1
|
Arango A, Pinto-Ledezma J, Rojas-Soto O, Villalobos F. Broad geographic dispersal is not a diversification driver for Emberizoidea. Proc Biol Sci 2025; 292:20241965. [PMID: 39837518 PMCID: PMC11750406 DOI: 10.1098/rspb.2024.1965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 12/06/2024] [Accepted: 12/12/2024] [Indexed: 01/23/2025] Open
Abstract
The movement of species to new geographical areas has been proposed to be crucial for speciation. As such, dispersal has been regarded as a likely explanation for the variation in species richness among clades. The Emberizoidea are a highly diverse Oscine bird clade native to the New World that has been characterized for their ubiquitous distribution both ecologically and geographically, making this group ideal to test how biogeographical dispersal could promote speciation. To do so, we relate dispersal rates with speciation rates of Emberizoidea families using a combination of bioregionalization analysis, ancestral area reconstruction and speciation rate estimation methods. We found that the Emberizoidea superfamily likely arose from a widespread ancestor distributed over the New World, with its range evolution being primarily driven by range contraction and the main cladogenetic events for the clade occurring within bioregions. Moreover, we demonstrate that dispersal rates between bioregions showed no relationship with speciation rates, suggesting that the movement to new geographical spaces is not a driver of speciation in this group. Instead, cladogenetic events within individual bioregions promoted by range stability prove to be an important driver for speciation at broad spatial scales for Emberizoidea families.
Collapse
Affiliation(s)
- Axel Arango
- Center for Computational and Theoretical Biology, University of Würzburg, Würzburg97074, Germany
- Red de Biología Evolutiva, Instituto de Ecología A.C., Xalapa, VeracruzCP 91073, Mexico
| | - Jesús Pinto-Ledezma
- Department of Ecology, Evolution & Behavior, University of Minnesota, Minneapolis, MN55108, USA
| | - Octavio Rojas-Soto
- Red de Biología Evolutiva, Instituto de Ecología A.C., Xalapa, VeracruzCP 91073, Mexico
| | - Fabricio Villalobos
- Red de Biología Evolutiva, Instituto de Ecología A.C., Xalapa, VeracruzCP 91073, Mexico
| |
Collapse
|
2
|
Illera JC, Rando JC, Melo M, Valente L, Stervander M. Avian Island Radiations Shed Light on the Dynamics of Adaptive and Nonadaptive Radiation. Cold Spring Harb Perspect Biol 2024; 16:a041451. [PMID: 38621823 PMCID: PMC11610763 DOI: 10.1101/cshperspect.a041451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Understanding the mechanisms underlying species formation and differentiation is a central goal of evolutionary biology and a formidable challenge. This understanding can provide valuable insights into the origins of the astonishing diversity of organisms living on our planet. Avian evolutionary radiations on islands have long fascinated biologists as they provide the ideal variation to study the ecological and evolutionary forces operating on the continuum between incipient lineages to complete speciation. In this review, we summarize the key insights gained from decades of research on adaptive and nonadaptive radiations of both extant and extinct insular bird species. We present a new comprehensive global list of potential avian radiations on oceanic islands, based on published island species checklists, taxonomic studies, and phylogenetic analyses. We demonstrate that our understanding of evolutionary processes is being greatly enhanced through the use of genomic tools. However, to advance the field, it is critical to complement this information with a solid understanding of the ecological and behavioral traits of both extinct and extant avian island species.
Collapse
Affiliation(s)
- Juan Carlos Illera
- Biodiversity Research Institute (CSIC-Oviedo University-Principality of Asturias), University of Oviedo, Mieres 33600, Asturias, Spain
| | - Juan Carlos Rando
- Departamento de Biología Animal, Edafología y Geología, Universidad de La Laguna, La Laguna 38206, Tenerife, Spain
| | - Martim Melo
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão 4485-661, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão 4485-661, Portugal
- Museu de História Natural e da Ciência da Universidade do Porto, Porto 4050-368, Portugal
- FitzPatrick Institute of African Ornithology, University of Cape Town, Cape Town 7701, South Africa
| | - Luís Valente
- Naturalis Biodiversity Center, 2333 CR Leiden, The Netherlands
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen 9700 AB, The Netherlands
| | - Martin Stervander
- Bird Group, Natural History Museum, Tring HP23 6AP, Hertfordshire, United Kingdom
- Department of Natural Sciences, National Museums Scotland, Edinburgh EH1 1JF, United Kingdom
| |
Collapse
|
3
|
Chavez DE, Hains T, Espinoza-Ulloa S, Wayne RK, Chaves JA. Whole-genome analysis reveals the diversification of Galapagos rail (Aves: Rallidae) and confirms the success of goat eradication programs. J Hered 2024; 115:444-457. [PMID: 38498380 DOI: 10.1093/jhered/esae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/09/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024] Open
Abstract
Similar to other insular birds around the world, the Galapagos rail (Laterallus spilonota Gould, 1841) exhibits reduced flight capacity following its colonization of the archipelago ~1.2 mya. Despite their short evolutionary history, rails have colonized seven different islands spanning the entire width of the archipelago. Galapagos rails were once common on islands with sufficiently high altitudes to support shrubs in humid habitats. After humans introduced goats, this habitat was severely reduced due to overgrazing. Habitat loss devastated some rail populations, with less than 50 individuals surviving, rendering the genetic diversity of Galapagos rail a pressing conservation concern. Additionally, one enigma is the reappearance of rails on the island of Pinta after they were considered extirpated. Our approach was to investigate the evolutionary history and geographic distribution of Galapagos rails as well as examine the genome-wide effects of historical population bottlenecks using 39 whole genomes across different island populations. We recovered an early divergence of rail ancestors leading to the isolated populations on Pinta and a second clade comprising the rest of the islands, historically forming a single landmass. Subsequently, the separation of the landmass ~900 kya may have led to the isolation of the Isabela population with more panmictic populations found on Santa Cruz and Santiago islands. We found that rails genomes contain long runs of homozygosity (>2 Mb) that could be related to the introduction of goats. Finally, our findings show that the modern eradication of goats was critical to avoiding episodes of inbreeding in most populations.
Collapse
Affiliation(s)
- Daniel E Chavez
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA 90095, United States
- Escuela de Biología, Pontificia Universidad Católica del Ecuador, Av. 12 de Octubre, Quito 170901, Ecuador
- Arizona Cancer Evolution Center, The Biodesign Institute, AZ School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Taylor Hains
- Committee on Evolutionary Biology, University of Chicago, Chicago, IL 60637, United States
- Negaunee Integrative Research Center, The Field Museum, Chicago, IL 60605, United States
- Grainger Bioinformatics Center, The Field Museum, Chicago, IL 60605, United States
| | - Sebastian Espinoza-Ulloa
- Escuela de Biología, Pontificia Universidad Católica del Ecuador, Av. 12 de Octubre, Quito 170901, Ecuador
| | - Robert K Wayne
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA 90095, United States
| | - Jaime A Chaves
- Department of Biology, San Francisco State University, San Francisco, CA 94132-1722, United States
- Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
- Galapagos Science Center, Universidad San Francisco de Quito USFQ, Islas Galápagos, Ecuador
| |
Collapse
|
4
|
Hall LA, Wang IJ, Escalona M, Beraut E, Sacco S, Sahasrabudhe R, Nguyen O, Toffelmier E, Shaffer HB, Beissinger SR. Reference genome of the Virginia rail, Rallus limicola. J Hered 2023; 114:428-435. [PMID: 37105531 PMCID: PMC10287147 DOI: 10.1093/jhered/esad026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/27/2023] [Indexed: 04/29/2023] Open
Abstract
The Virginia rail, Rallus limicola, is a member of the family Rallidae, which also includes many other species of secretive and poorly studied wetland birds. It is recognized as a single species throughout its broad distribution in North America where it is exploited as a game bird, often with generous harvest limits, despite a lack of systematic population surveys and evidence of declines in many areas due to wetland loss and degradation. To help advance understanding of the phylogeography, biology, and ecology of this elusive species, we report the first reference genome assembly for the Virginia rail, produced as part of the California Conservation Genomics Project (CCGP). We produced a de novo genome assembly using Pacific Biosciences HiFi long reads and Hi-C chromatin-proximity sequencing technology with an estimated sequencing error rate of 0.191%. The assembly consists of 1,102 scaffolds spanning 1.39 Gb, with a contig N50 of 11.0 Mb, scaffold N50 of 25.3 Mb, largest contig of 45 Mb, and largest scaffold of 128.4 Mb. It has a high BUSCO completeness score of 96.9% and represents the first genome assembly available for the genus Rallus. This genome assembly will help resolve questions about the complex evolutionary history of rails and evaluate the potential of rails for adaptive evolution in the face of growing threats from climate change and habitat loss and fragmentation. It will also provide a valuable resource for rail conservation efforts by quantifying Virginia rail vagility, population connectivity, and effective population sizes.
Collapse
Affiliation(s)
- Laurie A Hall
- Department of Environmental Science, Policy & Management, University of California, Berkeley, Berkeley, CA 94720, United States
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA 94720, United States
| | - Ian J Wang
- Department of Environmental Science, Policy & Management, University of California, Berkeley, Berkeley, CA 94720, United States
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA 94720, United States
| | - Merly Escalona
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, United States
| | - Eric Beraut
- Department of Ecology & Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, United States
| | - Samuel Sacco
- Department of Ecology & Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, United States
| | - Ruta Sahasrabudhe
- DNA Technologies and Expression Analysis Core Laboratory, Genome Center, University of California, Davis, Davis, CA 95616, United States
| | - Oanh Nguyen
- DNA Technologies and Expression Analysis Core Laboratory, Genome Center, University of California, Davis, Davis, CA 95616, United States
| | - Erin Toffelmier
- Department of Ecology & Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA 90095, United States
- La Kretz Center for California Conservation Science, Institute of the Environment & Sustainability, University of California, Los Angeles, Los Angeles, CA 90095, United States
| | - H Bradley Shaffer
- Department of Ecology & Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA 90095, United States
- La Kretz Center for California Conservation Science, Institute of the Environment & Sustainability, University of California, Los Angeles, Los Angeles, CA 90095, United States
| | - Steven R Beissinger
- Department of Environmental Science, Policy & Management, University of California, Berkeley, Berkeley, CA 94720, United States
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA 94720, United States
| |
Collapse
|
5
|
Hall LA, Wang IJ, Escalona M, Beraut E, Sacco S, Sahasrabudhe R, Nguyen O, Toffelmier E, Shaffer HB, Beissinger SR. Reference genome of the black rail, Laterallus jamaicensis. J Hered 2023; 114:436-443. [PMID: 37119047 PMCID: PMC10287143 DOI: 10.1093/jhered/esad025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/27/2023] [Indexed: 04/30/2023] Open
Abstract
The black rail, Laterallus jamaicensis, is one of the most secretive and poorly understood birds in the Americas. Two of its five subspecies breed in North America: the Eastern black rail (L. j. jamaicensis), found primarily in the southern and mid-Atlantic states, and the California black rail (L. j. coturniculus), inhabiting California and Arizona, are recognized across the highly disjunct distribution. Population declines, due primarily to wetland loss and degradation, have resulted in conservation status listings for both subspecies. To help advance understanding of the phylogeography, biology, and ecology of this elusive species, we report the first reference genome assembly for the black rail, produced as part of the California Conservation Genomics Project (CCGP). We produced a de novo genome assembly using Pacific Biosciences HiFi long reads and Hi-C chromatin-proximity sequencing technology with an estimated sequencing error rate of 0.182%. The assembly consists of 964 scaffolds spanning 1.39 Gb, with a contig N50 of 7.4 Mb, scaffold N50 of 21.4 Mb, largest contig of 44.8 Mb, and largest scaffold of 101.2 Mb. The assembly has a high BUSCO completeness score of 96.8% and represents the first genome assembly available for the genus Laterallus. This genome assembly can help resolve questions about the complex evolutionary history of rails, assess black rail vagility and population connectivity, estimate effective population sizes, and evaluate the potential of rails for adaptive evolution in the face of growing threats from climate change, habitat loss and fragmentation, and disease.
Collapse
Affiliation(s)
- Laurie A Hall
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720, United States
- Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, United States
| | - Ian J Wang
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720, United States
- Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, United States
| | - Merly Escalona
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA 95064, United States
| | - Eric Beraut
- Department of Ecology and Evolutionary Biology, University of Califin JHornia, Santa Cruz, CA 95064, United States
| | - Samuel Sacco
- Department of Ecology and Evolutionary Biology, University of Califin JHornia, Santa Cruz, CA 95064, United States
| | - Ruta Sahasrabudhe
- DNA Technologies and Expression Analysis Core Laboratory, Genome Center, University of California, Davis, CA 95616, United States
| | - Oanh Nguyen
- DNA Technologies and Expression Analysis Core Laboratory, Genome Center, University of California, Davis, CA 95616, United States
| | - Erin Toffelmier
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, United States
- La Kretz Center for California Conservation Science, Institute of the Environment and Sustainability, University of California, Los Angeles, CA 90095, United States
| | - H Bradley Shaffer
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, United States
- La Kretz Center for California Conservation Science, Institute of the Environment and Sustainability, University of California, Los Angeles, CA 90095, United States
| | - Steven R Beissinger
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720, United States
- Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, United States
| |
Collapse
|
6
|
Pelegrin JS, Cantalapiedra JL, Gamboa S, Menéndez I, Hernández Fernández M. Phylogenetic biome conservatism as a key concept for an integrative understanding of evolutionary history: Galliformes and Falconiformes as study cases. Zool J Linn Soc 2022. [DOI: 10.1093/zoolinnean/zlac080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Biomes are climatically and biotically distinctive macroecological units that formed over geological time scales. Their features consolidate them as ‘evolutionary scenarios’, with their own diversification dynamics. Under the concept of phylogenetic niche conservatism, we assessed, for the first time, the evolution of biome occupation in birds. We aimed to analyse patterns of adaptation to different climatic regimes and the determinant factors for colonization of emerging biomes by clades from different ancestral biomes. In this work, we reconstructed the biome occupation history of two clades of birds (Galliformes and Falconiformes) under an integrative perspective through a comprehensive review of ecological, phylogenetic, palaeontological and biogeographical evidence. Our findings for both groups are consistent with a scenario of phylogenetic biome conservatism and highlight the importance of changes in climate during the Miocene in the adaptation and evolution of climatic niches. In particular, our results indicate high biome conservatism associated with biomes situated in some of the extremes of the global climate gradient (evergreen tropical rainforest, steppe and tundra) for both bird taxa. Finally, the historical dynamics of tropical seasonal biomes, such as tropical deciduous woodlands and savannas, appear to have played a preponderant role during the diversification processes of these bird lineages.
Collapse
Affiliation(s)
- Jonathan S Pelegrin
- Grupo de Investigación en Ecología y Conservación de la Biodiversidad (EcoBio), Área de Biología y Programa de Maestría en Educación Ambiental y Desarrollo Sostenible, Facultades de Ciencias Básicas y Educación, Universidad Santiago de Cali , Colombia
- Departamento de Biología, Facultad de Ciencias Naturales y Exactas, Universidad del Valle , Colombia
| | - Juan L Cantalapiedra
- GloCEE – Global Change Ecology and Evolution Research Group, Departamento de Ciencias de la Vida, Universidad de Alcalá , 28805, Alcalá de Henares (Madrid ), Spain
| | - Sara Gamboa
- Departamento de Estratigrafía, Geodinámica y Paleontología, Facultad de Ciencias Geológicas, Universidad Complutense de Madrid , C/ José Antonio Novais 2, 28040, Madrid , Spain
- Departamento de Cambio Medio Ambiental, Instituto de Geociencias (UCM, CSIC) , C/ José Antonio Novais 2, 28040, Madrid , Spain
| | - Iris Menéndez
- Departamento de Estratigrafía, Geodinámica y Paleontología, Facultad de Ciencias Geológicas, Universidad Complutense de Madrid , C/ José Antonio Novais 2, 28040, Madrid , Spain
- Departamento de Cambio Medio Ambiental, Instituto de Geociencias (UCM, CSIC) , C/ José Antonio Novais 2, 28040, Madrid , Spain
| | - Manuel Hernández Fernández
- Departamento de Estratigrafía, Geodinámica y Paleontología, Facultad de Ciencias Geológicas, Universidad Complutense de Madrid , C/ José Antonio Novais 2, 28040, Madrid , Spain
- Departamento de Cambio Medio Ambiental, Instituto de Geociencias (UCM, CSIC) , C/ José Antonio Novais 2, 28040, Madrid , Spain
| |
Collapse
|