1
|
Qi Z, Gu J, Qu L, Shi X, He Z, Sun J, Tan L, Sun M. Advancements of engineered live oncolytic biotherapeutics (microbe/virus/cells): Preclinical research and clinical progress. J Control Release 2024; 375:209-235. [PMID: 39244159 DOI: 10.1016/j.jconrel.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/26/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
The proven efficacy of immunotherapy in fighting tumors has been firmly established, heralding a new era in harnessing both the innate and adaptive immune systems for cancer treatment. Despite its promise, challenges such as inefficient delivery, insufficient tumor penetration, and considerable potential toxicity of immunomodulatory agents have impeded the advancement of immunotherapies. Recent endeavors in the realm of tumor prophylaxis and management have highlighted the use of living biological entities, including bacteria, oncolytic viruses, and immune cells, as a vanguard for an innovative class of live biotherapeutic products (LBPs). These LBPs are gaining recognition for their inherent ability to target tumors. However, these LBPs must contend with significant barriers, including robust immune clearance mechanisms, cytotoxicity and other in vivo adverse effects. Priority must be placed on enhancing their safety and therapeutic indices. This review consolidates the latest preclinical research and clinical progress pertaining to the exploitation of engineered biologics, spanning bacteria, oncolytic viruses, immune cells, and summarizes their integration with combination therapies aimed at circumventing current clinical impasses. Additionally, the prospective utilities and inherent challenges of the biotherapeutics are deliberated, with the objective of accelerating their clinical application in the foreseeable future.
Collapse
Affiliation(s)
- Zhengzhuo Qi
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Junmou Gu
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lihang Qu
- The 4th People's Hospital of Shenyang, China Medical University, Shenyang, Liaoning, China
| | - Xianbao Shi
- Department of Pharmacy, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China
| | - Jin Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China
| | - Lingchen Tan
- School of Life Sciences and Biopharmaceutical, Shenyang Pharmaceutical University, Shenyang, Liaoning, China.
| | - Mengchi Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China.
| |
Collapse
|
2
|
Siddalingaiah N, Dhanya K, Lodha L, Pattanaik A, Mani RS, Ma A. Tracing the journey of poxviruses: insights from history. Arch Virol 2024; 169:37. [PMID: 38280957 DOI: 10.1007/s00705-024-05971-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/06/2023] [Indexed: 01/29/2024]
Abstract
The historical significance of the poxviruses is profound, largely due to the enduring impact left by smallpox virus across many centuries. The elimination of smallpox is a remarkable accomplishment in the history of science and medicine, with centuries of devoted efforts resulting in the development and widespread administration of smallpox vaccines. This review provides insight into the pivotal historical events involving medically significant poxviruses. Understanding the remarkable saga of combatting smallpox is crucial, serving as a guidepost for potential future encounters with poxvirus infections. There is a continual need for vigilant observation of poxvirus evolution and spillover from animals to humans, considering the expansive range of susceptible hosts. The recent occurrence of monkeypox cases in non-endemic countries stands as a stark reminder of the ease with which infections can be disseminated through international travel and trade. This backdrop encourages introspection about our journey and the current status of poxvirus research.
Collapse
Affiliation(s)
- Nayana Siddalingaiah
- Department of Neurovirology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, 560029, India
| | - K Dhanya
- Department of Neurovirology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, 560029, India
| | - Lonika Lodha
- Department of Neurovirology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, 560029, India
| | - Amrita Pattanaik
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Reeta S Mani
- Department of Neurovirology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, 560029, India
| | - Ashwini Ma
- Department of Neurovirology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, 560029, India.
| |
Collapse
|
3
|
Mazar J, Brooks JK, Peloquin M, Rosario R, Sutton E, Longo M, Drehner D, Westmoreland TJ. The Oncolytic Activity of Zika Viral Therapy in Human Neuroblastoma In Vivo Models Confers a Major Survival Advantage in a CD24-dependent Manner. CANCER RESEARCH COMMUNICATIONS 2024; 4:65-80. [PMID: 38214542 PMCID: PMC10775766 DOI: 10.1158/2767-9764.crc-23-0221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/14/2023] [Accepted: 12/06/2023] [Indexed: 01/13/2024]
Abstract
Neuroblastoma is the most common extracranial tumor, accounting for 15% of all childhood cancer-related deaths. The long-term survival of patients with high-risk tumors is less than 40%, and MYCN amplification is one of the most common indicators of poor outcomes. Zika virus (ZIKV) is a mosquito-borne flavivirus associated with mild constitutional symptoms outside the fetal period. Our published data showed that high-risk and recurrent neuroblastoma cells are permissive to ZIKV infection, resulting in cell type-specific lysis. In this study, we assessed the efficacy of ZIKV as an oncolytic treatment for high-risk neuroblastoma using in vivo tumor models. Utilizing both MYCN-amplified and non-amplified models, we demonstrated that the application of ZIKV had a rapid tumoricidal effect. This led to a nearly total loss of the tumor mass without evidence of recurrence, offering a robust survival advantage to the host. Detection of the viral NS1 protein within the tumors confirmed that a permissive infection preceded tissue necrosis. Despite robust titers within the tumor, viral shedding to the host was poor and diminished rapidly, correlating with no detectable side effects to the murine host. Assessments from both primary pretreatment and recurrent posttreatment isolates confirmed that permissive sensitivity to ZIKV killing was dependent on the expression of CD24, which was highly expressed in neuroblastomas and conferred a proliferative advantage to tumor growth. Exploiting this viral sensitivity to CD24 offers the possibility of its use as a prognostic target for a broad population of expressing cancers, many of which have shown resistance to current clinical therapies. SIGNIFICANCE Sensitivity to the tumoricidal effect of ZIKV on high-risk neuroblastoma tumors is dependent on CD24 expression, offering a prognostic marker for this oncolytic therapy in an extensive array of CD24-expressing cancers.
Collapse
Affiliation(s)
- Joseph Mazar
- Nemours Children's Hospital, Nemours Parkway, Orlando, Florida
- Burnett School of Biological Sciences, The University of Central Florida College of Medicine, Orlando, Florida
| | | | | | - Rosa Rosario
- Nemours Children's Hospital, Nemours Parkway, Orlando, Florida
| | - Emma Sutton
- Nemours Children's Hospital, Nemours Parkway, Orlando, Florida
| | - Matthew Longo
- Nemours Children's Hospital, Nemours Parkway, Orlando, Florida
- Burnett School of Biological Sciences, The University of Central Florida College of Medicine, Orlando, Florida
| | - Dennis Drehner
- Nemours Children's Hospital, Nemours Parkway, Orlando, Florida
| | - Tamarah J. Westmoreland
- Nemours Children's Hospital, Nemours Parkway, Orlando, Florida
- Burnett School of Biological Sciences, The University of Central Florida College of Medicine, Orlando, Florida
| |
Collapse
|
4
|
Siew ZY, Loh A, Segeran S, Leong PP, Voon K. Oncolytic Reoviruses: Can These Emerging Zoonotic Reoviruses Be Tamed and Utilized? DNA Cell Biol 2023. [PMID: 37015068 DOI: 10.1089/dna.2022.0561] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023] Open
Abstract
Orthoreovirus is a nonenveloped double-stranded RNA virus under the Reoviridae family. This group of viruses, especially mammalian orthoreovirus (MRV), are reported with great therapeutic values due to their oncolytic effects. In this review, the life cycle and oncolytic effect of MRV and a few emerging reoviruses were summarized. This article also highlights the challenges and strategies of utilizing MRV and the emerging reoviruses, avian orthoreovirus (ARV) and pteropine orthoreovirus (PRV), as oncolytic viruses (OVs). Besides, the emergence of potential ARV and PRV as OVs were discussed in comparison to MRV. Finally, the risk of reovirus as zoonosis or reverse zoonosis (zooanthroponosis) were debated, and concerns were raised in this article, which warrant continue surveillance of reovirus (MRV, ARV, and PRV) in animals, humans, and the environment.
Collapse
Affiliation(s)
- Zhen Yun Siew
- School of Pharmacy, University of Nottingham Malaysia, Semenyih, Malaysia
| | - Alson Loh
- School of Postgraduate Studies, International Medical University, Kuala Lumpur, Malaysia
| | - Sharrada Segeran
- School of Medicine, Australian National University, Canberra, Australia
| | - Pooi Pooi Leong
- Faculty of Medicine and Health Sciences, Universiti of Tunku Abdul Rahman, Kajang, Malaysia
| | - Kenny Voon
- School of Pharmacy, University of Nottingham Malaysia, Semenyih, Malaysia
| |
Collapse
|
5
|
Li Q, Tan F, Wang Y, Liu X, Kong X, Meng J, Yang L, Cen S. The gamble between oncolytic virus therapy and IFN. Front Immunol 2022; 13:971674. [PMID: 36090998 PMCID: PMC9453641 DOI: 10.3389/fimmu.2022.971674] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Various studies are being conducted on oncolytic virotherapy which one of the mechanisms is mediating interferon (IFN) production by it exerts antitumor effects. The antiviral effect of IFN itself has a negative impact on the inhibition of oncolytic virus or tumor eradication. Therefore, it is very critical to understand the mechanism of IFN regulation by oncolytic viruses, and to define its mechanism is of great significance for improving the antitumor effect of oncolytic viruses. This review focuses on the regulatory mechanisms of IFNs by various oncolytic viruses and their combination therapies. In addition, the exerting and the producing pathways of IFNs are briefly summarized, and some current issues are put forward.
Collapse
Affiliation(s)
- Qingbo Li
- College of Traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Fengxian Tan
- Research Center for Infectious Diseases, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuanyuan Wang
- Research Center for Infectious Diseases, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaohui Liu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xianbin Kong
- College of Traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Xianbin Kong, ; Jingyan Meng, ; Long Yang, ; Shan Cen,
| | - Jingyan Meng
- College of Traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Xianbin Kong, ; Jingyan Meng, ; Long Yang, ; Shan Cen,
| | - Long Yang
- Research Center for Infectious Diseases, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Xianbin Kong, ; Jingyan Meng, ; Long Yang, ; Shan Cen,
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
- *Correspondence: Xianbin Kong, ; Jingyan Meng, ; Long Yang, ; Shan Cen,
| |
Collapse
|
6
|
Truong CS, Yoo SY. Oncolytic Vaccinia Virus in Lung Cancer Vaccines. Vaccines (Basel) 2022; 10:240. [PMID: 35214699 PMCID: PMC8875327 DOI: 10.3390/vaccines10020240] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 11/26/2022] Open
Abstract
Therapeutic cancer vaccines represent a promising therapeutic modality via the induction of long-term immune response and reduction in adverse effects by specifically targeting tumor-associated antigens. Oncolytic virus, especially vaccinia virus (VV) is a promising cancer treatment option for effective cancer immunotherapy and thus can also be utilized in cancer vaccines. Non-small cell lung cancer (NSCLC) is likely to respond to immunotherapy, such as immune checkpoint inhibitors or cancer vaccines, since it has a high tumor mutational burden. In this review, we will summarize recent applications of VV in lung cancer treatment and discuss the potential and direction of VV-based therapeutic vaccines.
Collapse
Affiliation(s)
| | - So Young Yoo
- BIO-IT Foundry Technology Institute, Pusan National University, Busan 46241, Korea;
| |
Collapse
|
7
|
Ho TY, Mealiea D, Okamoto L, Stojdl DF, McCart JA. Deletion of immunomodulatory genes as a novel approach to oncolytic vaccinia virus development. MOLECULAR THERAPY-ONCOLYTICS 2021; 22:85-97. [PMID: 34514091 PMCID: PMC8411212 DOI: 10.1016/j.omto.2021.05.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 05/12/2021] [Indexed: 11/30/2022]
Abstract
Vaccinia virus (VV) has emerged as a promising platform for oncolytic virotherapy. Many clinical VV candidates, such as the double-deleted VV, vvDD, are engineered with deletions that enhance viral tumor selectivity based on cellular proliferation rates. An alternative approach is to exploit the dampened interferon-based innate immune responses of tumor cells by deleting one of the many VV immunomodulatory genes expressed to dismantle the antiviral response. We hypothesized that such a VV mutant would be attenuated in non-tumor cells but retain the ability to effectively propagate in and kill tumor cells, yielding a tumor-selective oncolytic VV with significant anti-tumor potency. In this study, we demonstrated that VVs with a deletion in one of several VV immunomodulatory genes (N1L, K1L, K3L, A46R, or A52R) have similar or improved in vitro replication, spread, and cytotoxicity in colon and ovarian cancer cells compared to vvDD. These deletion mutants are tumor selective, and the best performing candidates (ΔK1L, ΔA46R, and ΔA52R VV) are associated with significant improvement in survival, as well as immunomodulation, within the tumor environment. Overall, we show that exploiting the diminished antiviral responses in tumors serves as an effective strategy for generating tumor-selective and potent oncolytic VVs, with important implications in future oncolytic virus (OV) design.
Collapse
Affiliation(s)
- Tiffany Y Ho
- Toronto General Hospital Research Institute, University Health Network, 280 Elizabeth Street, Toronto, ON M5G 2C4, Canada
| | - David Mealiea
- Toronto General Hospital Research Institute, University Health Network, 280 Elizabeth Street, Toronto, ON M5G 2C4, Canada.,Department of Surgery, University of Toronto, Stewart Building, 149 College Street, Toronto, ON M5T 1P5, Canada
| | - Lili Okamoto
- Toronto General Hospital Research Institute, University Health Network, 280 Elizabeth Street, Toronto, ON M5G 2C4, Canada
| | - David F Stojdl
- Department of Biology, Microbiology, and Immunology, Children's Hospital of Eastern Ontario (CHEO) Research Institute, 401 Smyth Road, Ottawa ON K1H 5B2, Canada
| | - J Andrea McCart
- Toronto General Hospital Research Institute, University Health Network, 280 Elizabeth Street, Toronto, ON M5G 2C4, Canada.,Department of Surgery, University of Toronto, Stewart Building, 149 College Street, Toronto, ON M5T 1P5, Canada
| |
Collapse
|
8
|
Ni J, Feng H, Xu X, Liu T, Ye T, Chen K, Li G. Oncolytic Vaccinia Virus Harboring Aphrocallistes vastus Lectin Inhibits the Growth of Cervical Cancer Cells Hela S3. Mar Drugs 2021; 19:md19100532. [PMID: 34677432 PMCID: PMC8537278 DOI: 10.3390/md19100532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/09/2021] [Accepted: 09/20/2021] [Indexed: 12/21/2022] Open
Abstract
Aphrocallistes vastus lectin (AVL) is a C-type marine lectin produced by sponges. Our previous study demonstrated that genes encoding AVL enhanced the cytotoxic effect of oncolytic vaccinia virus (oncoVV) in a variety of cancer cells. In this study, the inhibitory effect of oncoVV-AVL on Hela S3 cervical cancer cells, a cell line with spheroidizing ability, was explored. The results showed that oncoVV-AVL could inhibit Hela S3 cells growth both in vivo and in vitro. Further investigation revealed that AVL increased the virus replication, promote the expression of OASL protein and stimulated the activation of Raf in Hela S3 cells. This study may provide insight into a novel way for the utilization of lection AVL.
Collapse
|
9
|
Wang X, Zhou N, Liu T, Jia X, Ye T, Chen K, Li G. Oncolytic Vaccinia Virus Expressing White-Spotted Charr Lectin Regulates Antiviral Response in Tumor Cells and Inhibits Tumor Growth In Vitro and In Vivo. Mar Drugs 2021; 19:292. [PMID: 34064193 PMCID: PMC8224321 DOI: 10.3390/md19060292] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 02/07/2023] Open
Abstract
Oncolytic vaccina virus (oncoVV) used for cancer therapy has progressed in recent years. Here, a gene encoding white-spotted charr lectin (WCL) was inserted into an oncoVV vector to form an oncoVV-WCL recombinant virus. OncoVV-WCL induced higher levels of apoptosis and cytotoxicity, and replicated faster than control virus in cancer cells. OncoVV-WCL promoted IRF-3 transcriptional activity to induce higher levels of type I interferons (IFNs) and blocked the IFN-induced antiviral response by inhibiting the activity of IFN-stimulated responsive element (ISRE) and the expression of interferon-stimulated genes (ISGs). The higher levels of viral replication and antitumor activity of oncoVV-WCL were further demonstrated in a mouse xenograft tumor model. Therefore, the engineered oncoVV expressing WCL might provide a new avenue for anticancer gene therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Gongchu Li
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (X.W.); (N.Z.); (T.L.); (X.J.); (T.Y.); (K.C.)
| |
Collapse
|
10
|
Chen J, Qiu M, Ye Z, Nyalile T, Li Y, Glass Z, Zhao X, Yang L, Chen J, Xu Q. In situ cancer vaccination using lipidoid nanoparticles. SCIENCE ADVANCES 2021; 7:7/19/eabf1244. [PMID: 33952519 PMCID: PMC8099179 DOI: 10.1126/sciadv.abf1244] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/17/2021] [Indexed: 05/08/2023]
Abstract
In situ vaccination is a promising strategy for cancer immunotherapy owing to its convenience and the ability to induce numerous tumor antigens. However, the advancement of in situ vaccination techniques has been hindered by low cross-presentation of tumor antigens and the immunosuppressive tumor microenvironment. To balance the safety and efficacy of in situ vaccination, we designed a lipidoid nanoparticle (LNP) to achieve simultaneously enhancing cross-presentation and STING activation. From combinatorial library screening, we identified 93-O17S-F, which promotes both the cross-presentation of tumor antigens and the intracellular delivery of cGAMP (STING agonist). Intratumor injection of 93-O17S-F/cGAMP in combination with pretreatment with doxorubicin exhibited excellent antitumor efficacy, with 35% of mice exhibiting total recovery from a primary B16F10 tumor and 71% of mice with a complete recovery from a subsequent challenge, indicating the induction of an immune memory against the tumor. This study provides a promising strategy for in situ cancer vaccination.
Collapse
Affiliation(s)
- Jinjin Chen
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Min Qiu
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Zhongfeng Ye
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Thomas Nyalile
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Yamin Li
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Zachary Glass
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Xuewei Zhao
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Liu Yang
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Jianzhu Chen
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Qiaobing Xu
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA.
| |
Collapse
|
11
|
Nakao S, Arai Y, Tasaki M, Yamashita M, Murakami R, Kawase T, Amino N, Nakatake M, Kurosaki H, Mori M, Takeuchi M, Nakamura T. Intratumoral expression of IL-7 and IL-12 using an oncolytic virus increases systemic sensitivity to immune checkpoint blockade. Sci Transl Med 2021; 12:12/526/eaax7992. [PMID: 31941828 DOI: 10.1126/scitranslmed.aax7992] [Citation(s) in RCA: 125] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 10/16/2019] [Accepted: 12/16/2019] [Indexed: 12/18/2022]
Abstract
The immune status of the tumor microenvironment is a key indicator in determining the antitumor effectiveness of immunotherapies. Data support the role of activation and expansion of tumor-infiltrating lymphocytes (TILs) in increasing the benefit of immunotherapies in patients with solid tumors. We found that intratumoral injection of a tumor-selective oncolytic vaccinia virus encoding interleukin-7 (IL-7) and IL-12 into tumor-bearing immunocompetent mice activated the inflammatory immune status of previously poorly immunogenic tumors and resulted in complete tumor regression, even in distant tumor deposits. Mice achieving complete tumor regression resisted rechallenge with the same tumor cells, suggesting establishment of long-term tumor-specific immune memory. Combining this virotherapy with anti-programmed cell death-1 (PD-1) or anti-cytotoxic T lymphocyte antigen 4 (CTLA4) antibody further increased the antitumor activity as compared to virotherapy alone, in tumor models unresponsive to either of the checkpoint inhibitor monotherapies. These findings suggest that administration of an oncolytic vaccinia virus carrying genes encoding for IL-7 and IL-12 has antitumor activity in both directly injected and distant noninjected tumors through immune status changes rendering tumors sensitive to immune checkpoint blockade. The benefit of intratumoral IL-7 and IL-12 expression was also observed in humanized mice bearing human cancer cells. These data support further investigation in patients with non-inflamed solid tumors.
Collapse
Affiliation(s)
- Shinsuke Nakao
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba 305-8585, Japan.
| | - Yukinori Arai
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba 305-8585, Japan
| | - Mamoru Tasaki
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba 305-8585, Japan
| | - Midori Yamashita
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba 305-8585, Japan
| | - Ryuji Murakami
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba 305-8585, Japan
| | - Tatsuya Kawase
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba 305-8585, Japan
| | - Nobuaki Amino
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba 305-8585, Japan
| | - Motomu Nakatake
- Department of Biomedical Science, Graduate School of Medical Sciences, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan
| | - Hajime Kurosaki
- Department of Biomedical Science, Graduate School of Medical Sciences, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan
| | - Masamichi Mori
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba 305-8585, Japan
| | - Masahiro Takeuchi
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba 305-8585, Japan
| | - Takafumi Nakamura
- Department of Biomedical Science, Graduate School of Medical Sciences, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan
| |
Collapse
|
12
|
Chen T, Ding X, Liao Q, Gao N, Chen Y, Zhao C, Zhang X, Xu J. IL-21 arming potentiates the anti-tumor activity of an oncolytic vaccinia virus in monotherapy and combination therapy. J Immunother Cancer 2021; 9:jitc-2020-001647. [PMID: 33504576 PMCID: PMC7843316 DOI: 10.1136/jitc-2020-001647] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/26/2020] [Indexed: 12/31/2022] Open
Abstract
Background Oncolytic viruses (OVs) have shown promise in containing cancer progression in both animal models and clinical trials. How to further improve the efficacy of OVs are intensively explored. Arming OVs with immunoregulatory molecules has emerged as an important means to enhance their oncolytic activities majorly based on the mechanism of reverting the immunosuppressive nature of tumor environment. In this study, we aimed to identify the optimal combination of different OVs and immunomodulatory molecules for solid tumor treatment as well as the underlying mechanism, and subsequently evaluated its potential synergy with other immunotherapies. Methods Panels of oncolytic viruses and cells stably expressing immunoregulatory molecules were separately evaluated for treating solid tumors in mouse model. A tumor-targeted replicating vaccinia virus Tian Tan strain with deletion of TK gene (TTVΔTK) was armed rationally with IL-21 to create rTTVΔTK-IL21 through recombination. CAR-T cells and iNKT cells were generated from human peripheral blood mononuclear cells. The impact of rTTVΔTK-IL21 on tumor-infiltrating lymphocytes was assessed by flow cytometry, and its therapeutic efficacy as monotherapy or in combination with CAR-T and iNKT therapy was assessed in mouse tumor models. Results IL-21 and TTV was respectively identified as most potent immunomodulatory molecule and oncolytic virus for solid tumor suppression in mouse models. A novel recombinant oncolytic virus that resulted from their combination, namely rTTVΔTK-mIL21, led to significant tumor regression in mice, even for noninjected distant tumor. Mechanistically, rTTV∆TK-mIL21 induced a selective enrichment of immune effector cells over Treg cells and engage a systemic response of therapeutic effect. Moreover, its human form showed a notable synergy with CAR-T or iNKT therapy for tumor treatment when coupled in humanized mice. Conclusion With a strong potency of shaping tumor microenvironment toward favoring TIL activities, rTTVΔTK-IL21 represents a new opportunity worthy of further exploration in clinical settings for solid tumor control, particularly in combinatorial strategies with other immunotherapies. One sentence summary IL21-armed recombinant oncolytic vaccinia virus has potent anti-tumor activities as monotherapy and in combination with other immunotherapies.
Collapse
Affiliation(s)
- Tianyue Chen
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiangqing Ding
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qibin Liao
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Nan Gao
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ye Chen
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chen Zhao
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaoyan Zhang
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jianqing Xu
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
13
|
Gallardo F, Schmitt D, Brandely R, Brua C, Silvestre N, Findeli A, Foloppe J, Top S, Kappler-Gratias S, Quentin-Froignant C, Morin R, Lagarde JM, Bystricky K, Bertagnoli S, Erbs P. Fluorescent Tagged Vaccinia Virus Genome Allows Rapid and Efficient Measurement of Oncolytic Potential and Discovery of Oncolytic Modulators. Biomedicines 2020; 8:biomedicines8120543. [PMID: 33256205 PMCID: PMC7760631 DOI: 10.3390/biomedicines8120543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/22/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
As a live biologic agent, oncolytic vaccinia virus has the ability to target and selectively amplify at tumor sites. We have previously reported that deletion of thymidine kinase and ribonucleotide reductase genes in vaccinia virus can increase the safety and efficacy of the virus. Here, to allow direct visualization of the viral genome in living cells, we incorporated the ANCH target sequence and the OR3-Santaka gene in the double-deleted vaccinia virus. Infection of human tumor cells with ANCHOR3-tagged vaccinia virus enables visualization and quantification of viral genome dynamics in living cells. The results show that the ANCHOR technology permits the measurement of the oncolytic potential of the double deleted vaccinia virus. Quantitative analysis of infection kinetics and of viral DNA replication allow rapid and efficient identification of inhibitors and activators of oncolytic activity. Our results highlight the potential application of the ANCHOR technology to track vaccinia virus and virtually any kind of poxvirus in living cells.
Collapse
Affiliation(s)
- Franck Gallardo
- NeoVirTech SAS, 31106 Toulouse, France; (S.T.); (S.K.-G.); (C.Q.-F.)
- Correspondence: (F.G.); (P.E.)
| | - Doris Schmitt
- Transgene SA, 67405 Illkirch-Graffenstaden, France; (D.S.); (R.B.); (C.B.); (N.S.); (A.F.); (J.F.)
| | - Renée Brandely
- Transgene SA, 67405 Illkirch-Graffenstaden, France; (D.S.); (R.B.); (C.B.); (N.S.); (A.F.); (J.F.)
| | - Catherine Brua
- Transgene SA, 67405 Illkirch-Graffenstaden, France; (D.S.); (R.B.); (C.B.); (N.S.); (A.F.); (J.F.)
| | - Nathalie Silvestre
- Transgene SA, 67405 Illkirch-Graffenstaden, France; (D.S.); (R.B.); (C.B.); (N.S.); (A.F.); (J.F.)
| | - Annie Findeli
- Transgene SA, 67405 Illkirch-Graffenstaden, France; (D.S.); (R.B.); (C.B.); (N.S.); (A.F.); (J.F.)
| | - Johann Foloppe
- Transgene SA, 67405 Illkirch-Graffenstaden, France; (D.S.); (R.B.); (C.B.); (N.S.); (A.F.); (J.F.)
| | - Sokunthea Top
- NeoVirTech SAS, 31106 Toulouse, France; (S.T.); (S.K.-G.); (C.Q.-F.)
| | | | | | - Renaud Morin
- Imactiv-3D SAS, 31106 Toulouse, France; (R.M.); (J.-M.L.)
| | | | - Kerstin Bystricky
- Centre de Biologie Intégrative (CBI), Laboratoire de Biologie Moléculaire Eucaryote (LBME), University of Toulouse, UPS, CNRS, 31400 Toulouse, France;
- Institut Universitaire de France (IUF), 75231 Paris, France
| | | | - Philippe Erbs
- Transgene SA, 67405 Illkirch-Graffenstaden, France; (D.S.); (R.B.); (C.B.); (N.S.); (A.F.); (J.F.)
- Correspondence: (F.G.); (P.E.)
| |
Collapse
|
14
|
Béguin J, Foloppe J, Maurey C, Laloy E, Hortelano J, Nourtier V, Pichon C, Cochin S, Cordier P, Huet H, Quemeneur E, Klonjkowski B, Erbs P. Preclinical Evaluation of the Oncolytic Vaccinia Virus TG6002 by Translational Research on Canine Breast Cancer. MOLECULAR THERAPY-ONCOLYTICS 2020; 19:57-66. [PMID: 33072863 PMCID: PMC7533293 DOI: 10.1016/j.omto.2020.08.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 08/29/2020] [Indexed: 12/12/2022]
Abstract
Oncolytic virotherapy is a promising therapeutic approach for the treatment of cancer. TG6002 is a recombinant oncolytic vaccinia virus deleted in the thymidine kinase and ribonucleotide reductase genes and armed with the suicide gene FCU1, which encodes a bifunctional chimeric protein that efficiently catalyzes the direct conversion of the nontoxic 5-fluorocytosine into the toxic metabolite 5-fluorouracil. In translational research, canine tumors and especially mammary cancers are relevant surrogates for human cancers and can be used as preclinical models. Here, we report that TG6002 is able to replicate in canine tumor cell lines and is oncolytic in such cells cultured in 2D or 3D as well as canine mammary tumor explants. Furthermore, intratumoral injections of TG6002 lead to inhibition of the proliferation of canine tumor cells grafted into mice. 5-fluorocytosine treatment of mice significantly improves the anti-tumoral activity of TG6002 infection, a finding that can be correlated with its conversion into 5-fluorouracil within infected fresh canine tumor biopsies. In conclusion, our study suggests that TG6002 associated with 5-fluorocytosine is a promising therapy for human and canine cancers.
Collapse
Affiliation(s)
- Jérémy Béguin
- UMR Virologie, INRA, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, Maisons-Alfort 94700, France
- Transgene S.A., 400 Boulevard Gonthier d’Andernach, Parc d’innovation, CS80166, Illkirch-Graffenstaden Cedex 67405, France
- Service de Médecine Interne, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, Maisons-Alfort, 94700, France
- Corresponding author: Jérémy Béguin, UMR Virologie, INRA, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, 7 Avenue du Général de Gaulle, Maisons-Alfort 94700, France.
| | - Johann Foloppe
- Transgene S.A., 400 Boulevard Gonthier d’Andernach, Parc d’innovation, CS80166, Illkirch-Graffenstaden Cedex 67405, France
| | - Christelle Maurey
- Service de Médecine Interne, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, Maisons-Alfort, 94700, France
| | - Eve Laloy
- UMR Virologie, INRA, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, Maisons-Alfort 94700, France
- Laboratoire d’Anatomo-cytopathologie, Biopôle Alfort, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, Maisons-Alfort 94700, France
| | - Julie Hortelano
- Transgene S.A., 400 Boulevard Gonthier d’Andernach, Parc d’innovation, CS80166, Illkirch-Graffenstaden Cedex 67405, France
| | - Virginie Nourtier
- Transgene S.A., 400 Boulevard Gonthier d’Andernach, Parc d’innovation, CS80166, Illkirch-Graffenstaden Cedex 67405, France
| | - Christelle Pichon
- Transgene S.A., 400 Boulevard Gonthier d’Andernach, Parc d’innovation, CS80166, Illkirch-Graffenstaden Cedex 67405, France
| | - Sandrine Cochin
- Transgene S.A., 400 Boulevard Gonthier d’Andernach, Parc d’innovation, CS80166, Illkirch-Graffenstaden Cedex 67405, France
| | - Pascale Cordier
- Transgene S.A., 400 Boulevard Gonthier d’Andernach, Parc d’innovation, CS80166, Illkirch-Graffenstaden Cedex 67405, France
| | - Hélène Huet
- UMR Virologie, INRA, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, Maisons-Alfort 94700, France
- Laboratoire d’Anatomo-cytopathologie, Biopôle Alfort, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, Maisons-Alfort 94700, France
| | - Eric Quemeneur
- Transgene S.A., 400 Boulevard Gonthier d’Andernach, Parc d’innovation, CS80166, Illkirch-Graffenstaden Cedex 67405, France
| | - Bernard Klonjkowski
- UMR Virologie, INRA, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, Maisons-Alfort 94700, France
| | - Philippe Erbs
- Transgene S.A., 400 Boulevard Gonthier d’Andernach, Parc d’innovation, CS80166, Illkirch-Graffenstaden Cedex 67405, France
- Corresponding author: Philippe Erbs, Transgene S.A., 400 Boulevard Gonthier d’Andernach, Parc d’innovation, CS80166, Illkirch-Graffenstaden Cedex 67405, France.
| |
Collapse
|
15
|
Safety studies and viral shedding of intramuscular administration of oncolytic vaccinia virus TG6002 in healthy beagle dogs. BMC Vet Res 2020; 16:307. [PMID: 32843040 PMCID: PMC7446062 DOI: 10.1186/s12917-020-02524-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 08/14/2020] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Cancer is a leading cause of mortality for both humans and dogs. As spontaneous canine cancers appear to be relevant models of human cancers, developing new therapeutic approaches could benefit both species. Oncolytic virotherapy is a promising therapeutic approach in cancer treatment. TG6002 is a recombinant oncolytic vaccinia virus deleted in the thymidine kinase and ribonucleotide reductase genes and armed with the suicide gene FCU1 that encodes a protein which catalyses the conversion of the non-toxic 5-fluorocytosine into the toxic metabolite 5-fluorouracil. Previous studies have shown the ability of TG6002 to infect and replicate in canine tumor cell lines, and demonstrated its oncolytic potency in cell lines, xenograft models and canine mammary adenocarcinoma explants. Moreover, 5-fluorouracil synthesis has been confirmed in fresh canine mammary adenocarcinoma explants infected with TG6002 with 5-fluorocytosine. This study aims at assessing the safety profile and viral shedding after unique or repeated intramuscular injections of TG6002 in seven healthy Beagle dogs. RESULTS Repeated intramuscular administrations of TG6002 at the dose of 5 × 107 PFU/kg resulted in no clinical or biological adverse effects. Residual TG6002 in blood, saliva, urine and feces of treated dogs was not detected by infectious titer assay nor by qPCR, ensuring the safety of the virus in the dogs and their environment. CONCLUSIONS These results establish the good tolerability of TG6002 in healthy dogs with undetectable viral shedding after multiple injections. This study supports the initiation of further studies in canine cancer patients to evaluate the oncolytic potential of TG6002 and provides critical data for clinical development of TG6002 as a human cancer therapy.
Collapse
|
16
|
Overcoming Tumor Resistance to Oncolyticvaccinia Virus with Anti-PD-1-Based Combination Therapy by Inducing Antitumor Immunity in the Tumor Microenvironment. Vaccines (Basel) 2020; 8:vaccines8020321. [PMID: 32575351 PMCID: PMC7350271 DOI: 10.3390/vaccines8020321] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/14/2020] [Accepted: 06/16/2020] [Indexed: 12/22/2022] Open
Abstract
The tumor microenvironment (TME) comprises different types of immune cells, which limit the therapeutic efficacy of most drugs. Although oncolytic virotherapy (OVT) boosts antitumor immunity via enhanced infiltration of tumor-infiltrated lymphocytes (TILs), immune checkpoints on the surface of tumors and TILs protect tumor cells from TIL recognition and apoptosis. OVT and immune checkpoint blockade (ICB)-based combination therapy might overcome this issue. Therefore, combination immunotherapies to modify the immunosuppressive nature of TME and block immune checkpoints of immune cells and tumors are considered. In this study, cancer-favoring oncolytic vaccinia virus (CVV) and anti–programmed cell death protein-1 (anti-PD-1) were used to treat mouse colorectal cancer. Weekly-based intratumoral CVV and intraperitoneal anti-PD-1 injections were performed on Balb/c mice with subcutaneous CT26 tumors. Tumor volume, survival curve, and immunohistochemistry-based analysis demonstrated the benefit of co-treatment, especially simultaneous treatment with CVV and anti-PD-1. Infiltration of CD8+PD-1+ T-cells showed correlation with these results. Splenocytes enumeration also suggested CD4+ and CD8+ T-cell upregulation. In addition, upregulated CD8, PD-1, and CD86 messenger RNA expression was observed in this combination therapy. Therefore, CVV+anti-PD-1 combination therapy induces antitumor immunity in the TME, overcoming the rigidity and resistance of the TME in refractory cancers.
Collapse
|
17
|
Cho E, Islam SMBU, Jiang F, Park JE, Lee B, Kim ND, Hwang TH. Characterization of Oncolytic Vaccinia Virus Harboring the Human IFNB1 and CES2 Transgenes. Cancer Res Treat 2019; 52:309-319. [PMID: 31401821 PMCID: PMC6962490 DOI: 10.4143/crt.2019.161] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 07/31/2019] [Indexed: 12/12/2022] Open
Abstract
Purpose The purpose of this study was to assess characteristics of SJ-815, a novel oncolytic vaccinia virus lacking a functional thymidine kinase-encoding TK gene, and instead, having two human transgenes: the IFNB1 that encodes interferon β1, and the CES2 that encodes carboxylesterase 2, which metabolizes the prodrug, irinotecan, into cytotoxic SN-38. Materials and Methods Viral replication and dissemination of SJ-815 were measured by plaque assay and comet assay, respectively, and compared to the backbone of SJ-815, a modified Western Reserve virus named WI. Tumor cytotoxicity of SJ-815 (or mSJ-815, which has the murine IFNB1 transgene for mouse cancers) was evaluated using human and mouse cancer cells. Antitumor effects of SJ-815, with/without irinotecan, were evaluated using a human pancreatic cancer-bearing mouse model and a syngeneic melanoma-bearing mouse model. The SN-38/irinotecan ratios in mouse melanoma tissue 4 days post irinotecan treatment were compared between groups with and without SJ-815 intravenous injection. Results SJ-815 demonstrated significantly lower viral replication and dissemination, but considerably stronger in vitro tumor cytotoxicity than WI. The combination use of SJ-815 plus irinotecan generated substantial tumor regression in the human pancreatic cancer model, and significantly prolonged survival in the melanoma model (hazard ratio, 0.11; 95% confidence interval, 0.02 to 0.50; p=0.013). The tumor SN-38/irinotecan ratios were over 3-fold higher in the group with SJ-815 than those without (p < 0.001). Conclusion SJ-815 demonstrates distinct characteristics gained from the inserted IFNB1 and CES2 transgenes. The potent antitumor effects of SJ-815, particularly when combined with irinotecan, against multiple solid tumors make SJ-815 an attractive candidate for further preclinical and clinical studies.
Collapse
Affiliation(s)
- Euna Cho
- Department of Pharmacology and Medical Research Center (MRC), Pusan National University School of Medicine, Yangsan, Korea.,Department of Pharmacy and Pusan Cancer Research Center, Pusan National University, Busan, Korea
| | - S M Bakhtiar Ul Islam
- Department of Pharmacology and Medical Research Center (MRC), Pusan National University School of Medicine, Yangsan, Korea.,Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan, Korea
| | - Fen Jiang
- Department of Pharmacology and Medical Research Center (MRC), Pusan National University School of Medicine, Yangsan, Korea.,School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Ju-Eun Park
- Department of Pharmacology and Medical Research Center (MRC), Pusan National University School of Medicine, Yangsan, Korea
| | - Bora Lee
- Department of Pharmacology and Medical Research Center (MRC), Pusan National University School of Medicine, Yangsan, Korea
| | - Nam Deuk Kim
- Department of Pharmacy and Pusan Cancer Research Center, Pusan National University, Busan, Korea
| | - Tae-Ho Hwang
- Department of Pharmacology and Medical Research Center (MRC), Pusan National University School of Medicine, Yangsan, Korea
| |
Collapse
|
18
|
Progress in gene therapy using oncolytic vaccinia virus as vectors. J Cancer Res Clin Oncol 2018; 144:2433-2440. [DOI: 10.1007/s00432-018-2762-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 09/28/2018] [Indexed: 01/06/2023]
|
19
|
Mazar J, Li Y, Rosado A, Phelan P, Kedarinath K, Parks GD, Alexander KA, Westmoreland TJ. Zika virus as an oncolytic treatment of human neuroblastoma cells requires CD24. PLoS One 2018; 13:e0200358. [PMID: 30044847 PMCID: PMC6059425 DOI: 10.1371/journal.pone.0200358] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 06/25/2018] [Indexed: 12/26/2022] Open
Abstract
Neuroblastoma is the second most common childhood tumor. Survival is poor even with intensive therapy. In a search for therapies to neuroblastoma, we assessed the oncolytic potential of Zika virus. Zika virus is an emerging mosquito-borne pathogen unique among flaviviruses because of its association with congenital defects. Recent studies have shown that neuronal progenitor cells are likely the human target of Zika virus. Neuroblastoma has been shown to be responsive to infection. In this study, we show that neuroblastoma cells are widely permissive to Zika infection, revealing extensive cytopathic effects (CPE) and producing high titers of virus. However, a single cell line appeared poorly responsive to infection, producing undetectable levels of non-structural protein 1 (NS1), limited CPE, and low virus titers. A comparison of these poorly permissive cells to highly permissive neuroblastoma cells revealed a dramatic loss in the expression of the cell surface glycoprotein CD24 in poorly permissive cells. Complementation of CD24 expression in these cells led to the production of detectable levels of NS1 expression after infection with Zika, as well as dramatic increases in viral titers and CPE. Complementary studies using the Zika virus index strain and a north African isolate confirmed these phenotypes. These results suggest a possible role for CD24 in host cell specificity by Zika virus and offer a potential therapeutic target for its treatment. In addition, Zika viral therapy can serve as an adjunctive treatment for neuroblastoma by targeting tumor cells that can lead to recurrent disease and treatment failure.
Collapse
Affiliation(s)
- Joseph Mazar
- Department of Biomedical Research, Nemours Children’s Hospital, Orlando, Florida, United States of America
| | - Yujia Li
- Burnett School of Biological Sciences, University of Central Florida College of Medicine, Orlando, Florida, United States of America
| | - Amy Rosado
- Department of Biomedical Research, Nemours Children’s Hospital, Orlando, Florida, United States of America
| | - Peter Phelan
- Department of Biomedical Research, Nemours Children’s Hospital, Orlando, Florida, United States of America
| | - Kritika Kedarinath
- Burnett School of Biological Sciences, University of Central Florida College of Medicine, Orlando, Florida, United States of America
| | - Griffith D. Parks
- Burnett School of Biological Sciences, University of Central Florida College of Medicine, Orlando, Florida, United States of America
| | - Kenneth A. Alexander
- Department of Biomedical Research, Nemours Children’s Hospital, Orlando, Florida, United States of America
- Burnett School of Biological Sciences, University of Central Florida College of Medicine, Orlando, Florida, United States of America
| | - Tamarah J. Westmoreland
- Department of Biomedical Research, Nemours Children’s Hospital, Orlando, Florida, United States of America
- Burnett School of Biological Sciences, University of Central Florida College of Medicine, Orlando, Florida, United States of America
| |
Collapse
|
20
|
Deng L, Fan J, Ding Y, Zhang J, Zhou B, Zhang Y, Huang B. Oncolytic efficacy of thymidine kinase-deleted vaccinia virus strain Guang9. Oncotarget 2018; 8:40533-40543. [PMID: 28465492 PMCID: PMC5522336 DOI: 10.18632/oncotarget.17125] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 04/04/2017] [Indexed: 11/29/2022] Open
Abstract
Oncolytic virotherapy is being developed as a promising platform for cancer therapy due to its ability to lyse cancer cells in a tumor-specific manner. Vaccinia virus has been used as a live vaccine in the smallpox eradication program and now is being potential in cancer therapy with a great safety profile. Vaccinia strain Guang9 (VG9) is an attenuated Chinese vaccinia virus and its oncolytic efficacy has been evaluated in our previous study. To improve the tumor selectivity and oncolytic efficacy, we here developed a thymidine kinase (TK)-deleted vaccinia virus based on Guang9 strain. The viral replication, marker gene expression and cytotoxicity in various cell lines were evaluated; antitumor effects in vivo were assessed in multiple tumor models. In vitro, the TK-deleted vaccinia virus replicated rapidly, but the cytotoxicity varied in different cell lines. It was notably attenuated in normal cells and resting cells in vitro, while tumor-selectively replicated in vivo. Significant antitumor effects were observed both in murine melanoma tumor model and human hepatoma tumor model. It significantly inhibited the growth of subcutaneously implanted tumors and prolonged the survival of tumor-bearing mice. Collectively, TK-deleted vaccinia strain Guang9 is a promising constructive virus vector for tumor-directed gene therapy and will be a potential therapeutic strategy in cancer treatment.
Collapse
Affiliation(s)
- Lili Deng
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, China
| | - Jun Fan
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, China
| | - Yuedi Ding
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, China
| | - Jue Zhang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, China
| | - Bin Zhou
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, China
| | - Yi Zhang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, China
| | - Biao Huang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, China
| |
Collapse
|
21
|
Jia X, Chen Y, Zhao X, Lv C, Yan J. Oncolytic vaccinia virus inhibits human hepatocellular carcinoma MHCC97-H cell proliferation via endoplasmic reticulum stress, autophagy and Wnt pathways. J Gene Med 2018; 18:211-9. [PMID: 27441866 DOI: 10.1002/jgm.2893] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/16/2016] [Accepted: 07/16/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a highly lethal malignancy. Vaccinia virus (VV) possessed many inherent advantages with respect to being engineered as a vector for cancer gene therapy, although the mechanism of action remains to be explored further. METHODS We constructed a thymidine kinase gene insertional inactivated VV, named VV-Onco, and then tested its effects on cell viability, apoptosis and colony formation ability in a highly metastatic human hepatocellular carcinoma cell line MHCC97-H, and also investigated the potential cell signal pathways involved in this action. RESULTS VV-Onco induced strong cytotoxicity and apoptosis and also inhibited the colony formation of MHCC97-H cells. The tumor cell apoptosis induced by VV-Onco is likely mediated via endoplasmic reticulum stress, autophagy and Wnt signaling pathways. The downregulation of survivin and c-Myc may also play a role in VV-Onco induced cell death. CONCLUSIONS The results of the present study provide new insights into the mechanisms of VV-induced tumor cell death. The engineered recombinant VV containing optimized therapeutic transgenes may represent a new avenue for cancer gene therapy. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Xiaoyuan Jia
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, China
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yongyi Chen
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xin Zhao
- Tianjin International Travel Health Care Center, Entry-Exit Inspection and Quarantine Bureau, Tianjin, China
| | - Chunwei Lv
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jie Yan
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
22
|
Abstract
Pleural malignancies remain a serious therapeutic challenge, and are frequently refractory to standard treatment; however, they have the advantage of occurring in an enclosed cavity readily accessible for examination, biopsy, and serial sampling. Novel therapeutics can be administered via intracavitary delivery to maximize efficacy by targeting the site of involvement and potentially mitigating the adverse effects of systemic therapies. The easy accessibility of the pleural space lends itself well to repeated sampling and analysis to determine efficacy and toxicity of a given treatment paradigm. These factors support the rationale for delivery of novel therapeutics directly into the pleural space.
Collapse
Affiliation(s)
- Vivek Murthy
- NYU PORT (Pulmonary Oncology Research Team), Division of Pulmonary, Critical Care and Sleep Medicine, New York University School of Medicine, NYU Langone Health, 550 First Avenue Suite 5D, New York, NY 10016, USA
| | - Keshav Mangalick
- NYU PORT (Pulmonary Oncology Research Team), Division of Pulmonary, Critical Care and Sleep Medicine, New York University School of Medicine, NYU Langone Health, 550 First Avenue Suite 5D, New York, NY 10016, USA
| | - Daniel H Sterman
- NYU PORT (Pulmonary Oncology Research Team), Division of Pulmonary, Critical Care and Sleep Medicine, New York University School of Medicine, NYU Langone Health, 550 First Avenue Suite 5D, New York, NY 10016, USA.
| |
Collapse
|
23
|
Price DL, Li P, Chen CH, Wong D, Yu Z, Chen NG, Yu YA, Szalay AA, Cappello J, Fong Y, Wong RJ. Silk-elastin-like protein polymer matrix for intraoperative delivery of an oncolytic vaccinia virus. Head Neck 2015; 38:237-46. [PMID: 25244076 DOI: 10.1002/hed.23877] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2014] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Oncolytic viral efficacy may be limited by the penetration of the virus into tumors. This may be enhanced by intraoperative application of virus immediately after surgical resection. METHODS Oncolytic vaccinia virus GLV-1h68 was delivered in silk-elastin-like protein polymer (SELP) in vitro and in vivo in anaplastic thyroid carcinoma cell line 8505c in nude mice. RESULTS GLV-1h68 in SELP infected and lysed anaplastic thyroid cancer cells in vitro equally as effectively as in phosphate-buffered saline (PBS), and at 1 week retains a thousand fold greater infectious plaque-forming units. In surgical resection models of residual tumor, GLV-1h68 in SELP improves tumor control and shows increased viral β-galactosidase expression as compared to PBS. CONCLUSION The use of SELP matrix for intraoperative oncolytic viral delivery protects infectious viral particles from degradation, facilitates sustained viral delivery and transgene expression, and improves tumor control. Such optimization of methods of oncolytic viral delivery may enhance therapeutic outcomes.
Collapse
Affiliation(s)
- Daniel L Price
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York.,Department of Otorhinolaryngology, Mayo Clinic, Rochester, Minnesota
| | - Pingdong Li
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York.,Department of Otolaryngology - Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Key Laboratory of Otolaryngology - Head and Neck Surgery, Ministry of Education, Beijing, China
| | - Chun-Hao Chen
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Danni Wong
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York.,Department of Otolaryngology - Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Key Laboratory of Otolaryngology - Head and Neck Surgery, Ministry of Education, Beijing, China
| | - Zhenkun Yu
- Department of Otolaryngology - Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Key Laboratory of Otolaryngology - Head and Neck Surgery, Ministry of Education, Beijing, China
| | - Nanhai G Chen
- Genelux Corporation, San Diego Science Center, San Diego, California.,Department of Radiation Oncology, Rebecca & John Moores Comprehensive Cancer Center, University of California, San Diego, California
| | - Yong A Yu
- Genelux Corporation, San Diego Science Center, San Diego, California.,Department of Radiation Oncology, Rebecca & John Moores Comprehensive Cancer Center, University of California, San Diego, California
| | - Aladar A Szalay
- Genelux Corporation, San Diego Science Center, San Diego, California.,Department of Radiation Oncology, Rebecca & John Moores Comprehensive Cancer Center, University of California, San Diego, California.,Rudolf Virchow Center for Experimental Biomedicine, Institute for Biochemistry and Institute for Molecular Infection Biology, University of Wurzburg, Am Hubland, Wurzburg, Germany
| | - Joseph Cappello
- Genelux Corporation, San Diego Science Center, San Diego, California.,Protein Polymer Technologies Inc., San Diego, California
| | - Yuman Fong
- Department of Surgery, City of Hope, Duarte, California
| | - Richard J Wong
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York
| |
Collapse
|
24
|
Kochneva G, Zonov E, Grazhdantseva A, Yunusova A, Sibolobova G, Popov E, Taranov O, Netesov S, Chumakov P, Ryabchikova E. Apoptin enhances the oncolytic properties of vaccinia virus and modifies mechanisms of tumor regression. Oncotarget 2014; 5:11269-82. [PMID: 25358248 PMCID: PMC4294355 DOI: 10.18632/oncotarget.2579] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 10/08/2014] [Indexed: 12/26/2022] Open
Abstract
A recombinant vaccinia virus VVdGF-ApoS24/2 expressing apoptin selectively kills human cancer cells in vitro [Kochneva et al., 2013]. We compared the oncolytic activity of this recombinant with that of the parental strain L-IVP using a model of human A431 carcinoma xenografts in nude mice. Single intratumoral injections (2×10^7 PFU/mouse) of the viruses produced a dramatic decrease in tumor volumes, which was higher after injection of apoptin-producing virus. The tumor dried out after the injection of recombinant while injection of L-IVP strain resulted in formation of cavities filled with cell debris and liquid. Both viruses rapidly spread in xenografts and replicate exclusively in tumor cells causing their destruction within 8 days. Both viruses induced insignificant level of apoptosis in tumors. Unlike the previously described nuclear localization of apoptin in cancer cells the apoptin produced by recombinant virus was localized to the cytoplasm. The apoptin did not induce a typical apoptosis, but it rather influenced pathway of cell death and thereby caused tumor shrinkage. The replacement of destroyed cells by filamentous material is the main feature of tumor regression caused by the VVdGF-ApoS24/2 virus. The study points the presence of complicated mechanisms of apoptin effects at the background of vaccinia virus replication.
Collapse
Affiliation(s)
- Galina Kochneva
- Novosibirsk State University, Novosibirsk, Russia
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, Russia
| | - Evgeniy Zonov
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russia
| | | | - Anastasiya Yunusova
- Novosibirsk State University, Novosibirsk, Russia
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russia
| | - Galina Sibolobova
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, Russia
| | - Evgeniy Popov
- Novosibirsk State University, Novosibirsk, Russia
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, Russia
| | - Oleg Taranov
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, Russia
| | - Sergei Netesov
- Novosibirsk State University, Novosibirsk, Russia
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, Russia
| | - Peter Chumakov
- Novosibirsk State University, Novosibirsk, Russia
- Engelhardt Institute of Molecular Biology, Moscow
| | - Elena Ryabchikova
- Novosibirsk State University, Novosibirsk, Russia
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russia
| |
Collapse
|
25
|
Progress in oncolytic virotherapy for the treatment of thyroid malignant neoplasm. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2014; 33:91. [PMID: 25366264 PMCID: PMC4242545 DOI: 10.1186/s13046-014-0091-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 10/22/2014] [Indexed: 01/05/2023]
Abstract
Thyroid malignant neoplasm develops from follicular or parafollicular thyroid cells. A higher proportion of anaplastic thyroid cancer has an adverse prognosis. New drugs are being used in clinical treatment. However, for advanced thyroid malignant neoplasm such as anaplastic thyroid carcinoma, the major impediment to successful control of the disease is the absence of effective therapies. Oncolytic virotherapy has significantly progressed as therapeutics in recent years. The advance is that oncolytic viruses can be designed with biological specificity to infect, replicate and lyse tumor cells. Significant advances in virotherapy have being achieved to improve the accessibility, safety and efficacy of the treatment. Therefore, it is necessary to summarize and bring together the main areas covered by these investigations for the virotherapy of thyroid malignant neoplasm. We provide an overview of the progress in virotherapy research and clinical trials, which employ virotherapy for thyroid malignant neoplasm as well as the future prospect for virotherapy of thyroid malignant neoplasms.
Collapse
|
26
|
Hofmann E, Weibel S, Szalay AA. Combination treatment with oncolytic Vaccinia virus and cyclophosphamide results in synergistic antitumor effects in human lung adenocarcinoma bearing mice. J Transl Med 2014; 12:197. [PMID: 25030093 PMCID: PMC4105246 DOI: 10.1186/1479-5876-12-197] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 07/10/2014] [Indexed: 12/27/2022] Open
Abstract
Background The capacity of the recombinant Vaccinia virus GLV-1h68 as a single agent to efficiently treat different human or canine cancers has been shown in several preclinical studies. Currently, its human safety and efficacy are investigated in phase I/II clinical trials. In this study we set out to evaluate the oncolytic activity of GLV-1h68 in the human lung adenocarcinoma cell line PC14PE6-RFP in cell cultures and analyzed the antitumor potency of a combined treatment strategy consisting of GLV-1h68 and cyclophosphamide (CPA) in a mouse model of PC14PE6-RFP lung adenocarcinoma. Methods PC14PE6-RFP cells were treated in cell culture with GLV-1h68. Viral replication and cell survival were determined by plaque assays and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays, respectively. Subcutaneously implanted PC14PE6-RFP xenografts were treated by systemic injection of GLV-1h68, CPA or a combination of both. Tumor growth and viral biodistribution were monitored and immune-related antigen profiling of tumor lysates was performed. Results GLV-1h68 efficiently infected, replicated in and lysed human PC14PE6-RFP cells in cell cultures. PC14PE6-RFP tumors were efficiently colonized by GLV-1h68 leading to much delayed tumor growth in PC14PE6-RFP tumor-bearing nude mice. Combination treatment with GLV-1h68 and CPA significantly improved the antitumor efficacy of GLV-1h68 and led to an increased viral distribution within the tumors. Pro-inflammatory cytokines and chemokines were distinctly elevated in tumors of GLV-1h68-treated mice. Factors expressed by endothelial cells or present in the blood were decreased after combination treatment. A complete loss in the hemorrhagic phenotype of the PC14PE6-RFP tumors and a decrease in the number of blood vessels after combination treatment could be observed. Conclusions CPA and GLV-1h68 have synergistic antitumor effects on PC14PE6-RFP xenografts. We strongly suppose that in the PC14PE6-RFP model the enhanced tumor growth inhibition achieved by combining GLV-1h68 with CPA is due to an effect on the vasculature rather than an immunosuppressive action of CPA. These results provide evidence to support further preclinical studies of combining GLV-1h68 and CPA in other highly angiogenic tumor models. Moreover, data presented here demonstrate that CPA can be combined successfully with GLV-1h68 based oncolytic virus therapy and therefore might be promising as combination therapy in human clinical trials.
Collapse
Affiliation(s)
| | | | - Aladar A Szalay
- Department of Biochemistry, Biocenter, University of Wuerzburg, D-97074 Wuerzburg, Germany.
| |
Collapse
|
27
|
Parviainen S, Ahonen M, Diaconu I, Kipar A, Siurala M, Vähä-Koskela M, Kanerva A, Cerullo V, Hemminki A. GMCSF-armed vaccinia virus induces an antitumor immune response. Int J Cancer 2014; 136:1065-72. [PMID: 25042001 DOI: 10.1002/ijc.29068] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 06/23/2014] [Indexed: 12/14/2022]
Abstract
Oncolytic Western Reserve strain vaccinia virus selective for epidermal growth factor receptor pathway mutations and tumor-associated hypermetabolism was armed with human granulocyte-macrophage colony-stimulating factor (GMCSF) and a tdTomato fluorophore. As the assessment of immunological responses to human transgenes is challenging in the most commonly used animal models, we used immunocompetent Syrian golden hamsters, known to be sensitive to human GMCSF and semipermissive to vaccinia virus. Efficacy was initially tested in vitro on various human and hamster cell lines and oncolytic potency of transgene-carrying viruses was similar to unarmed virus. The hGMCSF-encoding virus was able to completely eradicate subcutaneous pancreatic tumors in hamsters, and to fully protect the animals from subsequent rechallenge with the same tumor. Induction of specific antitumor immunity was also shown by ex vivo co-culture experiments with hamster splenocytes. In addition, histological examination revealed increased infiltration of neutrophils and macrophages in GMCSF-virus-treated tumors. These findings help clarify the mechanism of action of GMCSF-armed vaccinia viruses undergoing clinical trials.
Collapse
Affiliation(s)
- Suvi Parviainen
- Cancer Gene Therapy Group, Department of Pathology and Transplantation Laboratory, Haartman Institute, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Sen D, Balakrishnan B, Jayandharan GR. Cellular unfolded protein response against viruses used in gene therapy. Front Microbiol 2014; 5:250. [PMID: 24904562 PMCID: PMC4033601 DOI: 10.3389/fmicb.2014.00250] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 05/07/2014] [Indexed: 01/21/2023] Open
Abstract
Viruses are excellent vehicles for gene therapy due to their natural ability to infect and deliver the cargo to specific tissues with high efficiency. Although such vectors are usually "gutted" and are replication defective, they are subjected to clearance by the host cells by immune recognition and destruction. Unfolded protein response (UPR) is a naturally evolved cyto-protective signaling pathway which is triggered due to endoplasmic reticulum (ER) stress caused by accumulation of unfolded/misfolded proteins in its lumen. The UPR signaling consists of three signaling pathways, namely PKR-like ER kinase, activating transcription factor 6, and inositol-requiring protein-1. Once activated, UPR triggers the production of ER molecular chaperones and stress response proteins to help reduce the protein load within the ER. This occurs by degradation of the misfolded proteins and ensues in the arrest of protein translation machinery. If the burden of protein load in ER is beyond its processing capacity, UPR can activate pro-apoptotic pathways or autophagy leading to cell death. Viruses are naturally evolved in hijacking the host cellular translation machinery to generate a large amount of proteins. This phenomenon disrupts ER homeostasis and leads to ER stress. Alternatively, in the case of gutted vectors used in gene therapy, the excess load of recombinant vectors administered and encountered by the cell can trigger UPR. Thus, in the context of gene therapy, UPR becomes a major roadblock that can potentially trigger inflammatory responses against the vectors and reduce the efficiency of gene transfer.
Collapse
Affiliation(s)
- Dwaipayan Sen
- Department of Hematology, Christian Medical College Vellore, India
| | | | - Giridhara R Jayandharan
- Department of Hematology, Christian Medical College Vellore, India ; Centre for Stem Cell Research, Christian Medical College Vellore, India
| |
Collapse
|
29
|
Liu YP, Wang J, Avanzato VA, Bakkum-Gamez JN, Russell SJ, Bell JC, Peng KW. Oncolytic vaccinia virotherapy for endometrial cancer. Gynecol Oncol 2014; 132:722-9. [PMID: 24434058 PMCID: PMC3977925 DOI: 10.1016/j.ygyno.2014.01.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 01/08/2014] [Accepted: 01/09/2014] [Indexed: 01/13/2023]
Abstract
OBJECTIVE Oncolytic virotherapy is a promising modality in endometrial cancer (EC) therapy. In this study, we compared the efficacy of the Copenhagen and Wyeth strains of oncolytic vaccinia virus (VV) incorporating the human thyroidal sodium iodide symporter (hNIS) as a reporter gene (VVNIS-C and VVNIS-W) in EC. METHODS Infectivity of VVNIS-C and VVNIS-W in type I (HEC1A, Ishikawa, KLE, RL95-2, and AN3 CA) and type II (ARK-1, ARK-2, and SPEC-2) human EC cell lines was evaluated. Athymic mice with ARK-2 or AN3 CA xenografts were treated with one intravenous dose of VVNIS-C or VVNIS-W. Tumor regression and in vivo infectivity were monitored via NIS expression using SPECT-CT imaging. RESULTS All EC cell lines except KLE were susceptible to infection and killing by VVNIS-C and VVNIS-W in vitro. VVNIS-C had higher infectivity and oncolytic activity than VVNIS-W in all cell lines, most notably in AN3 CA. Intravenous VVNIS-C was more effective at controlling AN3 CA xenograft growth than VVNIS-W, while both VVNIS-C and VVNIS-W ceased tumor growth and induced tumor regression in 100% of mice bearing ARK-2 xenografts. CONCLUSION Overall, VVNIS-C has more potent oncolytic viral activity than VVSIN-W in EC. VV appears to be most active in type II EC. Novel therapies are needed for the highly lethal type II EC histologies and further development of a VV clinical trial in type II EC is warranted.
Collapse
Affiliation(s)
- Yu-Ping Liu
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jiahu Wang
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON KlY 4E9, Canada
| | - Victoria A Avanzato
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA; Pennsylvania State University, State College, PA, USA
| | | | - Stephen J Russell
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA; Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - John C Bell
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON KlY 4E9, Canada
| | - Kah-Whye Peng
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA; Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
30
|
Acres B, Bonnefoy JY. Clinical development of MVA-based therapeutic cancer vaccines. Expert Rev Vaccines 2014; 7:889-93. [DOI: 10.1586/14760584.7.7.889] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
31
|
Jun KH, Gholami S, Song TJ, Au J, Haddad D, Carson J, Chen CH, Mojica K, Zanzonico P, Chen NG, Zhang Q, Szalay A, Fong Y. A novel oncolytic viral therapy and imaging technique for gastric cancer using a genetically engineered vaccinia virus carrying the human sodium iodide symporter. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2014; 33:2. [PMID: 24383569 PMCID: PMC3883485 DOI: 10.1186/1756-9966-33-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Accepted: 12/11/2013] [Indexed: 11/10/2022]
Abstract
Background Gastric cancers have poor overall survival despite recent advancements in early detection methods, endoscopic resection techniques, and chemotherapy treatments. Vaccinia viral therapy has had promising therapeutic potential for various cancers and has a great safety profile. We investigated the therapeutic efficacy of a novel genetically-engineered vaccinia virus carrying the human sodium iodide symporter (hNIS) gene, GLV-1 h153, on gastric cancers and its potential utility for imaging with 99mTc pertechnetate scintigraphy and 124I positron emission tomography (PET). Methods GLV-1 h153 was tested against five human gastric cancer cell lines using cytotoxicity and standard viral plaque assays. In vivo, subcutaneous flank tumors were generated in nude mice with human gastric cancer cells, MKN-74. Tumors were subsequently injected with either GLV-1 h153 or PBS and followed for tumor growth. 99mTc pertechnetate scintigraphy and 124I microPET imaging were performed. Results GFP expression, a surrogate for viral infectivity, confirmed viral infection by 24 hours. At a multiplicity of infection (MOI) of 1, GLV-1 h153 achieved > 90% cytotoxicity in MNK-74, OCUM-2MD3, and AGS over 9 days, and >70% cytotoxicity in MNK- 45 and TMK-1. In vivo, GLV-1 h153 was effective in treating xenografts (p < 0.001) after 2 weeks of treatment. GLV-1 h153-infected tumors were readily imaged by 99mTc pertechnetate scintigraphy and 124I microPET imaging 2 days after treatment. Conclusions GLV-1 h153 is an effective oncolytic virus expressing the hNIS protein that can efficiently regress gastric tumors and allow deep-tissue imaging. These data encourages its continued investigation in clinical settings.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Yuman Fong
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065 USA.
| |
Collapse
|
32
|
Chernichenko N, Linkov G, Li P, Bakst RL, Chen CH, He S, Yu YA, Chen NG, Szalay AA, Fong Y, Wong RJ. Oncolytic vaccinia virus therapy of salivary gland carcinoma. JAMA Otolaryngol Head Neck Surg 2013; 139:173-82. [PMID: 23429949 DOI: 10.1001/jamaoto.2013.1360] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVE To examine the therapeutic effects of an attenuated, replication-competent vaccinia virus (GLV-1h68) against a panel of 5 human salivary gland carcinoma cell lines. DESIGN The susceptibility of 5 salivary gland carcinoma cell lines to infection and oncolysis by GLV-1h68 was assessed in vitro and in vivo. RESULTS All 5 cell lines were susceptible to viral infection, transgene expression, and cytotoxic reactions. Three cell lines were exquisitely sensitive to infection by very low doses of GLV-1h68. Orthotopic parotid tumors exhibited more aggressive behavior compared with flank tumors. A single intratumoral injection of GLV-1h68 induced significant tumor regression without observed toxic effects in flank and parotid tumor models; controls demonstrated rapid tumor progression. CONCLUSION These promising results demonstrate significant oncolytic activity by an attenuated vaccinia virus for infecting and lysing salivary gland carcinomas, supporting future clinical trials.
Collapse
Affiliation(s)
- Natalya Chernichenko
- Departments of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Yin L, Calvo-Calle JM, Cruz J, Newman FK, Frey SE, Ennis FA, Stern LJ. CD4+ T cells provide intermolecular help to generate robust antibody responses in vaccinia virus-vaccinated humans. THE JOURNAL OF IMMUNOLOGY 2013; 190:6023-33. [PMID: 23667112 DOI: 10.4049/jimmunol.1202523] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Immunization with vaccinia virus elicits a protective Ab response that is almost completely CD4(+) T cell dependent. A recent study in a rodent model observed a deterministic linkage between Ab and CD4(+) T cell responses to particular vaccinia virus proteins suggesting that CD4(+) T cell help is preferentially provided to B cells with the same protein specificity (Sette et al. 2008. Immunity 28: 847-858). However, a causal linkage between Ab and CD4(+) T cell responses to vaccinia or any other large pathogen in humans has yet to be done. In this study, we measured the Ab and CD4(+) T cell responses against four vaccinia viral proteins (A27L, A33R, B5R, and L1R) known to be strongly targeted by humoral and cellular responses induced by vaccinia virus vaccination in 90 recently vaccinated and 7 long-term vaccinia-immunized human donors. Our data indicate that there is no direct linkage between Ab and CD4(+) T cell responses against each individual protein in both short-term and long-term immunized donors. Together with the observation that the presence of immune responses to these four proteins is linked together within donors, our data suggest that in vaccinia-immunized humans, individual viral proteins are not the primary recognition unit of CD4(+) T cell help for B cells. Therefore, we have for the first time, to our knowledge, shown evidence that CD4(+) T cells provide intermolecular (also known as noncognate or heterotypic) help to generate robust Ab responses against four vaccinia viral proteins in humans.
Collapse
Affiliation(s)
- Liusong Yin
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Baril P, Touchefeu Y, Cany J, Cherel Y, Thorne SH, Tran L, Conchon S, Vassaux G. Differential biodistribution of oncolytic poxvirus administered systemically in an autochthonous model of hepatocellular carcinoma. J Gene Med 2013; 13:692-701. [PMID: 22028274 DOI: 10.1002/jgm.1624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Preclinical studies have demonstrated that, unlike oncolytic adenoviruses, oncolytic vaccinia viruses can reach implanted tumors upon systemic injection. However, the biodistribution of this oncolytic agent in in situ autochthonous tumor models remains poorly characterized. In the present study, we assessed this biodistribution in a model of mouse hepatocellular carcinoma (HCC) obtained after injection of the carcinogen diethylnitrosamine (DEN). METHODS Twelve months after DEN administration, histology, quantitative reverse transcription-polymerase chain reaction, in situ hybridization and viral titration were used to characterize tumors, as well as to assess the viral load of the livers upon either intravenous or intraperitoineal injection. RESULTS The results obtained showed that the architecture of the liver was lost, with a noticeable absence of sinusoids, as well as the presence of steatosis and α-fetoprotein-positive HCC tumor nodules. Bioluminescence imaging and measures of the infective virus load demonstrated that intravenous injection of 10(8) plaque-forming units of the recombinant vaccinia virus led to a predominant transduction of the liver, whereas intraperitoneal injection resulted in a lower level of liver transduction accompanied by an increased infection of the lungs, spleen, kidneys and bowels. Immunohistochemical analysis of liver sections of animals injected intravenously with the virus revealed a preferential localization of vaccinia-specific immunoreactivity in the tumors. CONCLUSIONS The findings of the present study emphasize the importance of the route of administration of the vector and highlight the relevance of systemic injection of oncolytic vaccinia virus in the context of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Patrick Baril
- INSERM U948, Nantes, France; Centre de Biophysique Moléculaire, CNRS, UPR4301, Univerity of Orléans, France
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Preferential colonization of metastases by oncolytic vaccinia virus strain GLV-1h68 in a human PC-3 prostate cancer model in nude mice. PLoS One 2012; 7:e45942. [PMID: 23049897 PMCID: PMC3457966 DOI: 10.1371/journal.pone.0045942] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 08/23/2012] [Indexed: 01/01/2023] Open
Abstract
Recently, we showed that the oncolytic vaccinia virus GLV-1h68 has a significant therapeutic potential in treating lymph node metastases of human PC-3 prostate carcinoma in tumor xenografts. In this study, underlying mechanisms of the virus-mediated metastases reduction were analyzed. Immunohistochemistry demonstrated that virus-treatment resulted in a drastically decrease of blood and lymph vessels, representing essential routes for PC-3 cell migration, in both tumors and metastases. Thus, GLV-1h68 drastically reduced essential routes for the metastatic spread of PC-3 cells. Furthermore, analysis of viral distribution in GLV-1h68-injected tumor-bearing mice by plaque assays, revealed significantly higher virus titers in metastases compared to solid tumors. To elucidate conditions potentially mediating the preferential viral colonization and eradication of metastases, microenvironmental components of uninfected tumors and metastases were compared by microscopic studies. These analyses revealed that PC-3 lymph node metastases showed increased vascular permeability, higher proliferation status of tumor cells as determined by BrdU- and Ki-67 assays and lesser necrosis of PC-3 cells than solid tumors. Moreover, an increased number of immune cells (MHCII(+)/CD68(+) macrophages, MHCII(+)/CD19(+) B lymphocytes) combined with an up-regulated expression of pro-inflammatory cytokines was observed in metastases in comparison to primary PC-3 tumors. We propose that these microenvironmental components mediated the metastatic tropism of GLV-1h68. Therefore, vaccinia virus-based oncolytic virotherapy might offer a novel treatment of metastatic prostate carcinomas in humans.
Collapse
|
36
|
The N-terminus of vaccinia virus host range protein C7L is essential for function. Virus Genes 2012; 46:20-7. [PMID: 23001690 DOI: 10.1007/s11262-012-0822-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 09/08/2012] [Indexed: 10/27/2022]
Abstract
Vaccinia virus (VACV), a member of the Poxviridae family of large double-stranded DNA viruses, is being used as a smallpox vaccine as well as an expression vector for immunization against other infectious diseases and cancer. The host range of wild type VACV is very broad among mammalian cells. C7L is a host range gene identified in VACV and is well conserved in mammalian poxviruses except for parapoxviruses and molluscum contagiosum virus. The molecular mechanisms by which the C7L gene exerts host range function are not well understood. The C7L protein does not have any known conserved domains or show sequence similarity to cellular proteins or viral proteins other than the C7L homologs in mammalian poxviruses. We generated recombinant vaccinia viruses carrying deletion mutants of the C7L gene using NYVAC as a parental strain and found that the N-terminus is essential for host range function of C7L, which is consistent with a previous report that showed that homology among C7L homologs are greater near the N-terminus than the C-terminus.
Collapse
|
37
|
Liu Q, Huang W, Nie J, Zhu R, Gao D, Song A, Meng S, Xu X, Wang Y. A novel high-throughput vaccinia virus neutralization assay and preexisting immunity in populations from different geographic regions in China. PLoS One 2012; 7:e33392. [PMID: 22438922 PMCID: PMC3306400 DOI: 10.1371/journal.pone.0033392] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 02/08/2012] [Indexed: 11/25/2022] Open
Abstract
Background Pre-existing immunity to Vaccinia Tian Tan virus (VTT) resulting from a large vaccination campaign against smallpox prior to the early 1980s in China, has been a major issue for application of VTT-vector based vaccines. It is essential to establish a sensitive and high-throughput neutralization assay to understand the epidemiology of Vaccinia-specific immunity in current populations in China. Methodology/Principal Findings A new anti-Vaccinia virus (VACV) neutralization assay that used the attenuated replication-competent VTT carrying the firefly luciferase gene of Photinus pyralis (rTV-Fluc) was established and standardized for critical parameters that included the choice of cell line, viral infection dose, and the infection time. The current study evaluated the maintenance of virus-specific immunity after smallpox vaccination by conducting a non-randomized, cross-sectional analysis of antiviral antibody-mediated immune responses in volunteers examined 30–55 years after vaccination. The rTV-Fluc neutralization assay was able to detect neutralizing antibodies (NAbs) against Vaccinia virus without the ability to differentiate strains of Vaccinia virus. We showed that the neutralizing titers measured by our assay were similar to those obtained by the traditional plaque reduction neutralization test (PRNT). Using this assay, we found a low prevalence of NAb to VTT (7.6%) in individuals born before 1980 from Beijing and Anhui provinces in China, and when present, anti-VTT NAb titers were low. No NAbs were detected in all 222 samples from individuals born after 1980. There was no significant difference observed for titer or prevalence by gender, age range and geographic origin. Conclusion A simplified, sensitive, standardized, reproducible, and high-throughput assay was developed for the quantitation of NAbs against different Vaccinia strains. The current study provides useful insights for the future development of VTT-based vaccination in Beijing and Anhui provinces of China.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Cell Biology, National Institutes for Food and Drug Control, Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, Beijing, China
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Weijin Huang
- Department of Cell Biology, National Institutes for Food and Drug Control, Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, Beijing, China
| | - Jianhui Nie
- Department of Cell Biology, National Institutes for Food and Drug Control, Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, Beijing, China
| | - Rong Zhu
- Department of Cell Biology, National Institutes for Food and Drug Control, Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, Beijing, China
| | | | - Aijing Song
- Department of Cell Biology, National Institutes for Food and Drug Control, Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, Beijing, China
| | - Shufang Meng
- Department of Cell Biology, National Institutes for Food and Drug Control, Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, Beijing, China
| | - Xuemei Xu
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Youchun Wang
- Department of Cell Biology, National Institutes for Food and Drug Control, Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, Beijing, China
- * E-mail:
| |
Collapse
|
38
|
Raafat N, Sadowski-Cron C, Mengus C, Heberer M, Spagnoli GC, Zajac P. Preventing vaccinia virus class-I epitopes presentation by HSV-ICP47 enhances the immunogenicity of a TAP-independent cancer vaccine epitope. Int J Cancer 2012; 131:E659-69. [PMID: 22116674 DOI: 10.1002/ijc.27362] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 11/08/2011] [Indexed: 11/06/2022]
Abstract
Herpes simplex virus protein ICP47, encoded by US12 gene, strongly downregulates major histocompatibility complex (MHC) class-I antigen restricted presentation by blocking transporter associated with antigen processing (TAP) protein. To decrease viral vector antigenic immunodominance and MHC class-I driven clearance, we engineered recombinant vaccinia viruses (rVV) expressing ICP47 alone (rVV-US12) or together with endoplasmic reticulum (ER)-targeted Melan-A/MART-1(27-35) model tumor epitope (rVV-MUS12). In this study, we show that antigen presenting cells (APC), infected with rVV-US12, display a decreased ability to present TAP dependent MHC class-I restricted viral antigens to CD8+ T-cells. While HLA class-I cell surface expression is strongly downregulated, other important immune related molecules such as CD80, CD44 and, most importantly, MHC class-II are unaffected. Characterization of rVV-MUS12 infected cells demonstrates that over-expression of a TAP-independent peptide, partially compensates for ICP47 induced surface MHC class-I downregulation (30% vs. 70% respectively). Most importantly, in conditions where clearance of infected APC by virus-specific CTL represents a limiting factor, a significant enhancement of CTL responses to the tumor epitope can be detected in cultures stimulated with rVV-MUS12, as compared to those stimulated by rVV-MART alone. Such reagents could become of high relevance in multiple boost protocols required for cancer immunotherapy, to limit vector-specific responsiveness.
Collapse
Affiliation(s)
- Nermin Raafat
- Department of Biomedicine, Oncology group, Institute of Surgical Research and Hospital Management, University of Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
39
|
He S, Li P, Chen CH, Bakst RL, Chernichenko N, Yu YA, Chen N, Szalay AA, Yu Z, Fong Y, Wong RJ. Effective oncolytic vaccinia therapy for human sarcomas. J Surg Res 2011; 175:e53-60. [PMID: 22341347 DOI: 10.1016/j.jss.2011.11.1030] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 11/19/2011] [Accepted: 11/23/2011] [Indexed: 11/26/2022]
Abstract
BACKGROUND Approximately one fourth of bone and soft-tissue sarcomas recur after prior treatment. GLV-1h68 is a recombinant, replication-competent vaccinia virus that has been shown to have oncolytic effects against many human cancer types. We sought to determine whether GLV-1h68 could selectively target and lyse a panel of human bone and soft-tissue sarcoma cell lines in vitro and in vivo. METHODS GLV-1h68 was tested in a panel of four cell lines including: fibrosarcoma HT-1080, osteosarcoma U-2OS, fibrohistiocytoma M-805, and rhabdomyosarcoma HTB-82. Gene expression, infectivity, viral proliferation, and cytotoxicity were characterized in vitro. HT-1080 xenograft flank tumors grown in vivo were injected intratumorally with a single dose of GLV-1h68. RESULTS All four cell lines supported robust viral transgene expression in vitro. At a multiplicity of infection (MOI) of five, GLV-1h68 was cytotoxic to three cell lines, resulting in >80% cytotoxicity over 7 d. In vivo, a single injection of GLV-1h68 into HT-1080 xenografts exhibited localized intratumoral luciferase activity peaking at d 2-4, with gradual resolution over 8 d and no evidence of spread to normal tissues. Treated animals exhibited near-complete tumor regression over a 28-d period without observed toxicity. CONCLUSION GLV-1h68 has potent direct oncolytic effects against human sarcoma in vitro and in vivo. Recombinant vaccinia oncolytic virotherapy could provide a new platform for the treatment of patients with bone and soft tissue sarcomas. Future clinical trials investigating oncolytic vaccinia as a therapy for sarcomas are warranted.
Collapse
Affiliation(s)
- Shuangba He
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Zhao Y, Adams YF, Croft M. Preferential replication of vaccinia virus in the ovaries is independent of immune regulation through IL-10 and TGF-β. Viral Immunol 2011; 24:387-96. [PMID: 21958373 DOI: 10.1089/vim.2011.0020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Vaccinia virus (VACV) exhibits a strong tropism for ovarian tissue and can cause ovary pathology and sterility. Why VACV preferentially accumulates in this organ is not known. Here we show that multiple immune cell populations infiltrated the ovaries following VACV infection, including virus-specific CD8 T cells making both IFN-γ and TNF. This was also accompanied by the induction of interleukin (IL)-10 and TGF-β, suggesting that VACV may exploit the ovarian environment for immune evasion via induction of these suppressive cytokines. To test this we used several strategies, including neutralizing these cytokines, and exogenous targeting of the T-cell response, to determine if this inhibited virus replication in the ovaries. We found that the VACV-specific CD8 T-cell immunity and the clearance of virus were not enhanced in the ovaries of infected mice in which IL-10 receptor (IL-10R) was blocked with antagonist antibody. VACV replication was also only moderately affected in the ovaries of infected IL-10 knockout mice. Similarly, blockade of TGF-β with antagonist antibody demonstrated no effect on CD8 T-cell immunity or VACV replication. Lastly, an agonist antibody targeting the tumor necrosis factor receptor superfamily member OX40 (TNFRSF4) enhanced the number of VACV-specific CD8 T cells producing IFN-γ in lymphoid tissue, but had no effect on CD8 T-cell infiltration of the ovaries or on the viral load. Collectively, the results indicate that preferential replication of VACV in the ovaries may not be dependent on immune suppressive mechanisms in this tissue.
Collapse
Affiliation(s)
- Yuan Zhao
- La Jolla Institute for Allergy and Immunology, Division of Immune Regulation, La Jolla, California 92037, USA
| | | | | |
Collapse
|
41
|
Geary SM, Lemke CD, Lubaroff DM, Salem AK. Tumor immunotherapy using adenovirus vaccines in combination with intratumoral doses of CpG ODN. Cancer Immunol Immunother 2011; 60:1309-17. [PMID: 21626029 DOI: 10.1007/s00262-011-1038-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 05/12/2011] [Indexed: 12/22/2022]
Abstract
The combination of viral vaccination with intratumoral (IT) administration of CpG ODNs is yet to be investigated as an immunotherapeutic treatment for solid tumors. Here, we show that such a treatment regime can benefit survival of tumor-challenged mice. C57BL/6 mice bearing ovalbumin (OVA)-expressing EG.7 thymoma tumors were therapeutically vaccinated with adenovirus type 5 encoding OVA (Ad5-OVA), and the tumors subsequently injected with the immunostimulatory TLR9 agonist, CpG-B ODN 1826 (CpG), 4, 7, 10, and 13 days later. This therapeutic combination resulted in enhanced mean survival times that were more than 3.5× longer than naïve mice, and greater than 40% of mice were cured and capable of resisting subsequent tumor challenge. This suggests that an adaptive immune response was generated. Both Ad5-OVA and Ad5-OVA + CpG IT treatments led to significantly increased levels of H-2 K(b)-OVA-specific CD8+ lymphocytes in the peripheral blood and intratumorally. Lymphocyte depletion studies performed in vivo implicated both NK cells and CD8+ lymphocytes as co-contributors to the therapeutic effect. Analysis of tumor infiltrating lymphocytes (TILs) on day 12 post-tumor challenge revealed that mice treated with Ad5-OVA + CpG IT possessed a significantly reduced percentage of regulatory T lymphocytes (Tregs) within the CD4+ lymphocyte population, compared with TILs isolated from mice treated with Ad5-OVA only. In addition, the proportion of CD8+ TILs that were OVA-specific was reproducibly higher in the mice treated with Ad5-OVA + CpG IT compared with other treatment groups. These findings highlight the therapeutic potential of combining intratumoral CpG and vaccination with virus encoding tumor antigen.
Collapse
Affiliation(s)
- S M Geary
- Division of Pharmaceutics, College of Pharmacy, University of Iowa, S228 PHAR, 115 S. Grand Avenue, Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|
42
|
Guse K, Cerullo V, Hemminki A. Oncolytic vaccinia virus for the treatment of cancer. Expert Opin Biol Ther 2011; 11:595-608. [DOI: 10.1517/14712598.2011.558838] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
43
|
Enhancement of vaccinia virus based oncolysis with histone deacetylase inhibitors. PLoS One 2010; 5:e14462. [PMID: 21283510 PMCID: PMC3012680 DOI: 10.1371/journal.pone.0014462] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Accepted: 12/08/2010] [Indexed: 12/21/2022] Open
Abstract
Histone deacetylase inhibitors (HDI) dampen cellular innate immune response by decreasing interferon production and have been shown to increase the growth of vesicular stomatitis virus and HSV. As attenuated tumour-selective oncolytic vaccinia viruses (VV) are already undergoing clinical evaluation, the goal of this study is to determine whether HDI can also enhance the potency of these poxviruses in infection-resistant cancer cell lines. Multiple HDIs were tested and Trichostatin A (TSA) was found to potently enhance the spread and replication of a tumour selective vaccinia virus in several infection-resistant cancer cell lines. TSA significantly decreased the number of lung metastases in a syngeneic B16F10LacZ lung metastasis model yet did not increase the replication of vaccinia in normal tissues. The combination of TSA and VV increased survival of mice harbouring human HCT116 colon tumour xenografts as compared to mice treated with either agent alone. We conclude that TSA can selectively and effectively enhance the replication and spread of oncolytic vaccinia virus in cancer cells.
Collapse
|
44
|
Pauli G, Blümel J, Burger R, Drosten C, Gröner A, Gürtler L, Heiden M, Hildebrandt M, Jansen B, Montag-Lessing T, Offergeld R, Seitz R, Schlenkrich U, Schottstedt V, Strobel J, Willkommen H, von König CHW. Orthopox Viruses: Infections in Humans. ACTA ACUST UNITED AC 2010; 37:351-364. [PMID: 21483466 DOI: 10.1159/000322101] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 07/13/2010] [Indexed: 11/19/2022]
Affiliation(s)
- Georg Pauli
- Arbeitskreis Blut, Untergruppe «Bewertung Blutassoziierter Krankheitserreger»
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Tao R, Li L, Huang W, Zheng L. Activation of human dendritic cells by recombinant modified vaccinia virus Ankara vectors encoding survivin and IL-2 genes in vitro. Hum Gene Ther 2010; 21:98-108. [PMID: 19715401 DOI: 10.1089/hum.2009.113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Modified vaccinia virus Ankara (MVA) has attracted significant attention as a safe, promising vector for immunotherapy. However, the precise effects of MVA infection on immune responses in humans remain largely unknown. We constructed recombinant MVA (rMVA) encoding both a human tumor-associated antigen (survivin) and the proinflammatory cytokine interleukin (IL)-2 and investigated their effects on human monocyte-derived dendritic cells (DCs). The results showed that infection with rMVA slightly impaired the upregulation of CD83 and reduced the production of IL-10 in DCs after lipopolysaccharide stimulation. However, rMVA-infected DCs were still able to express high levels of target genes and the costimulatory molecules CD80 and CD86 and to produce significant amounts of the proinflammatory cytokine tumor necrosis factor alpha. Moreover, rMVA-infected DCs exhibited a greater capacity than uninfected cells to stimulate T-cell proliferation and to reverse MVA-induced apoptosis in syngeneic T cells. Coculture of lymphocytes with rMVA-infected DCs significantly increased cytotoxic potential and interferon gamma production by cytotoxic T cells. These findings suggest that rMVA encoding survivin and IL-2 can effectively stimulate the activation of human DCs and overcome defects such as impairment of DC maturation and apoptosis of lymphocytes that are caused by vector alone. Thus, this study may provide a rational basis for further optimization of MVA vector.
Collapse
Affiliation(s)
- Ran Tao
- State Key Laboratory of Biocontrol, Cancer Center, Sun Yat-Sen (Zhongshan) University , Guangzhou 510275, P.R. China
| | | | | | | |
Collapse
|
46
|
Rahman MM, Madlambayan GJ, Cogle CR, McFadden G. Oncolytic viral purging of leukemic hematopoietic stem and progenitor cells with Myxoma virus. Cytokine Growth Factor Rev 2010; 21:169-75. [PMID: 20211576 DOI: 10.1016/j.cytogfr.2010.02.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
High-dose chemotherapy and radiation followed by autologous blood and marrow transplantation (ABMT) has been used for the treatment of certain cancers that are refractory to standard therapeutic regimes. However, a major challenge with ABMT for patients with hematologic malignancies is disease relapse, mainly due to either contamination with cancerous hematopoietic stem and progenitor cells (HSPCs) within the autograft or the persistence of residual therapy-resistant disease niches within the patient. Oncolytic viruses represent a promising therapeutic approach to prevent cancer relapse by eliminating tumor-initiating cells that contaminate the autograft. Here we summarize an ex vivo "purging" strategy with oncolytic Myxoma virus (MYXV) to remove cancer-initiating cells from patient autografts prior to transplantation. MYXV, a novel oncolytic poxvirus with potent anti-cancer properties in a variety of in vivo tumor models, can specifically eliminate cancerous stem and progenitor cells from samples obtained from acute myelogenous leukemia (AML) patients, while sparing normal CD34+ hematopoietic stem and progenitor cells capable of rescuing hematopoiesis following high dose conditioning. We propose that a broader subset of patients with intractable hematologic malignancies who have failed standard therapy could become eligible for ABMT when the treatment schema is coupled with ex vivo oncolytic therapy.
Collapse
Affiliation(s)
- Masmudur M Rahman
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | | | | | | |
Collapse
|
47
|
Adamina M, Rosenthal R, Weber WP, Frey DM, Viehl CT, Bolli M, Huegli RW, Jacob AL, Heberer M, Oertli D, Marti W, Spagnoli GC, Zajac P. Intranodal immunization with a vaccinia virus encoding multiple antigenic epitopes and costimulatory molecules in metastatic melanoma. Mol Ther 2009; 18:651-9. [PMID: 19935776 DOI: 10.1038/mt.2009.275] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Recombinant vaccinia virus (rVV) encoding tumor-associated antigens (TAAs) and adhesion or costimulatory molecules may represent important immunogenic reagents for cancer immunotherapy. Recently, intranodal (IN) antigen administration was suggested to be more immunogenic than intradermal (ID) vaccination. However, IN rVV administration has not been attempted so far. We used a rVV encoding gp100(280-288), Melan-A/MART-1(27-35) and tyrosinase(1-9) HLA-A0201 restricted epitopes and CD80 and CD86 costimulatory molecules in stage III and IV melanoma patients in a phase 1/2 trial. Of 15 patients initiating treatment, including two cycles of IN immunization, each comprising one rVV administration and three recall injections of the corresponding peptides, accompanied by subcutaneous granulocyte macrophage-colony stimulating factor supplementation, five withdrew due to progressing disease. Of 10 remaining patients seven showed evidence of induction of cytotoxic T lymphocytes (CTLs) directed against at least one epitope under investigation, as detectable by limiting dilution analysis (LDA) of specific precursors and multimer staining. Adverse reactions were mild (National Cancer Institute (NCI) grade 1-2) and mainly represented by fever, skin rashes, and pruritus. These data indicate that IN administration of rVV encoding melanoma-associated epitopes and costimulatory molecules is safe and immunogenic.
Collapse
Affiliation(s)
- Michel Adamina
- Institute of Surgical Research and Hospital Management, University of Basel, Basel, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Antiangiogenic arming of an oncolytic vaccinia virus enhances antitumor efficacy in renal cell cancer models. J Virol 2009; 84:856-66. [PMID: 19906926 DOI: 10.1128/jvi.00692-09] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Oncolytic vaccinia viruses have shown compelling results in preclinical cancer models and promising preliminary safety and antitumor activity in early clinical trials. However, to facilitate systemic application it would be useful to improve tumor targeting and antitumor efficacy further. Here we report the generation of vvdd-VEGFR-1-Ig, a targeted and armed oncolytic vaccinia virus. Tumor targeting was achieved by deletion of genes for thymidine kinase and vaccinia virus growth factor, which are necessary for replication in normal but not in cancer cells. Given the high vascularization typical of kidney cancers, we armed the virus with the soluble vascular endothelial growth factor (VEGF) receptor 1 protein for an antiangiogenic effect. Systemic application of high doses of vvdd-VEGFR-1-Ig resulted in cytokine induction in an immunocompromised mouse model. Upon histopathological analysis, splenic extramedullary hematopoiesis was seen in all virus-injected mice and was more pronounced in the vvdd-VEGFR-1-Ig group. Analysis of the innate immune response after intravenous virus injection revealed high transient and dose-dependent cytokine elevations. When medium and low doses were used for intratumoral or intravenous injection, vvdd-VEGFR-1-Ig exhibited a stronger antitumor effect than the unarmed control. Furthermore, expression of VEGFR-1-Ig was confirmed, and a concurrent antiangiogenic effect was seen. In an immunocompetent model, systemic vvdd-VEGFR-1-Ig exhibited superior antitumor efficacy compared to the unarmed control virus. In conclusion, the targeted and armed vvdd-VEGFR-1-Ig has promising anticancer activity in renal cell cancer models. Extramedullary hematopoiesis may be a sensitive indicator of vaccinia virus effects in mice.
Collapse
|
49
|
The highly attenuated oncolytic recombinant vaccinia virus GLV-1h68: comparative genomic features and the contribution of F14.5L inactivation. Mol Genet Genomics 2009; 282:417-35. [PMID: 19701652 PMCID: PMC2746888 DOI: 10.1007/s00438-009-0475-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2009] [Accepted: 07/31/2009] [Indexed: 12/24/2022]
Abstract
As a new anticancer treatment option, vaccinia virus (VACV) has shown remarkable antitumor activities (oncolysis) in preclinical studies, but potential infection of other organs remains a safety concern. We present here genome comparisons between the de novo sequence of GLV-1h68, a recombinant VACV, and other VACVs. The identified differences in open reading frames (ORFs) include genes encoding host-range selection, virulence and immune modulation proteins, e.g., ankyrin-like proteins, serine proteinase inhibitor SPI-2/CrmA, tumor necrosis factor (TNF) receptor homolog CrmC, semaphorin-like and interleukin-1 receptor homolog proteins. Phylogenetic analyses indicate that GLV-1h68 is closest to Lister strains but has lost several ORFs present in its parental LIVP strain, including genes encoding CrmE and a viral Golgi anti-apoptotic protein, v-GAAP. The reduced pathogenicity of GLV-1h68 is confirmed in male mice bearing C6 rat glioma and in immunocompetent mice bearing B16-F10 murine melanoma. The contribution of foreign gene expression cassettes in the F14.5L, J2R and A56R loci is analyzed, in particular the contribution of F14.5L inactivation to the reduced virulence is demonstrated by comparing the virulence of GLV-1h68 with its F14.5L-null and revertant viruses. GLV-1h68 is a promising engineered VACV variant for anticancer therapy with tumor-specific replication, reduced pathogenicity and benign tissue tropism.
Collapse
|
50
|
Yu Z, Li S, Brader P, Chen N, Yu YA, Zhang Q, Szalay AA, Fong Y, Wong RJ. Oncolytic vaccinia therapy of squamous cell carcinoma. Mol Cancer 2009; 8:45. [PMID: 19580655 PMCID: PMC2714037 DOI: 10.1186/1476-4598-8-45] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Accepted: 07/06/2009] [Indexed: 11/18/2022] Open
Abstract
Background Novel therapies are necessary to improve outcomes for patients with squamous cell carcinomas (SCC) of the head and neck. Historically, vaccinia virus was administered widely to humans as a vaccine and led to the eradication of smallpox. We examined the therapeutic effects of an attenuated, replication-competent vaccinia virus (GLV-1h68) as an oncolytic agent against a panel of six human head and neck SCC cell lines. Results All six cell lines supported viral transgene expression (β-galactosidase, green fluorescent protein, and luciferase) as early as 6 hours after viral exposure. Efficient transgene expression and viral replication (>150-fold titer increase over 72 hrs) were observed in four of the cell lines. At a multiplicity of infection (MOI) of 1, GLV-1h68 was highly cytotoxic to the four cell lines, resulting in ≥ 90% cytotoxicity over 6 days, and the remaining two cell lines exhibited >45% cytotoxicity. Even at a very low MOI of 0.01, three cell lines still demonstrated >60% cell death over 6 days. A single injection of GLV-1h68 (5 × 106 pfu) intratumorally into MSKQLL2 xenografts in mice exhibited localized intratumoral luciferase activity peaking at days 2–4, with gradual resolution over 10 days and no evidence of spread to normal organs. Treated animals exhibited near-complete tumor regression over a 24-day period without any observed toxicity, while control animals demonstrated rapid tumor progression. Conclusion These results demonstrate significant oncolytic efficacy by an attenuated vaccinia virus for infecting and lysing head and neck SCC both in vitro and in vivo, and support its continued investigation in future clinical trials.
Collapse
Affiliation(s)
- Zhenkun Yu
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|