1
|
Varela ML, Comba A, Faisal SM, Argento A, Peña Aguelo JA, Candolfi M, Castro MG, Lowenstein PR. Cell and gene therapy in neuro-oncology. HANDBOOK OF CLINICAL NEUROLOGY 2024; 205:297-315. [PMID: 39341660 PMCID: PMC11441620 DOI: 10.1016/b978-0-323-90120-8.00009-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The majority of primary brain tumors are gliomas, among which glioblastoma multiforme (GBM) is the most common malignant brain tumor in adults. GBM has a median survival of 18-24 months, and despite extensive research it remains incurable, thus novel therapies are urgently needed. The current standard of care is a combination of surgery, radiation, and chemotherapy, but still remains ineffective due to the invasive nature and high recurrence of gliomas. Gene therapy is a versatile treatment strategy investigated for multiple tumor types including GBM. In gene therapy, a variety of vectors are employed to deliver genes designed for different antitumoral effects. Also, over the past decades, stem cell biology has provided a new approach to cancer therapies. Stem cells can be used as regenerative medicine, therapeutic carriers, drug targeting, and generation of immune cells. Stem cell-based therapy allows targeted therapy that spares healthy brain tissue as well as establishes a long-term antitumor response by stimulating the immune system and delivering prodrug, metabolizing genes, or even oncolytic viruses. This chapter describes the latest developments and the current trends in gene and cell-based therapy against GBM from both preclinical and clinical perspectives, including different gene therapy delivery systems, molecular targets, and stem cell therapies.
Collapse
Affiliation(s)
- Maria Luisa Varela
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States; Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Andrea Comba
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States; Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Syed M Faisal
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States; Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Anna Argento
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States; Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Jorge A Peña Aguelo
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marianela Candolfi
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Maria G Castro
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States; Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Pedro R Lowenstein
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States; Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
2
|
Hosseinkhani H, Domb AJ, Sharifzadeh G, Nahum V. Gene Therapy for Regenerative Medicine. Pharmaceutics 2023; 15:856. [PMID: 36986717 PMCID: PMC10057434 DOI: 10.3390/pharmaceutics15030856] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
The development of biological methods over the past decade has stimulated great interest in the possibility to regenerate human tissues. Advances in stem cell research, gene therapy, and tissue engineering have accelerated the technology in tissue and organ regeneration. However, despite significant progress in this area, there are still several technical issues that must be addressed, especially in the clinical use of gene therapy. The aims of gene therapy include utilising cells to produce a suitable protein, silencing over-producing proteins, and genetically modifying and repairing cell functions that may affect disease conditions. While most current gene therapy clinical trials are based on cell- and viral-mediated approaches, non-viral gene transfection agents are emerging as potentially safe and effective in the treatment of a wide variety of genetic and acquired diseases. Gene therapy based on viral vectors may induce pathogenicity and immunogenicity. Therefore, significant efforts are being invested in non-viral vectors to enhance their efficiency to a level comparable to the viral vector. Non-viral technologies consist of plasmid-based expression systems containing a gene encoding, a therapeutic protein, and synthetic gene delivery systems. One possible approach to enhance non-viral vector ability or to be an alternative to viral vectors would be to use tissue engineering technology for regenerative medicine therapy. This review provides a critical view of gene therapy with a major focus on the development of regenerative medicine technologies to control the in vivo location and function of administered genes.
Collapse
Affiliation(s)
- Hossein Hosseinkhani
- Innovation Center for Advanced Technology, Matrix, Inc., New York, NY 10019, USA
| | - Abraham J. Domb
- The Center for Nanoscience and Nanotechnology, Alex Grass Center for Drug Design and Synthesis and Cannabinoids Research, School of Pharmacy, Faculty of Medicine, Institute of Drug Research, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Ghorbanali Sharifzadeh
- Department of Polymer Engineering, School of Chemical Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
| | - Victoria Nahum
- The Center for Nanoscience and Nanotechnology, Alex Grass Center for Drug Design and Synthesis and Cannabinoids Research, School of Pharmacy, Faculty of Medicine, Institute of Drug Research, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| |
Collapse
|
3
|
Conniot J, Talebian S, Simões S, Ferreira L, Conde J. Revisiting gene delivery to the brain: silencing and editing. Biomater Sci 2020; 9:1065-1087. [PMID: 33315025 DOI: 10.1039/d0bm01278e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neurodegenerative disorders, ischemic brain diseases, and brain tumors are debilitating diseases that severely impact a person's life and could possibly lead to their demise if left untreated. Many of these diseases do not respond to small molecule therapeutics and have no effective long-term therapy. Gene therapy offers the promise of treatment or even a cure for both genetic and acquired brain diseases, mediated by either silencing or editing disease-specific genes. Indeed, in the last 5 years, significant progress has been made in the delivery of non-coding RNAs as well as gene-editing formulations to the brain. Unfortunately, the delivery is a major limiting factor for the success of gene therapies. Both viral and non-viral vectors have been used to deliver genetic information into a target cell, but they have limitations. Viral vectors provide excellent transduction efficiency but are associated with toxic effects and have limited packaging capacity; however, non-viral vectors are less toxic and show a high packaging capacity at the price of low transfection efficiency. Herein, we review the progress made in the field of brain gene therapy, particularly in the design of non-toxic and trackable non-viral vectors, capable of controlled release of genes in response to internal/external triggers, and in the delivery of formulations for gene editing. The application of these systems in the context of various brain diseases in pre-clinical and clinical tests will be discussed. Such promising approaches could potentially pave the way for clinical realization of brain gene therapies.
Collapse
Affiliation(s)
- João Conniot
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal.
| | | | | | | | | |
Collapse
|
4
|
Abstract
Cancer gene therapy emerged as a promising treatment modality 3 decades ago. However, the failure of the first gene therapy trials in cancer treatment has decreased its popularity. Likewise, immunotherapy has followed a similar course. While it was a popular and promising treatment with IL-2 and interferon and cancer vaccines in the 1980s, it later lost its popularity. Immunotherapy became one of the main options for cancer treatment with the successful use of immune checkpoint inhibitors in clinics approximately 10 years ago. The success of immunotherapy has increased even more with the introduction of cancer gene therapy methods in this area. With the identification of the oncolytic herpes simplex virus and Chimeric antigen receptor (CAR) T-cells, immune gene therapy has become an essential modality in cancer treatments such as surgery, radiotherapy, chemotherapy, and targeted therapies.
Collapse
Affiliation(s)
- Hakan Akbulut
- Department of Basic Oncology, Ankara University Cancer Research Institute, Ankara, Turkey,Department of Medical Oncology, Ankara University School of Medicine, Ankara, Turkey
| |
Collapse
|
5
|
Ricobaraza A, Gonzalez-Aparicio M, Mora-Jimenez L, Lumbreras S, Hernandez-Alcoceba R. High-Capacity Adenoviral Vectors: Expanding the Scope of Gene Therapy. Int J Mol Sci 2020; 21:E3643. [PMID: 32455640 PMCID: PMC7279171 DOI: 10.3390/ijms21103643] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 12/21/2022] Open
Abstract
The adaptation of adenoviruses as gene delivery tools has resulted in the development of high-capacity adenoviral vectors (HC-AdVs), also known, helper-dependent or "gutless". Compared with earlier generations (E1/E3-deleted vectors), HC-AdVs retain relevant features such as genetic stability, remarkable efficacy of in vivo transduction, and production at high titers. More importantly, the lack of viral coding sequences in the genomes of HC-AdVs extends the cloning capacity up to 37 Kb, and allows long-term episomal persistence of transgenes in non-dividing cells. These properties open a wide repertoire of therapeutic opportunities in the fields of gene supplementation and gene correction, which have been explored at the preclinical level over the past two decades. During this time, production methods have been optimized to obtain the yield, purity, and reliability required for clinical implementation. Better understanding of inflammatory responses and the implementation of methods to control them have increased the safety of these vectors. We will review the most significant achievements that are turning an interesting research tool into a sound vector platform, which could contribute to overcome current limitations in the gene therapy field.
Collapse
Affiliation(s)
| | | | | | | | - Ruben Hernandez-Alcoceba
- Gene Therapy Program. University of Navarra-CIMA. Navarra Institute of Health Research, 31008 Pamplona, Spain; (A.R.); (M.G.-A.); (L.M.-J.); (S.L.)
| |
Collapse
|
6
|
Tong S, Moyo B, Lee CM, Leong K, Bao G. Engineered materials for in vivo delivery of genome-editing machinery. NATURE REVIEWS. MATERIALS 2019; 4:726-737. [PMID: 34094589 PMCID: PMC8174554 DOI: 10.1038/s41578-019-0145-9] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/03/2019] [Indexed: 05/22/2023]
Abstract
Genome editing technologies, such as CRISPR/Cas9, are promising for treating otherwise incurable genetic diseases. Great progress has been made for ex vivo genome editing; however, major bottlenecks exist in the development of efficient, safe, and targetable in vivo delivery systems, which are needed for the treatment of many diseases. To achieve high efficacy and safety in therapeutic in vivo genome editing, editing activities must be controlled spatially and temporally in the body, which requires novel materials, delivery strategies, and control mechanisms. Thus, there is currently a tremendous opportunity for the biomaterials research community to develop in vivo delivery systems that overcome the problems of low editing efficiency, off-targeting effect, safety, and cell and tissue specificity. In this Review, we summarize delivery approaches and provide perspectives on the challenges and possible solutions, aiming to stimulate further development of engineered materials for in vivo delivery of genome-editing machinery.
Collapse
Affiliation(s)
- Sheng Tong
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Buhle Moyo
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Ciaran M. Lee
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Kam Leong
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Gang Bao
- Department of Bioengineering, Rice University, Houston, TX, USA
| |
Collapse
|
7
|
Niittykoski M, von Und Zu Fraunberg M, Martikainen M, Rauramaa T, Immonen A, Koponen S, Leinonen V, Vähä-Koskela M, Zhang Q, Kühnel F, Mei YF, Ylä-Herttuala S, Jääskeläinen JE, Hinkkanen A. Immunohistochemical Characterization and Sensitivity to Human Adenovirus Serotypes 3, 5, and 11p of New Cell Lines Derived from Human Diffuse Grade II to IV Gliomas. Transl Oncol 2017; 10:772-779. [PMID: 28797937 PMCID: PMC5610111 DOI: 10.1016/j.tranon.2017.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/13/2017] [Accepted: 07/13/2017] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Oncolytic adenoviruses show promise in targeting gliomas because they do not replicate in normal brain cells. However, clinical responses occur only in a subset of patients. One explanation could be the heterogenic expression level of virus receptors. Another contributing factor could be variable activity of tumor antiviral defenses in different glioma subtypes. METHODS We established a collection of primary low-passage cell lines from different glioma subtypes (3 glioblastomas, 3 oligoastrocytomas, and 2 oligodendrogliomas) and assessed them for receptor expression and sensitivity to human adenovirus (HAd) serotypes 3, 5, and 11p. To gauge the impact of antiviral defenses, we also compared the infectivity of the oncolytic adenoviruses in interferon (IFN)-pretreated cells with IFN-sensitive Semliki Forest virus (SFV). RESULTS Immunostaining revealed generally low expression of HAd5 receptor CAR in both primary tumors and derived cell lines. HAd11p receptor CD46 levels were maintained at moderate levels in both primary tumor samples and derived cell lines. HAd3 receptor DSG-2 was reduced in the cell lines compared to the tumors. Yet, at equal multiplicities of infection, the oncolytic potency of HAd5 in vitro in tumor-derived cells was comparable to HAd11p, whereas HAd3 lysed fewer cells than either of the other two HAd serotypes in 72 hours. IFN blocked replication of SFV, while HAds were rather unaffected. CONCLUSIONS Adenovirus receptor levels on glioma-derived cell lines did not correlate with infection efficacy and may not be a relevant indicator of clinical oncolytic potency. Adenovirus receptor analysis should be preferentially performed on biopsies obtained perioperatively.
Collapse
Affiliation(s)
- Minna Niittykoski
- Biotechnology and Molecular Medicine, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
| | - Mikael von Und Zu Fraunberg
- NeuroCenter of Kuopio University Hospital, Kuopio, Finland; Neurosurgery, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland.
| | - Miika Martikainen
- Biotechnology and Molecular Medicine, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland; Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| | - Tuomas Rauramaa
- Pathology, Institute of Clinical Medicine, University of Eastern Finland and Department of Pathology, Kuopio University Hospital, Kuopio, Finland.
| | - Arto Immonen
- NeuroCenter of Kuopio University Hospital, Kuopio, Finland; Neurosurgery, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland.
| | | | - Ville Leinonen
- NeuroCenter of Kuopio University Hospital, Kuopio, Finland; Neurosurgery, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland.
| | - Markus Vähä-Koskela
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland.
| | - Qiwei Zhang
- Southern Medical University, Guangzhou, Guangdong, China.
| | - Florian Kühnel
- Department of Gastroenterology, Hepatology and Endocrinology, Medical School, Hannover, Germany.
| | - Ya-Fang Mei
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden.
| | - Seppo Ylä-Herttuala
- Biotechnology and Molecular Medicine, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
| | - Juha E Jääskeläinen
- NeuroCenter of Kuopio University Hospital, Kuopio, Finland; Neurosurgery, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland.
| | - Ari Hinkkanen
- Biotechnology and Molecular Medicine, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
8
|
Lee CS, Bishop ES, Zhang R, Yu X, Farina EM, Yan S, Zhao C, Zeng Z, Shu Y, Wu X, Lei J, Li Y, Zhang W, Yang C, Wu K, Wu Y, Ho S, Athiviraham A, Lee MJ, Wolf JM, Reid RR, He TC. Adenovirus-Mediated Gene Delivery: Potential Applications for Gene and Cell-Based Therapies in the New Era of Personalized Medicine. Genes Dis 2017; 4:43-63. [PMID: 28944281 PMCID: PMC5609467 DOI: 10.1016/j.gendis.2017.04.001] [Citation(s) in RCA: 427] [Impact Index Per Article: 53.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 04/19/2017] [Indexed: 12/12/2022] Open
Abstract
With rapid advances in understanding molecular pathogenesis of human diseases in the era of genome sciences and systems biology, it is anticipated that increasing numbers of therapeutic genes or targets will become available for targeted therapies. Despite numerous setbacks, efficacious gene and/or cell-based therapies still hold the great promise to revolutionize the clinical management of human diseases. It is wildly recognized that poor gene delivery is the limiting factor for most in vivo gene therapies. There has been a long-lasting interest in using viral vectors, especially adenoviral vectors, to deliver therapeutic genes for the past two decades. Among all currently available viral vectors, adenovirus is the most efficient gene delivery system in a broad range of cell and tissue types. The applications of adenoviral vectors in gene delivery have greatly increased in number and efficiency since their initial development. In fact, among over 2,000 gene therapy clinical trials approved worldwide since 1989, a significant portion of the trials have utilized adenoviral vectors. This review aims to provide a comprehensive overview on the characteristics of adenoviral vectors, including adenoviral biology, approaches to engineering adenoviral vectors, and their applications in clinical and pre-clinical studies with an emphasis in the areas of cancer treatment, vaccination and regenerative medicine. Current challenges and future directions regarding the use of adenoviral vectors are also discussed. It is expected that the continued improvements in adenoviral vectors should provide great opportunities for cell and gene therapies to live up to its enormous potential in personalized medicine.
Collapse
Affiliation(s)
- Cody S. Lee
- The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
- Laboratory of Craniofacial Biology and Development, Section of Plastic and Reconstructive Surgery, Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Elliot S. Bishop
- Laboratory of Craniofacial Biology and Development, Section of Plastic and Reconstructive Surgery, Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Ruyi Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Xinyi Yu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Evan M. Farina
- The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
- Laboratory of Craniofacial Biology and Development, Section of Plastic and Reconstructive Surgery, Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Shujuan Yan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Chen Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Zongyue Zeng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Yi Shu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Xingye Wu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Jiayan Lei
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Yasha Li
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Wenwen Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Laboratory Medicine and Clinical Diagnostics, The Affiliated Yantai Hospital, Binzhou Medical University, Yantai 264100, China
| | - Chao Yang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Ke Wu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Ying Wu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Immunology and Microbiology, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Sherwin Ho
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Aravind Athiviraham
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Michael J. Lee
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jennifer Moriatis Wolf
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Russell R. Reid
- Laboratory of Craniofacial Biology and Development, Section of Plastic and Reconstructive Surgery, Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| |
Collapse
|
9
|
Long Q, Liao YH, Xie Y, Liang W, Cheng X, Yuan J, Yu M. Coxsackievirus B3 Directly Induced Th17 Cell Differentiation by Inhibiting Nup98 Expression in Patients with Acute Viral Myocarditis. Front Cell Infect Microbiol 2016; 6:171. [PMID: 28018858 PMCID: PMC5145863 DOI: 10.3389/fcimb.2016.00171] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 11/16/2016] [Indexed: 11/13/2022] Open
Abstract
Th17 cells play a key role in the progression of coxsackievirus B3 (CVB3)-induced acute viral myocarditis (AVMC). However, the direct effect of virus on Th17 cell differentiation is still unknown. Recently, nucleoporin (Nup) 98 has been proved to be associated with lymphocyte differentiation. Therefore, we investigated whether Nup98 mediated Th17 cell differentiation in AVMC. In our study, patients with AVMC and healthy controls were recruited. The results showed that CVB3 could enter into the CD4+ T cells in AVMC patients and healthy controls. After transfecting purified CD4+ T cells with CVB3 in vitro, the Th17 cell frequency, IL-17 secretion, and RORγT synthesis were increased while the Nup98 levels were decreased. Furthermore, down-regulating Nup98 expression by siRNA-Nup98 in CD4+ T cells resulted in the elevated Th17 cell frequency and IL-17 secretion, along with enhanced levels of RORγT, dissociative p300/CBP, and acetylated Stat3. Up-regulation of Nup98 expression by pcDNA3.1-Nup98 showed the opposite effects. Our results suggested that CVB3 directly induced CD4+ T cell differentiation into Th17 cells by inhibiting Nup98 expression, representing a therapeutic target in AVMC.
Collapse
Affiliation(s)
- Qi Long
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Yu-Hua Liao
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Yu Xie
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Wei Liang
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Xiang Cheng
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Jing Yuan
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Miao Yu
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| |
Collapse
|
10
|
VanderVeen N, Raja N, Yi E, Appelman H, Ng P, Palmer D, Zamler D, Dzaman M, Lowenstein PR, Castro MG. Preclinical Efficacy and Safety Profile of Allometrically Scaled Doses of Doxycycline Used to Turn "On" Therapeutic Transgene Expression from High-Capacity Adenoviral Vectors in a Glioma Model. Hum Gene Ther Methods 2016; 27:98-111. [PMID: 27056322 PMCID: PMC4926229 DOI: 10.1089/hgtb.2015.168] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/29/2016] [Indexed: 01/05/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most commonly occurring primary brain cancer in adults, in whom its highly infiltrative cells prevent total surgical resection, often leading to tumor recurrence and patient death. Our group has discovered a gene therapy approach for GBM that utilizes high-capacity "gutless" adenoviral vectors encoding regulatable therapeutic transgenes. The herpes simplex type 1-thymidine kinase (TK) actively kills dividing tumor cells in the brain when in the presence of the prodrug, ganciclovir (GCV), whereas the FMS-like tyrosine kinase 3 ligand (Flt3L) is an immune-stimulatory molecule under tight regulation by a tetracycline-inducible "Tet-On" activation system that induces anti-GBM immunity. As a prelude to a phase I clinical trial, we evaluated the safety and efficacy of Food and Drug Administration (FDA)-approved doses of the tetracycline doxycycline (DOX) allometrically scaled for rats. DOX initiates the expression of Flt3L, which has been shown to recruit dendritic cells to the brain tumor microenvironment-an integral first step in the development of antitumor immunity. The data revealed a highly safe profile surrounding these human-equivalent doses of DOX under an identical therapeutic window as proposed in the clinical trial. This was confirmed through a neuropathological analysis, liver and kidney histopathology, detection of neutralizing antibodies, and systemic toxicities in the blood. Interestingly, we observed a significant survival advantage in rats with GBM receiving the 300 mg/day equivalent dosage of DOX versus the 200 mg/day equivalent. Additionally, rats rejected "recurrent" brain tumor threats implanted 90 days after their primary brain tumors. We also show that DOX detection within the plasma can be an indicator of optimal dosing of DOX to attain therapeutic levels. This work has significant clinical relevance for an ongoing phase I clinical trial in humans with primary GBM and for other therapeutic approaches using Tet-On transactivation system in humans.
Collapse
Affiliation(s)
- Nathan VanderVeen
- Department of Neurosurgery, The University of Michigan Medical School, Ann Arbor, Michigan
- Department of Cell and Developmental Biology, The University of Michigan Medical School, Ann Arbor, Michigan
| | - Nicholas Raja
- Department of Neurosurgery, The University of Michigan Medical School, Ann Arbor, Michigan
- Department of Cell and Developmental Biology, The University of Michigan Medical School, Ann Arbor, Michigan
| | - Elizabeth Yi
- Department of Neurosurgery, The University of Michigan Medical School, Ann Arbor, Michigan
- Department of Cell and Developmental Biology, The University of Michigan Medical School, Ann Arbor, Michigan
| | - Henry Appelman
- Department of Pathology, The University of Michigan Medical School, Ann Arbor, Michigan
| | - Philip Ng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Donna Palmer
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Daniel Zamler
- Department of Neurosurgery, The University of Michigan Medical School, Ann Arbor, Michigan
- Department of Cell and Developmental Biology, The University of Michigan Medical School, Ann Arbor, Michigan
| | - Marta Dzaman
- Department of Neurosurgery, The University of Michigan Medical School, Ann Arbor, Michigan
- Department of Cell and Developmental Biology, The University of Michigan Medical School, Ann Arbor, Michigan
| | - Pedro R. Lowenstein
- Department of Neurosurgery, The University of Michigan Medical School, Ann Arbor, Michigan
- Department of Cell and Developmental Biology, The University of Michigan Medical School, Ann Arbor, Michigan
| | - Maria G. Castro
- Department of Neurosurgery, The University of Michigan Medical School, Ann Arbor, Michigan
- Department of Cell and Developmental Biology, The University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
11
|
Schmidt F, Grimm D. CRISPR genome engineering and viral gene delivery: A case of mutual attraction. Biotechnol J 2015; 10:258-72. [DOI: 10.1002/biot.201400529] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 01/06/2015] [Accepted: 01/15/2015] [Indexed: 01/05/2023]
|
12
|
Gynther M, Kääriäinen TM, Hakkarainen JJ, Jalkanen AJ, Petsalo A, Lehtonen M, Peura L, Kurkipuro J, Samaranayake H, Ylä-Herttuala S, Rautio J, Forsberg MM. Brain pharmacokinetics of ganciclovir in rats with orthotopic BT4C glioma. Drug Metab Dispos 2015; 43:140-6. [PMID: 25349125 DOI: 10.1124/dmd.114.059840] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ganciclovir (GCV) is an essential part of the Herpes simplex virus thymidine kinase (HSV-tk) gene therapy of malignant gliomas. The purpose of this study was to investigate the brain pharmacokinetics and tumor uptake of GCV in the BT4C rat glioma model. GCV's brain and tumor uptakes were investigated by in vivo microdialysis in rats with orthotopic BT4C glioma. In addition, the ability of GCV to cross the blood-brain barrier and tumor vasculature was assessed with in situ rat brain perfusion. Finally, the extent to which GCV could permeate across the BT4C glioma cell membrane was assessed in vitro. The areas under the concentration curve of unbound GCV in blood, brain extracellular fluid (ECF), and tumor ECF were 6157, 1658, and 4834 μM⋅min, respectively. The apparent maximum unbound concentrations achieved within 60 minutes were 46.9, 11.8, and 25.8 μM in blood, brain, and tumor, respectively. The unbound GCV concentrations in brain and tumor after in situ rat brain perfusion were 0.41 and 1.39 nmol/g, respectively. The highly polar GCV likely crosses the fenestrated tumor vasculature by paracellular diffusion. Thus, GCV is able to reach the extracellular space around the tumor at higher concentrations than that in healthy brain. However, GCV uptake into BT4C cells at 100 μM was only 2.1 pmol/mg of protein, and no active transporter-mediated disposition of GCV could be detected in vitro. In conclusion, the limited efficacy of HSV-tk/GCV gene therapy may be due to the poor cellular uptake and rapid elimination of GCV.
Collapse
Affiliation(s)
- Mikko Gynther
- Faculty of Health Sciences, School of Pharmacy (M.G., T.M.K., J.J.H., A.J.J., A.P., M.L., L.P., J.R., M.M.F.) and A. I. Virtanen Institute for Molecular Sciences (J.K., H.S., S.Y.-H.), University of Eastern Finland, Kuopio, Finland
| | - Tiina M Kääriäinen
- Faculty of Health Sciences, School of Pharmacy (M.G., T.M.K., J.J.H., A.J.J., A.P., M.L., L.P., J.R., M.M.F.) and A. I. Virtanen Institute for Molecular Sciences (J.K., H.S., S.Y.-H.), University of Eastern Finland, Kuopio, Finland
| | - Jenni J Hakkarainen
- Faculty of Health Sciences, School of Pharmacy (M.G., T.M.K., J.J.H., A.J.J., A.P., M.L., L.P., J.R., M.M.F.) and A. I. Virtanen Institute for Molecular Sciences (J.K., H.S., S.Y.-H.), University of Eastern Finland, Kuopio, Finland
| | - Aaro J Jalkanen
- Faculty of Health Sciences, School of Pharmacy (M.G., T.M.K., J.J.H., A.J.J., A.P., M.L., L.P., J.R., M.M.F.) and A. I. Virtanen Institute for Molecular Sciences (J.K., H.S., S.Y.-H.), University of Eastern Finland, Kuopio, Finland
| | - Aleksanteri Petsalo
- Faculty of Health Sciences, School of Pharmacy (M.G., T.M.K., J.J.H., A.J.J., A.P., M.L., L.P., J.R., M.M.F.) and A. I. Virtanen Institute for Molecular Sciences (J.K., H.S., S.Y.-H.), University of Eastern Finland, Kuopio, Finland
| | - Marko Lehtonen
- Faculty of Health Sciences, School of Pharmacy (M.G., T.M.K., J.J.H., A.J.J., A.P., M.L., L.P., J.R., M.M.F.) and A. I. Virtanen Institute for Molecular Sciences (J.K., H.S., S.Y.-H.), University of Eastern Finland, Kuopio, Finland
| | - Lauri Peura
- Faculty of Health Sciences, School of Pharmacy (M.G., T.M.K., J.J.H., A.J.J., A.P., M.L., L.P., J.R., M.M.F.) and A. I. Virtanen Institute for Molecular Sciences (J.K., H.S., S.Y.-H.), University of Eastern Finland, Kuopio, Finland
| | - Jere Kurkipuro
- Faculty of Health Sciences, School of Pharmacy (M.G., T.M.K., J.J.H., A.J.J., A.P., M.L., L.P., J.R., M.M.F.) and A. I. Virtanen Institute for Molecular Sciences (J.K., H.S., S.Y.-H.), University of Eastern Finland, Kuopio, Finland
| | - Haritha Samaranayake
- Faculty of Health Sciences, School of Pharmacy (M.G., T.M.K., J.J.H., A.J.J., A.P., M.L., L.P., J.R., M.M.F.) and A. I. Virtanen Institute for Molecular Sciences (J.K., H.S., S.Y.-H.), University of Eastern Finland, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- Faculty of Health Sciences, School of Pharmacy (M.G., T.M.K., J.J.H., A.J.J., A.P., M.L., L.P., J.R., M.M.F.) and A. I. Virtanen Institute for Molecular Sciences (J.K., H.S., S.Y.-H.), University of Eastern Finland, Kuopio, Finland
| | - Jarkko Rautio
- Faculty of Health Sciences, School of Pharmacy (M.G., T.M.K., J.J.H., A.J.J., A.P., M.L., L.P., J.R., M.M.F.) and A. I. Virtanen Institute for Molecular Sciences (J.K., H.S., S.Y.-H.), University of Eastern Finland, Kuopio, Finland
| | - Markus M Forsberg
- Faculty of Health Sciences, School of Pharmacy (M.G., T.M.K., J.J.H., A.J.J., A.P., M.L., L.P., J.R., M.M.F.) and A. I. Virtanen Institute for Molecular Sciences (J.K., H.S., S.Y.-H.), University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
13
|
VanderVeen N, Paran C, Krasinkiewicz J, Zhao L, Palmer D, Hervey-Jumper S, Ng P, Lowenstein PR, Castro MG. Effectiveness and preclinical safety profile of doxycycline to be used "off-label" to induce therapeutic transgene expression in a phase I clinical trial for glioma. HUM GENE THER CL DEV 2014; 24:116-26. [PMID: 24007469 DOI: 10.1089/humc.2013.139] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common malignant primary brain cancer in adults; it carries a dismal prognosis despite improvements in standard of care. We developed a combined gene therapy strategy using (1) herpes simplex type 1-thymidine kinase in conjunction with the cytotoxic prodrug ganciclovir to kill actively proliferating tumor cells and (2) doxycycline (DOX)-inducible Fms-like tyrosine kinase 3 ligand (Flt3L), an immune stimulatory molecule that induces anti-GBM immunity. As a prelude to a phase I clinical trial, we examined the efficacy and safety of this approach (Muhammad et al., 2010, 2012). In the present article, we investigated the efficacy and safety of the "off-label" use of the antibiotic DOX to turn on the high-capacity adenoviral vector (HC-Ad) encoding therapeutic Flt3L expression. DOX-inducible Flt3L expression in male Lewis rats was assessed using DOX doses of 30.8 mg/kg/day (low-DOX) or 46.2 mg/kg/day (high-DOX), which are allometrically equivalent (Voisin et al., 1990) to the human doses that are recommended for the treatment of infections: 200 or 300 mg/day. Naïve rats were intracranially injected with 1×10(9) viral particles of HC-Ad-TetOn-Flt3L, and expression of the therapeutic transgene, that is, Flt3L, was assessed using immunohistochemistry in brain sections after 2 weeks of DOX administration via oral gavage. The results show robust expression of Flt3L in the rat brain parenchyma in areas near the injection site in both the low-DOX and the high-DOX groups, suggesting that Flt3L will be expressed in human glioma patients at a DOX dose of 200 or 300 mg/day. These doses have been approved by the U.S. Food and Drug Administration to treat infections in humans and would thus be considered safe for an off-label use to treat GBM patients undergoing HC-Ad-mediated gene therapy in a phase I clinical trial.
Collapse
Affiliation(s)
- Nathan VanderVeen
- 1 Department of Neurosurgery, The University of Michigan School of Medicine , Ann Arbor, MI 48109
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Merienne N, Le Douce J, Faivre E, Déglon N, Bonvento G. Efficient gene delivery and selective transduction of astrocytes in the mammalian brain using viral vectors. Front Cell Neurosci 2013; 7:106. [PMID: 23847471 PMCID: PMC3701857 DOI: 10.3389/fncel.2013.00106] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 06/18/2013] [Indexed: 12/31/2022] Open
Abstract
Astrocytes are now considered as key players in brain information processing because of their newly discovered roles in synapse formation and plasticity, energy metabolism and blood flow regulation. However, our understanding of astrocyte function is still fragmented compared to other brain cell types. A better appreciation of the biology of astrocytes requires the development of tools to generate animal models in which astrocyte-specific proteins and pathways can be manipulated. In addition, it is becoming increasingly evident that astrocytes are also important players in many neurological disorders. Targeted modulation of protein expression in astrocytes would be critical for the development of new therapeutic strategies. Gene transfer is valuable to target a subpopulation of cells and explore their function in experimental models. In particular, viral-mediated gene transfer provides a rapid, highly flexible and cost-effective, in vivo paradigm to study the impact of genes of interest during central nervous system development or in adult animals. We will review the different strategies that led to the recent development of efficient viral vectors that can be successfully used to selectively transduce astrocytes in the mammalian brain.
Collapse
Affiliation(s)
- Nicolas Merienne
- Laboratory of Cellular and Molecular Neurotherapies, Department of Clinical Neurosciences, Lausanne University Hospital Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
15
|
Lentz TB, Gray SJ, Samulski RJ. Viral vectors for gene delivery to the central nervous system. Neurobiol Dis 2012; 48:179-88. [PMID: 22001604 PMCID: PMC3293995 DOI: 10.1016/j.nbd.2011.09.014] [Citation(s) in RCA: 160] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 08/17/2011] [Accepted: 09/29/2011] [Indexed: 12/19/2022] Open
Abstract
The potential benefits of gene therapy for neurological diseases such as Parkinson's, Amyotrophic Lateral Sclerosis (ALS), Epilepsy, and Alzheimer's are enormous. Even a delay in the onset of severe symptoms would be invaluable to patients suffering from these and other diseases. Significant effort has been placed in developing vectors capable of delivering therapeutic genes to the CNS in order to treat neurological disorders. At the forefront of potential vectors, viral systems have evolved to efficiently deliver their genetic material to a cell. The biology of different viruses offers unique solutions to the challenges of gene therapy, such as cell targeting, transgene expression and vector production. It is important to consider the natural biology of a vector when deciding whether it will be the most effective for a specific therapeutic function. In this review, we outline desired features of the ideal vector for gene delivery to the CNS and discuss how well available viral vectors compare to this model. Adeno-associated virus, retrovirus, adenovirus and herpesvirus vectors are covered. Focus is placed on features of the natural biology that have made these viruses effective tools for gene delivery with emphasis on their application in the CNS. Our goal is to provide insight into features of the optimal vector and which viral vectors can provide these features.
Collapse
Affiliation(s)
- Thomas B. Lentz
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Steven J. Gray
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - R. Jude Samulski
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
16
|
Castro M, Xiong W, Puntel M, Farrokhi C, Kroeger KM, Pechnick RN, Ng P, Lowenstein P, Ghulam Muhammad AKM, Salem A, Lacayo L, Kelson KR, Palmer DJ, Liu C, Appelhans A. Safety Profile of Gutless Adenovirus Vectors Delivered into the Normal Brain Parenchyma: Implications for a Glioma Phase I Clinical Trial. Hum Gene Ther Methods 2012. [DOI: 10.1089/hum.2012.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
17
|
Candolfi M, Kroeger KM, Xiong W, Liu C, Puntel M, Yagiz K, Muhammad AG, Mineharu Y, Foulad D, Wibowo M, Assi H, Baker GJ, Lowenstein PR, Castro MG. Targeted toxins for glioblastoma multiforme: pre-clinical studies and clinical implementation. Anticancer Agents Med Chem 2012; 11:729-38. [PMID: 21707497 DOI: 10.2174/187152011797378689] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2010] [Revised: 01/19/2011] [Accepted: 01/19/2011] [Indexed: 11/22/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults. GBM is very aggressive due to its poor cellular differentiation and invasiveness, which makes complete surgical resection virtually impossible. Therefore, GBM's invasive nature as well as its intrinsic resistance to current treatment modalities makes it a unique therapeutic challenge. Extensive examination of human GBM specimens has uncovered that these tumors overexpress a variety of receptors that are virtually absent in the surrounding non-neoplastic brain. Human GBMs overexpress receptors for cytokines, growth factors, ephrins, urokinase-type plasminogen activator (uPA), and transferrin, which can be targeted with high specificity by linking their ligands with highly cytotoxic molecules, such as Diptheria toxin and Pseudomonas exotoxin A. We review the preclinical development and clinical translation of targeted toxins for GBM. In view of the clinical experience, we conclude that although these are very promising therapeutic modalities for GBM patients, efforts should be focused on improving the delivery systems utilized in order to achieve better distribution of the immuno-toxins in the tumor/resection cavity. Delivery of targeted toxins using viral vectors would also benefit enormously from improved strategies for local delivery.
Collapse
Affiliation(s)
- Marianela Candolfi
- Department of Neurosurgery, Department of Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, MI 48109-0650, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Mineharu Y, Muhammad AKMG, Yagiz K, Candolfi M, Kroeger KM, Xiong W, Puntel M, Liu C, Levy E, Lugo C, Kocharian A, Allison JP, Curran MA, Lowenstein PR, Castro MG. Gene therapy-mediated reprogramming tumor infiltrating T cells using IL-2 and inhibiting NF-κB signaling improves the efficacy of immunotherapy in a brain cancer model. Neurotherapeutics 2012; 9:827-43. [PMID: 22996231 PMCID: PMC3480576 DOI: 10.1007/s13311-012-0144-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Immune-mediated gene therapy using adenovirus expressing Flt3 ligand and thymidine kinase followed by ganciclovir administration (Flt3/TK) effectively elicits tumor regression in preclinical glioma models. Herein, we assessed new strategies to optimize Flt3L/TK therapeutic efficacy in a refractory RG2 orthotopic glioblastoma model. Specifically, we aimed to optimize the therapeutic efficacy of Flt3L/TK treatment in the RG2 model by overexpressing the following genes within the brain tumor microenvironment: 1) a TK mutant with enhanced cytotoxicity (SR39 mutant TK), 2) Flt3L-IgG fusion protein that has a longer half-life, 3) CD40L to stimulate DC maturation, 4) T helper cell type 1 polarizing dendritic cell cytokines interleukin-12 or C-X-C motif ligand 10 chemokine (CXCL)-10, 5) C-C motif ligand 2 chemokine (CCL2) or C-C motif ligand 3 chemokine (CCL3) to enhance dendritic cell recruitment into the tumor microenvironment, 6) T helper cell type 1 cytokines interferon-γ or interleukin-2 to enhance effector T-cell functions, and 7) IκBα or p65RHD (nuclear factor kappa-B [NF-κB] inhibitors) to suppress the function of Foxp3+ Tregs and enhanced effector T-cell functions. Anti-tumor immunity and tumor specific effector T-cell functions were assessed by cytotoxic T lymphocyte assay and intracellular IFN-γ staining. Our data showed that overexpression of interferon-γ or interleukin-2, or inhibition of the nuclear factor kappa-B within the tumor microenvironment, enhanced cytotoxic T lymphocyte-mediated immune responses and successfully extended the median survival of rats bearing intracranial RG2 when combined with Flt3L/TK. These findings indicate that enhancement of T-cell functions constitutes a critical therapeutic target to overcome immune evasion and enhance therapeutic efficacy for brain cancer. In addition, our study provides novel targets to be used in combination with immune-therapeutic strategies for glioblastoma, which are currently being tested in the clinic.
Collapse
Affiliation(s)
- Yohei Mineharu
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90095 USA
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - AKM Ghulam Muhammad
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90095 USA
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Kader Yagiz
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90095 USA
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Marianela Candolfi
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90095 USA
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Kurt M. Kroeger
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90095 USA
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Weidong Xiong
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90095 USA
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Mariana Puntel
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90095 USA
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Chunyan Liu
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90095 USA
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Eva Levy
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90095 USA
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Claudia Lugo
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90095 USA
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Adrina Kocharian
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90095 USA
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - James P. Allison
- Howard Hughes Medical Institute, Department of Immunology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065 USA
| | - Michael A. Curran
- Howard Hughes Medical Institute, Department of Immunology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065 USA
| | - Pedro R. Lowenstein
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90095 USA
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
- Department of Neurosurgery, University of Michigan School of Medicine, Ann Arbor, MI 48109-0650 USA
- Department of Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, MI 48109-0650 USA
| | - Maria G. Castro
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90095 USA
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
- Department of Neurosurgery, University of Michigan School of Medicine, Ann Arbor, MI 48109-0650 USA
- Department of Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, MI 48109-0650 USA
| |
Collapse
|
19
|
Muhammad AKMG, Xiong W, Puntel M, Farrokhi C, Kroeger KM, Salem A, Lacayo L, Pechnick RN, Kelson KR, Palmer D, Ng P, Liu C, Lowenstein PR, Castro MG. Safety profile of gutless adenovirus vectors delivered into the normal brain parenchyma: implications for a glioma phase 1 clinical trial. Hum Gene Ther Methods 2012; 23:271-84. [PMID: 22950971 DOI: 10.1089/hgtb.2012.060] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Adenoviral vectors (Ads) have been evaluated in clinical trials for glioma. However, systemic immunity against the vectors can hamper therapeutic efficacy. We demonstrated that combined immunostimulation and cytotoxic gene therapy provides long-term survival in preclinical glioma models. Because helper-dependent high-capacity Ads (HC-Ads) elicit sustained transgene expression, in the presence of antiadenoviral immunity, we engineered HC-Ads encoding conditional cytotoxic herpes simplex type 1 thymidine kinase and immunostimulatory cytokine Fms-like tyrosine kinase ligand-3 under the control of the TetOn system. Escalating doses of combined HC-Ads (1×10(8), 1×10(9), and 1×10(10) viral particles [VP]) were delivered into the rat brain. We assessed neuropathology, biodistribution, transgene expression, systemic toxicity, and behavioral impact at acute and chronic time points after vector delivery. Histopathological analysis did not reveal any evidence of toxicity or long-term inflammation at the lower doses tested. Vector genomes were restricted to the injection site. Serum chemistry did not uncover adverse systemic side effects at any of the doses tested. Taken together, our data indicate that doses of up to 1×10(9) VP of each HC-Ad can be safely administered into the normal brain. This comprehensive toxicity and biodistribution study will lay the foundations for implementation of a phase 1 clinical trial for GBM using HC-Ads.
Collapse
Affiliation(s)
- A K M Ghulam Muhammad
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Sstr2A: a relevant target for the delivery of genes into human glioblastoma cells using fiber-modified adenoviral vectors. Gene Ther 2012; 20:283-97. [PMID: 22592599 DOI: 10.1038/gt.2012.39] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Glioblastomas are the most aggressive of the brain tumors occurring in adults and children. Currently available chemotherapy prolongs the median survival time of patients by only 4 months. The low efficiency of current treatments is partly owing to the blood-brain barrier, which restricts the penetration of most drugs into the central nervous system. Locoregional treatment strategies thus become mandatory. In this context, viral tools are of great interest for the selective delivery of genes into tumoral cells. Gliomas express high levels of type 2 somatostatin receptors (sstr2A), pinpointing them as suitable targets for the improvement of transduction efficiency in these tumors. We designed a new adenoviral vector based on the introduction of the full-length somatostatin (SRIF (somatotropin release-inhibiting factor)) sequence into the HI loop of the HAdV fiber protein. We demonstrate that (i) HAdV-5-SRIF uptake into cells is mediated by sstr2A, (ii) our vector drives high levels of gene expression in cells expressing endogenous sstr2A, with up to 65-fold enhancement and (iii) low doses of HAdV-5-SRIF are sufficient to infect high-grade human primary glioblastoma cells. Adenoviral vectors targeting SRIF receptors might thus represent a promising therapeutic approach to brain tumors.
Collapse
|
21
|
Lyle C, McCormick F. Integrin alphavbeta5 is a primary receptor for adenovirus in CAR-negative cells. Virol J 2010; 7:148. [PMID: 20615244 PMCID: PMC2909962 DOI: 10.1186/1743-422x-7-148] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 07/08/2010] [Indexed: 02/05/2023] Open
Abstract
Background Viruses bind to specific cellular receptors in order to infect their hosts. The specific receptors a virus uses are important factors in determining host range, cellular tropism, and pathogenesis. For adenovirus, the existing model of entry requires two receptor interactions. First, the viral fiber protein binds Coxsackie and Adenovirus Receptor (CAR), its primary cellular receptor, which docks the virus to the cell surface. Next, viral penton base engages cellular integrins, coreceptors thought to be required exclusively for internalization and not contributing to binding. However, a number of studies reporting data which conflicts with this simple model have been published. These observations have led us to question the proposed two-step model for adenovirus infection. Results In this study we report that cells which express little to no CAR can be efficiently transduced by adenovirus. Using competition experiments between whole virus and soluble viral fiber protein or integrin blocking peptides, we show virus binding is not dependent on fiber binding to cells but rather on penton base binding cellular integrins. Further, we find that binding to low CAR expressing cells is inhibited specifically by a blocking antibody to integrin αvβ5, demonstrating that in these cells integrin αvβ5 and not CAR is required for adenovirus attachment. The binding mediated by integrin αvβ5 is extremely high affinity, in the picomolar range. Conclusions Our data further challenges the model of adenovirus infection in which binding to primary receptor CAR is required in order for subsequent interactions between adenovirus and integrins to initiate viral entry. In low CAR cells, binding occurs through integrin αvβ5, a receptor previously thought to be used exclusively in internalization. We show for the first time that integrin αvβ5 can be used as an alternate binding receptor.
Collapse
Affiliation(s)
- Cynthia Lyle
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA.
| | | |
Collapse
|
22
|
Puntel M, Muhammad AKMG, Candolfi M, Salem A, Yagiz K, Farrokhi C, Kroeger KM, Xiong W, Curtin JF, Liu C, Bondale NS, Lerner J, Pechnick RN, Palmer D, Ng P, Lowenstein PR, Castro MG. A novel bicistronic high-capacity gutless adenovirus vector that drives constitutive expression of herpes simplex virus type 1 thymidine kinase and tet-inducible expression of Flt3L for glioma therapeutics. J Virol 2010; 84:6007-17. [PMID: 20375153 PMCID: PMC2876634 DOI: 10.1128/jvi.00398-10] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Accepted: 03/29/2010] [Indexed: 01/03/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a deadly primary brain tumor. Conditional cytotoxic/immune-stimulatory gene therapy (Ad-TK and Ad-Flt3L) elicits tumor regression and immunological memory in rodent GBM models. Since the majority of patients enrolled in clinical trials would exhibit adenovirus immunity, which could curtail transgene expression and therapeutic efficacy, we used high-capacity adenovirus vectors (HC-Ads) as a gene delivery platform. Herein, we describe for the first time a novel bicistronic HC-Ad driving constitutive expression of herpes simplex virus type 1 thymidine kinase (HSV1-TK) and inducible Tet-mediated expression of Flt3L within a single-vector platform. We achieved anti-GBM therapeutic efficacy with no overt toxicities using this bicistronic HC-Ad even in the presence of systemic Ad immunity. The bicistronic HC-Ad-TK/TetOn-Flt3L was delivered into intracranial gliomas in rats. Survival, vector biodistribution, neuropathology, systemic toxicity, and neurobehavioral deficits were assessed for up to 1 year posttreatment. Therapeutic efficacy was also assessed in animals preimmunized against Ads. We demonstrate therapeutic efficacy, with vector genomes being restricted to the brain injection site and an absence of overt toxicities. Importantly, antiadenoviral immunity did not inhibit therapeutic efficacy. These data represent the first report of a bicistronic vector platform driving the expression of two therapeutic transgenes, i.e., constitutive HSV1-TK and inducible Flt3L genes. Further, our data demonstrate no promoter interference and optimum gene delivery and expression from within this single-vector platform. Analysis of the efficacy, safety, and toxicity of this bicistronic HC-Ad vector in an animal model of GBM strongly supports further preclinical testing and downstream process development of HC-Ad-TK/TetOn-Flt3L for a future phase I clinical trial for GBM.
Collapse
Affiliation(s)
- Mariana Puntel
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Davis Bldg., Room 5090, Los Angeles, California 90048, Department of Psychiatry and Behavioral Neurosciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, Department of Psychiatry and Behavioral Neurosciences, David Geffen School of Medicine, University of California, Los Angeles, California, The Brain Research Institute, University of California, Los Angeles, California, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, Department of Medicine and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - A. K. M. G. Muhammad
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Davis Bldg., Room 5090, Los Angeles, California 90048, Department of Psychiatry and Behavioral Neurosciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, Department of Psychiatry and Behavioral Neurosciences, David Geffen School of Medicine, University of California, Los Angeles, California, The Brain Research Institute, University of California, Los Angeles, California, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, Department of Medicine and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Marianela Candolfi
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Davis Bldg., Room 5090, Los Angeles, California 90048, Department of Psychiatry and Behavioral Neurosciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, Department of Psychiatry and Behavioral Neurosciences, David Geffen School of Medicine, University of California, Los Angeles, California, The Brain Research Institute, University of California, Los Angeles, California, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, Department of Medicine and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Alireza Salem
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Davis Bldg., Room 5090, Los Angeles, California 90048, Department of Psychiatry and Behavioral Neurosciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, Department of Psychiatry and Behavioral Neurosciences, David Geffen School of Medicine, University of California, Los Angeles, California, The Brain Research Institute, University of California, Los Angeles, California, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, Department of Medicine and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Kader Yagiz
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Davis Bldg., Room 5090, Los Angeles, California 90048, Department of Psychiatry and Behavioral Neurosciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, Department of Psychiatry and Behavioral Neurosciences, David Geffen School of Medicine, University of California, Los Angeles, California, The Brain Research Institute, University of California, Los Angeles, California, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, Department of Medicine and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Catherine Farrokhi
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Davis Bldg., Room 5090, Los Angeles, California 90048, Department of Psychiatry and Behavioral Neurosciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, Department of Psychiatry and Behavioral Neurosciences, David Geffen School of Medicine, University of California, Los Angeles, California, The Brain Research Institute, University of California, Los Angeles, California, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, Department of Medicine and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Kurt M. Kroeger
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Davis Bldg., Room 5090, Los Angeles, California 90048, Department of Psychiatry and Behavioral Neurosciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, Department of Psychiatry and Behavioral Neurosciences, David Geffen School of Medicine, University of California, Los Angeles, California, The Brain Research Institute, University of California, Los Angeles, California, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, Department of Medicine and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Weidong Xiong
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Davis Bldg., Room 5090, Los Angeles, California 90048, Department of Psychiatry and Behavioral Neurosciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, Department of Psychiatry and Behavioral Neurosciences, David Geffen School of Medicine, University of California, Los Angeles, California, The Brain Research Institute, University of California, Los Angeles, California, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, Department of Medicine and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - James F. Curtin
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Davis Bldg., Room 5090, Los Angeles, California 90048, Department of Psychiatry and Behavioral Neurosciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, Department of Psychiatry and Behavioral Neurosciences, David Geffen School of Medicine, University of California, Los Angeles, California, The Brain Research Institute, University of California, Los Angeles, California, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, Department of Medicine and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Chunyan Liu
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Davis Bldg., Room 5090, Los Angeles, California 90048, Department of Psychiatry and Behavioral Neurosciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, Department of Psychiatry and Behavioral Neurosciences, David Geffen School of Medicine, University of California, Los Angeles, California, The Brain Research Institute, University of California, Los Angeles, California, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, Department of Medicine and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Niyati S. Bondale
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Davis Bldg., Room 5090, Los Angeles, California 90048, Department of Psychiatry and Behavioral Neurosciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, Department of Psychiatry and Behavioral Neurosciences, David Geffen School of Medicine, University of California, Los Angeles, California, The Brain Research Institute, University of California, Los Angeles, California, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, Department of Medicine and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Jonathan Lerner
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Davis Bldg., Room 5090, Los Angeles, California 90048, Department of Psychiatry and Behavioral Neurosciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, Department of Psychiatry and Behavioral Neurosciences, David Geffen School of Medicine, University of California, Los Angeles, California, The Brain Research Institute, University of California, Los Angeles, California, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, Department of Medicine and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Robert N. Pechnick
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Davis Bldg., Room 5090, Los Angeles, California 90048, Department of Psychiatry and Behavioral Neurosciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, Department of Psychiatry and Behavioral Neurosciences, David Geffen School of Medicine, University of California, Los Angeles, California, The Brain Research Institute, University of California, Los Angeles, California, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, Department of Medicine and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Donna Palmer
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Davis Bldg., Room 5090, Los Angeles, California 90048, Department of Psychiatry and Behavioral Neurosciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, Department of Psychiatry and Behavioral Neurosciences, David Geffen School of Medicine, University of California, Los Angeles, California, The Brain Research Institute, University of California, Los Angeles, California, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, Department of Medicine and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Philip Ng
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Davis Bldg., Room 5090, Los Angeles, California 90048, Department of Psychiatry and Behavioral Neurosciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, Department of Psychiatry and Behavioral Neurosciences, David Geffen School of Medicine, University of California, Los Angeles, California, The Brain Research Institute, University of California, Los Angeles, California, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, Department of Medicine and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Pedro R. Lowenstein
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Davis Bldg., Room 5090, Los Angeles, California 90048, Department of Psychiatry and Behavioral Neurosciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, Department of Psychiatry and Behavioral Neurosciences, David Geffen School of Medicine, University of California, Los Angeles, California, The Brain Research Institute, University of California, Los Angeles, California, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, Department of Medicine and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Maria G. Castro
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Davis Bldg., Room 5090, Los Angeles, California 90048, Department of Psychiatry and Behavioral Neurosciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, Department of Psychiatry and Behavioral Neurosciences, David Geffen School of Medicine, University of California, Los Angeles, California, The Brain Research Institute, University of California, Los Angeles, California, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, Department of Medicine and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
23
|
Study of the efficacy, biodistribution, and safety profile of therapeutic gutless adenovirus vectors as a prelude to a phase I clinical trial for glioblastoma. Clin Pharmacol Ther 2010; 88:204-13. [PMID: 20164833 DOI: 10.1038/clpt.2009.260] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Glioblastoma multiforme (GBM) is the most common and most aggressive primary brain tumor in humans. Systemic immunity against gene therapy vectors has been shown to hamper therapeutic efficacy; however, helper-dependent high-capacity adenovirus (HC-Ad) vectors elicit sustained transgene expression, even in the presence of systemic anti-adenoviral immunity. We engineered HC-Ads encoding the conditional cytotoxic herpes simplex type 1 thymidine kinase (TK) and the immunostimulatory cytokine fms-like tyrosine kinase ligand 3 (Flt3L). Flt3L expression is under the control of the regulatable Tet-ON system. In anticipation of a phase I clinical trial for GBM, we assessed the therapeutic efficacy, biodistribution, and clinical and neurotoxicity with escalating doses of HC-Ad-TetOn-Flt3L + HC-Ad-TK in rats. Intratumoral administration of these therapeutic HC-Ads in rats bearing large intracranial GBMs led to long-term survival in approximately 70% of the animals and development of antiglioma immunological memory without signs of neuropathology or systemic toxicity. Systemic anti-adenoviral immunity did not affect therapeutic efficacy. These data support the idea that it would be useful to develop HC-Ad vectors further as a therapeutic gene-delivery platform to implement GBM phase I clinical trials.
Collapse
|
24
|
Fang L, Pu YY, Hu XC, Sun LJ, Luo HM, Pan SK, Gu JZ, Cao XR, Su CQ. Antiangiogenesis gene armed tumor-targeting adenovirus yields multiple antitumor activities in human HCC xenografts in nude mice. Hepatol Res 2010; 40:216-28. [PMID: 19788685 DOI: 10.1111/j.1872-034x.2009.00580.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
AIM Gene therapy represents a promising therapeutic strategy for hepatocellular carcinoma (HCC). To improve the ratio of killing efficacy on tumor cells to side-effect on normal cells, we constructed an oncolytic adenovirus vector, AdSu-hE, expressing the human endostatin (hE) gene, in which the chimeric promoter of human epidermal growth factor receptor 2 enhancer and human telomerase reverse transcriptase promoter was used to control the adenoviral E1a gene. METHODS Tumor-selective replication of adenovirus AdSu-hE and its concomitant expression of endostatin were measured by 50% tissue culture infective dose method, fluorescent protein expression, Western blot and enzyme linked immunosorbent assay in cancer and normal cell lines. The antitumor efficacy was observed in nude mice bearing human HCCs. RESULTS The oncolytic adenovirus AdSu-hE replicated restrictedly in telomerase-positive cancer cells and resulted in oncolysis, but did not replicate in normal cell lines. Along with virus replication, AdSu-hE mediated 5-fold increased expression of endostatin in tumor cells compared with that in normal cells. Moreover, AdSu-hE expressed more endostatin in cancer cells than the non-replicative adenovirus vector Ad-hE. In vivo administration of the oncolytic adenovirus AdSu-hE into HCC-bearing nude mice produced a significant tumor reduction by synergistic effects of virus oncolysis and endostatin antiangiogenesis. CONCLUSION The oncolytic virus with antiangiogenesis gene driven by the chimeric promoter has an improved killing efficacy on tumor cells, and may be useful for cancer gene therapy.
Collapse
Affiliation(s)
- Lin Fang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Nanjing Normal University, Nanjing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Potential adenovirus-mediated gene therapy of glioma cancer. Biotechnol Lett 2009; 32:11-8. [PMID: 19784809 DOI: 10.1007/s10529-009-0132-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Revised: 08/21/2009] [Accepted: 09/07/2009] [Indexed: 10/20/2022]
Abstract
Malignant gliomas are typically characterized by rapid cell proliferation and a marked propensity to invade and damage surrounding tissues. They are the main brain tumors notoriously resistant to currently available therapies, since they fail to undergo apoptosis upon anticancer treatments. With recent advances in neuroscience and improved understanding of the molecular mechanisms of invasive migration, gene therapy provides a new strategy for treating glioma cancer. Brain tumor gene therapy using viral vectors and stem cells has shown promise in animal model and human patient studies. Here, we review recent studies on engineering adenoviral vectors that can be used as therapy for brain tumors. The new findings presented in this study are essential for the further exploration of this cancer and they represent an approach for developing a newer and more effective therapeutic approach in the clinical treatment of human glioma cancer.
Collapse
|
26
|
Stieger K, Belbellaa B, Le Guiner C, Moullier P, Rolling F. In vivo gene regulation using tetracycline-regulatable systems. Adv Drug Deliv Rev 2009; 61:527-41. [PMID: 19394373 PMCID: PMC7103297 DOI: 10.1016/j.addr.2008.12.016] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Accepted: 12/15/2008] [Indexed: 10/26/2022]
Abstract
Numerous preclinical studies have demonstrated the efficacy of viral gene delivery vectors, and recent clinical trials have shown promising results. However, the tight control of transgene expression is likely to be required for therapeutic applications and in some instances, for safety reasons. For this purpose, several ligand-dependent transcription regulatory systems have been developed. Among these, the tetracycline-regulatable system is by far the most frequently used and the most advanced towards gene therapy trials. This review will focus on this system and will describe the most recent progress in the regulation of transgene expression in various organs, including the muscle, the retina and the brain. Since the development of an immune response to the transactivator was observed following gene transfer in the muscle of nonhuman primate, focus will be therefore, given on the immune response to transgene products of the tetracycline inducible promoter.
Collapse
Affiliation(s)
- Knut Stieger
- INSERM UMR U649, CHU-Hotel Dieu, Nantes, France
- Department of Ophthalmology, Justus-Liebig-University Giessen, Giessen, Germany
| | | | | | | | | |
Collapse
|
27
|
Herpes simplex virus type 1 thymidine kinase sequence fused to the lacz gene increases levels of {beta}-galactosidase activity per genome of high-capacity but not first-generation adenoviral vectors in vitro and in vivo. J Virol 2008; 83:2004-10. [PMID: 19073729 DOI: 10.1128/jvi.01298-08] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Increased transgene expression per vector genome is an important goal in the optimization of viral vectors for gene therapy. Herein we demonstrate that herpes simplex virus type 1 (HSV1) thymidine kinase (TK) gene sequences (1,131 bp) fused to the 3' end of lacZ increase transgene expression from high-capacity adenoviral vectors (HCAd), but not from first-generation (Ad) vectors. The woodchuck hepatitis virus posttranscriptional regulatory element (WPRE), in contrast, increased transgene expression levels from Ad but not HCAd vectors. The differential activity of the HSV1 TK gene and WPRE sequences was detected both in vitro and in vivo and suggests potentially different mechanisms of action or the interaction of these elements with vector genomic sequences.
Collapse
|
28
|
Southgate T, Kroeger KM, Liu C, Lowenstein PR, Castro MG. Gene transfer into neural cells in vitro using adenoviral vectors. CURRENT PROTOCOLS IN NEUROSCIENCE 2008; Chapter 4:Unit 4.23. [PMID: 18972378 PMCID: PMC2659706 DOI: 10.1002/0471142301.ns0423s45] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Adenoviral vectors are excellent vehicles to transfer genes into the nervous system due to their ability to transduce dividing and nondividing cells, their ability to be grown to very high titers, and their relatively large insert capacity. Also, adenoviral vectors can sustain very long-term transgene expression in the CNS of rodents and in neurons and glial cells in culture. Successful gene transfer into the nervous system is dependent on the development, production, and quality control of vector preparations, which need to be of the highest quality. This unit provides protocols to clone, rescue, amplify, and purify first-generation adenoviral vectors. Detailed quality control assays are provided to ensure that vector preparations are devoid of contamination from replication-competent adenovirus and lipopolysaccharides. Also included are methodologies related to adenoviral-mediated gene transfer into neurons and glial cells in culture, and the analysis of transgene expression using immunocytochemistry, enzymatic assays, and fluorescence-activated cell sorting (FACS) analysis.
Collapse
Affiliation(s)
- Thomas Southgate
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center and Department of Medicine, University of California at Los Angeles, California, USA
| | | | | | | | | |
Collapse
|
29
|
Curtin JF, Candolfi M, Xiong W, Lowenstein PR, Castro MG. Turning the gene tap off; implications of regulating gene expression for cancer therapeutics. Mol Cancer Ther 2008; 7:439-48. [PMID: 18347132 DOI: 10.1158/1535-7163.mct-07-2328] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cancer poses a tremendous therapeutic challenge worldwide, highlighting the critical need for developing novel therapeutics. A promising cancer treatment modality is gene therapy, which is a form of molecular medicine designed to introduce into target cells genetic material with therapeutic intent. Anticancer gene therapy strategies currently used in preclinical models, and in some cases in the clinic, include proapoptotic genes, oncolytic/replicative vectors, conditional cytotoxic approaches, inhibition of angiogenesis, inhibition of growth factor signaling, inactivation of oncogenes, inhibition of tumor invasion and stimulation of the immune system. The translation of these novel therapeutic modalities from the preclinical setting to the clinic has been driven by encouraging preclinical efficacy data and advances in gene delivery technologies. One area of intense research involves the ability to accurately regulate the levels of therapeutic gene expression to achieve enhanced efficacy and provide the capability to switch gene expression off completely if adverse side effects should arise. This feature could also be implemented to switch gene expression off when a successful therapeutic outcome ensues. Here, we will review recent developments related to the engineering of transcriptional switches within gene delivery systems, which could be implemented in clinical gene therapy applications directed at the treatment of cancer.
Collapse
Affiliation(s)
- James F Curtin
- University of California-Los Angeles and Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | | | | | | | | |
Collapse
|
30
|
High-capacity adenovirus vector-mediated anti-glioma gene therapy in the presence of systemic antiadenovirus immunity. J Virol 2008; 82:4680-4. [PMID: 18287240 DOI: 10.1128/jvi.00232-08] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gene therapy is proposed as a novel therapeutic strategy for treating glioblastoma multiforme (GBM), a devastating brain cancer. In the clinic, antivector immune responses pose formidable challenges. Herein we demonstrate that high-capacity adenovirus vectors (HC-Ads) carrying the conditional cytotoxic gene herpes simplex virus type 1-thymidine kinase (TK) induce tumor regression and long-term survival in an intracranial glioma model, even in the presence of systemic antiadenovirus immunity, as could be encountered in patients. First-generation Ad-TK failed to elicit tumor regression in this model. These results pave the way for implementing HC-Ad-TK-mediated gene therapy as a powerful adjuvant for treating GBM.
Collapse
|
31
|
Immunization against the transgene but not the TetON switch reduces expression from gutless adenoviral vectors in the brain. Mol Ther 2008; 16:343-51. [PMID: 18180781 DOI: 10.1038/sj.mt.6300375] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Immune responses against vectors or encoded transgenes can impose limitations on gene therapy. We demonstrated that tetracycline-regulated high-capacity adenoviral vectors (HC-Ads) sustain regulated transgene expression in the brain even in the presence of systemic pre-existing immune responses against adenoviruses. In this study we assessed whether systemic pre-existing immune responses against the transgene products, i.e., beta-Gal or the tetracycline-dependent (TetON) regulatory transcription factors (rtTA2(S)M2 and the tTS(Kid)), affect transgene expression levels and the safety profile of HC-Ads in the brain. We pre-immunized mice with plasmids encoding the TetON switch expressing rtTA2(S)M2 and the tTS(Kid) or beta-Gal. HC-Ads expressing beta-Gal under the control of the TetON switch were then injected into the striatum. We assessed levels and distribution of beta-Gal expression, and evaluated local inflammation and neuropathological changes. We found that systemic immunity against beta-Gal, but not against the TetON switch, led to inflammation and reduction of transgene expression in the striatum. Therefore, the regulatory TetON switch appears to be safe to use, and capable of sustaining transgene expression in the brain even in the presence of an immune response against its components. Systemic immunity against the transgene had the effect of curtailing its expression, thereby affecting the efficacy and safety of gene delivery to the brain. This factor should be considered when developing gene therapies for neurological use.
Collapse
|
32
|
Curtin JF, Candolfi M, Puntel M, Xiong W, Muhammad AKM, Kroeger K, Mondkar S, Liu C, Bondale N, Lowenstein PR, Castro MG. Regulated expression of adenoviral vectors-based gene therapies: therapeutic expression of toxins and immune-modulators. Methods Mol Biol 2008; 434:239-66. [PMID: 18470649 PMCID: PMC2633597 DOI: 10.1007/978-1-60327-248-3_15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Regulatable promoter systems allow gene expression to be tightly controlled in vivo. This is highly desirable for the development of safe, efficacious adenoviral vectors that can be used to treat human diseases in the clinic. Ideally, regulatable cassettes should have minimal gene expression in the "OFF" state, and expression should quickly reach therapeutic levels in the "ON" state. In addition, the components of regulatable cassettes should be non-toxic at physiological concentrations and should not be immunogenic, especially when treating chronic illness that requires long-lasting gene expression. In this chapter, we will describe in detail protocols to develop and validate first generation (Ad) and high-capacity adenoviral (HC-Ad) vectors that express therapeutic genes under the control of the TetON regulatable system. Our laboratory has successfully used these protocols to regulate the expression of marker genes, immune stimulatory genes, and toxins for cancer gene therapeutics, i.e., glioma that is a deadly form of brain cancer. We have shown that this third generation TetON regulatable system, incorporating a doxycycline (DOX)-sensitive rtTA(2)S-M2 inducer and tTS(Kid) silencer, is non-toxic, relatively non-immunogenic, and can tightly regulate reporter transgene expression downstream of a TRE promoter from adenoviral vectors in vitro and also in vivo.
Collapse
Affiliation(s)
- James F Curtin
- The Board of Governors' Gene Therapeutics Research Institute, Cedars-Sinai Medical Center and Department of Molecular, Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Mandel RJ, Burger C, Snyder RO. Viral vectors for in vivo gene transfer in Parkinson's disease: properties and clinical grade production. Exp Neurol 2008; 209:58-71. [PMID: 17916354 PMCID: PMC2695880 DOI: 10.1016/j.expneurol.2007.08.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Revised: 08/08/2007] [Accepted: 08/16/2007] [Indexed: 12/18/2022]
Abstract
Because Parkinson's disease is a progressive degenerative disorder that is mainly confined to the basal ganglia, gene transfer to deliver therapeutic molecules is an attractive treatment avenue. The present review focuses on direct in vivo gene transfer vectors that have been developed to a degree that they have been successfully used in animal model of Parkinson's disease. Accordingly, the properties of recombinant adenovirus, recombinant adeno-associated virus, herpes simplex virus, and lentivirus are described and contrasted. In order for viral vectors to be developed into clinical grade reagents, they must be manufactured and tested to precise regulatory standards. Indeed, clinical lots of viral vectors can be produced in compliance with current Good Manufacturing Practices (cGMPs) regulations using industry accepted manufacturing methodologies, manufacturing controls, and quality systems. The viral vector properties themselves combined with physiological product formulations facilitate long-term storage and direct in vivo administration.
Collapse
Affiliation(s)
- Ronald J. Mandel
- Department of Neuroscience, PO box 100244, Gainesville, FL 32610, Tel. 352–294–0446, Fax: 352–392–8347,
- McKnight Brain Institute
- Powell Gene Therapy Center
- University of Florida, College of Medicine
| | - Corinna Burger
- Department of Neurology, University of Wisconsin Medical School
| | - Richard O. Snyder
- Powell Gene Therapy Center
- Department of Molecular Genetics and Microbiology, PO Box 100266, 1600 SW Archer Road, Gainesville, FL 32610–0266, Tel: 386–418–1642, Fax: 352–392–4290, e-mail:
- Department of Pediatrics
- University of Florida, College of Medicine
| |
Collapse
|
34
|
King GD, Muhammad AKMG, Curtin JF, Barcia C, Puntel M, Liu C, Honig SB, Candolfi M, Mondkar S, Lowenstein PR, Castro MG. Flt3L and TK gene therapy eradicate multifocal glioma in a syngeneic glioblastoma model. Neuro Oncol 2007; 10:19-31. [PMID: 18079358 DOI: 10.1215/15228517-2007-045] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The disseminated characteristics of human glioblastoma multiforme (GBM) make it a particularly difficult tumor to treat with long-term efficacy. Most preclinical models of GBM involve treatment of a single tumor mass. For therapeutic outcomes to translate from the preclinical to the clinical setting, induction of an antitumor response capable of eliminating multifocal disease is essential. We tested the hypothesis that expression of Flt3L (human soluble FMS-like tyrosine kinase 3 ligand) and TK (herpes simplex virus type 1-thymidine kinase) within brain gliomas would mediate regression of the primary, treated tumor mass and a secondary, untreated tumor growing at a distant site from the primary tumor and the site of therapeutic vector injection. In both the single-GBM and multifocal-GBM models used, all saline-treated control animals succumbed to tumors by day 22. Around 70% of the animals bearing a single GBM mass treated with an adenovirus expressing Flt3L (AdFlt3L) and an adenovirus expressing TK (AdTK + GCV) survived long term. Approximately 50% of animals bearing a large primary GBM that were implanted with a second GBM in the contralateral hemisphere at the same time the primary tumors were being treated with AdFlt3L and AdTK also survived long term. A second multifocal GBM model, in which bilateral GBMs were implanted simultaneously and only the right tumor mass was treated with AdFlt3L and AdTK, also demonstrated long-term survival. While no significant difference in survival was found between unifocal and multifocal GBM-bearing animals treated with AdFlt3L and AdTK, both treatments were statistically different from the saline-treated control group (p < 0.05). Our results demonstrate that combination therapy with AdFlt3L and AdTK can eradicate multifocal brain tumor disease in a syngeneic, intracranial GBM model.
Collapse
Affiliation(s)
- Gwendalyn D King
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Department of Molecular and Medical Pharmacology, University of California Los Angeles 90048, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Candolfi M, Curtin JF, Nichols WS, Muhammad AG, King GD, Pluhar GE, McNiel EA, Ohlfest JR, Freese AB, Moore PF, Lerner J, Lowenstein PR, Castro MG. Intracranial glioblastoma models in preclinical neuro-oncology: neuropathological characterization and tumor progression. J Neurooncol 2007; 85:133-48. [PMID: 17874037 PMCID: PMC2384236 DOI: 10.1007/s11060-007-9400-9] [Citation(s) in RCA: 260] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Accepted: 04/23/2007] [Indexed: 01/30/2023]
Abstract
Although rodent glioblastoma (GBM) models have been used for over 30 years, the extent to which they recapitulate the characteristics encountered in human GBMs remains controversial. We studied the histopathological features of dog GBM and human xenograft GBM models in immune-deficient mice (U251 and U87 GBM in nude Balb/c), and syngeneic GBMs in immune-competent rodents (GL26 cells in C57BL/6 mice, CNS-1 cells in Lewis rats). All GBMs studied exhibited neovascularization, pleomorphism, vimentin immunoreactivity, and infiltration of T-cells and macrophages. All the tumors showed necrosis and hemorrhages, except the U87 human xenograft, in which the most salient feature was its profuse neovascularization. The tumors differed in the expression of astrocytic intermediate filaments: human and dog GBMs, as well as U251 xenografts expressed glial fibrillary acidic protein (GFAP) and vimentin, while the U87 xenograft and the syngeneic rodent GBMs were GFAP(-) and vimentin(+). Also, only dog GBMs exhibited endothelial proliferation, a key feature that was absent in the murine models. In all spontaneous and implanted GBMs we found histopathological features compatible with tumor invasion into the non-neoplastic brain parenchyma. Our data indicate that murine models of GBM appear to recapitulate several of the human GBM histopathological features and, considering their reproducibility and availability, they constitute a valuable in vivo system for preclinical studies. Importantly, our results indicate that dog GBM emerges as an attractive animal model for testing novel therapies in a spontaneous tumor in the context of a larger brain.
Collapse
Affiliation(s)
- Marianela Candolfi
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Candolfi M, Pluhar GE, Kroeger K, Puntel M, Curtin J, Barcia C, Muhammad AG, Xiong W, Liu C, Mondkar S, Kuoy W, Kang T, McNeil EA, Freese AB, Ohlfest JR, Moore P, Palmer D, Ng P, Young JD, Lowenstein PR, Castro MG. Optimization of adenoviral vector-mediated transgene expression in the canine brain in vivo, and in canine glioma cells in vitro. Neuro Oncol 2007; 9:245-58. [PMID: 17522335 PMCID: PMC1907414 DOI: 10.1215/15228517-2007-012] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Expression of the immune-stimulatory molecule Fms-like tyrosine kinase 3 ligand (Flt3L) and the conditional cytotoxic enzyme herpes simplex virus type 1 thymidine kinase (HSV1-TK) provides long-term immune-mediated survival of large glioblastoma multiforme (GBM) models in rodents. A limitation for predictive testing of novel antiglioma therapies has been the lack of a glioma model in a large animal. Dogs bearing spontaneous GBM may constitute an attractive large-animal model for GBM, which so far has remained underappreciated. In preparation for a clinical trial in dogs bearing spontaneous GBMs, we tested and optimized adenovirus-mediated transgene expression with negligible toxicity in the dog brain in vivo and in canine J3T glioma cells. Expression of the marker gene beta-galactosidase (beta-Gal) was higher when driven by the murine (m) than the human (h) cytomegalovirus (CMV) promoter in the dog brain in vivo, without enhanced inflammation. In the canine brain, beta-Gal was expressed mostly in astrocytes. beta-Gal activity in J3T cells was also higher with the mCMV than the hCMV promoter driving tetracycline-dependent (TetON) transgene expression within high-capacity adenovirus vectors (HC-Ads). Dog glioma cells were efficiently transduced by HC-Ads expressing mCMV-driven HSV1-TK, which induced 90% reduction in cell viability in the presence of ganciclovir. J3T cells were also effectively transduced with HC-Ads expressing Flt3L under the control of the regulatable TetON promoter system, and as predicted, Flt3L release was stringently inducer dependent. HC-Ads encoding therapeutic transgenes under the control of regulatory sequences driven by the mCMV promoter are excellent vectors for the treatment of spontaneous GBM in dogs, which constitute an ideal preclinical animal model.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Maria G. Castro
- Address correspondence to Maria G. Castro, Room 5090, Davis Building, Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90069, USA (
)
| |
Collapse
|
37
|
Candolfi M, Kroeger KM, Pluhar GE, Bergeron J, Puntel M, Curtin JF, McNiel EA, Freese AB, Ohlfest JR, Moore P, Lowenstein PR, Castro MG. Adenoviral-mediated gene transfer into the canine brain in vivo. Neurosurgery 2007; 60:167-77; discussion 178. [PMID: 17228266 PMCID: PMC2095776 DOI: 10.1227/01.neu.0000249210.89096.6c] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE Glioblastoma multiforme (GBM) is a devastating brain tumor for which there is no cure. Adenoviral-mediated transfer of conditional cytotoxic (herpes simplex virus [HSV] 1-derived thymidine kinase [TK]) and immunostimulatory (Fms-like tyrosine kinase 3 ligand [Flt3L]) transgenes elicited immune-mediated long-term survival in a syngeneic intracranial GBM model in rodents. However, the lack of a large GBM animal model makes it difficult to predict the outcome of therapies in humans. Dogs develop spontaneous GBM that closely resemble the human disease; therefore, they constitute an excellent large animal model. We assayed the transduction efficiency of adenoviral vectors (Ads) encoding beta-galactosidase (betaGal), TK, and Flt3L in J3T dog GBM cells in vitro and in the dog brain in vivo. METHODS J3T cells were infected with Ads (30 plaque-forming units/cell; 72 h) encoding betaGal (Ad-betaGal), TK (Ad-TK), or Flt3L (Ad-Flt3L). We determined transgene expression by immunocytochemistry, betaGal activity, Flt3L enzyme-linked immunosorbent assay, and TK-induced cell death. Ads were also injected intracranially into the parietal cortex of healthy dogs. We determined cell-type specific transgene expression and immune cell infiltration. RESULTS Adenoviral-mediated gene transfer of HSV1-TK, Flt3L, and betaGal was detected in dog glioma cells in vitro (45% transduction efficiency) and in the dog brain in vivo (10-mm area transduced surrounding each injection site). T cells and macrophages/activated microglia infiltrated the injection sites. Importantly, no adverse clinical or neuropathological side effects were observed. CONCLUSION We demonstrate effective adenoviral-mediated gene transfer into the brain of dogs in vivo and support the use of these vectors to develop an efficacy trial for canine GBM as a prelude to human trials.
Collapse
Affiliation(s)
- Marianela Candolfi
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|