1
|
Li QQ, Khasbagan, Zhang ZP, Wen J, Yu Y. Plastid phylogenomics of the tribe potentilleae (Rosaceae). Mol Phylogenet Evol 2024; 190:107961. [PMID: 37918684 DOI: 10.1016/j.ympev.2023.107961] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 04/08/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
The tribe Potentilleae comprises approximately 1700 species in 13 genera, making it one of the largest of the 16 tribes in Rosaceae. Our understanding of the composition and relationships among members of Potentilleae has advanced dramatically with the application of molecular markers in the last two decades. Yet there is still much work remaining toward a robust phylogenetic framework for the entire Potentilleae and a comprehensive genus-level dating framework for the tribe. The goals of the present study were to establish a phylogenetic framework for Potentilleae, infer the origin and diversification of the tribe using a temporal framework, and explore the taxonomic implications in light of the updated phylogenetic framework. We used the plastome sequences from 158 accessions representing 139 taxa covering all 13 recognized genera of the tribe to reconstruct the Potentilleae phylogeny. High phylogenetic resolution was recovered along the Potentilleae backbone. Two major clades were recovered within Potentilleae, corresponding to the two subtribes Fragariinae and Potentillinae. Within Fragariinae, two subclades were recovered. In one subclade, Sibbaldia sensu stricto is sister to a clade containing Sibbaldianthe, Comarum, Farinopsis, and Alchemilla sensu lato. In the other subclade, Fragaria is sister to a clade comprising Chamaerhodos, Chamaecallis, Drymocallis, Dasiphora, and Potaninia. Within Potentillinae, Argentina is sister to Potentilla sensu stricto. Within Potentilla sensu stricto, clade Himalaya is sister to Alba, and the Himalaya-Alba clade together is sister to a clade comprising Reptans, Potentilla ancistrifolia Bunge, Fragarioides, Ivesioid, and Argentea. Divergence time estimates indicated that tribe Potentilleae originated during the middle Eocene, and subtribes Fragariinae and Potentillinae diverged around the Eocene-Oligocene transition, and divergence times dated for Potentilleae genera ranged from the early Miocene to the late Pleistocene.
Collapse
Affiliation(s)
- Qin-Qin Li
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot 010022, Inner Mongolia, China; Department of Botany, National Museum of Natural History, Smithsonian Institution, PO Box 37012, Washington, DC 20013-7012, USA
| | - Khasbagan
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot 010022, Inner Mongolia, China
| | - Zhi-Ping Zhang
- College of Computer Science and Technology, Inner Mongolia Normal University, Hohhot 010022, Inner Mongolia, China
| | - Jun Wen
- Department of Botany, National Museum of Natural History, Smithsonian Institution, PO Box 37012, Washington, DC 20013-7012, USA.
| | - Yan Yu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, Sichuan, China.
| |
Collapse
|
2
|
Mavrodiev EV, Madorsky A. On Pattern-Cladistic Analyses Based on Complete Plastid Genome Sequences. Acta Biotheor 2023; 71:22. [PMID: 37922001 DOI: 10.1007/s10441-023-09475-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 10/26/2023] [Indexed: 11/05/2023]
Abstract
The fundamental Hennigian principle, grouping solely on synapomorphy, is seldom used in modern phylogenetics. In the submitted paper, we apply this principle in reanalyzing five datasets comprising 197 complete plastid genomes (plastomes). We focused on the latter because plastome-based DNA sequence data gained dramatic popularity in molecular systematics during the last decade. We show that pattern-cladistic analyses based on complete plastid genome sequences can successfully resolve affinities between plant taxa, simultaneously simplifying both the genomic and analytical frameworks of phylogenetic studies. We developed "Matrix to Newick" (M2N), a program to represent the standard molecular alignment of plastid genomes in the form of trees or relationships directly. Thus, massive plastome-based DNA sequence data can be successfully represented in a relational form rather than as a standard molecular alignment. Application of methods of median supertree construction (the Average Consensus method has been used as an example in this study) or Maximum Parsimony analysis to relational representations of plastome sequence data may help systematist to avoid the complicated assumption-based frameworks of Maximum Likelihood or Bayesian phylogenetics that are most used today in massive plastid sequence data analyses. We also found that significant amounts of pure genomic information that typically accommodate the majority of current plastid phylogenomic studies can be effectively dropped by systematists if they focus on the pattern-cladistics or relational analyses of plastome-based molecular data. The proposed pattern-cladistic approach is a powerful and straightforward heuristic alternative to modern plastome-based phylogenetics.
Collapse
Affiliation(s)
- Evgeny V Mavrodiev
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA.
| | | |
Collapse
|
3
|
Jiang RH, Liang SQ, Wu F, Tang LM, Qin B, Chen YY, Huang YH, Li KX, Zhang XC. Phylogenomic analysis, cryptic species discovery, and DNA barcoding of the genus Cibotium in China based on plastome data. FRONTIERS IN PLANT SCIENCE 2023; 14:1183653. [PMID: 37346120 PMCID: PMC10279961 DOI: 10.3389/fpls.2023.1183653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/02/2023] [Indexed: 06/23/2023]
Abstract
Germplasm resources are the source of herbal medicine production. The cultivation of superior germplasm resources helps to resolve the conflict between long-term population persistence and growing market demand by consistently producing materials with high quality. The fern species Cibotium barometz is the original plant of cibotii rhizoma ("Gouji"), a traditional Chinese medicine used in the therapy of pain, weakness, and numbness in the lower extremities. Long-history medicinal use has caused serious wild population decline in China. Without sufficient understanding of the species and lineage diversity of Cibotium, it is difficult to propose a targeted conservation scheme at present, let alone select high-quality germplasm resources. In order to fill such a knowledge gap, this study sampled C. barometz and relative species throughout their distribution in China, performed genome skimming to obtain plastome data, and conducted phylogenomic analyses. We constructed a well-supported plastome phylogeny of Chinese Cibotium, which showed that three species with significant genetic differences are distributed in China, namely C. barometz, C. cumingii, and C. sino-burmaense sp. nov., a cryptic species endemic to NW Yunnan and adjacent regions of NE Myanmar. Moreover, our results revealed two differentiated lineages of C. barometz distributed on the east and west sides of a classic phylogeographic boundary that was probably shaped by monsoons and landforms. We also evaluated the resolution of nine traditional barcode loci and designed five new DNA barcodes based on the plastome sequence that can distinguish all these species and lineages of Chinese Cibotium accurately. These novel findings on a genetic basis will guide conservation planners and medicinal plant breeders to build systematic conservation plans and exploit the germplasm resources of Cibotium in China.
Collapse
Affiliation(s)
- Ri-Hong Jiang
- Guangxi Key Laboratory of Special Non-wood Forest Cultivation and Utilization, Guangxi Engineering and Technology Research Center for Woody Spices, Guangxi Forestry Research Institute, Nanning, China
| | - Si-Qi Liang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Fei Wu
- China National Botanical Garden, Beijing, China
- Beijing Botanical Garden, Beijing, China
- Beijing Floriculture Engineering Technology Research Centre, Beijing, China
| | - Li-Ming Tang
- Guangxi Forestry Industry Group Stock Corporation, Nanning, China
| | - Bo Qin
- Guangxi Key Laboratory of Special Non-wood Forest Cultivation and Utilization, Guangxi Engineering and Technology Research Center for Woody Spices, Guangxi Forestry Research Institute, Nanning, China
| | - Ying-Ying Chen
- Guangxi Key Laboratory of Special Non-wood Forest Cultivation and Utilization, Guangxi Engineering and Technology Research Center for Woody Spices, Guangxi Forestry Research Institute, Nanning, China
| | - Yao-Heng Huang
- Guangxi Key Laboratory of Special Non-wood Forest Cultivation and Utilization, Guangxi Engineering and Technology Research Center for Woody Spices, Guangxi Forestry Research Institute, Nanning, China
| | - Kai-Xiang Li
- Guangxi Key Laboratory of Special Non-wood Forest Cultivation and Utilization, Guangxi Engineering and Technology Research Center for Woody Spices, Guangxi Forestry Research Institute, Nanning, China
| | - Xian-Chun Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| |
Collapse
|
4
|
Li Y, Chen X, Lin X, Gu Y, Liu B, Zhang R. Complete chloroplast genome of Isoetes orientalis (Isoetaceae), an endangered quillwort from China. Mitochondrial DNA B Resour 2023; 8:342-346. [PMID: 36876143 PMCID: PMC9980155 DOI: 10.1080/23802359.2023.2183070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
Abstract
Isoetes orientalis is an endangered hexaploidy species of Isoetaceae in China and the complete chloroplast genome of this species has not been reported. In the present study, a complete chloroplast genome of Isoetes orientalis (Isoetaceae) was assembled and annotated. This chloroplast genome has a circular structure of 145,504 bp in length, comprising a pair of inverted repeat (IR) regions of 13,207 bp each, a large single-copy (LSC) region of 91,864 bp, and a small single-copy (SSC) region of 27,226 bp. The chloroplast genome contains 136 genes, including 84 protein-coding genes, 37 tRNA genes, and eight rRNA genes. Phylogenetic analysis showed that I. orientalis was closely related to I. sinensis. These results provide additional resources for future studies on Isoetes from China and across the globe.
Collapse
Affiliation(s)
- Yanqing Li
- College of Life Sciences, South China Agricultural University, Guangzhou, China.,Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, The National Orchid Conservation & Research Center of Shenzhen, Shenzhen, China
| | - Xi Chen
- Life Science and Technology College, Harbin Normal University, Key Laboratory of Plant Biology in Colleges of Heilongjiang Province, Harbin, China
| | - Xiaoyan Lin
- Life Science and Technology College, Harbin Normal University, Key Laboratory of Plant Biology in Colleges of Heilongjiang Province, Harbin, China
| | - Yufeng Gu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, The National Orchid Conservation & Research Center of Shenzhen, Shenzhen, China.,Life Science and Technology College, Harbin Normal University, Key Laboratory of Plant Biology in Colleges of Heilongjiang Province, Harbin, China
| | - Baodong Liu
- Life Science and Technology College, Harbin Normal University, Key Laboratory of Plant Biology in Colleges of Heilongjiang Province, Harbin, China
| | - Rongjing Zhang
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| |
Collapse
|
5
|
Plastid phylogenomic analyses of the Selaginella sanguinolenta group (Selaginellaceae) reveal conflict signatures resulting from sequence types, outlier genes, and pervasive RNA editing. Mol Phylogenet Evol 2022; 173:107507. [PMID: 35589053 DOI: 10.1016/j.ympev.2022.107507] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 04/11/2022] [Accepted: 04/21/2022] [Indexed: 11/23/2022]
Abstract
Different from the generally conserved plastomes (plastid genomes) of most land plants, the Selaginellaceae plastomes exhibit dynamic structure, high GC content and high substitution rates. Previous plastome analyses identified strong conflict on several clades in Selaginella, however the factors causing the conflictions and the impact on the phylogenetic inference have not been sufficiently investigated. Here, we dissect the distribution of phylogenetic signals and conflicts in Selaginella sanguinolenta group, the plastome of which is DR (direct repeats) structure and with genome-wide RNA editing. We analyzed the data sets including 22 plastomes representing all species of the S. sanguinolenta group, covering the entire geographical distribution from the Himalayas to Siberia and the Russian Far East regions. We recovered four different topologies by applying multispecies coalescent (ASTRAL) and concatenation methods (IQ-TREE and RAxML) on four data sets of PC (protein-coding genes), NC (non-coding sequences), PCN (the concatenated PC and NC), and RC (predicted RNA editing sites "C" were corrected by "T"), respectively. Six monophyletic clades, S. nummularifolia clade, S. rossii clade, S. sajanensis clade, S. sanguinolenta I clade, S. sanguinolenta II clade, and S. sanguinolenta III clade, were consistently resolved and supported by the characteristics of GC content, RNA editing frequency, and gene content. However, the relationships among these clades varied across the four topologies. To explore the underlying causes of the uncertainty, we compared the phylogenetic signals of the four topologies. We identified that the sequence types (coding versus non-coding), outlier genes (genes with extremely high |ΔGLS| values), and C-to-U RNA editing frequency in the protein-coding genes were responsible for the unstable phylogenomic relationship. We further revealed a significant positive correlation between the |ΔGLS| values and the variation coefficient of the RNA editing number. Our results demonstrated that the coalescent method performed better than the concatenation method in overcoming the problems caused by outlier genes and extreme RNA editing events. Our study particularly focused on the importance of exploring the plastid phylogenomic conflicts and suggested conducting concatenated analyses cautiously when adopting organelle genome data.
Collapse
|
6
|
Liu J, Lindstrom AJ, Gong X. Towards the plastome evolution and phylogeny of Cycas L. (Cycadaceae): molecular-morphology discordance and gene tree space analysis. BMC PLANT BIOLOGY 2022; 22:116. [PMID: 35291941 PMCID: PMC8922756 DOI: 10.1186/s12870-022-03491-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/22/2022] [Indexed: 05/20/2023]
Abstract
BACKGROUND Plastid genomes (plastomes) present great potential in resolving multiscale phylogenetic relationship but few studies have focused on the influence of genetic characteristics of plastid genes, such as genetic variation and phylogenetic discordance, in resolving the phylogeny within a lineage. Here we examine plastome characteristics of Cycas L., the most diverse genus among extant cycads, and investigate the deep phylogenetic relationships within Cycas by sampling 47 plastomes representing all major clades from six sections. RESULTS All Cycas plastomes shared consistent gene content and structure with only one gene loss detected in Philippine species C. wadei. Three novel plastome regions (psbA-matK, trnN-ndhF, chlL-trnN) were identified as containing the highest nucleotide variability. Molecular evolutionary analysis showed most of the plastid protein-coding genes have been under purifying selection except ndhB. Phylogenomic analyses that alternatively included concatenated and coalescent methods, both identified four clades but with conflicting topologies at shallow nodes. Specifically, we found three species-rich Cycas sections, namely Stangerioides, Indosinenses and Cycas, were not or only weakly supported as monophyly based on plastomic phylogeny. Tree space analyses based on different tree-inference methods both revealed three gene clusters, of which the cluster with moderate genetic properties showed the best congruence with the favored phylogeny. CONCLUSIONS Our exploration in plastomic data for Cycas supports the idea that plastid protein-coding genes may exhibit discordance in phylogenetic signals. The incongruence between molecular phylogeny and morphological classification reported here may largely be attributed to the uniparental attribute of plastid, which cannot offer sufficient information to resolve the phylogeny. Contrasting to a previous consensus that genes with longer sequences and a higher proportion of variances are superior for phylogeny reconstruction, our result implies that the most effective phylogenetic signals could come from loci that own moderate variation, GC content, sequence length, and underwent modest selection.
Collapse
Affiliation(s)
- Jian Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, Yunnan, China
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, China
| | - Anders J Lindstrom
- Global Biodiversity Conservancy, 144/124 Moo3, Soi Bua Thong, 20250, Bangsalae, Sattahip, Chonburi, Thailand.
| | - Xun Gong
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, Yunnan, China.
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
7
|
Zhang Y, Zhang Q, Zhou J, Zou Q. A survey on the algorithm and development of multiple sequence alignment. Brief Bioinform 2022; 23:6546258. [PMID: 35272347 DOI: 10.1093/bib/bbac069] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/30/2022] [Accepted: 02/09/2022] [Indexed: 12/21/2022] Open
Abstract
Multiple sequence alignment (MSA) is an essential cornerstone in bioinformatics, which can reveal the potential information in biological sequences, such as function, evolution and structure. MSA is widely used in many bioinformatics scenarios, such as phylogenetic analysis, protein analysis and genomic analysis. However, MSA faces new challenges with the gradual increase in sequence scale and the increasing demand for alignment accuracy. Therefore, developing an efficient and accurate strategy for MSA has become one of the research hotspots in bioinformatics. In this work, we mainly summarize the algorithms for MSA and its applications in bioinformatics. To provide a structured and clear perspective, we systematically introduce MSA's knowledge, including background, database, metric and benchmark. Besides, we list the most common applications of MSA in the field of bioinformatics, including database searching, phylogenetic analysis, genomic analysis, metagenomic analysis and protein analysis. Furthermore, we categorize and analyze classical and state-of-the-art algorithms, divided into progressive alignment, iterative algorithm, heuristics, machine learning and divide-and-conquer. Moreover, we also discuss the challenges and opportunities of MSA in bioinformatics. Our work provides a comprehensive survey of MSA applications and their relevant algorithms. It could bring valuable insights for researchers to contribute their knowledge to MSA and relevant studies.
Collapse
Affiliation(s)
- Yongqing Zhang
- School of Computer Science, Chengdu University of Information Technology, 610225, Chengdu, China.,School of Computer Science and Engineering, University of Electronic Science and Technology of China, 611731, Chengdu, China
| | - Qiang Zhang
- School of Computer Science, Chengdu University of Information Technology, 610225, Chengdu, China
| | - Jiliu Zhou
- School of Computer Science, Chengdu University of Information Technology, 610225, Chengdu, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, 610054, Chengdu, China
| |
Collapse
|
8
|
Wei R, Yang J, He LJ, Liu HM, Hu JY, Liang SQ, Wei XP, Zhao CF, Zhang XC. Plastid phylogenomics provides novel insights into the infrafamilial relationship of Polypodiaceae. Cladistics 2021; 37:717-727. [PMID: 34841589 DOI: 10.1111/cla.12461] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2021] [Indexed: 01/01/2023] Open
Abstract
The polygrammoids (Polypodiaceae) are the most species-rich and diversified epiphytic fern lineages, and hold an important role to understand the deep diverging events and rapid adaptation to changing environments in the plant tree of life. Despite progress in the phylogeny of this group of ferns in previous multilocus phylogenetic studies, uncertainty remains especially in backbone relationships among closely related clades, and the phylogenetic placement of recalcitrant species or lineages. Here, we investigated the deep phylogenetic relationships within Polypodiaceae by sampling all major lineages and using 81 plastid genomes (plastomes), of which 70 plastomes were newly sequenced with high-throughput sequencing technology. Based on parsimony, maximum-likelihood, Bayesian and multispecies coalescent analyses of genome skimming data, we achieved a better resolution of the backbone phylogeny of Polypodiaceae. Using simulated data matrices, we detected that potential phylogenetic artefacts, such as long-branch attraction and insufficient taxonomic sampling, may have a confounding impact on the incongruence of phylogenetic inferences. Furthermore, our phylogenetic analyses offer greater resolution than previous multilocus studies, providing a robust framework for future phylogenetic implications on the subfamilial taxonomy of Polypodiaceae. Our phylogenomic study not only demonstrates the advantage of a character-rich plastome dataset for resolving the recalcitrant lineages that have undergone rapid radiation, but also sheds new light on integrative explorations understanding the evolutionary history of large fern groups in the genomic era.
Collapse
Affiliation(s)
- Ran Wei
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Jie Yang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li-Juan He
- Xiamen Overseas Chinese Subtropical Plant Introduction Garden/Plant Introduction & Quarantine and Plant Product Key Laboratory of Xiamen, Xiamen, Fujian, 361002, China
| | - Hong-Mei Liu
- Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, 666303, China
| | - Jia-Yu Hu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Si-Qi Liang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xue-Ping Wei
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Cun-Feng Zhao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xian-Chun Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| |
Collapse
|
9
|
Xie C, An W, Liu S, Huang Y, Yang Z, Lin J, Zheng X. Comparative genomic study on the complete plastomes of four officinal Ardisia species in China. Sci Rep 2021; 11:22239. [PMID: 34782652 PMCID: PMC8594775 DOI: 10.1038/s41598-021-01561-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 10/21/2021] [Indexed: 11/23/2022] Open
Abstract
Ardisia Sw. (Primulaceae) is naturally distributed in tropical and subtropical areas. Most of them possess edible and medicinal values and are popular in clinical and daily use in China. However, ambiguous species delineation and genetic information limit the development and utilization of this genus. In this study, the chloroplast genomes of four Ardisia species, namely A. gigantifolia Stapf, A. crenata Sims, A. villosa Roxb. and A. mamillata Hance, were sequenced, annotated, and analyzed comparatively. All the four chloroplast genomes possess a typical quadripartite structure, and each of the genomes is about 156 Kb in size. The structure and gene content of the Ardisia plastomes were conservative and showed low sequence divergence. Furthermore, we identified five mutation hotspots as candidate DNA barcodes for Ardisia, namely, trnT-psbD, ndhF-rpl32, rpl32-ccsA, ccsA-ndhD and ycf1. Phylogenetic analysis based on the whole-chloroplast genomes data showed that Ardisia was sister to Tapeinosperma Hook. f. In addition, the results revealed a great topological profile of Ardisia's with strong support values, which matches their geographical distribution patterns. Summarily, our results provide useful information for investigations on taxonomic differences, molecular identification, and phylogenetic relationships of Ardisia plants.
Collapse
Affiliation(s)
- Chunzhu Xie
- grid.411866.c0000 0000 8848 7685Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 232th Waihuandong Road, Panyu District, Guangzhou, Guangdong China
| | - Wenli An
- grid.411866.c0000 0000 8848 7685School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 232th Waihuandong Road, Panyu District, Guangzhou, Guangdong China
| | - Shanshan Liu
- grid.411866.c0000 0000 8848 7685Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 232th Waihuandong Road, Panyu District, Guangzhou, Guangdong China
| | - Yuying Huang
- grid.411866.c0000 0000 8848 7685Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 232th Waihuandong Road, Panyu District, Guangzhou, Guangdong China
| | - Zerui Yang
- grid.411866.c0000 0000 8848 7685School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 232th Waihuandong Road, Panyu District, Guangzhou, Guangdong China
| | - Ji Lin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 232th Waihuandong Road, Panyu District, Guangzhou, Guangdong, China.
| | - Xiasheng Zheng
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 232th Waihuandong Road, Panyu District, Guangzhou, Guangdong, China.
| |
Collapse
|