1
|
Gallus M, Young JS, Cook Quackenbush S, Khasraw M, de Groot J, Okada H. Chimeric antigen receptor T-cell therapy in patients with malignant glioma-From neuroimmunology to clinical trial design considerations. Neuro Oncol 2024:noae203. [PMID: 39450490 DOI: 10.1093/neuonc/noae203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024] Open
Abstract
Clinical trials evaluating chimeric antigen receptor (CAR) T-cell therapy in patients with malignant gliomas have shown some early promise in pediatric and adult patients. However, the long-term benefits and safety for patients remain to be established. The ultimate success of CAR T-cell therapy for malignant glioma will require the integration of an in-depth understanding of the immunology of the central nervous system (CNS) parenchyma with strategies to overcome the paucity and heterogeneous expression of glioma-specific antigens. We also need to address the cold (immunosuppressive) microenvironment, exhaustion of the CAR T-cells, as well as local and systemic immunosuppression. Here, we discuss the basics and scientific considerations for CAR T-cell therapies and highlight recent clinical trials. To help identify optimal CAR T-cell administration routes, we summarize our current understanding of CNS immunology and T-cell homing to the CNS. We also discuss challenges and opportunities related to clinical trial design and patient safety/monitoring. Finally, we provide our perspective on future prospects in CAR T-cell therapy for malignant gliomas by discussing combinations and novel engineering strategies to overcome immuno-regulatory mechanisms. We hope this review will serve as a basis for advancing the field in a multiple discipline-based and collaborative manner.
Collapse
Affiliation(s)
- Marco Gallus
- Department of Neurological Surgery, Unversity of California San Fracisco, San Francisco, California, USA
| | - Jacob S Young
- Department of Neurological Surgery, Unversity of California San Fracisco, San Francisco, California, USA
| | | | - Mustafa Khasraw
- The Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - John de Groot
- Helen Diller Family Comprehensive Cancer Center, San Francisco, California, USA
- Department of Neurological Surgery, Unversity of California San Fracisco, San Francisco, California, USA
| | - Hideho Okada
- The Parker Institute for Cancer Immunotherapy, San Francisco, California, USA
- Helen Diller Family Comprehensive Cancer Center, San Francisco, California, USA
- Department of Neurological Surgery, Unversity of California San Fracisco, San Francisco, California, USA
| |
Collapse
|
2
|
Kushwaha N, Panjwani D, Patel S, Ahlawat P, Yadav MR, Patel AS. Emerging advances in nano-biomaterial assisted amyloid beta chimeric antigen receptor macrophages (CAR-M) therapy: reducing plaque burden in Alzheimer's disease. J Drug Target 2024:1-21. [PMID: 39403775 DOI: 10.1080/1061186x.2024.2417012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/23/2024] [Accepted: 10/08/2024] [Indexed: 10/22/2024]
Abstract
Alzheimer's disease is the most common form, accounting for 60-70% of 55 million dementia cases. Even though the precise pathophysiology of AD is not completely understood, clinical trials focused on antibodies targeting aggregated forms of β amyloid (Aβ) have demonstrated that reducing amyloid plaques can arrest cognitive decline in patients in the early stages of AD. In this study, we provide an overview of current research and innovations for controlled release from nano-biomaterial-assisted chimeric antigen receptor macrophage (CAR-M) therapeutic strategies targeted at AD. Nano-bio materials, such as iron-oxide nanoparticles (IONPs), can be made selectively (Hp-Hb/mannose) to bind and take up Aβ plaques like CAR-M cells. By using nano-bio materials, both the delivery and stability of CAR-M cells in brain tissue can be improved to overcome the barriers of the BBB and enhance therapeutic effects. By enhancing the targeting capabilities and stability of CAR-M cells, mRNA-loaded nano-biomaterials can significantly improve the efficacy of immunotherapy for plaque reduction in AD. This novel strategy holds promise for translating preclinical successes into clinical applications, potentially revolutionising the management of AD.
Collapse
Affiliation(s)
- Nishabh Kushwaha
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, India
| | - Drishti Panjwani
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, India
| | - Shruti Patel
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, India
| | - Priyanka Ahlawat
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, India
| | - Mange Ram Yadav
- Research and Development Cell, Parul University, Vadodara, India
| | - Asha S Patel
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, India
| |
Collapse
|
3
|
Ren T, Huang Y. Recent advancements in improving the efficacy and safety of chimeric antigen receptor (CAR)-T cell therapy for hepatocellular carcinoma. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03443-7. [PMID: 39316087 DOI: 10.1007/s00210-024-03443-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/08/2024] [Indexed: 09/25/2024]
Abstract
The liver is one of the most frequent sites of primary malignancies in humans. Hepatocellular carcinoma (HCC) is one of the most prevalent solid tumors with poor prognosis. Current treatments showed limited efficacy in some patients, and, therefore, alternative strategies, such as immunotherapy, cancer vaccines, adoptive cell therapy (ACT), and recently chimeric antigen receptors (CAR)-T cells, are developed to offer better efficacy and safety profile in patients with HCC. Unlike other ACTs like tumor-infiltrating lymphocytes (TILs), CAR-T cells are equipped with engineered CAR receptors that effectively identify tumor antigens and eliminate cancer cells without major histocompatibility complex (MHC) restriction. This process induces intracellular signaling, leading to T lymphocyte recruitment and subsequent activation of other effector cells in the tumor microenvironment (TME). Until today, novel approaches have been used to develop more potent CAR-T cells with robust persistence, specificity, trafficking, and safety. However, the clinical application of CAR-T cells in solid tumors is still challenging. Therefore, this study aims to review the advancement, prospects, and possible avenues of CAR-T cell application in HCC following an outline of the CAR structure and function.
Collapse
Affiliation(s)
- Tuo Ren
- Department of Interventional Radiology, The First Affiliated Hospital, Sun Yat-Sen University, No.58 Zhongsahn 2nd Road, Guangzhou, Guangdong, 510080, China
| | - Yonghui Huang
- Department of Interventional Radiology, The First Affiliated Hospital, Sun Yat-Sen University, No.58 Zhongsahn 2nd Road, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
4
|
Arunachalam AK, Grégoire C, Coutinho de Oliveira B, Melenhorst JJ. Advancing CAR T-cell therapies: Preclinical insights and clinical translation for hematological malignancies. Blood Rev 2024:101241. [PMID: 39289094 DOI: 10.1016/j.blre.2024.101241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/19/2024]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has achieved significant success in achieving durable and potentially curative responses in patients with hematological malignancies. CARs are tailored fusion proteins that direct T cells to a specific antigen on tumor cells thereby eliciting a targeted immune response. The approval of several CD19-targeted CAR T-cell therapies has resulted in a notable surge in clinical trials involving CAR T cell therapies for hematological malignancies. Despite advancements in understanding response mechanisms, resistance patterns, and adverse events associated with CAR T-cell therapy, the translation of these insights into robust clinical efficacy has shown modest outcomes in both clinical trials and real-world scenarios. Therefore, the assessment of CAR T-cell functionality through rigorous preclinical studies plays a pivotal role in refining therapeutic strategies for clinical applications. This review provides an overview of the various in vitro and animal models used to assess the functionality of CAR T-cells. We discuss the findings from preclinical research involving approved CAR T-cell products, along with the implications derived from recent preclinical studies aiming to optimize the functionality of CAR T-cells. The review underscores the importance of robust preclinical evaluations and the need for models that accurately replicate human disease to bridge the gap between preclinical success and clinical efficacy.
Collapse
Affiliation(s)
- Arun K Arunachalam
- Cell Therapy & Immuno-Engineering Program, Center for Immunotherapy and Precision Immuno-Oncology, Lerner College of Medicine, Cleveland Clinic, Cleveland, OH 44195, United States of America
| | - Céline Grégoire
- Cell Therapy & Immuno-Engineering Program, Center for Immunotherapy and Precision Immuno-Oncology, Lerner College of Medicine, Cleveland Clinic, Cleveland, OH 44195, United States of America
| | - Beatriz Coutinho de Oliveira
- Cell Therapy & Immuno-Engineering Program, Center for Immunotherapy and Precision Immuno-Oncology, Lerner College of Medicine, Cleveland Clinic, Cleveland, OH 44195, United States of America
| | - Jan Joseph Melenhorst
- Cell Therapy & Immuno-Engineering Program, Center for Immunotherapy and Precision Immuno-Oncology, Lerner College of Medicine, Cleveland Clinic, Cleveland, OH 44195, United States of America.
| |
Collapse
|
5
|
Zaninelli S, Panna S, Tettamanti S, Melita G, Doni A, D’Autilia F, Valgardsdottir R, Gotti E, Rambaldi A, Golay J, Introna M. Functional Activity of Cytokine-Induced Killer Cells Enhanced by CAR-CD19 Modification or by Soluble Bispecific Antibody Blinatumomab. Antibodies (Basel) 2024; 13:71. [PMID: 39311376 PMCID: PMC11417890 DOI: 10.3390/antib13030071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/08/2024] [Accepted: 08/16/2024] [Indexed: 09/26/2024] Open
Abstract
Strategies to increase the anti-tumor efficacy of cytokine-induced killer cells (CIKs) include genetic modification with chimeric antigen receptors (CARs) or the addition of soluble T-cell engaging bispecific antibodies (BsAbs). Here, CIKs were modified using a transposon system integrating two distinct anti-CD19 CARs (CAR-MNZ and CAR-BG2) or combined with soluble CD3xCD19 BsAb blinatumomab (CIK + Blina). CAR-MNZ bearing the CD28-OX40-CD3ζ signaling modules, and CAR-BG2, designed on the Tisagenlecleucel CAR sequence (Kymriah®), carrying the 4-1BB and CD3ζ signaling elements, were employed. After transfection and CIK expansion, cells expressed CAR-CD19 to a similar extent (35.9% CAR-MNZ and 17.7% CAR-BG2). In vitro evaluations demonstrated robust proliferation and cytotoxicity (~50% cytotoxicity) of CARCIK-MNZ, CARCIK-BG2, and CIK + Blina against CD19+ target cells, suggesting similar efficacy. All effectors formed an increased number of synapses, activated NFAT and NFkB, and secreted IL-2 and IFN-ɣ upon encountering targets. CIK + Blina displayed strongest NFAT and IFN-ɣ induction, whereas CARCIK-BG2 demonstrated superior synapse formation. All the effectors have shown therapeutic activity in vivo against the CD19+ Daudi tumor model, with CARCIK cells showing a more durable response compared to CIK + Blina, likely due to the short half-life of Blina in this model.
Collapse
Affiliation(s)
- Silvia Zaninelli
- Center of Cellular Therapy “G. Lanzani”, Division of Hematology, ASST Papa Giovanni XXIII, 24122 Bergamo, Italy; (S.Z.)
| | - Silvia Panna
- Center of Cellular Therapy “G. Lanzani”, Division of Hematology, ASST Papa Giovanni XXIII, 24122 Bergamo, Italy; (S.Z.)
| | - Sarah Tettamanti
- M. Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| | - Giusi Melita
- M. Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| | - Andrea Doni
- Unit of Multiscale and Nanostructural Imaging, IRCCS Humanitas Research Hospital, 20089 Milano, Italy
| | - Francesca D’Autilia
- Unit of Multiscale and Nanostructural Imaging, IRCCS Humanitas Research Hospital, 20089 Milano, Italy
| | - Rut Valgardsdottir
- Center of Cellular Therapy “G. Lanzani”, Division of Hematology, ASST Papa Giovanni XXIII, 24122 Bergamo, Italy; (S.Z.)
| | - Elisa Gotti
- Center of Cellular Therapy “G. Lanzani”, Division of Hematology, ASST Papa Giovanni XXIII, 24122 Bergamo, Italy; (S.Z.)
| | - Alessandro Rambaldi
- Hematology and Bone Marrow Transplant Unit, ASST Papa Giovanni XXIII Hospital, 24127 Bergamo, Italy
- Department of Oncology and Hematology, Università degli Studi di Milano, 20122 Milan, Italy
| | - Josée Golay
- Center of Cellular Therapy “G. Lanzani”, Division of Hematology, ASST Papa Giovanni XXIII, 24122 Bergamo, Italy; (S.Z.)
| | - Martino Introna
- Center of Cellular Therapy “G. Lanzani”, Division of Hematology, ASST Papa Giovanni XXIII, 24122 Bergamo, Italy; (S.Z.)
| |
Collapse
|
6
|
Locatelli F, Quintarelli C. GD2 Target Antigen and CAR T Cells: Does It Take More Than Two to Tango? Clin Cancer Res 2024; 30:3361-3363. [PMID: 38869449 DOI: 10.1158/1078-0432.ccr-24-0486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/25/2024] [Accepted: 04/25/2024] [Indexed: 06/14/2024]
Abstract
Over the past decade, chimeric antigen receptor T cells have emerged as a breakthrough cancer therapy in selected hematologic malignancies. Translating the success of this therapy to solid tumors is challenging. In this issue, we discuss strategies potentially useful to increase the chimeric antigen receptor T-cell efficacy in this clinical indication. See related article by Fischer-Riepe et al., p. 3564.
Collapse
Affiliation(s)
- Franco Locatelli
- Department of Hematology/Oncology, Cell and Gene Therapy - IRCCS, Bambino Gesù Children's Hospital, Rome, Italy
- Department of Life Sciences and Public Health, Catholic University of the Sacred Heart, Rome, Italy
| | - Concetta Quintarelli
- Department of Hematology/Oncology, Cell and Gene Therapy - IRCCS, Bambino Gesù Children's Hospital, Rome, Italy
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| |
Collapse
|
7
|
Saunderson SC, Halpin JC, Tan GMY, Shrivastava P, McLellan AD. Conversion of anti-tissue factor antibody sequences to chimeric antigen receptor and bi-specific T-cell engager format. Cancer Immunol Immunother 2024; 73:195. [PMID: 39105809 PMCID: PMC11303627 DOI: 10.1007/s00262-024-03778-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/08/2024] [Indexed: 08/07/2024]
Abstract
BACKGROUND The efficacy of antibody-targeted therapy of solid cancers is limited by the lack of consistent tumour-associated antigen expression. However, tumour-associated antigens shared with non-malignant cells may still be targeted using conditionally activated-antibodies, or by chimeric antigen receptor (CAR) T cells or CAR NK cells activated either by the tumour microenvironment or following 'unlocking' via multiple antigen-recognition. In this study, we have focused on tissue factor (TF; CD142), a type I membrane protein present on a range of solid tumours as a basis for future development of conditionally-activated BiTE or CAR T cells. TF is frequently upregulated on multiple solid tumours providing a selective advantage for growth, immune evasion and metastasis, as well as contributing to the pathology of thrombosis via the extrinsic coagulation pathway. METHODS Two well-characterised anti-TF monoclonal antibodies (mAb) were cloned into expression or transposon vectors to produce single chain (scFv) BiTE for assessment as CAR and CD28-CD3-based CAR or CD3-based BiTE. The affinities of both scFv formats for TF were determined by surface plasmon resonance. Jurkat cell line-based assays were used to confirm the activity of the BiTE or CAR constructs. RESULTS The anti-TF mAb hATR-5 and TF8-5G9 mAb were shown to maintain their nanomolar affinities following conversion into a single chain (scFv) format and could be utilised as CD28-CD3-based CAR or CD3-based BiTE format. CONCLUSION Because of the broad expression of TF on a range of solid cancers, anti-TF antibody formats provide a useful addition for the development of conditionally activated biologics for antibody and cellular-based therapy.
Collapse
Affiliation(s)
- S C Saunderson
- Department of Microbiology and Immunology, University of Otago, Dunedin, 9016, New Zealand
| | - J C Halpin
- Department of Microbiology and Immunology, University of Otago, Dunedin, 9016, New Zealand
- The Children's Hospital Westmead, The Children's Hospital Westmead CRN Hawksbury Road and Hainsworth Street, Westmead, NSW, 2145, Australia
| | - G M Y Tan
- Department of Microbiology and Immunology, University of Otago, Dunedin, 9016, New Zealand
- Molecular and Clinical Cancer Medicine, The University of Liverpool, Crown St., Liverpool, UK
| | - P Shrivastava
- Department of Microbiology and Immunology, University of Otago, Dunedin, 9016, New Zealand
| | - A D McLellan
- Department of Microbiology and Immunology, University of Otago, Dunedin, 9016, New Zealand.
| |
Collapse
|
8
|
Ramapriyan R, Vykunta VS, Vandecandelaere G, Richardson LGK, Sun J, Curry WT, Choi BD. Altered cancer metabolism and implications for next-generation CAR T-cell therapies. Pharmacol Ther 2024; 259:108667. [PMID: 38763321 DOI: 10.1016/j.pharmthera.2024.108667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/30/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
This review critically examines the evolving landscape of chimeric antigen receptor (CAR) T-cell therapy in treating solid tumors, with a particular focus on the metabolic challenges within the tumor microenvironment. CAR T-cell therapy has demonstrated remarkable success in hematologic malignancies, yet its efficacy in solid tumors remains limited. A significant barrier is the hostile milieu of the tumor microenvironment, which impairs CAR T-cell survival and function. This review delves into the metabolic adaptations of cancer cells and their impact on immune cells, highlighting the competition for nutrients and the accumulation of immunosuppressive metabolites. It also explores emerging strategies to enhance CAR T-cell metabolic fitness and persistence, including genetic engineering and metabolic reprogramming. An integrated approach, combining metabolic interventions with CAR T-cell therapy, has the potential to overcome these constraints and improve therapeutic outcomes in solid tumors.
Collapse
Affiliation(s)
- Rishab Ramapriyan
- Brain Tumor Immunotherapy Laboratory, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Vivasvan S Vykunta
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA; ImmunoX Initiative, University of California, San Francisco, San Francisco, CA 94143, USA; Medical Scientist Training Program, School of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Gust Vandecandelaere
- Brain Tumor Immunotherapy Laboratory, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Leland G K Richardson
- Brain Tumor Immunotherapy Laboratory, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Jing Sun
- Brain Tumor Immunotherapy Laboratory, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - William T Curry
- Brain Tumor Immunotherapy Laboratory, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Bryan D Choi
- Brain Tumor Immunotherapy Laboratory, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
9
|
Gargett T, Truong NTH, Gardam B, Yu W, Ebert LM, Johnson A, Yeo ECF, Wittwer NL, Tapia Rico G, Logan J, Sivaloganathan P, Collis M, Ruszkiewicz A, Brown MP. Safety and biological outcomes following a phase 1 trial of GD2-specific CAR-T cells in patients with GD2-positive metastatic melanoma and other solid cancers. J Immunother Cancer 2024; 12:e008659. [PMID: 38754916 PMCID: PMC11097842 DOI: 10.1136/jitc-2023-008659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Chimeric antigen receptor (CAR) T cell therapies specific for the CD19 and B-cell maturation antigen have become an approved standard of care worldwide for relapsed and refractory B-cell malignancies. If CAR-T cell therapy for non-hematological malignancies is to achieve the same stage of clinical development, then iterative early-phase clinical testing can add value to the clinical development process for evaluating CAR-T cell products containing different CAR designs and manufactured under differing conditions. METHODS We conducted a phase 1 trial of third-generation GD2-specific CAR-T cell therapy, which has previously been tested in neuroblastoma patients. In this study, the GD2-CAR-T therapy was evaluated for the first time in metastatic melanoma patients in combination with BRAF/MEK inhibitor therapy, and as a monotherapy in patients with colorectal cancer and a patient with fibromyxoid sarcoma. Feasibility and safety were determined and persistence studies, multiplex cytokine arrays on sera and detailed immune phenotyping of the original CAR-T products, the circulating CAR-T cells, and, in select patients, the tumor-infiltrating CAR-T cells were performed. RESULTS We demonstrate the feasibility of manufacturing CAR-T products at point of care for patients with solid cancer and show that a single intravenous infusion was well tolerated with no dose-limiting toxicities or severe adverse events. In addition, we note significant improvements in CAR-T cell immune phenotype, and expansion when a modified manufacturing procedure was adopted for the latter 6 patients recruited to this 12-patient trial. We also show evidence of CAR-T cell-mediated immune activity and in some patients expanded subsets of circulating myeloid cells after CAR-T cell therapy. CONCLUSIONS This is the first report of third-generation GD2-targeting CAR-T cells in patients with metastatic melanoma and other solid cancers such as colorectal cancer, showing feasibility, safety and immune activity, but limited clinical effect. TRIAL REGISTRATION NUMBER ACTRN12613000198729.
Collapse
Affiliation(s)
- Tessa Gargett
- University of South Australia, Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology, Rundle Mall, South Australia, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Nga T H Truong
- University of South Australia, Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology, Rundle Mall, South Australia, Australia
- Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Bryan Gardam
- University of South Australia, Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology, Rundle Mall, South Australia, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Wenbo Yu
- University of South Australia, Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology, Rundle Mall, South Australia, Australia
- Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Lisa M Ebert
- University of South Australia, Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology, Rundle Mall, South Australia, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Amy Johnson
- Flinders University, Adelaide, South Australia, Australia
| | - Erica C F Yeo
- University of South Australia, Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology, Rundle Mall, South Australia, Australia
| | - Nicole L Wittwer
- University of South Australia, Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology, Rundle Mall, South Australia, Australia
- Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Gonzalo Tapia Rico
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Jesikah Logan
- Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Purany Sivaloganathan
- Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Maria Collis
- Surgical Pathology, SA Pathology, Adelaide, South Australia, Australia
| | - Andrew Ruszkiewicz
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Surgical Pathology, SA Pathology, Adelaide, South Australia, Australia
- School of Pharmacy and Medical Science, University of South Australia, Adelaide, South Australia, Australia
| | - Michael P Brown
- University of South Australia, Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology, Rundle Mall, South Australia, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| |
Collapse
|
10
|
Perez CR, Garmilla A, Nilsson A, Baghdassarian HM, Gordon KS, Lima LG, Smith BE, Maus MV, Lauffenburger DA, Birnbaum ME. Library-based single-cell analysis of CAR signaling reveals drivers of in vivo persistence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.29.591541. [PMID: 38746119 PMCID: PMC11092467 DOI: 10.1101/2024.04.29.591541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The anti-tumor function of engineered T cells expressing chimeric antigen receptors (CARs) is dependent on signals transduced through intracellular signaling domains (ICDs). Different ICDs are known to drive distinct phenotypes, but systematic investigations into how ICD architectures direct T cell function-particularly at the molecular level-are lacking. Here, we use single-cell sequencing to map diverse signaling inputs to transcriptional outputs, focusing on a defined library of clinically relevant ICD architectures. Informed by these observations, we functionally characterize transcriptionally distinct ICD variants across various contexts to build comprehensive maps from ICD composition to phenotypic output. We identify a unique tonic signaling signature associated with a subset of ICD architectures that drives durable in vivo persistence and efficacy in liquid, but not solid, tumors. Our findings work toward decoding CAR signaling design principles, with implications for the rational design of next-generation ICD architectures optimized for in vivo function.
Collapse
|
11
|
Minina EP, Dianov DV, Sheetikov SA, Bogolyubova AV. CAR Cells beyond Classical CAR T Cells: Functional Properties and Prospects of Application. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:765-783. [PMID: 38880641 DOI: 10.1134/s0006297924050018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/23/2023] [Accepted: 12/02/2023] [Indexed: 06/18/2024]
Abstract
Chimeric antigen receptors (CARs) are genetically engineered receptors that recognize antigens and activate signaling cascades in a cell. Signal recognition and transmission are mediated by the CAR domains derived from different proteins. T cells carrying CARs against tumor-associated antigens have been used in the development of the CAR T cell therapy, a new approach to fighting malignant neoplasms. Despite its high efficacy in the treatment of oncohematological diseases, CAR T cell therapy has a number of disadvantages that could be avoided by using other types of leukocytes as effector cells. CARs can be expressed in a wide range of cells of adaptive and innate immunity with the emergence or improvement of cytotoxic properties. This review discusses the features of CAR function in different types of immune cells, with a particular focus on the results of preclinical and clinical efficacy studies and the safety of potential CAR cell products.
Collapse
Affiliation(s)
- Elizaveta P Minina
- National Medical Research Centre for Hematology, Ministry of Health of the Russian Federation, Moscow, 125167, Russia
| | - Dmitry V Dianov
- National Medical Research Centre for Hematology, Ministry of Health of the Russian Federation, Moscow, 125167, Russia
| | - Saveliy A Sheetikov
- National Medical Research Centre for Hematology, Ministry of Health of the Russian Federation, Moscow, 125167, Russia
| | - Apollinariya V Bogolyubova
- National Medical Research Centre for Hematology, Ministry of Health of the Russian Federation, Moscow, 125167, Russia.
| |
Collapse
|
12
|
Montoya M, Gallus M, Phyu S, Haegelin J, de Groot J, Okada H. A Roadmap of CAR-T-Cell Therapy in Glioblastoma: Challenges and Future Perspectives. Cells 2024; 13:726. [PMID: 38727262 PMCID: PMC11083543 DOI: 10.3390/cells13090726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/20/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
Glioblastoma (GBM) is the most common primary malignant brain tumor, with a median overall survival of less than 2 years and a nearly 100% mortality rate under standard therapy that consists of surgery followed by combined radiochemotherapy. Therefore, new therapeutic strategies are urgently needed. The success of chimeric antigen receptor (CAR) T cells in hematological cancers has prompted preclinical and clinical investigations into CAR-T-cell treatment for GBM. However, recent trials have not demonstrated any major success. Here, we delineate existing challenges impeding the effectiveness of CAR-T-cell therapy for GBM, encompassing the cold (immunosuppressive) microenvironment, tumor heterogeneity, T-cell exhaustion, local and systemic immunosuppression, and the immune privilege inherent to the central nervous system (CNS) parenchyma. Additionally, we deliberate on the progress made in developing next-generation CAR-T cells and novel innovative approaches, such as low-intensity pulsed focused ultrasound, aimed at surmounting current roadblocks in GBM CAR-T-cell therapy.
Collapse
Affiliation(s)
- Megan Montoya
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
- Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94158, USA
| | - Marco Gallus
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
- Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94158, USA
| | - Su Phyu
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
- Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94158, USA
| | - Jeffrey Haegelin
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
- Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94158, USA
| | - John de Groot
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
- Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94158, USA
| | - Hideho Okada
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
- Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94158, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA
| |
Collapse
|
13
|
Zhu L, Man CW, Harrison RE, Wu Z, Limsakul P, Peng Q, Hashimoto M, Mamaril AP, Xu H, Liu L, Wang Y. Engineering a Programmed Death-Ligand 1-Targeting Monobody Via Directed Evolution for SynNotch-Gated Cell Therapy. ACS NANO 2024; 18:8531-8545. [PMID: 38456901 PMCID: PMC10958600 DOI: 10.1021/acsnano.4c01597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
Programmed death-ligand 1 (PD-L1) is a promising target for cancer immunotherapy due to its ability to inhibit T cell activation; however, its expression on various noncancer cells may cause on-target off-tumor toxicity when designing PD-L1-targeting Chimeric Antigen Receptor (CAR) T cell therapies. Combining rational design and directed evolution of the human fibronectin-derived monobody scaffold, "PDbody" was engineered to bind to PD-L1 with a preference for a slightly lower pH, which is typical in the tumor microenvironment. PDbody was further utilized as a CAR to target the PD-L1-expressing triple negative MDA-MB-231 breast cancer cell line. To mitigate on-target off-tumor toxicity associated with targeting PD-L1, a Cluster of Differentiation 19 (CD19)-recognizing SynNotch IF THEN gate was integrated into the system. This CD19-SynNotch PDbody-CAR system was then expressed in primary human T cells to target CD19-expressing MDA-MB-231 cancer cells. These CD19-SynNotch PDbody-CAR T cells demonstrated both specificity and efficacy in vitro, accurately eradicating cancer targets in cytotoxicity assays. Moreover, in an in vivo bilateral murine tumor model, they exhibited the capability to effectively restrain tumor growth. Overall, CD19-SynNotch PDbody-CAR T cells represent a distinct development over previously published designs due to their increased efficacy, proliferative capability, and mitigation of off-tumor toxicity for solid tumor treatment.
Collapse
Affiliation(s)
- Linshan Zhu
- Department
of Bioengineering & Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California 92093, United States
- Alfred
E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Chi-Wei Man
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California, 92093 United States
| | - Reed E.S. Harrison
- Department
of Bioengineering & Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California 92093, United States
| | - Zhuohang Wu
- Alfred
E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Praopim Limsakul
- Department
of Bioengineering & Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California 92093, United States
- Division
of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand
- Center of
Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand
| | - Qin Peng
- Department
of Bioengineering & Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California 92093, United States
- Institute
of Systems and Physical Biology, Shenzhen
Bay Laboratory, Shenzhen 518132, P.R. China
| | - Matthew Hashimoto
- Department
of Bioengineering & Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California 92093, United States
| | - Anthony P. Mamaril
- Department
of Bioengineering & Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California 92093, United States
| | - Hongquan Xu
- Department
of Statistics, University of California, Los Angeles, California 90095, United States
| | - Longwei Liu
- Department
of Bioengineering & Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California 92093, United States
- Alfred
E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Yingxiao Wang
- Department
of Bioengineering & Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California 92093, United States
- Alfred
E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
14
|
Philippova J, Shevchenko J, Sennikov S. GD2-targeting therapy: a comparative analysis of approaches and promising directions. Front Immunol 2024; 15:1371345. [PMID: 38558810 PMCID: PMC10979305 DOI: 10.3389/fimmu.2024.1371345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
Disialoganglioside GD2 is a promising target for immunotherapy with expression primarily restricted to neuroectodermal and epithelial tumor cells. Although its role in the maintenance and repair of neural tissue is well-established, its functions during normal organism development remain understudied. Meanwhile, studies have shown that GD2 plays an important role in tumorigenesis. Its functions include proliferation, invasion, motility, and metastasis, and its high expression and ability to transform the tumor microenvironment may be associated with a malignant phenotype. Structurally, GD2 is a glycosphingolipid that is stably expressed on the surface of tumor cells, making it a suitable candidate for targeting by antibodies or chimeric antigen receptors. Based on mouse monoclonal antibodies, chimeric and humanized antibodies and their combinations with cytokines, toxins, drugs, radionuclides, nanoparticles as well as chimeric antigen receptor have been developed. Furthermore, vaccines and photoimmunotherapy are being used to treat GD2-positive tumors, and GD2 aptamers can be used for targeting. In the field of cell therapy, allogeneic immunocompetent cells are also being utilized to enhance GD2 therapy. Efforts are currently being made to optimize the chimeric antigen receptor by modifying its design or by transducing not only αβ T cells, but also γδ T cells, NK cells, NKT cells, and macrophages. In addition, immunotherapy can combine both diagnostic and therapeutic methods, allowing for early detection of disease and minimal residual disease. This review discusses each immunotherapy method and strategy, its advantages and disadvantages, and highlights future directions for GD2 therapy.
Collapse
Affiliation(s)
| | | | - Sergey Sennikov
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| |
Collapse
|
15
|
Harfmann M, Schröder T, Głów D, Jung M, Uhde A, Kröger N, Horn S, Riecken K, Fehse B, Ayuk FA. CD45-Directed CAR-T Cells with CD45 Knockout Efficiently Kill Myeloid Leukemia and Lymphoma Cells In Vitro Even after Extended Culture. Cancers (Basel) 2024; 16:334. [PMID: 38254824 PMCID: PMC10814116 DOI: 10.3390/cancers16020334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/29/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND CAR-T cell therapy has shown impressive results and is now part of standard-of-care treatment of B-lineage malignancies, whereas the treatment of myeloid diseases has been limited by the lack of suitable targets. CD45 is expressed on almost all types of blood cells including myeloid leukemia cells, but not on non-hematopoietic tissue, making it a potential target for CAR-directed therapy. Because of its high expression on T and NK cells, fratricide is expected to hinder CD45CAR-mediated therapy. Due to its important roles in effector cell activation, signal transduction and cytotoxicity, CD45 knockout aimed at preventing fratricide in T and NK cells has been expected to lead to considerable functional impairment. METHODS CD45 knockout was established on T and NK cell lines using CRISPR/Cas9-RNPs and electroporation, and the successful protocol was transferred to primary T cells. A combined protocol was developed enabling CD45 knockout and retroviral transduction with a third-generation CAR targeting CD45 or CD19. The functionality of CD45ko effector cells, CD45ko/CD45CAR-T and CD45ko/CD19CAR-T cells was studied using proliferation as well as short- and long-term cytotoxicity assays. RESULTS As expected, the introduction of a CD45-CAR into T cells resulted in potent fratricide that can be avoided by CD45 knockout. Unexpectedly, the latter had no negative impact on T- and NK-cell proliferation in vitro. Moreover, CD45ko/CD45CAR-T cells showed potent cytotoxicity against CD45-expressing AML and lymphoma cell lines in short-term and long-term co-culture assays. A pronounced cytotoxicity of CD45ko/CD45CAR-T cells was maintained even after four weeks of culture. In a further setup, we confirmed the conserved functionality of CD45ko cells using a CD19-CAR. Again, the proliferation and cytotoxicity of CD45ko/CD19CAR-T cells showed no differences from those of their CD45-positive counterparts in vitro. CONCLUSIONS We report the efficient production of highly and durably active CD45ko/CAR-T cells. CD45 knockout did not impair the functionality of CAR-T cells in vitro, irrespective of the target antigen. If their activity can be confirmed in vivo, CD45ko/CD45CAR-T cells might, for example, be useful as part of conditioning regimens prior to stem cell transplantation.
Collapse
Affiliation(s)
- Maraike Harfmann
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Centre Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany (A.U.)
| | - Tanja Schröder
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Centre Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany (A.U.)
| | - Dawid Głów
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Centre Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany (A.U.)
| | - Maximilian Jung
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Centre Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany (A.U.)
| | - Almut Uhde
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Centre Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany (A.U.)
| | - Nicolaus Kröger
- Department of Stem Cell Transplantation, University Medical Centre Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany
| | - Stefan Horn
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Centre Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany (A.U.)
| | - Kristoffer Riecken
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Centre Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany (A.U.)
| | - Boris Fehse
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Centre Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany (A.U.)
| | - Francis A. Ayuk
- Department of Stem Cell Transplantation, University Medical Centre Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany
| |
Collapse
|
16
|
Taheri FH, Hassani M, Sharifzadeh Z, Behdani M, Abdoli S, Sayadi M, Bagherzadeh K, Arashkia A, Abolhassani M. Tuning spacer length improves the functionality of the nanobody-based VEGFR2 CAR T cell. BMC Biotechnol 2024; 24:1. [PMID: 38178096 PMCID: PMC10768260 DOI: 10.1186/s12896-023-00827-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 12/19/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND The chimeric antigen receptor-expressing T (CAR-T) cells for cancer immunotherapy have obtained considerable clinical importance. CAR T cells need an optimized intracellular signaling domain to get appropriately activated and also for the proper antigen recognition, the length and composition of the extracellular spacer are critical factors. RESULTS We constructed two third-generation nanobody-based VEGFR2-CARs containing either IgG1 hinge-CH2-CH3 region or hinge-only as long or short extracellular spacers, respectively. Both CARs also contained intracellular activating domains of CD28, OX40, and CD3ζ. The T cells from healthy individuals were transduced efficiently with the two CARs, and showed increased secretion of IL-2 and IFN-γ cytokines, and also CD69 and CD25 activation markers along with cytolytic activity after encountering VEGFR2+ cells. The VEGFR2-CAR T cells harboring the long spacer showed higher cytokine release and CD69 and CD25 expression in addition to a more efficient cytolytic effect on VEGFR2+ target cells. CONCLUSIONS The results demonstrated that the third-generation anti-VEGFR2 nanobody-based CAR T cell with a long spacer had a superior function and potentially could be a better candidate for solid tumor treatment.
Collapse
Affiliation(s)
- Fatemeh Hajari Taheri
- Hybridoma Lab, Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
- Food and Drug Laboratory Research Center (FDLRC), Iran Food and Drug Administration (IFDA), MOH & ME, Tehran, Iran
| | - Mahmoud Hassani
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Sharifzadeh
- Hybridoma Lab, Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Mahdi Behdani
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Shahryar Abdoli
- Department of Medical Biotechnology, Golestan University of Medical Science, Gorgān, Iran
| | - Mahtab Sayadi
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Kowsar Bagherzadeh
- Eye Research Center, Five Senses Health Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Arash Arashkia
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran.
| | - Mohsen Abolhassani
- Hybridoma Lab, Department of Immunology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
17
|
Khodke P, Kumbhar BV. Engineered CAR-T cells: An immunotherapeutic approach for cancer treatment and beyond. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 140:157-198. [PMID: 38762269 DOI: 10.1016/bs.apcsb.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
Chimeric Antigen Receptor (CAR) T cell therapy is a type of adoptive immunotherapy that offers a promising avenue for enhancing cancer treatment since traditional cancer treatments like chemotherapy, surgery, and radiation therapy have proven insufficient in completely eradicating tumors, despite the relatively positive outcomes. It has been observed that CAR-T cell therapy has shown promising results in treating the majority of hematological malignancies but also have a wide scope for other cancer types. CAR is an extra receptor on the T-cell that helps to increase and accelerate tumor destruction by efficiently activating the immune system. It is made up of three domains, the ectodomain, transmembrane, and the endodomain. The ectodomain is essential for antigen recognition and binding, whereas the co-stimulatory signal is transduced by the endodomain. To date, the Food and Drug Administration (FDA) has granted approval for six CAR-T cell therapies. However, despite its remarkable success, CAR-T therapy is associated with numerous adverse events and has certain limitations. This chapter focuses on the structure and function of the CAR domain, various generations of CAR, and the process of CAR-T cell development, adverse effects, and challenges in CAR-T therapy. CAR-T cell therapy also has scopes in other disease conditions which include systemic lupus erythematosus, multiple sclerosis, and myocardial fibrosis, etc.
Collapse
Affiliation(s)
- Purva Khodke
- Department of Biological Sciences, Sunandan Divatia School of Science, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-be University, Mumbai, India
| | - Bajarang Vasant Kumbhar
- Department of Biological Sciences, Sunandan Divatia School of Science, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-be University, Mumbai, India.
| |
Collapse
|
18
|
Teng F, Cui T, Zhou L, Gao Q, Zhou Q, Li W. Programmable synthetic receptors: the next-generation of cell and gene therapies. Signal Transduct Target Ther 2024; 9:7. [PMID: 38167329 PMCID: PMC10761793 DOI: 10.1038/s41392-023-01680-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/22/2023] [Accepted: 10/11/2023] [Indexed: 01/05/2024] Open
Abstract
Cell and gene therapies hold tremendous promise for treating a range of difficult-to-treat diseases. However, concerns over the safety and efficacy require to be further addressed in order to realize their full potential. Synthetic receptors, a synthetic biology tool that can precisely control the function of therapeutic cells and genetic modules, have been rapidly developed and applied as a powerful solution. Delicately designed and engineered, they can be applied to finetune the therapeutic activities, i.e., to regulate production of dosed, bioactive payloads by sensing and processing user-defined signals or biomarkers. This review provides an overview of diverse synthetic receptor systems being used to reprogram therapeutic cells and their wide applications in biomedical research. With a special focus on four synthetic receptor systems at the forefront, including chimeric antigen receptors (CARs) and synthetic Notch (synNotch) receptors, we address the generalized strategies to design, construct and improve synthetic receptors. Meanwhile, we also highlight the expanding landscape of therapeutic applications of the synthetic receptor systems as well as current challenges in their clinical translation.
Collapse
Affiliation(s)
- Fei Teng
- University of Chinese Academy of Sciences, Beijing, 101408, China.
| | - Tongtong Cui
- State Key Laboratory of Stem Cell and Regenerative Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Li Zhou
- University of Chinese Academy of Sciences, Beijing, 101408, China
- State Key Laboratory of Stem Cell and Regenerative Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qingqin Gao
- University of Chinese Academy of Sciences, Beijing, 101408, China
- State Key Laboratory of Stem Cell and Regenerative Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qi Zhou
- University of Chinese Academy of Sciences, Beijing, 101408, China.
- State Key Laboratory of Stem Cell and Regenerative Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Wei Li
- University of Chinese Academy of Sciences, Beijing, 101408, China.
- State Key Laboratory of Stem Cell and Regenerative Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| |
Collapse
|
19
|
Schreiber B, Tripathi S, Nikiforow S, Chandraker A. Adoptive Immune Effector Cell Therapies in Cancer and Solid Organ Transplantation: A Review. Semin Nephrol 2024; 44:151498. [PMID: 38555223 DOI: 10.1016/j.semnephrol.2024.151498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Cancer is one of the most devastating complications of kidney transplantation and constitutes one of the leading causes of morbidity and mortality among solid organ transplantation (SOT) recipients. Immunosuppression, although effective in preventing allograft rejection, inherently inhibits immune surveillance against oncogenic viral infections and malignancy. Adoptive cell therapy, particularly immune effector cell therapy, has long been a modality of interest in both cancer and transplantation, though has only recently stepped into the spotlight with the development of virus-specific T-cell therapy and chimeric antigen receptor T-cell therapy. Although these modalities are best described in hematopoietic cell transplantation and hematologic malignancies, their potential application in the SOT setting may hold tremendous promise for those with limited therapeutic options. In this review, we provide a brief overview of the development of adoptive cell therapies with a focus on virus-specific T-cell therapy and chimeric antigen receptor T-cell therapy. We also describe the current experience of these therapies in the SOT setting as well as the challenges in their application and future directions in their development.
Collapse
Affiliation(s)
- Brittany Schreiber
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Sudipta Tripathi
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Sarah Nikiforow
- Division of Medical Oncology, Department of Medicine, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Anil Chandraker
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Division of Renal Medicine, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA.
| |
Collapse
|
20
|
Pessach I, Nagler A. Leukapheresis for CAR-T cell production and therapy. Transfus Apher Sci 2023; 62:103828. [PMID: 37838564 DOI: 10.1016/j.transci.2023.103828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2023]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy is an effective, individualized immunotherapy, and novel treatment for hematologic malignancies. Six commercial CAR-T cell products are currently approved for lymphatic malignancies and multiple myeloma. In addition, an increasing number of clinical centres produce CAR-T cells on-site, which enable the administration of CAR-T cells on site. The CAR-T cell products are either fresh or cryopreserved. Manufacturing CAR-T cells is a complicated process that begins with leukapheresis to obtain T cells from the patient's peripheral blood. An optimal leukapheresis product is crucial step for a successful CAR-T cell therapy; therefore, it is imperative to understand the factors that may affect the quality or T cells. The leukapheresis for CAR-T cell production is well tolerated and safe for both paediatric and adult patients and CAR-Τ cell therapy presents high clinical response rate in many studies. CAR-T cell therapy is under continuous improvement, and it has transformed into an almost standard procedure in clinical haematology and stem cell transplantation facilities that provide both autologous and allogeneic stem cell transplantations. In patients suffering from advanced haematological malignancies, CAR-T cell therapy shows incredible antitumor efficacy. Even after a single infusion of autologous CD19-targeting CAR-T cells in patients with relapsed or refractory diffuse large B cell lymphoma (DLBCL) and acute lymphoblastic leukaemia (ALL), long lasting remission is observed, and a fraction of the patients are being cured. Future novel constructs are being developed with better T cell persistence and better expansion. New next-generation CAR-T cells are currently designed to avoid toxicities such as cytokine release syndrome and neurotoxicity.
Collapse
Affiliation(s)
- Ilias Pessach
- Hematology Department, Athens Medical Center, Athens, Greece
| | - Arnon Nagler
- Hematology Division, Chaim Sheba Medical Center, Israel.
| |
Collapse
|
21
|
Grover P, Nunez-Cruz S, Leferovich J, Wentz T, Bagchi A, Milone MC, Greene MI. F77 antigen is a promising target for adoptive T cell therapy of prostate cancer. Biochem Biophys Res Commun 2023; 680:51-60. [PMID: 37717341 PMCID: PMC10591779 DOI: 10.1016/j.bbrc.2023.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/31/2023] [Accepted: 09/09/2023] [Indexed: 09/19/2023]
Abstract
Adoptive immunotherapy using chimeric antigen receptor (CAR) T cells has made significant success in treating hematological malignancies, paving the way for solid tumors like prostate cancer. However, progress is impeded by a paucity of suitable target antigens. A novel carbohydrate antigen, F77, is expressed on both androgen-dependent and androgen-independent prostate cancer cells, making it a potential immunotherapy target. This study entails the generation and evaluation of a second-generation CAR against a carbohydrate antigen on malignant prostate cancer cells. Using a single chain fragment variable (scFv) from an F77-specific mouse monoclonal antibody, we created second-generation CARs with CD28 and CD137 (4-1BB) costimulatory signals. F77 expressing lentiviral CAR T cells produce cytokines and kill tumor cells in a F77 expression-dependent manner. These F77-specific CAR T cells eradicate prostate tumors in a human xenograft model employing PC3 cells. These findings validate F77 as a promising immunotherapeutic target for prostate cancer and other malignancies with this aberrant carbohydrate structure.
Collapse
Affiliation(s)
- Payal Grover
- Department of Pathology and Lab Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Selene Nunez-Cruz
- Department of Pathology and Lab Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - John Leferovich
- Department of Pathology and Lab Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Tyra Wentz
- Department of Pathology and Lab Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Atrish Bagchi
- Loxo Oncology @ Lilly, South San Francisco, CA, 94080, USA
| | - Michael C Milone
- Department of Pathology and Lab Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Mark I Greene
- Department of Pathology and Lab Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
22
|
Zappa E, Vitali A, Anders K, Molenaar JJ, Wienke J, Künkele A. Adoptive cell therapy in paediatric extracranial solid tumours: current approaches and future challenges. Eur J Cancer 2023; 194:113347. [PMID: 37832507 PMCID: PMC10695178 DOI: 10.1016/j.ejca.2023.113347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/03/2023] [Accepted: 09/09/2023] [Indexed: 10/15/2023]
Abstract
Immunotherapy has ignited hope to cure paediatric solid tumours that resist traditional therapies. Among the most promising methods is adoptive cell therapy (ACT). Particularly, ACT using T cells equipped with chimeric antigen receptors (CARs) has moved into the spotlight in clinical studies. However, the efficacy of ACT is challenged by ACT-intrinsic factors, like lack of activation or T cell exhaustion, as well as immune evasion strategies of paediatric solid tumours, such as their highly immunosuppressive microenvironment. Novel strategies, including ACT using innate-like lymphocytes, innovative cell engineering techniques, and ACT combination therapies, are being developed and will be crucial to overcome these challenges. Here, we discuss the main classes of ACT for the treatment of paediatric extracranial solid tumours, reflect on the available preclinical and clinical evidence supporting promising strategies, and address the challenges that ACT is still facing. Ultimately, we highlight state-of-the-art developments and opportunities for new therapeutic options, which hold great potential for improving outcomes in this challenging patient population.
Collapse
Affiliation(s)
- Elisa Zappa
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Alice Vitali
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany.
| | - Kathleen Anders
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin, Berlin, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jan J Molenaar
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Judith Wienke
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Annette Künkele
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin, Berlin, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
23
|
Kronig MN, Wehrli M, Salas-Benito D, Maus MV. "Hurdles race for CAR T-cell therapy in digestive tract cancer". Immunol Rev 2023; 320:100-119. [PMID: 37694970 PMCID: PMC10846098 DOI: 10.1111/imr.13273] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/12/2023]
Abstract
Digestive tract cancers (DTC) belong to the most investigated family of tumors. The incidence, prevalence, and mortality rate of DTC remain high, especially for patients with pancreatic cancer. Even though immunotherapy such as immune checkpoint inhibitors (ICI) have revolutionized the treatment of solid cancer types, ICI are still restricted to a very small group of patients and seem to be more efficacious in combination with chemotherapy. Cellular immunotherapy such as CAR T-cell therapy has entered clinical routine in hematological malignancies with outstanding results. There is growing interest on translating this kind of immunotherapy and success into patients with solid malignancies, such as DTC. This review attempts to describe the major advances in preclinical and clinical research with CAR T cells in DTC, considering the most relevant hurdles in each subtype of DTC.
Collapse
Affiliation(s)
- Marie-Noelle Kronig
- Department of Medical Oncology, Inselspital, Bern
University Hospital, University of Bern, Switzerland
| | - Marc Wehrli
- Department of Medical Oncology, Inselspital, Bern
University Hospital, University of Bern, Switzerland
- Cancer Center, Massachusetts General Hospital, Harvard
Medical School, Boston, MA, U.S.A
- Cellular Immunotherapy Program, Cancer Center,
Massachusetts General Hospital, Harvard Medical School; Boston, MA, USA
| | - Diego Salas-Benito
- Cancer Center, Massachusetts General Hospital, Harvard
Medical School, Boston, MA, U.S.A
- Cellular Immunotherapy Program, Cancer Center,
Massachusetts General Hospital, Harvard Medical School; Boston, MA, USA
| | - Marcela V. Maus
- Cancer Center, Massachusetts General Hospital, Harvard
Medical School, Boston, MA, U.S.A
- Cellular Immunotherapy Program, Cancer Center,
Massachusetts General Hospital, Harvard Medical School; Boston, MA, USA
| |
Collapse
|
24
|
Singh N, Maus MV. Synthetic manipulation of the cancer-immunity cycle: CAR-T cell therapy. Immunity 2023; 56:2296-2310. [PMID: 37820585 DOI: 10.1016/j.immuni.2023.09.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/15/2023] [Accepted: 09/15/2023] [Indexed: 10/13/2023]
Abstract
Synthetic immunity to cancer has been pioneered by the application of chimeric antigen receptor (CAR) engineering into autologous T cells. CAR T cell therapy is highly amenable to molecular engineering to bypass barriers of the cancer immunity cycle, such as endogenous antigen presentation, immune priming, and natural checkpoints that constrain immune responses. Here, we review CAR T cell design and the mechanisms that drive sustained CAR T cell effector activity and anti-tumor function. We discuss engineering approaches aimed at improving anti-tumor function through a variety of mechanistic interventions for both hematologic and solid tumors. The ability to engineer T cells in such a variety of ways, including by modifying their trafficking, antigen recognition, costimulation, and addition of synthetic genes, circuits, knockouts and base edits to finely tune complex functions, is arguably the most powerful way to manipulate the cancer immunity cycle in patients.
Collapse
Affiliation(s)
- Nathan Singh
- Division of Oncology, Washington University in St Louis School of Medicine, St. Louis, MO 63110, USA.
| | - Marcela V Maus
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
25
|
Tserunyan V, Finley SD. A systems and computational biology perspective on advancing CAR therapy. Semin Cancer Biol 2023; 94:34-49. [PMID: 37263529 PMCID: PMC10529846 DOI: 10.1016/j.semcancer.2023.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 04/24/2023] [Accepted: 05/28/2023] [Indexed: 06/03/2023]
Abstract
In the recent decades, chimeric antigen receptor (CAR) therapy signaled a new revolutionary approach to cancer treatment. This method seeks to engineer immune cells expressing an artificially designed receptor, which would endue those cells with the ability to recognize and eliminate tumor cells. While some CAR therapies received FDA approval and others are subject to clinical trials, many aspects of their workings remain elusive. Techniques of systems and computational biology have been frequently employed to explain the operating principles of CAR therapy and suggest further design improvements. In this review, we sought to provide a comprehensive account of those efforts. Specifically, we discuss various computational models of CAR therapy ranging in scale from organismal to molecular. Then, we describe the molecular and functional properties of costimulatory domains frequently incorporated in CAR structure. Finally, we describe the signaling cascades by which those costimulatory domains elicit cellular response against the target. We hope that this comprehensive summary of computational and experimental studies will further motivate the use of systems approaches in advancing CAR therapy.
Collapse
Affiliation(s)
- Vardges Tserunyan
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Stacey D Finley
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA; Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA; Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
26
|
Shah D, Soper B, Shopland L. Cytokine release syndrome and cancer immunotherapies - historical challenges and promising futures. Front Immunol 2023; 14:1190379. [PMID: 37304291 PMCID: PMC10248525 DOI: 10.3389/fimmu.2023.1190379] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/09/2023] [Indexed: 06/13/2023] Open
Abstract
Cancer is the leading cause of death worldwide. Cancer immunotherapy involves reinvigorating the patient's own immune system to fight against cancer. While novel approaches like Chimeric Antigen Receptor (CAR) T cells, bispecific T cell engagers, and immune checkpoint inhibitors have shown promising efficacy, Cytokine Release Syndrome (CRS) is a serious adverse effect and remains a major concern. CRS is a phenomenon of immune hyperactivation that results in excessive cytokine secretion, and if left unchecked, it may lead to multi-organ failure and death. Here we review the pathophysiology of CRS, its occurrence and management in the context of cancer immunotherapy, and the screening approaches that can be used to assess CRS and de-risk drug discovery earlier in the clinical setting with more predictive pre-clinical data. Furthermore, the review also sheds light on the potential immunotherapeutic approaches that can be used to overcome CRS associated with T cell activation.
Collapse
Affiliation(s)
- Deep Shah
- In vivo Services, The Jackson Laboratory, Sacramento, CA, United States
| | - Brian Soper
- Technical Information Services, The Jackson Laboratory, Bar Harbor, ME, United States
| | - Lindsay Shopland
- In vivo Services, The Jackson Laboratory, Sacramento, CA, United States
| |
Collapse
|
27
|
Mavi AK, Gaur S, Gaur G, Babita, Kumar N, Kumar U. CAR T-cell therapy: Reprogramming patient's immune cell to treat cancer. Cell Signal 2023; 105:110638. [PMID: 36822565 DOI: 10.1016/j.cellsig.2023.110638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 02/20/2023] [Indexed: 02/23/2023]
Abstract
Chimeric antigen receptor (CAR)-T cell therapy is a game changer in cancer treatment. Although CAR-T cell therapy has achieved significant clinical responses in specific subgroups of B cell leukaemia or lymphoma, various difficulties restrict CAR-T cell therapy's therapeutic effectiveness in solid tumours and haematological malignancies. Severe life-threatening toxicities, poor anti-tumour effectiveness, antigen escape, restricted trafficking, and limited tumour penetration are all barriers to successful CAR-T cell treatment. Furthermore, CAR-T cell interactions with the host and tumour microenvironment have a significant impact on their activity. Furthermore, developing and implementing these therapies necessitates a complicated staff. Innovative methodologies and tactics to engineering more potent CAR-T cells with greater anti-tumour activity and less toxicity are required to address these important difficulties.
Collapse
Affiliation(s)
- Anil Kumar Mavi
- Department of Pulmonary Medicine, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi 110007, India
| | - Sonal Gaur
- Department of Biosciences and Biotechnology, Banasthali Vidyapith, Jaipur, Rajasthan 304022, India
| | - Gauri Gaur
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133203, India
| | - Babita
- Department of Pharmacology, Sharda School of Allied Health Sciences, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh 201310, India
| | - Neelesh Kumar
- Department of Aquaculture, College of Fisheries, GB Pant University of Agriculture & Technology, Pantnagar, Udham Singh Nagar, Uttarakhand 263145, India
| | - Umesh Kumar
- School of Biosciences, Institute of Management Studies Ghaziabad (University Courses Campus), NH09, Adhyatmik Nagar, Ghaziabad, Uttar Pradesh 201015, India.
| |
Collapse
|
28
|
Si W, Fan YY, Qiu SZ, Li X, Wu EY, Ju JQ, Huang W, Wang HP, Wei P. Design of diversified chimeric antigen receptors through rational module recombination. iScience 2023; 26:106529. [PMID: 37102149 PMCID: PMC10123334 DOI: 10.1016/j.isci.2023.106529] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 02/28/2023] [Accepted: 03/24/2023] [Indexed: 04/28/2023] Open
Abstract
Chimeric antigen receptor (CAR)-T cells have shown great promise in cancer therapy. However, the anti-tumor efficiency is limited due to the CAR-induced T cell apoptosis or exhaustion. The intracellular domain of CAR comprised of various signaling modules orchestrates CAR-T cell behaviors. The modularity of CAR signaling domain functions as the "mainboard" to assemble diversified downstream signaling components. Here, we implemented the modular recombination strategy to construct a library of CARs with synthetic co-signaling modules adopted from immunoglobin-like superfamily (IgSF) and tumor necrosis factor receptor superfamily (TNFRSF). We quantitatively characterized the signaling behaviors of these recombinants by both NFAT and NF-κB reporter, and identified a set of new CARs with diverse signaling behaviors. Specifically, the 28(NM)-BB(MC) CAR-T cells exhibited improved cytotoxicity and T cell persistence. The synthetic approach can promote our understanding of the signaling principles of CAR molecule, and provide a powerful tool box for CAR-T cell engineering.
Collapse
Affiliation(s)
- Wen Si
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Center for Quantitative Biology and Peking-Tsinghua Joint Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Ying-Ying Fan
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Center for Quantitative Biology and Peking-Tsinghua Joint Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Shi-Zhen Qiu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xin Li
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Er-Yi Wu
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Center for Quantitative Biology and Peking-Tsinghua Joint Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jian-Qi Ju
- Center for Quantitative Biology and Peking-Tsinghua Joint Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Wen Huang
- Center for Quantitative Biology and Peking-Tsinghua Joint Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Hao-Peng Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ping Wei
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Center for Quantitative Biology and Peking-Tsinghua Joint Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Corresponding author
| |
Collapse
|
29
|
Peng JJ, Wang L, Li Z, Ku CL, Ho PC. Metabolic challenges and interventions in CAR T cell therapy. Sci Immunol 2023; 8:eabq3016. [PMID: 37058548 DOI: 10.1126/sciimmunol.abq3016] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
Chimeric antigen receptor (CAR) T cells have achieved true clinical success in treating hematological malignancy patients, laying the foundation of CAR T cells as a new pillar of cancer therapy. Although these promising effects have generated strong interest in expanding the treatment of CAR T cells to solid tumors, reproducible demonstration of clinical efficacy in the setting of solid tumors has remained challenging to date. Here, we review how metabolic stress and signaling in the tumor microenvironment, including intrinsic determinants of response to CAR T cell therapy and extrinsic obstacles, restrict the efficacy of CAR T cell therapy in cancer treatment. In addition, we discuss the use of novel approaches to target and rewire metabolic programming for CAR T cell manufacturing. Last, we summarize strategies that aim to improve the metabolic adaptability of CAR T cells to enhance their potency in mounting antitumor responses and survival within the tumor microenvironment.
Collapse
Affiliation(s)
- Jhan-Jie Peng
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Limei Wang
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland
| | - Zhiyu Li
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, P.R. China
| | - Cheng-Lung Ku
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Ping-Chih Ho
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland
| |
Collapse
|
30
|
Wang C, Liu J, Li W. 'Off the shelf' immunotherapies: Generation and application of pluripotent stem cell-derived immune cells. Cell Prolif 2023; 56:e13425. [PMID: 36855955 PMCID: PMC10068955 DOI: 10.1111/cpr.13425] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/10/2023] [Accepted: 01/27/2023] [Indexed: 03/02/2023] Open
Abstract
In recent years, great strides have been made toward the development of immune cell-based therapies in the treatment of refractory malignancies. Primary T cells and NK cells armed with chimeric antigen receptors have achieved tremendous clinical success especially in patients with leukaemia and lymphoma. However, the autologous origin of these effector cells means that a single batch of laboriously engineered cells treats only a certain patient, leading to high cost, ununiform product quality, and risk of delay in treatment, and therefore results in restricted accessibility of these therapies to the overwhelming majority of the patients. Addressing these tricky obstacles calls for the development of universal immune cell products that can be provided 'off the shelf' in a large amount. Pluripotent stem cells (PSCs), owing to their unique capacity of self-renewal and the potential of multi-lineage differentiation, offer an unlimited cell source to generate uniform and scalable engineered immune cells. This review discusses the major advances in the development of PSC-derived immune cell differentiation approaches and their therapeutic potential in treating both hematologic malignancies and solid tumours. We also consider the potency of PSC-derived immune cells as an alternative therapeutic strategy for other diseases, such as autoimmune diseases, fibrosis, infections, et al.
Collapse
Affiliation(s)
- Chenxin Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
- Bejing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Jingjing Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
- Bejing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
- Bejing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
31
|
Beckett AN, Chockley P, Pruett-Miller SM, Nguyen P, Vogel P, Sheppard H, Krenciute G, Gottschalk S, DeRenzo C. CD47 expression is critical for CAR T-cell survival in vivo. J Immunother Cancer 2023; 11:jitc-2022-005857. [PMID: 36918226 PMCID: PMC10016274 DOI: 10.1136/jitc-2022-005857] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND CD47 is an attractive immunotherapeutic target because it is highly expressed on multiple solid tumors. However, CD47 is also expressed on T cells. Limited studies have evaluated CD47-chimeric antigen receptor (CAR) T cells, and the role of CD47 in CAR T-cell function remains largely unknown. METHODS Here, we describe the development of CD47-CAR T cells derived from a high affinity signal regulatory protein α variant CV1, which binds CD47. CV1-CAR T cells were generated from human peripheral blood mononuclear cells and evaluated in vitro and in vivo. The role of CD47 in CAR T-cell function was examined by knocking out CD47 in T cells followed by downstream functional analyses. RESULTS While CV1-CAR T cells are specific and exhibit potent activity in vitro they lacked antitumor activity in xenograft models. Mechanistic studies revealed CV1-CAR T cells downregulate CD47 to overcome fratricide, but CD47 loss resulted in their failure to expand and persist in vivo. This effect was not limited to CV1-CAR T cells, since CD47 knockout CAR T cells targeting another solid tumor antigen exhibited the same in vivo fate. Further, CD47 knockout T cells were sensitive to macrophage-mediated phagocytosis. CONCLUSIONS These findings highlight that CD47 expression is critical for CAR T-cell survival in vivo and is a 'sine qua non' for successful adoptive T-cell therapy.
Collapse
Affiliation(s)
- Alex N Beckett
- Graduate School of Biomedical Sciences, St Jude Children's Research Hospital, Memphis, Tennessee, USA.,Department of Bone Marrow Transplantation and Cellular Therapy, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Peter Chockley
- Department of Bone Marrow Transplantation and Cellular Therapy, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Shondra M Pruett-Miller
- Center for Advanced Genome Engineering, St Jude Children's Research Hospital, Memphis, Tennessee, USA.,Department of Cell and Molecular Biology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Phuong Nguyen
- Department of Bone Marrow Transplantation and Cellular Therapy, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Peter Vogel
- Department of Pathology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Heather Sheppard
- Department of Pathology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Giedre Krenciute
- Department of Bone Marrow Transplantation and Cellular Therapy, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Stephen Gottschalk
- Department of Bone Marrow Transplantation and Cellular Therapy, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Christopher DeRenzo
- Department of Bone Marrow Transplantation and Cellular Therapy, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
32
|
Yang J, Zhou W, Li D, Niu T, Wang W. BCMA-targeting chimeric antigen receptor T-cell therapy for multiple myeloma. Cancer Lett 2023; 553:215949. [PMID: 36216149 DOI: 10.1016/j.canlet.2022.215949] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 11/24/2022]
Abstract
Multiple myeloma (MM) remains an incurable hematologic malignancy, despite the development of numerous innovative therapies during the past two decades. Immunotherapies are changing the treatment paradigm of MM and have improved the overall response and survival of patients with relapsed/refractory (RR) MM. B cell maturation antigen (BCMA), selectively expressed in normal and malignant plasma cells, has been targeted by several immunotherapeutic modalities. Chimeric antigen receptor (CAR) T cells, the breakthrough in cancer immunotherapy, have revolutionized the treatment of B cell malignancies and remarkably improved the prognosis of RRMM. BCMA-targeting CAR T cell therapy is the most developed CAR T cell therapy for MM, and the US Food and Drug Administration has already approved idecabtagene vicleucel (Ide-cel) and ciltacabtagene autoleucel (Cilta-cel) for MM. However, the development of novel BCMA-targeting CAR T cell therapies remains in progress. This review focuses on BCMA-targeting CAR T cell therapy, covering all stages of investigational progress, including the innovative preclinical studies, the initial phase I clinical trials, and the more developed phase II clinical trials. It also discusses possible measures to improve the efficacy and safety of this therapy.
Collapse
Affiliation(s)
- Jinrong Yang
- Department of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and National Collaborative Innovation Center, Chengdu, 610041, China
| | - Weilin Zhou
- Department of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and National Collaborative Innovation Center, Chengdu, 610041, China
| | - Dan Li
- Department of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and National Collaborative Innovation Center, Chengdu, 610041, China
| | - Ting Niu
- Department of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and National Collaborative Innovation Center, Chengdu, 610041, China.
| | - Wei Wang
- Department of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and National Collaborative Innovation Center, Chengdu, 610041, China.
| |
Collapse
|
33
|
McKenna MK, Ozcan A, Brenner D, Watanabe N, Legendre M, Thomas DG, Ashwood C, Cummings RD, Bonifant C, Markovitz DM, Brenner MK. Novel banana lectin CAR-T cells to target pancreatic tumors and tumor-associated stroma. J Immunother Cancer 2023; 11:e005891. [PMID: 36653070 PMCID: PMC9853244 DOI: 10.1136/jitc-2022-005891] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Cell therapies for solid tumors are thwarted by the hostile tumor microenvironment (TME) and by heterogeneous expression of tumor target antigens. We address both limitations with a novel class of chimeric antigen receptors based on plant lectins, which recognize the aberrant sugar residues that are a 'hallmark' of both malignant and associated stromal cells. We have expressed in T cells a modified lectin from banana, H84T BanLec, attached to a chimeric antigen receptor (H84T-CAR) that recognizes high-mannose (asparagine residue with five to nine mannoses). Here, we tested the efficacy of our novel H84T CAR in models of pancreatic ductal adenocarcinoma (PDAC), intractable tumors with aberrant glycosylation and characterized by desmoplastic stroma largely contributed by pancreatic stellate cells (PSCs). METHODS We transduced human T cells with a second-generation retroviral construct expressing the H84T BanLec chimeric receptor, measured T-cell expansion, characterized T-cell phenotype, and tested their efficacy against PDAC tumor cells lines by flow cytometry quantification. In three-dimensional (3D) spheroid models, we measured H84T CAR T-cell disruption of PSC architecture, and T-cell infiltration by live imaging. We tested the activity of H84T CAR T cells against tumor xenografts derived from three PDAC cell lines. Antitumor activity was quantified by caliper measurement and bioluminescence signal and used anti-human vimentin to measure residual PSCs. RESULTS H84T BanLec CAR was successfully transduced and expressed by T cells which had robust expansion and retained central memory phenotype in both CD4 and CD8 compartments. H84T CAR T cells targeted and eliminated PDAC tumor cell lines. They also disrupted PSC architecture in 3D models in vitro and reduced total tumor and stroma cells in mixed co-cultures. H84T CAR T cells exhibited improved T-cell infiltration in multicellular spheroids and had potent antitumor effects in the xenograft models. We observed no adverse effects against normal tissues. CONCLUSIONS T cells expressing H84T CAR target malignant cells and their stroma in PDAC tumor models. The incorporation of glycan-targeting lectins within CARs thus extends their activity to include both malignant cells and their supporting stromal cells, disrupting the TME that otherwise diminishes the activity of cellular therapies against solid tumors.
Collapse
Affiliation(s)
- Mary K McKenna
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
| | - Ada Ozcan
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
| | - Daniel Brenner
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | - Norihiro Watanabe
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
| | - Maureen Legendre
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Dafydd G Thomas
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Richard D Cummings
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Challice Bonifant
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - David M Markovitz
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Malcolm K Brenner
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
34
|
Mao R, Kong W, He Y. The affinity of antigen-binding domain on the antitumor efficacy of CAR T cells: Moderate is better. Front Immunol 2022; 13:1032403. [PMID: 36325345 PMCID: PMC9618871 DOI: 10.3389/fimmu.2022.1032403] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
The overall efficacy of chimeric antigen receptor modified T cells (CARTs) remain limited in solid tumors despite intensive studies that aim at targeting multiple antigens, enhancing migration, reducing tonic signaling, and improving tumor microenvironment. On the other hand, how the affinity and engaging kinetics of antigen-binding domain (ABD) affects the CART's efficacy has not been carefully investigated. In this article, we first analyzed 38 published solid tumor CART trials and correlated the response rate to their ABD affinity. Not surprisingly, majority (25 trials) of the CARTs utilized high-affinity ABDs, but generated merely 5.7% response rate. In contrast, 35% of the patients treated with the CARTs built from moderate-affinity ABDs had clinical responses. Thus, CARTs with moderate-affinity ABDs not only have less off-target toxicity, but also are more effective. We then reviewed the effects of ABD affinity on the biology and function of CARTs, providing further evidence that moderate-affinity ABDs may be better in CART development. In the end, we propose that a fast-on/fast-off (high Kon and Koff ) kinetics of CART-target engagement in solid tumor allow CARTs to generate sufficient signaling to kill tumor cells without being driven to exhaustion. We believe that studying the ABD affinity and the kinetics of CART-tumor interaction may hold a key to designing effective CARTs for solid tumors.
Collapse
Affiliation(s)
- Rui Mao
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Wanqing Kong
- South Carolina Governors School for Science and Math, Hartsville, SC, United States
| | - Yukai He
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
35
|
Abstract
Chimeric antigen receptor T (CAR-T) cells therapy has revolutionized the treatment paradigms for hematological malignancies, with multi-line therapy-refractory patients achieving durable complete remissions (CR) and relatively high objective response rate (ORR). So far, many CAR-T products, such as Kymriah, Yescarta and Tecartus, have been developed and got the unprecedented results. However, some patients may relapse afterwards, driving intense investigations into promoting the development of novel strategies to overcome resistance and mechanisms of relapse. Notable technical progress, such as nanobodies and CRISPR-Case9, has also taken place to ensure CAR-T cell therapy fully satisfies its medical potential. In this review, we outline the basic principles for the development and manufacturing processes of CAR-T cell therapy, summarize the similarities and differences in efficacy of different products as well as their corresponding clinical results, and discuss CAR-T immunotherapy combined with other clinical effects of drug therapy.
Collapse
Affiliation(s)
- Junru Lu
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Guan Jiang
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
36
|
Honikel MM, Olejniczak SH. Co-Stimulatory Receptor Signaling in CAR-T Cells. Biomolecules 2022; 12:biom12091303. [PMID: 36139142 PMCID: PMC9496564 DOI: 10.3390/biom12091303] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 01/28/2023] Open
Abstract
T cell engineering strategies have emerged as successful immunotherapeutic approaches for the treatment of human cancer. Chimeric Antigen Receptor T (CAR-T) cell therapy represents a prominent synthetic biology approach to re-direct the specificity of a patient's autologous T cells toward a desired tumor antigen. CAR-T therapy is currently FDA approved for the treatment of hematological malignancies, including subsets of B cell lymphoma, acute lymphoblastic leukemia (ALL) and multiple myeloma. Mechanistically, CAR-mediated recognition of a tumor antigen results in propagation of T cell activation signals, including a co-stimulatory signal, resulting in CAR-T cell activation, proliferation, evasion of apoptosis, and acquisition of effector functions. The importance of including a co-stimulatory domain in CARs was recognized following limited success of early iteration CAR-T cell designs lacking co-stimulation. Today, all CAR-T cells in clinical use contain either a CD28 or 4-1BB co-stimulatory domain. Preclinical investigations are exploring utility of including additional co-stimulatory molecules such as ICOS, OX40 and CD27 or various combinations of multiple co-stimulatory domains. Clinical and preclinical evidence implicates the co-stimulatory signal in several aspects of CAR-T cell therapy including response kinetics, persistence and durability, and toxicity profiles each of which impact the safety and anti-tumor efficacy of this immunotherapy. Herein we provide an overview of CAR-T cell co-stimulation by the prototypical receptors and discuss current and emerging strategies to modulate co-stimulatory signals to enhance CAR-T cell function.
Collapse
|
37
|
Mueller KP, Piscopo NJ, Forsberg MH, Saraspe LA, Das A, Russell B, Smerchansky M, Cappabianca D, Shi L, Shankar K, Sarko L, Khajanchi N, La Vonne Denne N, Ramamurthy A, Ali A, Lazzarotto CR, Tsai SQ, Capitini CM, Saha K. Production and characterization of virus-free, CRISPR-CAR T cells capable of inducing solid tumor regression. J Immunother Cancer 2022; 10:e004446. [PMID: 36382633 PMCID: PMC9454086 DOI: 10.1136/jitc-2021-004446] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Chimeric antigen receptor (CAR) T cells have demonstrated high clinical response rates against hematological malignancies (e.g., CD19+ cancers) but have shown limited activity in patients with solid tumors. Recent work showed that precise insertion of a CAR at a defined locus improves treatment outcomes in the context of a CD19 CAR; however, it is unclear if such a strategy could also affect outcomes in solid tumors. Furthermore, CAR manufacturing generally relies on viral vectors for gene delivery, which comprise a complex and resource-intensive part of the manufacturing supply chain. METHODS Anti-GD2 CAR T cells were generated using CRISPR/Cas9 within 9 days using recombinant Cas9 protein and nucleic acids, without any viral vectors. The CAR was specifically targeted to the T cell receptor alpha constant gene (TRAC). T cell products were characterized at the level of the genome, transcriptome, proteome, and secretome using CHANGE-seq, targeted next-generation sequencing, scRNA-seq, spectral cytometry, and ELISA assays, respectively. Functionality was evaluated in vivo in an NSG™ xenograft neuroblastoma model. RESULTS In comparison to retroviral CAR T cells, virus-free CRISPR CAR (VFC-CAR) T cells exhibit TRAC-targeted genomic integration of the CAR transgene, elevation of transcriptional and protein characteristics associated with a memory-like phenotype, and low tonic signaling prior to infusion arising in part from the knockout of the T cell receptor. On exposure to the GD2 target antigen, anti-GD2 VFC-CAR T cells exhibit specific cytotoxicity against GD2+ cells in vitro and induce solid tumor regression in vivo. VFC-CAR T cells demonstrate robust homing and persistence and decreased exhaustion relative to retroviral CAR T cells against a human neuroblastoma xenograft model. CONCLUSIONS This study leverages virus-free genome editing technology to generate CAR T cells featuring a TRAC-targeted CAR, which could inform manufacturing of CAR T cells to treat cancers, including solid tumors.
Collapse
Affiliation(s)
- Katherine P Mueller
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Nicole J Piscopo
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Matthew H Forsberg
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Louise A Saraspe
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Amritava Das
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Brittany Russell
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Madeline Smerchansky
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Dan Cappabianca
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Lei Shi
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Keerthana Shankar
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Lauren Sarko
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Namita Khajanchi
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Nina La Vonne Denne
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Apoorva Ramamurthy
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Adeela Ali
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Cicera R Lazzarotto
- Department of Hematology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Shengdar Q Tsai
- Department of Hematology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Christian M Capitini
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Krishanu Saha
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
38
|
Gargett T, Ebert LM, Truong NTH, Kollis PM, Sedivakova K, Yu W, Yeo ECF, Wittwer NL, Gliddon BL, Tea MN, Ormsby R, Poonnoose S, Nowicki J, Vittorio O, Ziegler DS, Pitson SM, Brown MP. GD2-targeting CAR-T cells enhanced by transgenic IL-15 expression are an effective and clinically feasible therapy for glioblastoma. J Immunother Cancer 2022; 10:jitc-2022-005187. [PMID: 36167468 PMCID: PMC9516307 DOI: 10.1136/jitc-2022-005187] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2022] [Indexed: 11/08/2022] Open
Abstract
Background Aggressive primary brain tumors such as glioblastoma are uniquely challenging to treat. The intracranial location poses barriers to therapy, and the potential for severe toxicity. Effective treatments for primary brain tumors are limited, and 5-year survival rates remain poor. Immune checkpoint inhibitor therapy has transformed treatment of some other cancers but has yet to significantly benefit patients with glioblastoma. Early phase trials of chimeric antigen receptor (CAR) T-cell therapy in patients with glioblastoma have demonstrated that this approach is safe and feasible, but with limited evidence of its effectiveness. The choices of appropriate target antigens for CAR-T-cell therapy also remain limited. Methods We profiled an extensive biobank of patients’ biopsy tissues and patient-derived early passage glioma neural stem cell lines for GD2 expression using immunomicroscopy and flow cytometry. We then employed an approved clinical manufacturing process to make CAR- T cells from patients with peripheral blood of glioblastoma and diffuse midline glioma and characterized their phenotype and function in vitro. Finally, we tested intravenously administered CAR-T cells in an aggressive intracranial xenograft model of glioblastoma and used multicolor flow cytometry, multicolor whole-tissue immunofluorescence and next-generation RNA sequencing to uncover markers associated with effective tumor control. Results Here we show that the tumor-associated antigen GD2 is highly and consistently expressed in primary glioblastoma tissue removed at surgery. Moreover, despite patients with glioblastoma having perturbations in their immune system, highly functional GD2-specific CAR-T cells can be produced from their peripheral T cells using an approved clinical manufacturing process. Finally, after intravenous administration, GD2-CAR-T cells effectively infiltrated the brain and controlled tumor growth in an aggressive orthotopic xenograft model of glioblastoma. Tumor control was further improved using CAR-T cells manufactured with a clinical retroviral vector encoding an interleukin-15 transgene alongside the GD2-specific CAR. These CAR-T cells achieved a striking 50% complete response rate by bioluminescence imaging in established intracranial tumors. Conclusions Targeting GD2 using a clinically deployed CAR-T-cell therapy has a sound scientific and clinical rationale as a treatment for glioblastoma and other aggressive primary brain tumors.
Collapse
Affiliation(s)
- Tessa Gargett
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology and Univeristy of South Australia, Adelaide, South Australia, Australia .,Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia.,Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Lisa M Ebert
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology and Univeristy of South Australia, Adelaide, South Australia, Australia.,Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Nga T H Truong
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology and Univeristy of South Australia, Adelaide, South Australia, Australia.,Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Paris M Kollis
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology and Univeristy of South Australia, Adelaide, South Australia, Australia.,Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Kristyna Sedivakova
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology and Univeristy of South Australia, Adelaide, South Australia, Australia.,Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Wenbo Yu
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology and Univeristy of South Australia, Adelaide, South Australia, Australia
| | - Erica C F Yeo
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology and Univeristy of South Australia, Adelaide, South Australia, Australia
| | - Nicole L Wittwer
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology and Univeristy of South Australia, Adelaide, South Australia, Australia.,Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Briony L Gliddon
- Molecular Therapeutics Laboratory, Centre for Cancer Biology, Adelaide, South Australia, Australia
| | - Melinda N Tea
- Molecular Therapeutics Laboratory, Centre for Cancer Biology, Adelaide, South Australia, Australia
| | - Rebecca Ormsby
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
| | - Santosh Poonnoose
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia.,Department of Neurosurgery, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Jake Nowicki
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia.,Department of Neurosurgery, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Orazio Vittorio
- Children's Cancer Institute, Lowy Cancer Research Centre, Sydney, New South Wales, Australia.,School of Women's and Children's Health, University of New South Wales, Sydney, New South Wales, Australia
| | - David S Ziegler
- Children's Cancer Institute, Lowy Cancer Research Centre, Sydney, New South Wales, Australia.,School of Women's and Children's Health, University of New South Wales, Sydney, New South Wales, Australia.,Kid's Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Stuart M Pitson
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia.,Molecular Therapeutics Laboratory, Centre for Cancer Biology, Adelaide, South Australia, Australia
| | - Michael P Brown
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology and Univeristy of South Australia, Adelaide, South Australia, Australia.,Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia.,Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
39
|
Sterner RC, Sterner RM. Immune effector cell associated neurotoxicity syndrome in chimeric antigen receptor-T cell therapy. Front Immunol 2022; 13:879608. [PMID: 36081506 PMCID: PMC9445841 DOI: 10.3389/fimmu.2022.879608] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Chimeric antigen receptor (CAR)-T cell therapy is an emerging staple in the treatment of certain hematological malignancies. While CAR-T cells have produced robust responses in certain hematological malignancies, toxicities associated with the therapy have limited their use. Immune Effector Cell Associated Neurotoxicity Syndrome (ICANS) is a potentially life-threatening neurotoxicity that commonly occurs with CAR-T cell therapy. Here we will discuss ICANS, its treatment, possible mechanisms, and potential solutions to this critical limitation of CAR-T cell therapy. As the field of CAR-T cell therapy evolves, improved treatments and methods to circumvent or overcome ICANS are necessary to improve morbidity, mortality, and decrease the cost of CAR-T cell therapy. This serious, life-threatening side effect needs to be studied to better understand its mechanisms and develop treatments and alternative strategies.
Collapse
Affiliation(s)
- Robert C. Sterner
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Rosalie M. Sterner
- Department of Surgery, Mayo Clinic, Rochester, MN, United States
- *Correspondence: Rosalie M. Sterner,
| |
Collapse
|
40
|
Understanding CAR T cell-tumor interactions: Paving the way for successful clinical outcomes. MED 2022; 3:538-564. [PMID: 35963235 DOI: 10.1016/j.medj.2022.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/29/2022] [Accepted: 05/02/2022] [Indexed: 12/08/2022]
Abstract
Since their approval 5 years ago, chimeric antigen receptor (CAR) T cells have gained great importance in the daily clinical practice and treatment of hematological malignancies, although many challenges to their use remain, such as limited long-term CAR T cell efficacy due to disease resistance or recurrence. After a brief overview of CAR T cells, their approval, therapeutic successes, and ongoing limitations, this review discusses what is known about CAR T cell activation, their expansion and persistence, their mechanisms of cytotoxicity, and how the CAR design and/or tumor-intrinsic factors influence these functions. This review also examines the role of cytokines in CAR T cell-associated toxicity and their effects on CAR T cell function. Furthermore, we discuss several resistance mechanisms, including obstacles associated with CAR treatment of solid tumors. Finally, we provide a future outlook on next-generation strategies to further optimize CARs and improve clinical outcomes.
Collapse
|
41
|
Asija S, Chatterjee A, Yadav S, Chekuri G, Karulkar A, Jaiswal AK, Goda JS, Purwar R. Combinatorial approaches to effective therapy in glioblastoma (GBM): Current status and what the future holds. Int Rev Immunol 2022; 41:582-605. [PMID: 35938932 DOI: 10.1080/08830185.2022.2101647] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
The aggressive and recurrent nature of glioblastoma is multifactorial and has been attributed to its biological heterogeneity, dysfunctional metabolic signaling pathways, rigid blood-brain barrier, inherent resistance to standard therapy due to the stemness property of the gliomas cells, immunosuppressive tumor microenvironment, hypoxia and neoangiogenesis which are very well orchestrated and create the tumor's own highly pro-tumorigenic milieu. Once the relay of events starts amongst these components, eventually it becomes difficult to control the cascade using only the balanced contemporary care of treatment consisting of maximal resection, radiotherapy and chemotherapy with temozolamide. Over the past few decades, implementation of contemporary treatment modalities has shown benefit to some extent, but no significant overall survival benefit is achieved. Therefore, there is an unmet need for advanced multifaceted combinatorial strategies. Recent advances in molecular biology, development of innovative therapeutics and novel delivery platforms over the years has resulted in a paradigm shift in gliomas therapeutics. Decades of research has led to emergence of several treatment molecules, including immunotherapies such as immune checkpoint blockade, oncolytic virotherapy, adoptive cell therapy, nanoparticles, CED and BNCT, each with the unique proficiency to overcome the mentioned challenges, present research. Recent years are seeing innovative combinatorial strategies to overcome the multifactorial resistance put forth by the GBM cell and its TME. This review discusses the contemporary and the investigational combinatorial strategies being employed to treat GBM and summarizes the evidence accumulated till date.
Collapse
Affiliation(s)
- Sweety Asija
- Department of Biosciences & Bioengineering, Indian Institute of Technology, Mumbai, India
| | - Abhishek Chatterjee
- Department of Radiation Oncology, Tata Memorial Center, Mumbai, Maharashtra, India.,Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Sandhya Yadav
- Department of Radiation Oncology, Tata Memorial Center, Mumbai, Maharashtra, India.,Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Godhanjali Chekuri
- Department of Radiation Oncology, Tata Memorial Center, Mumbai, Maharashtra, India.,Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Atharva Karulkar
- Department of Biosciences & Bioengineering, Indian Institute of Technology, Mumbai, India
| | - Ankesh Kumar Jaiswal
- Department of Biosciences & Bioengineering, Indian Institute of Technology, Mumbai, India
| | - Jayant S Goda
- Department of Radiation Oncology, Tata Memorial Center, Mumbai, Maharashtra, India.,Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Rahul Purwar
- Department of Biosciences & Bioengineering, Indian Institute of Technology, Mumbai, India
| |
Collapse
|
42
|
Achkova DY, Beatson RE, Maher J. CAR T-Cell Targeting of Macrophage Colony-Stimulating Factor Receptor. Cells 2022; 11:cells11142190. [PMID: 35883636 PMCID: PMC9323367 DOI: 10.3390/cells11142190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 12/18/2022] Open
Abstract
Macrophage colony-stimulating factor receptor (M-CSFR) is found in cells of the mononuclear phagocyte lineage and is aberrantly expressed in a range of tumours, in addition to tumour-associated macrophages. Consequently, a variety of cancer therapies directed against M-CSFR are under development. We set out to engineer chimeric antigen receptors (CARs) that employ the natural ligands of this receptor, namely M-CSF or interleukin (IL)-34, to achieve specificity for M-CSFR-expressing target cells. Both M-CSF and IL-34 bind to overlapping regions of M-CSFR, although affinity of IL-34 is significantly greater than that of M-CSF. Matched second- and third-generation CARs targeted using M-CSF or IL-34 were expressed in human T-cells using the SFG retroviral vector. We found that both M-CSF- and IL-34-containing CARs enable T-cells to mediate selective destruction of tumour cells that express enforced or endogenous M-CSFR, accompanied by production of both IL-2 and interferon (IFN)-γ. Although they contain an additional co-stimulatory module, third-generation CARs did not outperform second-generation CARs. M-CSF-containing CARs mediated enhanced cytokine production and cytolytic activity compared to IL-34-containing CARs. These data demonstrate the feasibility of targeting M-CSFR using ligand-based CARs and raise the possibility that the low picomolar affinity of IL-34 for M-CSFR is detrimental to CAR function.
Collapse
Affiliation(s)
- Daniela Yordanova Achkova
- CAR Mechanics Group, Guy’s Cancer Centre, School of Cancer and Pharmaceutical Sciences, King’s College London, Great Maze Pond, London SE1 9RT, UK; (D.Y.A.); (R.E.B.)
| | - Richard Esmond Beatson
- CAR Mechanics Group, Guy’s Cancer Centre, School of Cancer and Pharmaceutical Sciences, King’s College London, Great Maze Pond, London SE1 9RT, UK; (D.Y.A.); (R.E.B.)
| | - John Maher
- CAR Mechanics Group, Guy’s Cancer Centre, School of Cancer and Pharmaceutical Sciences, King’s College London, Great Maze Pond, London SE1 9RT, UK; (D.Y.A.); (R.E.B.)
- Department of Immunology, Eastbourne Hospital, Kings Drive, Eastbourne BN21 2UD, UK
- Leucid Bio Ltd., Guy’s Hospital, Great Maze Pond, London SE1 9RT, UK
- Correspondence: ; Tel.: +44-(0)207188-1468
| |
Collapse
|
43
|
Abstract
Metastatic breast cancer (BC) is an aggressive form of cancer and is an absolute challenge to treat. This review discusses the standard treatments available for metastatic BC. It further highlights the rationale for targeting oncodrivers, tumor-associated antigens, and neoantigens in BC. Explaining the significance of immune response in successful immunotherapeutic studies, it draws attention towards how adoptive cell therapy can be a useful immunotherapeutic tool. We focus on adoptive cell therapy in BC covering tumor-infiltrating lymphocyte therapy, engineered T cell receptor therapy, chimeric antigen receptor therapy, dendritic cell therapy and natural killer cell therapy. In this work, we aim to provide an overview of clinical data regarding the use of cellular immunotherapies in BC. Eventually, we conclude by proposing future adoptive cell therapy approaches, which can be used to cure BC.
Collapse
|
44
|
Gordon KS, Kyung T, Perez CR, Holec PV, Ramos A, Zhang AQ, Agarwal Y, Liu Y, Koch CE, Starchenko A, Joughin BA, Lauffenburger DA, Irvine DJ, Hemann MT, Birnbaum ME. Screening for CD19-specific chimaeric antigen receptors with enhanced signalling via a barcoded library of intracellular domains. Nat Biomed Eng 2022; 6:855-866. [PMID: 35710755 PMCID: PMC9389442 DOI: 10.1038/s41551-022-00896-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 05/03/2022] [Indexed: 02/06/2023]
Abstract
The immunostimulatory intracellular domains (ICDs) of chimaeric antigen receptors (CARs) are essential for converting antigen recognition into antitumoural function. Although there are many possible combinations of ICDs, almost all current CARs rely on combinations of CD3𝛇, CD28 and 4-1BB. Here we show that a barcoded library of 700,000 unique CD19-specific CARs with diverse ICDs cloned into lentiviral vectors and transduced into Jurkat T cells can be screened at high throughput via cell sorting and next-generation sequencing to optimize CAR signalling for antitumoural functions. By using this screening approach, we identified CARs with new ICD combinations that, compared with clinically available CARs, endowed human primary T cells with comparable tumour control in mice and with improved proliferation, persistence, exhaustion and cytotoxicity after tumour rechallenge in vitro. The screening strategy can be adapted to other disease models, cell types and selection conditions, and could be used to improve adoptive cell therapies and to expand their utility to new disease indications.
Collapse
Affiliation(s)
- Khloe S Gordon
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Singapore-MIT Alliance for Research and Technology Centre, Singapore, Singapore
| | - Taeyoon Kyung
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Caleb R Perez
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Patrick V Holec
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Azucena Ramos
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Angela Q Zhang
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Department of Health, Science, and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yash Agarwal
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yunpeng Liu
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Catherine E Koch
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alina Starchenko
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Brian A Joughin
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Ragon Institute of MIT, MGH and Harvard, Cambridge, MA, USA
| | - Darrell J Irvine
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Ragon Institute of MIT, MGH and Harvard, Cambridge, MA, USA
| | - Michael T Hemann
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michael E Birnbaum
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA.
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Singapore-MIT Alliance for Research and Technology Centre, Singapore, Singapore.
- Ragon Institute of MIT, MGH and Harvard, Cambridge, MA, USA.
| |
Collapse
|
45
|
Yélamos J. Current innovative engineered antibodies. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 369:1-43. [PMID: 35777861 DOI: 10.1016/bs.ircmb.2022.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Antibody engineering has developed very intensively since the invention of the hybridoma technology in 1975, and it now can generate therapeutic agents with high specificity and reduced adverse effects. Indeed, antibodies have become one of the most innovative therapeutic agents in recent years, with some landing in the top 10 bestselling pharmaceutical drugs. New antibodies are being approved every year, in different formats and for treating various illnesses, including cancer, autoimmune inflammatory diseases, metabolic diseases and infectious diseases. In this review, I summarize current progress in innovative engineered antibodies. Overall, this progress has led to the approval by regulatory authorities of more than 100 antibody-based molecules, with many others at various stages of clinical development, indicating the high growth potential of the field.
Collapse
Affiliation(s)
- José Yélamos
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Unidad Asociada IIBB-CSIC, Barcelona, Spain; Immunology Unit, Department of Pathology, Hospital del Mar, Barcelona, Spain.
| |
Collapse
|
46
|
Halim L, Das KK, Larcombe-Young D, Ajina A, Candelli A, Benjamin R, Dillon R, Davies DM, Maher J. Engineering of an Avidity-Optimized CD19-Specific Parallel Chimeric Antigen Receptor That Delivers Dual CD28 and 4-1BB Co-Stimulation. Front Immunol 2022; 13:836549. [PMID: 35222427 PMCID: PMC8863855 DOI: 10.3389/fimmu.2022.836549] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/20/2022] [Indexed: 11/13/2022] Open
Abstract
Co-stimulation is critical to the function of chimeric antigen receptor (CAR) T-cells. Previously, we demonstrated that dual co-stimulation can be effectively harnessed by a parallel (p)CAR architecture in which a CD28-containing second generation CAR is co-expressed with a 4-1BB containing chimeric co-stimulatory receptor (CCR). When compared to linear CARs, pCAR-engineered T-cells elicit superior anti-tumor activity in a range of pre-clinical models. Since CD19 is the best validated clinical target for cellular immunotherapy, we evaluated a panel of CD19-specific CAR and pCAR T-cells in this study. First, we generated a panel of single chain antibody fragments (scFvs) by alanine scanning mutagenesis of the CD19-specific FMC63 scFv (VH domain) and these were incorporated into second generation CD28+CD3ζ CARs. The resulting panel of CAR T-cells demonstrated a broad range of CD19 binding ability and avidity for CD19-expressing tumor cells. Each scFv-modified CAR was then converted into a pCAR by co-expression of an FMC63 scFv-targeted CCR with a 4-1BB endodomain. When compared to second generation CARs that contained an unmodified or mutated FMC63 scFv, each pCAR demonstrated a significant enhancement of tumor re-stimulation potential and IL-2 release, reduced exhaustion marker expression and enhanced therapeutic efficacy in mice with established Nalm-6 leukemic xenografts. These data reinforce the evidence that the pCAR platform delivers enhanced anti-tumor activity through effective provision of dual co-stimulation. Greatest anti-tumor activity was noted for intermediate avidity CAR T-cells and derived pCARs, raising the possibility that effector to target cell avidity is an important determinant of efficacy.
Collapse
Affiliation(s)
- Leena Halim
- Chimeric Antigen Receptor (CAR) Mechanics Laboratory, Guy's Cancer Centre, School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| | | | - Daniel Larcombe-Young
- Chimeric Antigen Receptor (CAR) Mechanics Laboratory, Guy's Cancer Centre, School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Adam Ajina
- Chimeric Antigen Receptor (CAR) Mechanics Laboratory, Guy's Cancer Centre, School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| | | | - Reuben Benjamin
- Faculty of Life Sciences and Medicine, School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom.,Department of Clinical Haematology, King's College Hospital National Health Service (NHS) Foundation Trust, London, United Kingdom
| | - Richard Dillon
- Department of Clinical Haematology, Guy's and St Thomas' National Health Service (NHS) Foundation Trust, London, United Kingdom.,Department of Medicine and Molecular Genetics, King's College London, London, United Kingdom
| | - David M Davies
- Chimeric Antigen Receptor (CAR) Mechanics Laboratory, Guy's Cancer Centre, School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - John Maher
- Chimeric Antigen Receptor (CAR) Mechanics Laboratory, Guy's Cancer Centre, School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom.,Leucid Bio, Guy's Hospital, London, United Kingdom.,Department of Clinical Immunology and Allergy, King's College Hospital National Health Service (NHS) Foundation Trust, London, United Kingdom.,Department of Immunology, Eastbourne Hospital, Eastbourne, United Kingdom
| |
Collapse
|
47
|
Omer B, Cardenas MG, Pfeiffer T, Daum R, Huynh M, Sharma S, Nouraee N, Xie C, Tat C, Perconti S, Van Pelt S, Scherer L, DeRenzo C, Shum T, Gottschalk S, Arber C, Rooney CM. A Costimulatory CAR Improves TCR-based Cancer Immunotherapy. Cancer Immunol Res 2022; 10:512-524. [PMID: 35176142 DOI: 10.1158/2326-6066.cir-21-0307] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 11/11/2021] [Accepted: 02/11/2022] [Indexed: 11/16/2022]
Abstract
T-cell receptors (TCR) recognize intracellular and extracellular cancer antigens, allowing T cells to target many tumor antigens. To sustain proliferation and persistence, T cells require not only signaling through the TCR (signal 1), but also costimulatory (signal 2) and cytokine (signal 3) signaling. Because most cancer cells lack costimulatory molecules, TCR engagement at the tumor site results in incomplete T-cell activation and transient antitumor effects. To overcome this lack of signal 2, we genetically modified tumor-specific T cells with a costimulatory chimeric antigen receptor (CoCAR). Like classical CARs, CoCARs combine the antigen-binding domain of an antibody with costimulatory endodomains to trigger T-cell proliferation, but CoCARs lack the cytotoxic CD3ζ chain to avoid toxicity to normal tissues. We first tested a CD19-targeting CoCAR in combination with an HLA-A*02:01-restricted, survivin-specific transgenic TCR (sTCR) in serial cocultures with leukemia cells coexpressing the cognate peptide-HLA complex (signal 1) and CD19 (signal 2). The CoCAR enabled sTCR+ T cells to kill tumors over a median of four additional tumor challenges. CoCAR activity depended on CD19 but was maintained in tumors with heterogeneous CD19 expression. In a murine tumor model, sTCR+CoCAR+ T cells improved tumor control and prolonged survival compared with sTCR+ T cells. We further evaluated the CoCAR in Epstein-Barr virus-specific T cells (EBVST). CoCAR-expressing EBVSTs expanded more rapidly than nontransduced EBVSTs and delayed tumor progression in an EBV+ murine lymphoma model. Overall, we demonstrated that the CoCAR can increase the activity of T cells expressing both native and transgenic TCRs and enhance antitumor responses.
Collapse
Affiliation(s)
- Bilal Omer
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, Texas.,Texas Children's Cancer and Hematology Centers, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| | - Mara G Cardenas
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, Texas
| | - Thomas Pfeiffer
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, Texas.,Texas Children's Cancer and Hematology Centers, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| | - Rachel Daum
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, Texas
| | - Mai Huynh
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, Texas
| | - Sandhya Sharma
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, Texas
| | - Nazila Nouraee
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, Texas
| | - Cicilyn Xie
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, Texas
| | - Candise Tat
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, Texas
| | - Silvana Perconti
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, Texas
| | - Stacey Van Pelt
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, Texas
| | - Lauren Scherer
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, Texas.,Texas Children's Cancer and Hematology Centers, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| | - Chris DeRenzo
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, Texas.,Texas Children's Cancer and Hematology Centers, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas.,Department of Bone Marrow Transplant and Cellular Therapy, St. Jude's Children's Research Hospital, Memphis, Tennessee
| | - Thomas Shum
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, Texas.,Texas Children's Cancer and Hematology Centers, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| | - Stephen Gottschalk
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, Texas.,Texas Children's Cancer and Hematology Centers, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas.,Department of Bone Marrow Transplant and Cellular Therapy, St. Jude's Children's Research Hospital, Memphis, Tennessee
| | - Caroline Arber
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, Texas.,Department of Oncology UNIL-CHUV, Lausanne University Hospital, University of Lausanne and Ludwig Institute for Cancer Research Lausanne, Epalinges, Switzerland
| | - Cliona M Rooney
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
48
|
Qian S, Villarejo-Campos P, Guijo I, Hernández-Villafranca S, García-Olmo D, González-Soares S, Guadalajara H, Jiménez-Galanes S, Qian C. Update for Advance CAR-T Therapy in Solid Tumors, Clinical Application in Peritoneal Carcinomatosis From Colorectal Cancer and Future Prospects. Front Immunol 2022; 13:841425. [PMID: 35401510 PMCID: PMC8990899 DOI: 10.3389/fimmu.2022.841425] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/02/2022] [Indexed: 12/24/2022] Open
Abstract
Latest advances in the field of cancer immunotherapy have developed the (Chimeric Antigen Receptor) CAR-T cell therapy. This therapy was first used in hematological malignancies which obtained promising results; therefore, the use of CAR-T cells has become a popular approach for treating non-solid tumors. CAR-T cells consist of T-lymphocytes that are engineered to express an artificial receptor against any surface antigen of our choice giving us the capacity of offering precise and personalized treatment. This leaded to the development of CAR-T cells for treating solid tumors with the hope of obtaining the same result; however, their use in solid tumor and their efficacy have not achieved the expected results. The reason of these results is because solid tumors have some peculiarities that are not present in hematological malignancies. In this review we explain how CAR-T cells are made, their mechanism of action, adverse effect and how solid tumors can evade their action, and also we summarize their use in colorectal cancer and peritoneal carcinomatosis.
Collapse
Affiliation(s)
- Siyuan Qian
- Department of Surgery, Fundación Jimenez Diaz University Hospital, Madrid, Spain
| | | | - Ismael Guijo
- Department of Surgery, Fundación Jimenez Diaz University Hospital, Madrid, Spain
| | | | - Damián García-Olmo
- Department of Surgery, Fundación Jimenez Diaz University Hospital, Madrid, Spain
- Department of Surgery, Universidad Autónoma de Madrid, Madrid, Spain
| | - Sara González-Soares
- Department of Surgery, Fundación Jimenez Diaz University Hospital, Madrid, Spain
| | - Héctor Guadalajara
- Department of Surgery, Fundación Jimenez Diaz University Hospital, Madrid, Spain
| | | | - Cheng Qian
- Chongqing Precision Biotechnology Co. Ltd, Chongqing, China
| |
Collapse
|
49
|
A novel TanCAR targeting IL13Rα2 and EphA2 for enhanced glioblastoma therapy. Mol Ther Oncolytics 2022; 24:729-741. [PMID: 35317513 PMCID: PMC8908045 DOI: 10.1016/j.omto.2022.02.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 02/15/2022] [Indexed: 01/05/2023] Open
Abstract
Chimeric antigen receptor T cell (CAR-T) therapy has been shown to be an effective strategy for combatting non-solid tumors; however, CAR-T therapy is still a challenge for solid tumors, such as glioblastoma. To improve CAR-T therapy for glioblastoma, a new TanCAR, comprising the tandem arrangement of IL13 (4MS) and EphA2 scFv, was generated and validated in vitro and in vivo. In vitro, the novel TanCAR-redirected T cells killed glioblastoma tumor cells by recognizing either IL-13 receptor α2 (IL13Rα2) or EphA2 alone or together upon simultaneous encounter of both targets, but did not kill normal cells bearing only the IL13Rα1/IL4Rα receptor. As further proof of principle, the novel TanCAR was tested in a subcutaneous glioma xenograft mouse model. The results indicated that the novel TanCAR-redirected T cells produced greater glioma tumor regression than single CAR-T cells. Thus, the novel TanCAR-redirected T cells kill gliomas more efficiently and selectively than a single IL13 CAR or EphA2 scFv CAR, with the potential for preventing antigen escape and reduced off-target cytotoxicity.
Collapse
|
50
|
Wu Y, Huang Z, Harrison R, Liu L, Zhu L, Situ Y, Wang Y. Engineering CAR T cells for enhanced efficacy and safety. APL Bioeng 2022; 6:011502. [PMID: 35071966 PMCID: PMC8769768 DOI: 10.1063/5.0073746] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 12/22/2021] [Indexed: 01/18/2023] Open
Abstract
Despite its success in treating hematologic malignancies, chimeric antigen receptor (CAR) T cell therapy faces two major challenges which hinder its broader applications: the limited effectiveness against solid tumors and the nonspecific toxicities. To address these concerns, researchers have used synthetic biology approaches to develop optimization strategies. In this review, we discuss recent improvements on the CAR and other non-CAR molecules aimed to enhance CAR T cell efficacy and safety. We also highlight the development of different types of inducible CAR T cells that can be controlled by environmental cues and/or external stimuli. These advancements are bringing CAR T therapy one step closer to safer and wider applications, especially for solid tumors.
Collapse
Affiliation(s)
- Yiqian Wu
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Ziliang Huang
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Reed Harrison
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Longwei Liu
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Linshan Zhu
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, USA
| | - Yinglin Situ
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, USA
| | - Yingxiao Wang
- Authors to whom correspondence should be addressed: and
| |
Collapse
|