1
|
Zheng S, Zhang C, Zhou J, Zhang S, Liu Y, Jin X, Wang Y, Liu B. Daphnia sp. (Branchiopoda: Cladocera) Mitochondrial Genome Gene Rearrangement and Phylogenetic Position Within Branchiopoda. Biochem Genet 2024; 62:3030-3051. [PMID: 38063953 DOI: 10.1007/s10528-023-10594-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/08/2023] [Indexed: 07/31/2024]
Abstract
In high-altitude (4500 m) freshwater lakes, Daphnia is the apex species and the dominant zooplankton. It frequently dwells in the same lake as the Gammarid. Branchiopoda, a class of Arthropoda, Crustacea, is a relatively primitive group in the subphylum Crustacea, which originated in the Cambrian period of the Paleozoic. The complete mitogenome sequence of Daphnia sp. (Branchiopoda: Cladocera) was sequenced and annotated in this study and deposited in GenBank. The sequence structure of this species was studied by comparing the original sequences with BLAST. In addition, we have also researched the mechanisms of their mitochondrial gene rearrangement by establishing a model. We have used the Bayesian inference [BI] and maximum likelihood [ML] methods to proceed with phylogenetic analysis inference, which generates identical phylogenetic topology that reveals the phylogenetic state of Daphnia. The complete mitogenome of Daphnia sp. shows that it was 15,254 bp in length and included two control regions (CRs) and 37 genes (13 protein-coding genes, 22 tRNAs and two ribosomal RNAs [16S and 12S]). In addition to tRNA-Ser (GCT), other tRNAs have a typical cloverleaf secondary structure. Meanwhile, the mitogenome of Daphnia sp. was clearly rearranged when compared to the mitogenome of typical Daphnia. In a word, we report a newly sequenced mitogenome of Daphnia sp. with a unique rearrangement phenomenon. These results will be helpful for further phylogenetic research and provide a foundation for future studies on the characteristics of the mitochondrial gene arrangement process in Daphnia.
Collapse
Affiliation(s)
- Sixu Zheng
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, No.1, Haida South Road, Zhoushan, 316022, Zhejiang, People's Republic of China
| | - Chi Zhang
- Institute of Fisheries Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, People's Republic of China.
| | - Jianshe Zhou
- Institute of Fisheries Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, People's Republic of China
| | - Shufei Zhang
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou, 510300, Guangdong, China
| | - Yifan Liu
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, No.1, Haida South Road, Zhoushan, 316022, Zhejiang, People's Republic of China
| | - Xun Jin
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, No.1, Haida South Road, Zhoushan, 316022, Zhejiang, People's Republic of China
| | - Yunpeng Wang
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, No.1, Haida South Road, Zhoushan, 316022, Zhejiang, People's Republic of China
| | - Bingjian Liu
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, No.1, Haida South Road, Zhoushan, 316022, Zhejiang, People's Republic of China.
| |
Collapse
|
2
|
Sterling-Montealegre RA, Prada CF. Variability and evolution of gene order rearrangement in mitochondrial genomes of arthropods (except Hexapoda). Gene 2024; 892:147906. [PMID: 37844850 DOI: 10.1016/j.gene.2023.147906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/29/2023] [Accepted: 10/13/2023] [Indexed: 10/18/2023]
Abstract
In the species-rich Phylum Arthropoda, the mitochondrial genome is relatively well conserved both in terms of number and order of genes. However, specific clades have a 'typical' gene order that differs from the putative arthropod ancestral arrangement. The aim of this work was to compare the rate of mitochondrial gene rearrangements at inter- and intra-taxonomic levels in the Arthropoda and to postulate the most parsimonious ancestral orders representing the four major arthropod lineages. For this purpose, we performed a comparative genomic analysis of arthropod mitochondrial genomes available in the NCBI database. Using a combination of bioinformatics methods that examined mitochondrial gene rearrangements in 464 species of arthropods from three subphyla (Chelicerata, Myriapoda, and Crustacea [except Hexapoda, previously analyzed]), we observed differences in the rate of rearrangement within major lineages. A higher rate of mitochondrial genome rearrangement was observed in Crustacea and Chelicerata compared to Myriapoda. Likewise, early branching clades exhibit less variability in mitochondrial genome order than late branching clades, within each subphylum. We identified 'hot regions' in the mitochondrial genome of each studied subphylum, and postulated the most likely ancestral gene order in each subphylum and taxonomic order. Our work provides new evidence on the evolutionary dynamics of mitochondrial genome gene order in arthropods and new mitochondrial genome architectures in different taxonomic divisions within each major lineage of arthropods.
Collapse
Affiliation(s)
| | - Carlos Fernando Prada
- Grupo de Investigación de Biología y Ecología de Artrópodos, Facultad de Ciencias, Universidad del Tolima, Colombia.
| |
Collapse
|
3
|
Sun X, Cheng J. Conflicts in Mitochondrial Phylogenomics of Branchiopoda, with the First Complete Mitogenome of Laevicaudata (Crustacea: Branchiopoda). Curr Issues Mol Biol 2023; 45:820-837. [PMID: 36825999 PMCID: PMC9955068 DOI: 10.3390/cimb45020054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023] Open
Abstract
Conflicting phylogenetic signals are pervasive across genomes. The potential impact of such systematic biases may be reduced by phylogenetic approaches accommodating for heterogeneity or by the exclusive use of homoplastic sites in the datasets. Here, we present the complete mitogenome of Lynceus grossipedia as the first representative of the suborder Laevicaudata. We employed a phylogenomic approach on the mitogenomic datasets representing all major branchiopod groups to identify the presence of conflicts and concordance across the phylogeny. We found pervasive phylogenetic conflicts at the base of Diplostraca. The homogeneity of the substitution pattern tests and posterior predictive tests revealed a high degree of compositional heterogeneity among branchiopod mitogenomes at both the nucleotide and amino acid levels, which biased the phylogenetic inference. Our results suggest that Laevicaudata as the basal clade of Phyllopoda was most likely an artifact caused by compositional heterogeneity and conflicting phylogenetic signal. We demonstrated that the exclusive use of homoplastic site methods combining the application of site-heterogeneous models produced correct phylogenetic estimates of the higher-level relationships among branchiopods.
Collapse
Affiliation(s)
| | - Jinhui Cheng
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Palaeoenvironment, Chinese Academy of Sciences, 39 Beijing Eastroad, Nanjing 210008, China
| |
Collapse
|
4
|
Xu M, Liu P, Huang Q, Xu S, Dumont HJ, Han BP. High-quality genome of Diaphanosoma dubium provides insights into molecular basis of its broad ecological adaptation. iScience 2023; 26:106006. [PMID: 36798432 PMCID: PMC9926121 DOI: 10.1016/j.isci.2023.106006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 07/20/2022] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Diaphanosoma dubium Manuilova, 1964, is a widespread planktonic water flea in Asian freshwater. Although sharing similar ecological roles with species of Daphnia, studies on D. dubium and its congeners are still few and lacking a genome for the further studies. Here, we assembled a high quality and chromosome level genome of D. dubium by combining long reads sequencing and Hi-C technologies. The total length of assembled genome was 101.8 Mb, with 98.92 Mb (97.2%) anchored into 22 chromosomes. Through comparative genomic analysis, we found the genes, involved in anti-ROS, detoxification, protein digestion, germ cells regulation and protection, underwent expansion in D. dubium. These genes and their expansion helpfully explain its widespread geographical distribution and dominance in eutrophic waters. This study provides insight into the adaptive evolution of D. dubium at genomic perspectives, and the present high quality genomic resource will be a footstone for future omics studies of the species and its congeners.
Collapse
Affiliation(s)
- Meng Xu
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou 510632, China
| | - Ping Liu
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou 510632, China,College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Qi Huang
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou 510632, China
| | - Shaolin Xu
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou 510632, China
| | - Henri J. Dumont
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou 510632, China,Ghent University, Department of Biology, Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Bo-Ping Han
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou 510632, China,Corresponding author
| |
Collapse
|
5
|
Hamza W, Hazzouri KM, Sudalaimuthuasari N, Amiri KMA, Neretina AN, Al Neyadi SES, Kotov AA. Genome Assembly of a Relict Arabian Species of Daphnia O. F. Müller (Crustacea: Cladocera) Adapted to the Desert Life. Int J Mol Sci 2023; 24:ijms24010889. [PMID: 36614331 PMCID: PMC9820869 DOI: 10.3390/ijms24010889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/29/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023] Open
Abstract
The water flea Daphnia O.F. Müller 1776 (Crustacea: Cladocera) is an important model of recent evolutionary biology. Here, we report a complete genome of Daphnia (Ctenodaphnia) arabica (Crustacea: Cladocera), recently described species endemic to deserts of the United Arab Emirates. In this study, genome analysis of D. arabica was carried out to investigate its genomic differences, complexity as well as its historical origins within the subgenus Daphnia (Ctenodaphnia). Hybrid genome assembly of D. arabica resulted in ~116 Mb of the assembled genome, with an N50 of ~1.13 Mb (BUSCO score of 99.2%). From the assembled genome, in total protein coding, 5374 tRNA and 643 rRNA genes were annotated. We found that the D. arabica complete genome differed from those of other Daphnia species deposited in the NCBI database but was close to that of D. cf. similoides. However, its divergence time estimate sets D. arabica in the Mesozoic, and our demographic analysis showed a great reduction in its genetic diversity compared to other Daphnia species. Interestingly, the population expansion in its diversity occurred during the megadrought climate around 100 Ka ago, reflecting the adaptive feature of the species to arid and drought-affected environments. Moreover, the PFAM comparative analysis highlights the presence of the important domain SOSS complex subunit C in D. arabica, which is missing in all other studied species of Daphnia. This complex consists of a few subunits (A, B, C) working together to maintain the genome stability (i.e., promoting the reparation of DNA under stress). We propose that this domain could play a role in maintaining the fitness and survival of this species in the desert environment. The present study will pave the way for future research to identify the genes that were gained or lost in this species and identify which of these were key factors to its adaptation to the harsh desert environment.
Collapse
Affiliation(s)
- Waleed Hamza
- Biology Department, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Correspondence: (W.H.); (A.A.K.)
| | - Khaled M. Hazzouri
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Naganeeswaran Sudalaimuthuasari
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Khaled M. A. Amiri
- Biology Department, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Anna N. Neretina
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Shamma E. S. Al Neyadi
- Biology Department, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Alexey A. Kotov
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 119071 Moscow, Russia
- Correspondence: (W.H.); (A.A.K.)
| |
Collapse
|
6
|
Sun X, Cheng J. Comparative Mitogenomic Analyses and New Insights into the Phylogeny of Thamnocephalidae (Branchiopoda: Anostraca). Genes (Basel) 2022; 13:1765. [PMID: 36292650 PMCID: PMC9602129 DOI: 10.3390/genes13101765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/26/2022] [Accepted: 09/26/2022] [Indexed: 11/04/2022] Open
Abstract
Thamnocephalidae, a family of Anostraca which is widely distributed on all continents of the world except Antarctica, currently consists of six genera and approximately 63 recognized species. The relationships among genera in Thamnocephalidae and the monophyly of Thamnocephalidae, determined using morphological characteristics or gene markers, remain controversial. In order to address the relationships within Thamnocephalidae, we sequenced Branchinella kugenumaensis mitogenomes and conducted a comparative analysis to reveal the divergence across mitogenomes of B. kugenumaensis. Using newly obtained mitogenomes together with available Anostracan genomic sequences, we present the most complete phylogenomic understanding of Anostraca to date. We observed high divergence across mitogenomes of B. kugenumaensis. Meanwhile, phylogenetic analyses based on both amino acids and nucleotides of the protein-coding genes (PCG) provide significant support for a non-monophyletic Thamnocephalidae within Anostraca, with Asian Branchinella more closely related to Streptocephalidae than Australian Branchinella. The phylogenetic relationships within Anostraca were recovered as follows: Branchinectidae + Chirocephalidae as the basal group of Anostraca and halophilic Artemiidae as a sister to the clade Thamnocephalidae + Streptocephalidae. Both Bayesian inference (BI)- and maximum likelihood (ML)-based analyses produced identical topologies.
Collapse
Affiliation(s)
| | - Jinhui Cheng
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Palaeoenvironment, Chinese Academy of Sciences, 39 Beijing Eastroad, Nanjing 210008, China
| |
Collapse
|
7
|
Deng Z, Yao Y, Blair D, Hu W, Yin M. Ceriodaphnia (Cladocera: Daphniidae) in China: Lineage diversity, phylogeography and possible interspecific hybridization. Mol Phylogenet Evol 2022; 175:107586. [PMID: 35810974 DOI: 10.1016/j.ympev.2022.107586] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 11/29/2022]
Abstract
The distribution and species/lineage diversity of freshwater invertebrate zooplankton remains understudied in China. Here, we explored the species/lineage diversity and phylogeography of Ceriodaphnia species across China. The taxonomy of this genus is under-explored. Seven morphospecies of Ceriodaphnia (C. cornuta, C. laticaudata, C. megops, C. pulchella, C. quadrangula, C. rotunda and C. spinata) were identified across 45 of 422 water bodies examined. Rather little morphological variation was observed within any single morphospecies regardless of country of origin. Nevertheless, we recognized that some or all of these morphospecies might represent species complexes. To investigate this, phylogenetic relationships within and among these morphospecies were investigated based on mitochondrial (partial cytochrome c oxidase subunit I gene) and nuclear (partial 28S rRNA gene) markers. The mitochondrial marker placed these populations in nine lineages corresponding to the morphospecies: C. laticaudata and C. pulchella were each represented by two lineages, suggesting that both are species complexes. The remaining five morphospecies were each represented by a single mtDNA lineage. Three of the nine mitochondrial lineages (belonging to C. pulchella, C. rotunda and C. megops) are newly reported and exhibited a restricted distribution within China. The nuclear-DNA phylogeny also recognized seven Ceriodaphnia taxa within China. We detected occasional mito-nuclear discordances in Ceriodaphnia taxa across China, suggesting interspecific introgression and hybridization. Our study contributes to an understanding of the species/lineage diversity of Ceriodaphnia, a genus with understudied taxonomy.
Collapse
Affiliation(s)
- Zhixiong Deng
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Science, Fudan University, Songhu Road 2005, Shanghai, China
| | - Yiyang Yao
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Science, Fudan University, Songhu Road 2005, Shanghai, China
| | - David Blair
- College of Science and Engineering, James Cook University, Townsville, Qld 4811, Australia
| | - Wei Hu
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Science, Fudan University, Songhu Road 2005, Shanghai, China; Department of Microbiology and Bioengineering, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Mingbo Yin
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Science, Fudan University, Songhu Road 2005, Shanghai, China.
| |
Collapse
|
8
|
Gu YL, Sun CH, Liu P, Zhang X, Sinev AY, Dumont HJ, Han BP. Complete mitochondrial genome of Ovalona pulchella (Branchiopoda, Cladocera) as the first representative in the family Chydoridae: Gene rearrangements and phylogenetic analysis of Cladocera. Gene X 2022; 818:146230. [PMID: 35093448 DOI: 10.1016/j.gene.2022.146230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/10/2021] [Accepted: 01/13/2022] [Indexed: 11/18/2022] Open
Abstract
Chydoridae are phytophilic-benthic microcrustaceans that make up a significant proportion of species diversity and play an important role in the littoral zone of freshwater ecosystems worldwide. Here, we provide the complete mitochondrial genome of Ovalona pulchella (King, 1853), determined by next-generation sequencing. The entire mitochondrial genome is 15,362 bp in length; this is the first sequenced mitochondrial genome in the family Chydoridae. The base composition and codon usage were typical of Cladocera species. The mitochondrial gene arrangement (37 genes) was not consistent with that of other Branchiopoda. Both maximum likelihood and Bayesian analyses supported each suborder and family of Branchiopoda as monophyletic groups. The relationships among the families were as follows: [(Leptestheriidae + Limnadiidae) + (Sididae + (Bosminidae + (Chydoridae + Daphniidae)))] + Triopsidae. The newly sequenced O. pulchella was most closely related to the family Daphniidae. The complete mitochondrial genome of O. pulchella also provides valuable molecular information for further analysis of the phylogeny of the Chydoridae and the taxonomic status of the Branchiopoda.
Collapse
Affiliation(s)
- Yang-Liang Gu
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou 510632, China; South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou 510530, China
| | - Cheng-He Sun
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou 510632, China.
| | - Ping Liu
- College of Environmental Science and Engineering, Yangzhou University, Jiangsu 225127, China.
| | - Xiaoli Zhang
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou 510632, China
| | - Artem Y Sinev
- Department of Invertebrate Zoology, Biological Faculty, M.V. Lomonosov Moscow State University, Leninskie Gory, Moscow 119991, Russia
| | - Henri J Dumont
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou 510632, China
| | - Bo-Ping Han
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
9
|
Castellucci F, Luchetti A, Mantovani B. Exploring mitogenome evolution in Branchiopoda (Crustacea) lineages reveals gene order rearrangements in Cladocera. Sci Rep 2022; 12:4931. [PMID: 35322086 PMCID: PMC8942981 DOI: 10.1038/s41598-022-08873-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 03/08/2022] [Indexed: 11/20/2022] Open
Abstract
The class Branchiopoda, whose origin dates back to Cambrian, includes ~ 1200 species which mainly occupy freshwater habitats. The phylogeny and systematics of the class have been debated for long time, until recent phylogenomic analyses allowed to better clarify the relationships among major clades. Based on these data, the clade Anostraca (fairy and brine shrimps) is sister to all other branchiopods, and the Notostraca (tadpole shrimps) results as sister group to Diplostraca, which includes Laevicaudata + Spinicaudata (clam shrimps) and Cladoceromorpha (water fleas + Cyclestherida). In the present analysis, thanks to an increased taxon sampling, a complex picture emerges. Most of the analyzed mitogenomes show the Pancrustacea gene order while in several other taxa they are found rearranged. These rearrangements, though, occur unevenly among taxa, most of them being found in Cladocera, and their taxonomic distribution does not agree with the phylogeny. Our data also seems to suggest the possibility of potentially homoplastic, alternative gene order within Daphniidae.
Collapse
Affiliation(s)
- Filippo Castellucci
- Department of Biological, Geological and Environmental Sciences-University of Bologna, via Selmi 3, 40126, Bologna, Italy.,Zoology Section, Natural History Museum of Denmark-University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark
| | - Andrea Luchetti
- Department of Biological, Geological and Environmental Sciences-University of Bologna, via Selmi 3, 40126, Bologna, Italy.
| | - Barbara Mantovani
- Department of Biological, Geological and Environmental Sciences-University of Bologna, via Selmi 3, 40126, Bologna, Italy
| |
Collapse
|