-54, Torre de Laboratorios, Herbario, Bogotá, Colombia
| | - Robert Lücking
- Botanical Garden and Botanical Museum, Koenigin-Luise-Strasse 6-8, 14195 Berlin, Germany
| | - Nicolas Magain
- Evolution and Conservation Biology, University of Liège, Sart Tilman B22, B-4000 Liège, Belgium; Department of Biology, Duke University, Durham, NC 27708-0338, USA
| | - Antoine Simon
- Evolution and Conservation Biology, University of Liège, Sart Tilman B22, B-4000 Liège, Belgium
| | - Bernard Goffinet
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269-3043, USA
| | - Emmanuël Sérusiaux
- Evolution and Conservation Biology, University of Liège, Sart Tilman B22, B-4000 Liège, Belgium
| | - Matthew P Nelsen
- Science and Education, The Field Museum, 1400 South Lake Shore Drive, Chicago, IL 60605, United States
| | - Joel A Mercado-Díaz
- Science and Education, The Field Museum, 1400 South Lake Shore Drive, Chicago, IL 60605, United States; Committee on Evolutionary Biology, University of Chicago, 1025 E. 57(th) street, Chicago, IL 60637, USA
| | - Todd J Widhelm
- Science and Education, The Field Museum, 1400 South Lake Shore Drive, Chicago, IL 60605, United States
| | - H Thorsten Lumbsch
- Science and Education, The Field Museum, 1400 South Lake Shore Drive, Chicago, IL 60605, United States
| |
Collapse
|
29
|
Muggia L, Nelsen MP, Kirika PM, Barreno E, Beck A, Lindgren H, Lumbsch HT, Leavitt SD. Formally described species woefully underrepresent phylogenetic diversity in the common lichen photobiont genus Trebouxia (Trebouxiophyceae, Chlorophyta): An impetus for developing an integrated taxonomy. Mol Phylogenet Evol 2020; 149:106821. [PMID: 32294545 DOI: 10.1016/j.ympev.2020.106821] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 03/30/2020] [Accepted: 04/01/2020] [Indexed: 12/16/2022]
Abstract
Lichens provide valuable systems for studying symbiotic interactions. In lichens, these interactions are frequently described in terms of availability, selectivity and specificity of the mycobionts and photobionts towards one another. The lichen-forming, green algal genus Trebouxia Puymaly is among the most widespread photobiont, associating with a broad range of lichen-forming fungi. To date, 29 species have been described, but studies consistently indicate that the vast majority of species-level lineages still lack formal description, and new, previously unrecognized lineages are frequently reported. To reappraise the diversity and the evolutionary relationships of species-level lineages in Trebouxia, we assembled DNA sequence data from over 1600 specimens, compiled from a range of sequences from previously published studies, axenic algal cultures, and lichens collected from poorly sampled regions. From these samples, we selected representatives of the currently known genetic diversity in the lichenized Trebouxia and inferred a phylogeny from multi-locus sequence data (ITS, rbcL, cox2). We demonstrate that the current formally described species woefully underrepresent overall species-level diversity in this important lichen-forming algal genus. We anticipate that an integrative taxonomic approach, incorporating morphological and physiological data from axenic cultures with genetic data, will be required to establish a robust, comprehensive taxonomy for Trebouxia. The data presented here provide an important impetus and reference dataset for more reliably characterizing diversity in lichenized algae and in using lichens to investigate the evolution of symbioses and holobionts.
Collapse
Affiliation(s)
- Lucia Muggia
- University of Trieste, Department of Life Sciences, via Giorgieri 10, 34127 Trieste, Italy
| | | | - Paul M Kirika
- Botany Department, EA Herbarium, National Museums of Kenya, P.O. Box 40658-00100, Nairobi, Kenya
| | - Eva Barreno
- Botánica, Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Fac. CC. Biológicas, Universitat de València, C/ Dr. Moliner, 50. 46100-Burjassot, Valencia, Spain
| | - Andreas Beck
- Botanische Staatssammlung München, SNSB-BSM, Menzinger Str. 67, D-80638 Munich, Germany
| | | | | | - Steven D Leavitt
- Department of Biology and M. L. Bean Life Science Museum, Brigham Young University, Provo, UT, USA.
| | | |
Collapse
|