1
|
Mendell JR, Proud C, Zaidman CM, Mason S, Darton E, Wang S, Wandel C, Murphy AP, Mercuri E, Muntoni F, McDonald CM. Practical Considerations for Delandistrogene Moxeparvovec Gene Therapy in Patients With Duchenne Muscular Dystrophy. Pediatr Neurol 2024; 153:11-18. [PMID: 38306745 DOI: 10.1016/j.pediatrneurol.2024.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/02/2024] [Indexed: 02/04/2024]
Abstract
BACKGROUND Delandistrogene moxeparvovec is a gene transfer therapy approved in the United States, United Arab Emirates, and Qatar for the treatment of ambulatory patients aged four through five years with a confirmed Duchenne muscular dystrophy (DMD)-causing mutation in the DMD gene. This therapy was developed to address the underlying cause of DMD through targeted skeletal, respiratory, and cardiac muscle expression of delandistrogene moxeparvovec micro-dystrophin, an engineered, functional dystrophin protein. METHODS Drawing on clinical trial experience from Study 101 (NCT03375164), Study 102 (NCT03769116), and ENDEAVOR (Study 103; NCT04626674), we outline practical considerations for delandistrogene moxeparvovec treatment. RESULTS Before infusion, the following are recommended: (1) screen for anti-adeno-associated virus rhesus isolate serotype 74 total binding antibody titers <1:400; (2) assess liver function, platelet count, and troponin-I; (3) ensure patients are up to date with vaccinations and avoid vaccine coadministration with infusion; (4) administer additional corticosteroids starting one day preinfusion (for patients already on corticosteroids); and (5) postpone dosing patients with any infection or acute liver disease until event resolution. Postinfusion, the following are recommended: (1) monitor liver function weekly (three months postinfusion) and, if indicated, continue until results are unremarkable; (2) monitor troponin-I levels weekly (first month postinfusion, continuing if indicated); (3) obtain platelet counts weekly (two weeks postinfusion), continuing if indicated; and (4) maintain the corticosteroid regimen for at least 60 days postinfusion, unless earlier tapering is indicated. CONCLUSIONS Although the clinical safety profile of delandistrogene moxeparvovec has been consistent, monitorable, and manageable, these practical considerations may mitigate potential risks in a real-world clinical practice setting.
Collapse
Affiliation(s)
- Jerry R Mendell
- Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio; The Ohio State University, Columbus, Ohio.
| | - Crystal Proud
- Children's Hospital of the King's Daughters, Norfolk, Virginia
| | - Craig M Zaidman
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri
| | | | - Eddie Darton
- Sarepta Therapeutics, Inc, Cambridge, Massachusetts
| | - Shufang Wang
- Sarepta Therapeutics, Inc, Cambridge, Massachusetts
| | | | | | - Eugenio Mercuri
- Pediatric Neurology Institute, Catholic University and Nemo Pediatrico, Fondazione Policlinico Gemelli IRCCS, Rome, Italy
| | - Francesco Muntoni
- The Dubowitz Neuromuscular Centre, University College London, Great Ormond Street Institute of Child Health & Great Ormond Street Hospital, London, United Kingdom; National Institute of Health Research, Great Ormond Street Hospital Biomedical Research Centre, London, United Kingdom
| | - Craig M McDonald
- Department of Physical Medicine & Rehabilitation, UC Davis Health, Sacramento, California
| |
Collapse
|
2
|
Doody A, Alfano L, Diaz-Manera J, Lowes L, Mozaffar T, Mathews KD, Weihl CC, Wicklund M, Hung M, Statland J, Johnson NE. Defining clinical endpoints in limb girdle muscular dystrophy: a GRASP-LGMD study. BMC Neurol 2024; 24:96. [PMID: 38491364 PMCID: PMC10941356 DOI: 10.1186/s12883-024-03588-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/26/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND The Limb Girdle Muscular Dystrophies (LGMDs) are characterized by progressive weakness of the shoulder and hip girdle muscles as a result of over 30 different genetic mutations. This study is designed to develop clinical outcome assessments across the group of disorders. METHODS/DESIGN The primary goal of this study is to evaluate the utility of a set of outcome measures on a wide range of LGMD phenotypes and ability levels to determine if it would be possible to use similar outcomes between individuals with different phenotypes. We will perform a multi-center, 12-month study of 188 LGMD patients within the established Genetic Resolution and Assessments Solving Phenotypes in LGMD (GRASP-LGMD) Research Consortium, which is comprised of 11 sites in the United States and 2 sites in Europe. Enrolled patients will be clinically affected and have mutations in CAPN3 (LGMDR1), ANO5 (LGMDR12), DYSF (LGMDR2), DNAJB6 (LGMDD1), SGCA (LGMDR3), SGCB (LGMDR4), SGCD (LGMDR6), or SGCG (LGMDR5, or FKRP-related (LGMDR9). DISCUSSION To the best of our knowledge, this will be the largest consortium organized to prospectively validate clinical outcome assessments (COAs) in LGMD at its completion. These assessments will help clinical trial readiness by identifying reliable, valid, and responsive outcome measures as well as providing data driven clinical trial decision making for future clinical trials on therapeutic agents for LGMD. The results of this study will permit more efficient clinical trial design. All relevant data will be made available for investigators or companies involved in LGMD therapeutic development upon conclusion of this study as applicable. TRIAL REGISTRATION Clinicaltrials.gov NCT03981289; Date of registration: 6/10/2019.
Collapse
Affiliation(s)
- Amy Doody
- Virginia Commonwealth University, Richmond, VA, USA
| | | | | | - Linda Lowes
- Nationwide Children's Hospital, Columbus, OH, USA
| | | | | | | | | | - Man Hung
- Roseman University, Salt Lake City, UT, USA
| | | | | |
Collapse
|
3
|
Potter RA, Peterson EL, Griffin D, Cooper Olson G, Lewis S, Cochran K, Mendell JR, Rodino-Klapac LR. Use of plasmapheresis to lower anti-AAV antibodies in nonhuman primates with pre-existing immunity to AAVrh74. Mol Ther Methods Clin Dev 2024; 32:101195. [PMID: 38327805 PMCID: PMC10847772 DOI: 10.1016/j.omtm.2024.101195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 01/18/2024] [Indexed: 02/09/2024]
Abstract
Patients with pre-existing immunity to adeno-associated virus (AAV) are currently unable to receive systemic gene transfer therapies. In this nonhuman primate study, we investigated the impact of immunosuppression strategies on gene transfer therapy safety and efficacy and analyzed plasmapheresis as a potential pretreatment for circumvention of pre-existing immunity or redosing. In part 1, animals received delandistrogene moxeparvovec (SRP-9001), an AAVrh74-based gene transfer therapy for Duchenne muscular dystrophy. Cohort 1 (control, n = 2) received no immunosuppression; cohorts 2-4 (n = 3 per cohort) received prednisone at different time points; and cohort 5 (n = 3) received rituximab, sirolimus, and prednisone before and after dosing. In part 2, cohorts 2-4 underwent plasmapheresis before redosing; cohort 5 was redosed without plasmapheresis. We analyzed safety, immune response (humoral and cell-mediated responses and complement activation), and vector genome distribution. After 2 or 3 plasmapheresis exchanges, circulating anti-AAVrh74 antibodies were reduced, and animals were redosed. Plasmapheresis was well tolerated, with no abnormal clinical or immunological observations. Cohort 5 (redosed with high anti-AAVrh74 antibody titers) had hypersensitivity reactions, which were controlled with treatment. These findings suggest that plasmapheresis is a safe and effective method to reduce anti-AAV antibody levels in nonhuman primates prior to gene transfer therapy. The results may inform human studies involving redosing or circumvention of pre-existing immunity.
Collapse
Affiliation(s)
| | | | | | | | - Sarah Lewis
- Sarepta Therapeutics, Inc., Cambridge, MA 02142, USA
| | - Kyle Cochran
- Sarepta Therapeutics, Inc., Cambridge, MA 02142, USA
| | - Jerry R. Mendell
- Center for Gene Therapy, The Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Department of Pediatrics and Neurology, The Ohio State University, Columbus, OH 43210, USA
| | - Louise R. Rodino-Klapac
- Sarepta Therapeutics, Inc., Cambridge, MA 02142, USA
- Center for Gene Therapy, The Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Department of Pediatrics and Neurology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
4
|
Cossins J, Kozma I, Canzonetta C, Hawkins A, Beeson D, Sepulveda P, Dong Y. Dose escalation pre-clinical trial of novel DOK7-AAV in mouse model of DOK7 congenital myasthenia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.09.579626. [PMID: 38405691 PMCID: PMC10888934 DOI: 10.1101/2024.02.09.579626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Congenital myasthenic syndromes (CMS) are a group of inherited disorders characterised by defective neuromuscular transmission and fatigable muscle weakness. Mutations in DOK7 , a gene encoding a post-synaptic protein crucial in the formation and stabilisation of the neuromuscular junction (NMJ), rank among the leading three prevalent causes of CMS in diverse populations globally. The majority of DOK7 CMS patients experience varying degrees of disability despite receiving optimised treatment, necessitating the development of improved therapeutic approaches. Here we executed a dose escalation pre-clinical trial using a DOK7-CMS mouse model to assess the efficacy of Amp-101, an innovative AAV gene replacement therapy. Amp-101 is based on AAVrh74 and contains human DOK7 cDNA under the control of a muscle-restricted promoter. We show that at doses 6x10 13 vg/kg and 1x10 14 vg/kg, Amp-101 generated enlarged NMJs and rescued the very severe phenotype of the model. Treated mice became at least as strong as WT littermates and the diaphragm and tibialis anterior muscles displayed robust expression of DOK7. This data suggests that Amp-101 is a promising candidate to move forward to clinic trials.
Collapse
|
5
|
van Opbergen CJ, Narayanan B, Sacramento CB, Stiles KM, Mishra V, Frenk E, Ricks D, Chen G, Zhang M, Yarabe P, Schwartz J, Delmar M, Herzog CD, Cerrone M. AAV-Mediated Delivery of Plakophilin-2a Arrests Progression of Arrhythmogenic Right Ventricular Cardiomyopathy in Murine Hearts: Preclinical Evidence Supporting Gene Therapy in Humans. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2024; 17:e004305. [PMID: 38288614 PMCID: PMC10923105 DOI: 10.1161/circgen.123.004305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/30/2023] [Indexed: 02/22/2024]
Abstract
BACKGROUND Pathogenic variants in PKP2 (plakophilin-2) cause arrhythmogenic right ventricular cardiomyopathy, a disease characterized by life-threatening arrhythmias and progressive cardiomyopathy leading to heart failure. No effective medical therapy is available to prevent or arrest the disease. We tested the hypothesis that adeno-associated virus vector-mediated delivery of the human PKP2 gene to an adult mammalian heart deficient in PKP2 can arrest disease progression and significantly prolong survival. METHODS Experiments were performed using a PKP2-cKO (cardiac-specific, tamoxifen-activated PKP2 knockout murine model). The potential therapeutic, adeno-associated virus vector of serotype rh.74 (AAVrh.74)-PKP2a (PKP2 variant A; RP-A601) is a recombinant AAVrh.74 gene therapy viral vector encoding the human PKP2 variant A. AAVrh.74-PKP2a was delivered to adult mice by a single tail vein injection either before or after tamoxifen-activated PKP2-cKO. PKP2 expression was confirmed by molecular and histopathologic analyses. Cardiac function and disease progression were monitored by survival analyses, echocardiography, and electrocardiography. RESULTS Consistent with prior findings, loss of PKP2 expression caused 100% mortality within 50 days after tamoxifen injection. In contrast, AAVrh.74-PKP2a-mediated PKP2a expression resulted in 100% survival for >5 months (at study termination). Echocardiographic analysis revealed that AAVrh.74-PKP2a prevented right ventricle dilation, arrested left ventricle functional decline, and mitigated arrhythmia burden. Molecular and histological analyses showed AAVrh.74-PKP2a-mediated transgene mRNA and protein expression and appropriate PKP2 localization at the cardiomyocyte intercalated disc. Importantly, the therapeutic benefit was shown in mice receiving AAVrh.74-PKP2a after disease onset. CONCLUSIONS These preclinical data demonstrate the potential for AAVrh.74-PKP2a (RP-A601) as a therapeutic for PKP2-related arrhythmogenic right ventricular cardiomyopathy in both early and more advanced stages of the disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Grace Chen
- The Leon Charney Division of Cardiology, New York Univ Grossmann School of Medicine, New York, NY
| | - Mingliang Zhang
- The Leon Charney Division of Cardiology, New York Univ Grossmann School of Medicine, New York, NY
| | | | | | - Mario Delmar
- The Leon Charney Division of Cardiology, New York Univ Grossmann School of Medicine, New York, NY
| | | | - Marina Cerrone
- The Leon Charney Division of Cardiology, New York Univ Grossmann School of Medicine, New York, NY
| |
Collapse
|
6
|
Mendell JR, Pozsgai ER, Lewis S, Griffin DA, Lowes LP, Alfano LN, Lehman KJ, Church K, Reash NF, Iammarino MA, Sabo B, Potter R, Neuhaus S, Li X, Stevenson H, Rodino-Klapac LR. Gene therapy with bidridistrogene xeboparvovec for limb-girdle muscular dystrophy type 2E/R4: phase 1/2 trial results. Nat Med 2024; 30:199-206. [PMID: 38177855 PMCID: PMC10803256 DOI: 10.1038/s41591-023-02730-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/20/2023] [Indexed: 01/06/2024]
Abstract
Limb-girdle muscular dystrophy 2E/R4 is caused by mutations in the β-sarcoglycan (SGCB) gene, leading to SGCB deficiency and consequent muscle loss. We developed a gene therapy approach based on functional replacement of the deficient SCB protein. Here we report interim results from a first-in-human, open-label, nonrandomized, phase 1/2 trial evaluating the safety and efficacy of bidridistrogene xeboparvovec, an adeno-associated virus-based gene therapy containing a codon-optimized, full-length human SGCB transgene. Patients aged 4-15 years with confirmed SGCB mutations at both alleles received one intravenous infusion of either 1.85 × 1013 vector genome copies kg-1 (Cohort 1, n = 3) or 7.41 × 1013 vector gene copies kg-1 (Cohort 2, n = 3). Primary endpoint was safety, and secondary endpoint was change in SGCB expression in skeletal muscle from baseline to Day 60. We report interim Year 2 results (trial ongoing). The most frequent treatment-related adverse events were vomiting (four of six patients) and gamma-glutamyl transferase increase (three of six patients). Serious adverse events resolved with standard therapies. Robust SGCB expression was observed: Day 60 mean (s.d.) percentage of normal expression 36.2% (2.7%) in Cohort 1 and 62.1% (8.7%) in Cohort 2. Post hoc exploratory analysis showed preliminary motor improvements using the North Star Assessment for Limb-girdle Type Muscular Dystrophies maintained through Year 2. The 2-year safety and efficacy of bidridistrogene xeboparvovec support clinical development advancement. Further studies are necessary to confirm the long-term safety and efficacy of this gene therapy. ClinicalTrials.gov registration: NCT03652259 .
Collapse
Affiliation(s)
- Jerry R Mendell
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
- Department of Neurology, The Ohio State University, Columbus, OH, USA
| | | | - Sarah Lewis
- Sarepta Therapeutics, Inc., Cambridge, MA, USA
| | | | - Linda P Lowes
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Lindsay N Alfano
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Kelly J Lehman
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Kathleen Church
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Natalie F Reash
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Megan A Iammarino
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Brenna Sabo
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | | | | | - Xiaoxi Li
- Sarepta Therapeutics, Inc., Cambridge, MA, USA
| | | | | |
Collapse
|
7
|
Gushchina LV, Bradley AJ, Vetter TA, Lay JW, Rohan NL, Frair EC, Wein N, Flanigan KM. Persistence of exon 2 skipping and dystrophin expression at 18 months after U7snRNA-mediated therapy in the Dup2 mouse model. Mol Ther Methods Clin Dev 2023; 31:101144. [PMID: 38027058 PMCID: PMC10679948 DOI: 10.1016/j.omtm.2023.101144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023]
Abstract
Duchenne muscular dystrophy (DMD) is a progressive X-linked disease caused by mutations in the DMD gene that prevent the expression of a functional dystrophin protein. Exon duplications represent 6%-11% of mutations, and duplications of exon 2 (Dup2) are the most common (∼11%) of duplication mutations. An exon-skipping strategy for Dup2 mutations presents a large therapeutic window. Skipping one exon copy results in full-length dystrophin expression, whereas skipping of both copies (Del2) activates an internal ribosomal entry site (IRES) in exon 5, inducing the expression of a highly functional truncated dystrophin isoform. We have previously confirmed the therapeutic efficacy of AAV9.U7snRNA-mediated skipping in the Dup2 mouse model and showed the absence of off-target splicing effects and lack of toxicity in mice and nonhuman primates. Here, we report long-term dystrophin expression data following the treatment of 3-month-old Dup2 mice with the scAAV9.U7.ACCA vector. Significant exon 2 skipping and robust dystrophin expression in the muscles and hearts of treated mice persist at 18 months after treatment, along with the partial rescue of muscle function. These data extend our previous findings and show that scAAV9.U7.ACCA provides long-term protection by restoring the disrupted dystrophin reading frame in the context of exon 2 duplications.
Collapse
Affiliation(s)
- Liubov V. Gushchina
- The Center for Gene Therapy, Nationwide Children’s Hospital and The Ohio State University, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Adrienne J. Bradley
- The Center for Gene Therapy, Nationwide Children’s Hospital and The Ohio State University, Columbus, OH, USA
| | - Tatyana A. Vetter
- The Center for Gene Therapy, Nationwide Children’s Hospital and The Ohio State University, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Jacob W. Lay
- The Center for Gene Therapy, Nationwide Children’s Hospital and The Ohio State University, Columbus, OH, USA
| | - Natalie L. Rohan
- The Center for Gene Therapy, Nationwide Children’s Hospital and The Ohio State University, Columbus, OH, USA
| | - Emma C. Frair
- The Center for Gene Therapy, Nationwide Children’s Hospital and The Ohio State University, Columbus, OH, USA
| | - Nicolas Wein
- The Center for Gene Therapy, Nationwide Children’s Hospital and The Ohio State University, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Kevin M. Flanigan
- The Center for Gene Therapy, Nationwide Children’s Hospital and The Ohio State University, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
- Department of Neurology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
8
|
Ma S, Xing X, Huang H, Gao X, Xu X, Yang J, Liao C, Zhang X, Liu J, Tian W, Liao L. Skeletal muscle-derived extracellular vesicles transport glycolytic enzymes to mediate muscle-to-bone crosstalk. Cell Metab 2023; 35:2028-2043.e7. [PMID: 37939660 DOI: 10.1016/j.cmet.2023.10.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 07/25/2023] [Accepted: 10/17/2023] [Indexed: 11/10/2023]
Abstract
Identification of cues originating from skeletal muscle that govern bone formation is essential for understanding the crosstalk between muscle and bone and for developing therapies for degenerative bone diseases. Here, we identified that skeletal muscle secreted multiple extracellular vesicles (Mu-EVs). These Mu-EVs traveled through the bloodstream to reach bone, where they were phagocytized by bone marrow mesenchymal stem/stromal cells (BMSCs). Mu-EVs promoted osteogenic differentiation of BMSCs and protected against disuse osteoporosis in mice. The quantity and bioactivity of Mu-EVs were tightly correlated with the function of skeletal muscle. Proteomic analysis revealed numerous proteins in Mu-EVs, some potentially regulating bone metabolism, especially glycolysis. Subsequent investigations indicated that Mu-EVs promoted the glycolysis of BMSCs by delivering lactate dehydrogenase A into these cells. In summary, these findings reveal that Mu-EVs play a vital role in BMSC metabolism regulation and bone formation stimulation, offering a promising approach for treating disuse osteoporosis.
Collapse
Affiliation(s)
- Shixing Ma
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China; Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xiaotao Xing
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China; Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China; Laboratory Center of Stomatology, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Haisen Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xin Gao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China; Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xun Xu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China; Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jian Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chengcheng Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China; Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xuanhao Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China; Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jinglun Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China; Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China; Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Li Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China; Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
9
|
Querin G, Colella M. Gene therapy for primary myopathies: literature review and prospects. Arch Pediatr 2023; 30:8S18-8S23. [PMID: 38043978 DOI: 10.1016/s0929-693x(23)00223-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Gene therapy has emerged as a promising frontier in the pursuit of effective treatments for primary myopathies. This scientific review explores the application of viral vectors and more specifically of recombinant adeno-associated virus (rAAV) vectors as a potent gene delivery tool in the context of primary myopathies, highlighting its transformative potential. Focusing on primary myopathies, including Duchenne muscular dystrophy (DMD), limb-girdle muscular dystrophies (LGMDs), X-linked myotubular myopathy (XLMTM), and Pompe disease, we review the ongoing pre-clinical and clinical trials that underscore the therapeutic promise of rAAV-based gene therapies. Recent developments in gene therapy have unveiled innovative gene transfer approaches, particularly with rAAV vectors. These vectors offer a well-tolerated and efficient means of delivering corrective genetic material to diseased muscles, thereby addressing the root causes of primary myopathies. Encouraging data from pre-clinical studies and early clinical trials have demonstrated the potential to ameliorate muscle function, reduce pathological manifestations, and enhance the quality of life for patients afflicted with these devastating diseases. However, the transition from bench to bedside is not without challenges. This review emphasizes the critical need for a comprehensive risk management strategy to better handle potential side effects and immune responses associated with gene therapy. As the field of gene therapy for primary myopathies is advancing, it is imperative to refine and optimize safety measures, ensuring that the transformative potential of these therapies is realized while the risks are minimized. © 2023 Published by Elsevier Masson SAS on behalf of French Society of Pediatrics.
Collapse
Affiliation(s)
- Giorgia Querin
- APHP, Service de Neuromyologie, Hôpital Pitié-Salpêtrière, Centre référent pour les maladies neuromusculaires Nord/Est/Ile de France, Paris, France; Institut de Myologie, I-Motion clinical trials platform, Paris, France.
| | - Marina Colella
- Institut de Myologie, I-Motion clinical trials platform, Paris, France; APHP, Pediatric Neurology Department, Hôpital Armand Trousseau, Centre référent pour les maladies neuromusculaires Nord/Est/Ile de France, Paris, France
| |
Collapse
|
10
|
Strauss KA, Carson VJ, Bolettieri E, Everett M, Bollinger A, Bowser LE, Beiler K, Young M, Edvardson S, Fraenkel N, D'Amico A, Bertini E, Lingappa L, Chowdhury D, Lowes LP, Iammarino M, Alfano LN, Brigatti KW. WiTNNess: An international natural history study of infantile-onset TNNT1 myopathy. Ann Clin Transl Neurol 2023; 10:1972-1984. [PMID: 37632133 PMCID: PMC10647004 DOI: 10.1002/acn3.51884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/10/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
OBJECTIVE We created WiTNNess as a hybrid prospective/cross-sectional observational study to simulate a clinical trial for infantile-onset TNNT1 myopathy. Our aims were to identify populations for future trial enrollment, rehearse outcome assessments, specify endpoints, and refine trial logistics. METHODS Eligible participants had biallelic pathogenic variants of TNNT1 and infantile-onset proximal weakness without confounding conditions. The primary endpoint was ventilator-free survival. "Thriving" was a secondary endpoint defined as the ability to swallow and grow normally without non-oral feeding support. Endpoints of gross motor function included independent sitting and standing as defined by the Word Health Organization, a novel TNNT1 abbreviated motor score, and video mapping of limb movement. We recorded adverse events, concomitant medications, and indices of organ function to serve as comparators of safety in future trials. RESULTS Sixteen children were enrolled in the aggregate cohort (6 prospective, 10 cross-sectional; median census age 2.3 years, range 0.5-13.8). Median ventilator-free survival was 20.2 months and probability of death or permanent mechanical ventilation was 100% by age 60 months. All six children (100%) in the prospective arm failed to thrive by age 12 months. Only 2 of 16 (13%) children in the aggregate cohort sat independently and none stood alone. Novel exploratory motor assessments also proved informative. Laboratory and imaging data suggest that primary manifestations of TNNT1 deficiency are restricted to skeletal muscle. INTERPRETATION WiTNNess allowed us to streamline and economize the collection of historical control data without compromising scientific rigor, and thereby establish a sound operational framework for future clinical trials.
Collapse
Affiliation(s)
- Kevin A. Strauss
- Clinic for Special ChildrenStrasburgPennsylvaniaUSA
- Department of PediatricsPenn Medicine‐Lancaster General HospitalPennsylvaniaLancasterUSA
- Department of PediatricsUMass Chan Medical SchoolWorcesterMassachusettsUSA
- Department of Molecular, Cell & Cancer BiologyUMass Chan Medical SchoolWorcesterMassachusettsUSA
| | - Vincent J. Carson
- Clinic for Special ChildrenStrasburgPennsylvaniaUSA
- Department of PediatricsPenn Medicine‐Lancaster General HospitalPennsylvaniaLancasterUSA
| | | | | | | | | | | | - Millie Young
- Clinic for Special ChildrenStrasburgPennsylvaniaUSA
| | - Simon Edvardson
- ALYN Hospital Pediatric and Adolescent Rehabilitation CenterJerusalemIsrael
| | - Nitay Fraenkel
- ALYN Hospital Pediatric and Adolescent Rehabilitation CenterJerusalemIsrael
| | - Adele D'Amico
- Unit of Muscular and Neurodegenerative Disorders, Department of NeurosciencesIRCCS Bambino Gesù Children's HospitalRomeItaly
| | - Enrico Bertini
- Unit of Muscular and Neurodegenerative Disorders, Department of NeurosciencesIRCCS Bambino Gesù Children's HospitalRomeItaly
| | - Lokesh Lingappa
- Department of Pediatric NeurologyRainbow Children's HospitalHyderabadIndia
| | - Devyani Chowdhury
- Cardiology Care for ChildrenLancasterPennsylvaniaUSA
- Department of CardiologyNemours Children's HealthWilmingtonDelawareUSA
| | - Linda P. Lowes
- Center for Gene TherapyNationwide Children's HospitalColumbusOhioUSA
| | - Megan Iammarino
- Center for Gene TherapyNationwide Children's HospitalColumbusOhioUSA
| | - Lindsay N. Alfano
- Center for Gene TherapyNationwide Children's HospitalColumbusOhioUSA
| | | |
Collapse
|
11
|
Chan C, Harris KK, Zolotukhin S, Keeler GD. Rational Design of AAV-rh74, AAV3B, and AAV8 with Limited Liver Targeting. Viruses 2023; 15:2168. [PMID: 38005848 PMCID: PMC10675213 DOI: 10.3390/v15112168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
Recombinant adeno-associated viruses (rAAVs) have become one of the leading gene therapies for treating a variety of diseases. One factor contributing to rAAVs' success is the fact that a wide variety of tissue types can be transduced by different serotypes. However, one commonality amongst most serotypes is the high propensity for liver transduction when rAAVs are administered peripherally. One of the few exceptions is the naturally occurring clade F AAV hematopoietic stem cell 16 (AAVHSC16). AAVHSC16 represents an interesting capsid in that it shows minimal liver transduction when injected peripherally. For capsids other than AAVHSC16, targeting non-liver tissues via peripheral AAV injection represents a challenge due to the high liver transduction. Thus, there is a demand for liver-de-targeted rAAV vectors. The rational design of rAAV capsids relies on current knowledge to design improved capsids and represents one means of developing capsids with reduced liver transduction. Here, we utilized data from the AAVHSC16 capsid to rationally design four non-clade F rAAV capsids that result in reduced liver transduction following peripheral injection.
Collapse
Affiliation(s)
| | | | - Sergei Zolotukhin
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Geoffrey D. Keeler
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| |
Collapse
|
12
|
Potter RA, Griffin DA, Heller KN, Mendell JR, Rodino-Klapac LR. Expression and function of four AAV-based constructs for dystrophin restoration in the mdx mouse model of Duchenne muscular dystrophy. Biol Open 2023; 12:bio059797. [PMID: 37670674 PMCID: PMC10538294 DOI: 10.1242/bio.059797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 08/22/2023] [Indexed: 09/07/2023] Open
Abstract
Robust expression of shortened, functional dystrophin provided impetus to develop adeno-associated virus (AAV)-based constructs for clinical application. Because several cassettes are being tested in clinical trials, this study compared the efficacies of four shortened dystrophin-promoter combinations with implications for outcomes in clinical trials: MHCK7 or MCK promoter with a shortened dystrophin transgene containing the N-terminus and spectrin repeats R1, R2, R3 and R24 (rAAVrh74.MHCK7.micro-dystrophin and rAAVrh74.MCK.micro-dystrophin, respectively); shortened dystrophin construct containing the neuronal nitric oxide (nNOS) binding site (rAAVrh74.MHCK7.DV.mini-dystrophin); and shortened dystrophin containing the C-terminus (rAAVrh74.MHCK7.micro-dystrophin.Cterm). Functional and histological benefit were examined at 4 weeks following intramuscular delivery in mdx mice. rAAVrh74.MHCK7.micro-dystrophin provided the most robust transgene expression and significantly increased specific force output in the tibialis anterior muscle. Muscle environment was normalized (i.e. reductions in central nucleation), indicating functional and histological advantages of rAAVrh74.MHCK7.micro-dystrophin. Thus, promoter choice and transgene design are critical for optimal dystrophin expression/distribution for maximal functional improvement.
Collapse
Affiliation(s)
- Rachael A. Potter
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
- Sarepta Therapeutics, Inc., Cambridge, MA 02142, USA
| | - Danielle A. Griffin
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
- Sarepta Therapeutics, Inc., Cambridge, MA 02142, USA
| | - Kristin N. Heller
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Jerry R. Mendell
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
- Department of Pediatrics and Neurology, The Ohio State University, Columbus, OH 43210, USA
| | - Louise R. Rodino-Klapac
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
- Sarepta Therapeutics, Inc., Cambridge, MA 02142, USA
- Department of Pediatrics and Neurology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
13
|
Asher D, Dai D, Klimchak AC, Sedita LE, Gooch KL, Rodino-Klapac L. Paving the way for future gene therapies: A case study of scientific spillover from delandistrogene moxeparvovec. Mol Ther Methods Clin Dev 2023; 30:474-483. [PMID: 37674905 PMCID: PMC10477757 DOI: 10.1016/j.omtm.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Gene therapies have potential to improve outcomes of severe diseases after only a single administration. Novel therapies are continually being developed using knowledge gained from prior successes, a concept known as scientific spillover. Gene therapy advancement requires extensive development at each stage: preclinical work to create and evaluate vehicles for delivery of the therapy, design of clinical development programs, and establishment of a large-scale manufacturing process. Pioneering gene therapies are generating spillover as investigators confront myriad issues specific to this treatment modality. These include frameworks for construct engineering, dose evaluation, patient selection, outcome assessment, and safety monitoring. Consequently, the benefits of these therapies extend beyond offering knowledge for treating any one disease to establishing new platforms and paradigms that will accelerate advancement of future gene therapies. This impact is even more profound in rare diseases, where developing therapies in isolation may not be possible. This review describes some instances of scientific spillover in healthcare, and specifically gene therapy, using delandistrogene moxeparvovec (SRP-9001), a gene therapy recently approved by the US Food and Drug Administration for the treatment of ambulatory pediatric patients aged 4-5 years with Duchenne muscular dystrophy with a confirmed mutation in the DMD gene, as a case study.
Collapse
Affiliation(s)
- Damon Asher
- Sarepta Therapeutics, Inc., 215 First Street, Cambridge, MA 02142, USA
| | - Daisy Dai
- Sarepta Therapeutics, Inc., 215 First Street, Cambridge, MA 02142, USA
| | - Alexa C. Klimchak
- Sarepta Therapeutics, Inc., 215 First Street, Cambridge, MA 02142, USA
| | - Lauren E. Sedita
- Sarepta Therapeutics, Inc., 215 First Street, Cambridge, MA 02142, USA
| | | | | |
Collapse
|
14
|
Dietz J, Jacobsen F, Zhuge H, Daya N, Bigot A, Zhang W, Ehrhardt A, Vorgerd M, Ehrke-Schulz E. Muscle Specific Promotors for Gene Therapy - A Comparative Study in Proliferating and Differentiated Cells. J Neuromuscul Dis 2023:JND221574. [PMID: 37270809 DOI: 10.3233/jnd-221574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
BACKGROUND Depending on the therapy approach and disease background, the heterogeneity of muscular tissues complicates the development of targeted gene therapy, where either expression in all muscle types or restriction to only one muscle type is warranted. Muscle specificity can be achieved using promotors mediating tissue specific and sustained physiological expression in the desired muscle types but limited activity in non-targeted tissue. Several muscle specific promotors have been described, but direct comparisons between them are lacking. OBJECTIVE Here we present a direct comparison of muscle specific Desmin-, MHCK7, microRNA206- and Calpain3 promotor. METHODS To directly compare these muscle specific promotors we utilized transfection of reporter plasmids using an in vitro model based on electrical pulse stimulation (EPS) to provoke sarcomere formation in 2D cell culture for quantification of promotor activities in far differentiated mouse and human myotubes. RESULTS We found that Desmin- and MHCK7 promotors showed stronger reporter gene expression levels in proliferating and differentiated myogenic cell lines than miR206 and CAPN3 promotor. However, Desmin and MHCK7 promotor promoted gene expression also cardiac cells whereas miR206 and CAPN3 promotor expression was restricted to skeletal muscle. CONCLUSIONS Our results provides direct comparison of muscle specific promotors with regard to expression strengths and specificity as this is important feature to avoid undesired transgene expression in non-target muscle cells for a desired therapy approach.
Collapse
Affiliation(s)
- Julienne Dietz
- Department of Human Medicine, Institute of Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Faculty of Health, Witten/Herdecke University, Witten, Germany
- Department of Neurology, University Hospital Bergmannsheil, Heimer Institute for Muscle Research, Bochum, Germany
| | - Frank Jacobsen
- Department of Neurology, University Hospital Bergmannsheil, Heimer Institute for Muscle Research, Bochum, Germany
| | - Heidi Zhuge
- Department of Neurology, University Hospital Bergmannsheil, Heimer Institute for Muscle Research, Bochum, Germany
| | - Nassam Daya
- Department of Neurology, University Hospital Bergmannsheil, Heimer Institute for Muscle Research, Bochum, Germany
| | - Anne Bigot
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, F-75013 Paris, France
| | - Wenli Zhang
- Department of Human Medicine, Institute of Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Anja Ehrhardt
- Department of Human Medicine, Institute of Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Matthias Vorgerd
- Department of Neurology, University Hospital Bergmannsheil, Heimer Institute for Muscle Research, Bochum, Germany
| | - Eric Ehrke-Schulz
- Department of Human Medicine, Institute of Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Faculty of Health, Witten/Herdecke University, Witten, Germany
| |
Collapse
|
15
|
Ziegler A, Walter MC, Schoser BE. [Molecular therapies: present and future in neuromuscular diseases]. DER NERVENARZT 2023:10.1007/s00115-023-01495-3. [PMID: 37221259 DOI: 10.1007/s00115-023-01495-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/14/2023] [Indexed: 05/25/2023]
Abstract
BACKGROUND The possibilities in the field of molecular therapies of neuromuscular diseases have rapidly developed in recent years. First compounds are already available in clinical practice and numerous other substances are in advanced phases of clinical trials. This article gives an exemplary overview of the current state of clinical research in molecular therapies of neuromuscular diseases. It also gives a view into the near future of the clinical application, including the challenges. DISCUSSION Using Duchenne muscular dystrophy (DMD) and myotubular myopathy as examples, the principles of gene addition in monogenetic skeletal muscle diseases, which are already manifested in childhood are described. In addition to initial successes, the challenges and setbacks hindering the approval and regular clinical application of further compounds are demonstrated. Furthermore, the state of current clinical research in Becker-Kiener muscular dystrophy (BMD) and the numerous forms of limb-girdle muscular dystrophy (LGMD) are summarized. Numerous new therapeutic approaches and a corresponding outlook are also shown for facioscapulohumeral muscular dystrophy (FSHD), Pompe disease, and myotonic dystrophy. CONCLUSION Clinical research in the field of molecular therapy of neuromuscular diseases is one of the pacesetters of modern precision medicine; however, challenges need to be seen, jointly addressed and overcome in the future.
Collapse
Affiliation(s)
- Andreas Ziegler
- Zentrum für Kinder- und Jugendmedizin Heidelberg, Sektion Neuropädiatrie und Stoffwechselmedizin, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Deutschland.
| | - Maggie C Walter
- Friedrich-Baur-Institut an der Neurologischen Klinik und Poliklinik, Universitätsklinikum München, LMU München, Ziemssenstr. 1, 80336, München, Deutschland
| | - Benedikt E Schoser
- Friedrich-Baur-Institut an der Neurologischen Klinik und Poliklinik, Universitätsklinikum München, LMU München, Ziemssenstr. 1, 80336, München, Deutschland
| |
Collapse
|
16
|
Li H, Wang P, Hsu E, Pinckard KM, Stanford KI, Han R. Systemic AAV9.BVES delivery ameliorates muscular dystrophy in a mouse model of LGMDR25. Mol Ther 2023; 31:398-408. [PMID: 36433649 PMCID: PMC9931600 DOI: 10.1016/j.ymthe.2022.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/17/2022] [Accepted: 11/22/2022] [Indexed: 11/26/2022] Open
Abstract
Limb-girdle muscular dystrophy type R25 (LGMDR25) is caused by recessive mutations in BVES encoding a cAMP-binding protein, characterized by progressive muscular dystrophy with deteriorating muscle function and impaired cardiac conduction in patients. There is currently no therapeutic treatment for LGMDR25 patients. Here we report the efficacy and safety of recombinant adeno-associated virus 9 (AAV9)-mediated systemic delivery of human BVES driven by a muscle-specific promoter MHCK7 (AAV9.BVES) in BVES-knockout (BVES-KO) mice. AAV9.BVES efficiently transduced the cardiac and skeletal muscle tissues when intraperitoneally injected into neonatal BVES-KO mice. AAV9.BVES dramatically improved body weight gain, muscle mass, muscle strength, and exercise performance in BVES-KO mice regardless of sex. AAV9.BVES also significantly ameliorated the histopathological features of muscular dystrophy. The heart rate reduction was also normalized in BVES-KO mice under exercise-induced stress following systemic AAV9.BVES delivery. Moreover, intravenous AAV9.BVES administration into adult BVES-KO mice after the disease onset also resulted in substantial improvement in body weight, muscle mass, muscle contractility, and stress-induced heart rhythm abnormality. No obvious toxicity was detected. Taken together, these results provide the proof-of-concept evidence to support the AAV9.BVES gene therapy for LGMDR25.
Collapse
Affiliation(s)
- Haiwen Li
- Division of Cardiac Surgery, Department of Surgery, The Ohio State University, Columbus, OH 43210, USA
| | - Peipei Wang
- Division of Cardiac Surgery, Department of Surgery, The Ohio State University, Columbus, OH 43210, USA
| | - Ethan Hsu
- Division of Cardiac Surgery, Department of Surgery, The Ohio State University, Columbus, OH 43210, USA
| | - Kelsey M Pinckard
- Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Kristin I Stanford
- Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Renzhi Han
- Division of Cardiac Surgery, Department of Surgery, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
17
|
Goedeker NL, Dharia SD, Griffin DA, Coy J, Truesdale T, Parikh R, Whitehouse K, Santra S, Asher DR, Zaidman CM. Evaluation of rAAVrh74 gene therapy vector seroprevalence by measurement of total binding antibodies in patients with Duchenne muscular dystrophy. Ther Adv Neurol Disord 2023; 16:17562864221149781. [PMID: 36710722 PMCID: PMC9880577 DOI: 10.1177/17562864221149781] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/20/2022] [Indexed: 01/25/2023] Open
Abstract
Background Adeno-associated virus (AAV) vectors are a promising platform for in vivo transfer of transgenes designed to treat diseases. Pre-existing humoral immunity to these vectors can potentially impact the safety and efficacy of gene therapies. Consequently, individuals with pre-existing antibodies to the specific AAV serotypes used may be excluded from clinical trials and treatments. Recombinant AAV serotype rh74 (rAAVrh74), a vector originally isolated from rhesus monkeys and potentially less immunogenic than other serotypes isolated from humans (e.g. AAV2, AAV5, and AAV9), efficiently transduces muscle and is being investigated for use in gene therapy for Duchenne muscular dystrophy (DMD). Objective To evaluate prevalence of total binding antibodies (neutralizing and non-neutralizing) against rAAVrh74 in patients with DMD. Methods Eligible individuals (N = 107) were ⩾ 4 to < 18 years old with genetically confirmed DMD and were excluded from the study if they lived with a person who had known exposure to rAAVrh74 or other gene transfer therapy, or if they received prior treatment with gene transfer therapy. A single blood sample was obtained from each participant, and anti-rAAVrh74 total binding antibodies were measured by enzyme-linked immunosorbent assay. Total binding antibody level < 1:400 was defined as not elevated or seronegative. Primary endpoint was the percentage of subjects with elevated total antibody titers to rAAVrh74. Results A large preponderance (86.1%) of patients with DMD in this data set was seronegative for anti-rAAVrh74 total binding antibodies. These patients would potentially meet the antibody status eligibility criterion for entry into rAAVrh74-based gene therapy clinical trials. Conclusion Measuring total binding antibodies is a more comprehensive approach to assess pre-existing immune response versus measuring neutralizing antibodies alone. The low seroprevalence of total binding antibodies against rAAVrh74 shown here supports the broad applicability of rAAVrh74-based gene transfer therapy for patients with DMD and potentially other neuromuscular diseases.
Collapse
|
18
|
Systemic γ-sarcoglycan AAV gene transfer results in dose-dependent correction of muscle deficits in the LGMD 2C/R5 mouse model. Mol Ther Methods Clin Dev 2023; 28:284-299. [PMID: 36816759 PMCID: PMC9929442 DOI: 10.1016/j.omtm.2023.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 01/13/2023] [Indexed: 01/18/2023]
Abstract
Limb-girdle muscular dystrophy (LGMD) type 2C/R5 results from mutations in the γ-sarcoglycan (SGCG) gene and is characterized by muscle weakness and progressive wasting. Loss of functional γ-sarcoglycan protein in the dystrophin-associated protein complex destabilizes the sarcolemma, leading to eventual myofiber death. The SGCG knockout mouse (SGCG -/-) has clinical-pathological features that replicate the human disease, making it an ideal model for translational studies. We designed a self-complementary rAAVrh74 vector containing a codon-optimized human SGCG transgene driven by the muscle-specific MHCK7 promoter (SRP-9005) to investigate adeno-associated virus (AAV)-mediated SGCG gene transfer in SGCG -/- mice as proof of principle for LGMD 2C/R5. Gene transfer therapy resulted in widespread transgene expression in skeletal muscle and heart, improvements in muscle histopathology characterized by decreased central nuclei and fibrosis, and normalized fiber size. Histopathologic improvements were accompanied by functional improvements, including increased ambulation and force production and resistance to injury of the tibialis anterior and diaphragm muscles. This study demonstrates successful systemic delivery of the hSGCG transgene in SGCG -/- mice, with functional protein expression, reconstitution of the sarcoglycan complex, and corresponding physiological and functional improvements, which will help establish a minimal effective dose for translation of SRP-9005 gene transfer therapy in patients with LGMD 2C/R5.
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW The limb-girdle muscular dystrophies (LGMDs) are a group of inherited muscle disorders with a common feature of limb-girdle pattern of weakness, caused by over 29 individual genes. This article describes the classification scheme, common subtypes, and the management of individuals with LGMD. RECENT FINDINGS Advances in genetic testing and next-generation sequencing panels containing all of the LGMD genes have led to earlier genetic confirmation, but also to more individuals with variants of uncertain significance. The LGMDs include disorders with autosomal recessive inheritance, which are often due to loss-of-function mutations in muscle structural or repair proteins and typically have younger ages of onset and more rapidly progressive presentations, and those with autosomal dominant inheritance, which can have older ages of presentation and chronic progressive disease courses. All cause progressive disability and potential loss of ability to walk or maintain a job due to progressive muscle wasting. Certain mutations are associated with cardiac or respiratory involvement. No disease-altering therapies have been approved by the US Food and Drug Administration (FDA) for LGMDs and standard treatment uses a multidisciplinary clinic model, but recessive LGMDs are potentially amenable to systemic gene replacement therapies, which are already being tested in clinical trials for sarcoglycan and FKRP mutations. The dominant LGMDs may be amenable to RNA-based therapeutic approaches. SUMMARY International efforts are underway to better characterize LGMDs, help resolve variants of uncertain significance, provide consistent and improved standards of care, and prepare for future clinical trials.
Collapse
|
20
|
Cell-Based and Gene-Based Therapy Approaches in Neuro-orthopedic Disorders: a Literature Review. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2022. [DOI: 10.1007/s40883-022-00284-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
21
|
Marrone L, Marchi PM, Azzouz M. Circumventing the packaging limit of AAV-mediated gene replacement therapy for neurological disorders. Expert Opin Biol Ther 2022; 22:1163-1176. [PMID: 34904932 DOI: 10.1080/14712598.2022.2012148] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 11/25/2021] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Gene therapy provides the exciting opportunity of a curative single treatment for devastating diseases, eradicating the need for chronic medication. Adeno-associated viruses (AAVs) are among the most attractive vector carriers for gene replacement in vivo. Yet, despite the success of recent AAV-based clinical trials, the clinical use of these vectors has been limited. For instance, the AAV packaging capacity is restricted to ~4.7 kb, making it a substantial challenge to deliver large gene products. AREAS COVERED In this review, we explore established and emerging strategies that circumvent the packaging limit of AAVs to make them effective vehicles for gene replacement therapy of monogenic disorders, with a particular focus on diseases affecting the nervous system. We report historical references, design remarks, as well as strengths and weaknesses of these approaches. We additionally discuss examples of neurological disorders for which such strategies have been attempted. EXPERT OPINION The field of AAV-gene therapy has experienced enormous advancements in the last decade. However, there is still ample space for improvement aimed at overcoming existing challenges that are slowing down the progressive trajectory of this field.
Collapse
Affiliation(s)
- Lara Marrone
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Paolo M Marchi
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Mimoun Azzouz
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| |
Collapse
|
22
|
Antisense Morpholino-Based In Vitro Correction of a Pseudoexon-Generating Variant in the SGCB Gene. Int J Mol Sci 2022; 23:ijms23179817. [PMID: 36077211 PMCID: PMC9456520 DOI: 10.3390/ijms23179817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/11/2022] [Accepted: 08/24/2022] [Indexed: 11/24/2022] Open
Abstract
Limb-girdle muscular dystrophies (LGMD) are clinically and genetically heterogenous presentations displaying predominantly proximal muscle weakness due to the loss of skeletal muscle fibers. Beta-sarcoglycanopathy (LGMDR4) results from biallelic molecular defects in SGCB and features pediatric onset with limb-girdle involvement, often complicated by respiratory and heart dysfunction. Here we describe a patient who presented at the age of 12 years reporting high creatine kinase levels and onset of cramps after strenuous exercise. Instrumental investigations, including a muscle biopsy, pointed towards a diagnosis of beta-sarcoglycanopathy. NGS panel sequencing identified two variants in the SGCB gene, one of which (c.243+1548T>C) was found to promote the inclusion of a pseudoexon between exons 2 and 3 in the SGCB transcript. Interestingly, we detected the same genotype in a previously reported LGMDR4 patient, deceased more than twenty years ago, who had escaped molecular diagnosis so far. After the delivery of morpholino oligomers targeting the pseudoexon in patient-specific induced pluripotent stem cells, we observed the correction of the physiological splicing and partial restoration of protein levels. Our findings prompt the analysis of the c.243+1548T>C variant in suspected LGMDR4 patients, especially those harbouring monoallelic SGCB variants, and provide a further example of the efficacy of antisense technology for the correction of molecular defects resulting in splicing abnormalities.
Collapse
|
23
|
Advanced Gene-Targeting Therapies for Motor Neuron Diseases and Muscular Dystrophies. Int J Mol Sci 2022; 23:ijms23094824. [PMID: 35563214 PMCID: PMC9101723 DOI: 10.3390/ijms23094824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 12/19/2022] Open
Abstract
Gene therapy is a revolutionary, cutting-edge approach to permanently ameliorate or amend many neuromuscular diseases by targeting their genetic origins. Motor neuron diseases and muscular dystrophies, whose genetic causes are well known, are the frontiers of this research revolution. Several genetic treatments, with diverse mechanisms of action and delivery methods, have been approved during the past decade and have demonstrated remarkable results. However, despite the high number of genetic treatments studied preclinically, those that have been advanced to clinical trials are significantly fewer. The most clinically advanced treatments include adeno-associated virus gene replacement therapy, antisense oligonucleotides, and RNA interference. This review provides a comprehensive overview of the advanced gene therapies for motor neuron diseases (i.e., amyotrophic lateral sclerosis and spinal muscular atrophy) and muscular dystrophies (i.e., Duchenne muscular dystrophy, limb-girdle muscular dystrophy, and myotonic dystrophy) tested in clinical trials. Emphasis has been placed on those methods that are a few steps away from their authoritative approval.
Collapse
|
24
|
Coulibaly T, Ouabo AJ, Landouré G, Bah HO, Cissé L, Diallo SH, Diallo S, Samassékou O, Maïga AB, Kané F, Yalcouyé A, Taméga A, Bocoum A, Dembélé ME, Témé A, Sidibé CO, Cissé AK, Traoré O, Traoré M, Guinto CO. [Clinical and laboratory features of recessive Limb Girdle Muscular dystrophies in the Department Neurology of University Hospital of Point G]. HEALTH SCIENCES AND DISEASE : THE JOURNAL OF MEDICINE AND HEALTH SCIENCE 2021; 22:24-28. [PMID: 34824573 PMCID: PMC8612446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
INTRODUCTION Limb-Girdle Muscular dystrophies (LGMD) is a group of inherited diseases characterized by predominantly proximal and limb muscle weakness. These are rare diseases that have not been well studied in sub-saharan Africa. The aim of our was the clinical and paraclinical characterization of patients with recessive LGMD at the Department of Neurology of the Teaching Hospital of Point G. PATIENTS AND METHODS We conducted a longitudinal prospective study which took place from March 2014 to May 2019. Patients with recessive LGMD phenotype were enrolled. Sociodemographic, clinical and laboratory data were analyzed. RESULTS We enrolled 46 families (67 patients), i.e. a frequency of 16.7% among the neurodegenerative diseases seen in the service. Among them, 45.6% came from the Sikasso region. Autosomal recessive inheritance pattern was suspected in 67.4% of the families. Symptoms appeared mainly in the first decade of life. Proximal muscle weakness was found in almost all patients. Cardiac examination showed dilated cardiomyopathy in 4.5% of cases. CONCLUSION Limb-Girdle muscular dystrophy is a disabling disease that is found in Mali. Further study of these cases could elucidate the underlying genetic defects.
Collapse
Affiliation(s)
- Th Coulibaly
- Service de Neurologie, Centre Hospitalier Universitaire du Point G, Bamako, Mali
- Faculté de Médecine et d'Odontostomatologie, USTTB, Bamako, Mali
| | - A J Ouabo
- Service de Neurologie, Centre Hospitalier Universitaire du Point G, Bamako, Mali
| | - G Landouré
- Service de Neurologie, Centre Hospitalier Universitaire du Point G, Bamako, Mali
- Faculté de Médecine et d'Odontostomatologie, USTTB, Bamako, Mali
| | - H O Bah
- Faculté de Médecine et d'Odontostomatologie, USTTB, Bamako, Mali
- Service de Cardiologie, Centre Hospitalier Universitaire de Gabriel Touré, Bamako, Mali
| | - L Cissé
- Service de Neurologie, Centre Hospitalier Universitaire du Point G, Bamako, Mali
| | - S H Diallo
- Faculté de Médecine et d'Odontostomatologie, USTTB, Bamako, Mali
- Service de Neurologie, Centre Hospitalier Universitaire de Gabriel Touré, Bamako, Mali
| | - S Diallo
- Service de Neurologie, Centre Hospitalier Universitaire de Gabriel Touré, Bamako, Mali
| | - O Samassékou
- Faculté de Médecine et d'Odontostomatologie, USTTB, Bamako, Mali
| | - A B Maïga
- Service de Neurologie, Centre Hospitalier Universitaire du Point G, Bamako, Mali
| | - F Kané
- Faculté de Médecine et d'Odontostomatologie, USTTB, Bamako, Mali
| | - A Yalcouyé
- Faculté de Médecine et d'Odontostomatologie, USTTB, Bamako, Mali
| | - A Taméga
- Faculté de Médecine et d'Odontostomatologie, USTTB, Bamako, Mali
| | - A Bocoum
- Faculté de Médecine et d'Odontostomatologie, USTTB, Bamako, Mali
| | - M E Dembélé
- Faculté de Médecine et d'Odontostomatologie, USTTB, Bamako, Mali
| | - A Témé
- Service de Neurologie, Centre Hospitalier Universitaire du Point G, Bamako, Mali
| | - C O Sidibé
- Service de Neurologie, Centre Hospitalier Universitaire du Point G, Bamako, Mali
| | - A K Cissé
- Faculté de Médecine et d'Odontostomatologie, USTTB, Bamako, Mali
| | - O Traoré
- Faculté de Médecine et d'Odontostomatologie, USTTB, Bamako, Mali
| | - M Traoré
- Service de Cytogénétique et de Biologie Reproductive, INSP, Bamako, Mali
| | - C O Guinto
- Service de Neurologie, Centre Hospitalier Universitaire du Point G, Bamako, Mali
- Faculté de Médecine et d'Odontostomatologie, USTTB, Bamako, Mali
| |
Collapse
|
25
|
Alonso-Pérez J, González-Quereda L, Bruno C, Panicucci C, Alavi A, Nafissi S, Nilipour Y, Zanoteli E, de Augusto Isihi LM, Melegh B, Hadzsiev K, Muelas N, Vílchez JJ, Dourado ME, Kadem N, Kutluk G, Umair M, Younus M, Pegorano E, Bello L, Crawford TO, Suárez-Calvet X, Töpf A, Guglieri M, Marini-Bettolo C, Gallano P, Straub V, Díaz-Manera J. Clinical and genetic spectrum of a large cohort of patients with δ-sarcoglycan muscular dystrophy. Brain 2021; 145:596-606. [PMID: 34515763 PMCID: PMC9014751 DOI: 10.1093/brain/awab301] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/05/2021] [Accepted: 07/22/2021] [Indexed: 11/13/2022] Open
Abstract
Sarcoglycanopathies include four subtypes of autosomal recessive limb-girdle muscular dystrophies (LGMDR3, LGMDR4, LGMDR5 and LGMDR6) that are caused, respectively, by mutations in the SGCA, SGCB, SGCG and SGCD genes. Delta-sarcoglycanopathy (LGMDR6) is the least frequent and is considered an ultra-rare disease. Our aim was to characterize the clinical and genetic spectrum of a large international cohort of LGMDR6 patients and to investigate whether or not genetic or protein expression data could predict diseasés severity. This is a retrospective study collecting demographic, genetic, clinical and histological data of patients with genetically confirmed LGMDR6 including protein expression data from muscle biopsies. We contacted 128 pediatric and adult neuromuscular units around the world that reviewed genetic data of patients with a clinical diagnosis of a neuromuscular disorder. We identified 30 patients with a confirmed diagnosis of LGMDR6 of which 23 patients were included in this study. Eighty seven percent of the patients had consanguineous parents. Ninety one percent of the patients were symptomatic at the time of the analysis. Proximal muscle weakness of the upper and lower limbs was the most common presenting symptom. Distal muscle weakness was observed early over the course of the disease in 56.5% of the patients. Cardiac involvement was reported in 5 patients (21.7%) and 4 patients (17.4%) required non-invasive ventilation. Sixty percent of patients were wheelchair-bound since early teens (median age of 12.0 years old). Patients with absent expression of the sarcoglycan complex on muscle biopsy had a significant earlier onset of symptoms and an earlier age of loss of ambulation compared to patients with residual protein expression. This study confirmed that delta-sarcoglycanopathy is an ultra-rare neuromuscular condition and described the clinical and molecular characteristics of the largest yet-reported collected cohort of patients. Our results showed that this is a very severe and quickly progressive disease characterized by generalized muscle weakness affecting predominantly proximal and distal muscles of the limbs. Similar to other forms of sarcoglycanopathies, the severity and rate of progressive weakness correlates inversely with the abundance of protein on muscle biopsy.
Collapse
Affiliation(s)
- Jorge Alonso-Pérez
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Departament of Medicine, Barcelona, 08041, Spain
| | - Lidia González-Quereda
- Genetics Department, IIB Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, 08041, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Spain
| | - Claudio Bruno
- Center of Translational and Experimental Myology, IRCSS Istituto Giannina Gaslini, Genova, 16147, Italy
| | - Chiara Panicucci
- Center of Translational and Experimental Myology, IRCSS Istituto Giannina Gaslini, Genova, 16147, Italy
| | - Afagh Alavi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 13871, Iran
| | - Shahriar Nafissi
- Department of Neurology, Neuromuscular research center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, 14117, Iran
| | - Yalda Nilipour
- Pediatric Pathology Research Center, Research Institute for Children Health, Shahid Beheshti University of Medical Sciences, Tehran, 14117, Iran
| | - Edmar Zanoteli
- Department of Neurology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina da Universidade de São Paulo, São Paulo, 05403, Brazil
| | - Lucas Michielon de Augusto Isihi
- Department of Neurology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina da Universidade de São Paulo, São Paulo, 05403, Brazil
| | - Béla Melegh
- Department of Medical Genetics, and Szentagothai Research Center, University of Pecs, School of Medicine, Pecs, 07522, Hungary
| | - Kinga Hadzsiev
- Department of Medical Genetics, and Szentagothai Research Center, University of Pecs, School of Medicine, Pecs, 07522, Hungary
| | - Nuria Muelas
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Spain.,Neuromuscular Diseases Unit, Neurology Department, Hospital Universitari I Politècnic La Fe, Neuromuscular Reference Centre, ERN-EURO-NMD, Valencia, 46026, Spain.,Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, 46026, Spain
| | - Juan J Vílchez
- Genetics Department, IIB Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, 08041, Spain.,Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, 46026, Spain
| | - Mario Emilio Dourado
- Department of Integrative Medicine, Federal University of Rio Grande do Norte, Campus Universitário Lagoa Nova, 59012-300 Natal, RN, Brazil
| | - Naz Kadem
- University of Health Sciences, Antalya Research and Training Hospital, Department of Paediatric Neurology, Antalya, 07100, Turkey
| | - Gultekin Kutluk
- University of Health Sciences, Antalya Research and Training Hospital, Department of Paediatric Neurology, Antalya, 07100, Turkey
| | - Muhammad Umair
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs (MNGHA), Riyadh, 14611, Saudi Arabia.,Department of Life Sciences, School of Science, University of Management and Technology (UMT), Lahore, 54770, Pakistan
| | - Muhammad Younus
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Beijing 100871, China
| | - Elena Pegorano
- Department of Neuroscience, University of Padova, Padova, 35112, Italy
| | - Luca Bello
- Department of Neuroscience, University of Padova, Padova, 35112, Italy
| | - Thomas O Crawford
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Xavier Suárez-Calvet
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Departament of Medicine, Barcelona, 08041, Spain
| | - Ana Töpf
- The John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE1 3BZ, UK
| | - Michela Guglieri
- The John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE1 3BZ, UK
| | - Chiara Marini-Bettolo
- The John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE1 3BZ, UK
| | - Pia Gallano
- Genetics Department, IIB Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, 08041, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Spain
| | - Volker Straub
- The John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE1 3BZ, UK
| | - Jordi Díaz-Manera
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Departament of Medicine, Barcelona, 08041, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Spain.,The John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE1 3BZ, UK
| |
Collapse
|
26
|
Pozsgai E, Griffin D, Potter R, Sahenk Z, Lehman K, Rodino-Klapac LR, Mendell JR. Unmet needs and evolving treatment for limb girdle muscular dystrophies. Neurodegener Dis Manag 2021; 11:411-429. [PMID: 34472379 DOI: 10.2217/nmt-2020-0066] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Limb-girdle muscular dystrophies (LGMDs) represent a major group of muscle disorders. Treatment is sorely needed and currently expanding based on safety and efficacy adopting principles of single-dosing gene therapy for monogenic autosomal recessive disorders. Gene therapy has made in-roads for LGMD and this review describes progress that has been achieved for these conditions. This review first provides a background on the definition and classification of LGMDs. The major effort focuses on progress in LGMD gene therapy, from experimental studies to clinical trials. The disorders discussed include the LGMDs where the most work has been done including calpainopathies (LGMD2A/R1), dysferlinopathies (LGMD2B/R2) and sarcoglycanopathies (LGMD2C/R5, LGMD2D/R3, LGMD2E/R4). Early success in clinical trials provides a template to move the field forward and potentially apply emerging technology like CRISPR/Cas9 that may enhance the scope and efficacy of gene therapy applied to patient care.
Collapse
Affiliation(s)
- Eric Pozsgai
- Sarepta Therapeutics, Inc., Cambridge, MA 02142, USA
| | | | | | - Zarife Sahenk
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.,Department of Pediatrics & Neurology, The Ohio State University, Columbus, OH 43210, USA
| | - Kelly Lehman
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | | | - Jerry R Mendell
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.,Department of Pediatrics & Neurology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
27
|
Marchetti GB, Valenti L, Torrente Y. Clinical Determinants of Disease Progression in Patients With Beta-Sarcoglycan Gene Mutations. Front Neurol 2021; 12:657949. [PMID: 34276533 PMCID: PMC8280524 DOI: 10.3389/fneur.2021.657949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 05/14/2021] [Indexed: 11/22/2022] Open
Abstract
Background: Limb-girdle muscular dystrophy 2E (LGMD 2E), recently renamed as autosomal recessive limb-girdle muscular dystrophy-4 (LGMDR4), is characterized by the lack of beta-sarcoglycan, normally expressed in skeletal muscles and cardiomyocytes. We hypothesized that progressive respiratory and left ventricular (LV) failure in LGMDR4 could be associated with the age and interrelated phenomena of the disease's natural history. Methods: We conducted a retrospective review of the records of 26 patients with LGMDR4. Our primary objective was to compare the rates of decline among creatine phosphokinase (CPK) values, pulmonary function test (PFT) measures, and echocardiographic estimates and to relate them to patients' age. Results: The rates of decline/year of CPK, PFTs, and LV function estimates are significatively bound to age, with the LV ejection fraction (EF) being the strongest independent variable describing disease progression. Moreover, the rate of decline of CPK, PFTs, and LV differed in patients grouped according to their genetic mutations, demonstrating a possible genotype–phenotype correlation. The parallel trend of decline in CPK, PFT, and EF values demonstrates the presence in LGMDR4 of a simultaneous and progressive deterioration in muscular, respiratory, and cardiac function. Conclusions: This study expands the current knowledge regarding the trend of CPK values and cardiac and respiratory impairment in patients with LGMDR4, to optimize the monitoring of these patients, to improve their quality of life, and to provide clinical indices capable of quantifying the effects of any new gene or drug therapy.
Collapse
Affiliation(s)
- Giulia Bruna Marchetti
- Unit of Neurology, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione Istituto di Ricerca e Cura a Carattere Scientifico Cà Granda Ospedale Maggiore Policlinico, Centro Dino Ferrari, Milan, Italy
| | - Luca Valenti
- Department of Pathophysiology and Transplantation, Department of Transfusion Medicine and Hematology, Translational Medicine, Università degli Studi di Milano, Fondazione Istituto di Ricerca e Cura a Carattere Scientifico Ca' Granda, Milan, Italy
| | - Yvan Torrente
- Unit of Neurology, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione Istituto di Ricerca e Cura a Carattere Scientifico Cà Granda Ospedale Maggiore Policlinico, Centro Dino Ferrari, Milan, Italy
| |
Collapse
|
28
|
Abstract
Trauma, burn injury, sepsis, and ischemia lead to acute and chronic loss of skeletal muscle mass and function. Healthy muscle is essential for eating, posture, respiration, reproduction, and mobility, as well as for appropriate function of the senses including taste, vision, and hearing. Beyond providing support and contraction, skeletal muscle also exerts essential roles in temperature regulation, metabolism, and overall health. As the primary reservoir for amino acids, skeletal muscle regulates whole-body protein and glucose metabolism by providing substrate for protein synthesis and supporting hepatic gluconeogenesis during illness and starvation. Overall, greater muscle mass is linked to greater insulin sensitivity and glucose disposal, strength, power, and longevity. In contrast, low muscle mass correlates with dysmetabolism, dysmobility, and poor survival. Muscle mass is highly plastic, appropriate to its role as reservoir, and subject to striking genetic control. Defining mechanisms of muscle growth regulation holds significant promise to find interventions that promote health and diminish morbidity and mortality after trauma, sepsis, inflammation, and other systemic insults. In this invited review, we summarize techniques and methods to assess and manipulate muscle size and muscle mass in experimental systems, including cell culture and rodent models. These approaches have utility for studies of myopenia, sarcopenia, cachexia, and acute muscle growth or atrophy in the setting of health or injury.
Collapse
|
29
|
Abstract
The limb-girdle muscular dystrophies (LGMD) are a collection of genetic diseases united in their phenotypical expression of pelvic and shoulder area weakness and wasting. More than 30 subtypes have been identified, five dominant and 26 recessive. The increase in the characterization of new genotypes in the family of LGMDs further adds to the heterogeneity of the disease. Meanwhile, better understanding of the phenotype led to the reconsideration of the disease definition, which resulted in eight old subtypes to be no longer recognized officially as LGMD and five new diseases to be added to the LGMD family. The unique variabilities of LGMD stem from genetic mutations, which then lead to protein and ultimately muscle dysfunction. Herein, we review the LGMD pathway, starting with the genetic mutations that encode proteins involved in muscle maintenance and repair, and including the genotype–phenotype relationship of the disease, the epidemiology, disease progression, burden of illness, and emerging treatments.
Collapse
|
30
|
Muscle Diversity, Heterogeneity, and Gradients: Learning from Sarcoglycanopathies. Int J Mol Sci 2021; 22:ijms22052502. [PMID: 33801487 PMCID: PMC7958856 DOI: 10.3390/ijms22052502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 12/25/2022] Open
Abstract
Skeletal muscle, the most abundant tissue in the body, is heterogeneous. This heterogeneity forms the basis of muscle diversity, which is reflected in the specialized functions of muscles in different parts of the body. However, these different parts are not always clearly delimitated, and this often gives rise to gradients within the same muscle and even across the body. During the last decade, several studies on muscular disorders both in mice and in humans have observed particular distribution patterns of muscle weakness during disease, indicating that the same mutation can affect muscles differently. Moreover, these phenotypical differences reveal gradients of severity, existing alongside other architectural gradients. These two factors are especially prominent in sarcoglycanopathies. Nevertheless, very little is known about the mechanism(s) driving the phenotypic diversity of the muscles affected by these diseases. Here, we will review the available literature on sarcoglycanopathies, focusing on phenotypic differences among affected muscles and gradients, characterization techniques, molecular signatures, and cell population heterogeneity, highlighting the possibilities opened up by new technologies. This review aims to revive research interest in the diverse disease phenotype affecting different muscles, in order to pave the way for new therapeutic interventions.
Collapse
|
31
|
Griffin DA, Pozsgai ER, Heller KN, Potter RA, Peterson EL, Rodino-Klapac LR. Preclinical Systemic Delivery of Adeno-Associated α-Sarcoglycan Gene Transfer for Limb-Girdle Muscular Dystrophy. Hum Gene Ther 2021; 32:390-404. [PMID: 33349138 PMCID: PMC8066346 DOI: 10.1089/hum.2019.199] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Limb-girdle muscular dystrophy type 2D/R3 (LGMD2D/R3) is a progressive muscular dystrophy that manifests with muscle weakness, respiratory abnormalities, and in rare cases cardiomyopathy. LGMD2D/R3 is caused by mutations in the SGCA gene resulting in loss of protein and concomitant loss of some or all components of the dystrophin-associated glycoprotein complex. The sgca-null (sgca−/−) mouse recapitulates the clinical phenotype of patients with LGMD2D/R3, including dystrophic features such as muscle necrosis and fibrosis, elevated serum creatine kinase (CK), and reduction in the generation of absolute muscle force and locomotor activity. Thus, sgca−/− mice provide a relevant model to test the safety and efficacy of gene transfer. We designed a self-complementary AAVrh74 vector containing a codon-optimized full-length human SGCA (hSGCA) transgene driven by a muscle-specific promoter, shortened muscle creatine kinase (tMCK). In this report, we test the efficacy and safety of scAAVrh74.tMCK.hSGCA in sgca−/− mice using a dose-escalation design to evaluate a single systemic injection of 1.0 × 1012, 3.0 × 1012, and 6.0 × 1012 vg total dose compared with vehicle-treatment and wild-type mice. In sgca−/− mice, treatment with scAAVrh74.tMCK.hSGCA resulted in robust expression of α-sarcoglycan protein at the sarcolemma membrane in skeletal muscle at all doses tested. In addition, scAAVrh74.tMCK.hSGCA was effective in improving the histopathology of limb and diaphragm muscle of sgca−/− mice, as indicated by reductions in fibrosis, central nucleation, and normalization of myofiber size. These molecular changes were concomitant with significant increases in specific force generation in the diaphragm and tibialis anterior muscle, protection against eccentric force loss, and reduction in serum CK. Locomotor activity was improved at all doses of vector-treated compared with vehicle-treated sgca−/− mice. Lastly, vector toxicity was not detected in a serum chemistry panel and by gross necropsy. Collectively, these findings provide support for a systemic delivery of scAAVrh74.tMCK.hSGCA in a clinical setting for the treatment of LGMD2D/R3.
Collapse
Affiliation(s)
- Danielle A Griffin
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,Sarepta Therapeutics, Inc., Cambridge, Massachusetts, USA
| | - Eric R Pozsgai
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,Sarepta Therapeutics, Inc., Cambridge, Massachusetts, USA
| | - Kristin N Heller
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Rachael A Potter
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,Sarepta Therapeutics, Inc., Cambridge, Massachusetts, USA
| | - Ellyn L Peterson
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,Sarepta Therapeutics, Inc., Cambridge, Massachusetts, USA
| | | |
Collapse
|
32
|
Immunogenicity and inflammatory properties of respiratory syncytial virus attachment G protein in cotton rats. PLoS One 2021; 16:e0246770. [PMID: 33600439 PMCID: PMC7891763 DOI: 10.1371/journal.pone.0246770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 01/25/2021] [Indexed: 12/25/2022] Open
Abstract
Human respiratory syncytial virus (RSV) is a leading cause of lower respiratory tract infection in infants and young children worldwide. The attachment (G) protein of RSV is synthesized by infected cells in both a membrane bound (mG) and secreted form (sG) and uses a CX3C motif for binding to its cellular receptor. Cell culture and mouse studies suggest that the G protein mimics the cytokine CX3CL1 by binding to CX3CR1 on immune cells, which is thought to cause increased pulmonary inflammation in vivo. However, because these studies have used RSV lacking its G protein gene or blockade of the G protein with a G protein specific monoclonal antibody, the observed reduction in inflammation may be due to reduced virus replication and spread, and not to a direct role for G protein as a viral chemokine. In order to more directly determine the influence of the soluble and the membrane-bound forms of G protein on the immune system independent of its attachment function for the virion, we expressed the G protein in cotton rat lungs using adeno-associated virus (AAV), a vector system which does not itself induce inflammation. We found no increase in pulmonary inflammation as determined by histology and bronchoalveolar lavage after inoculation of AAVs expressing the membrane bound G protein, the secreted G protein or the complete G protein gene which expresses both forms. The long-term low-level expression of AAV-G did, however, result in the induction of non-neutralizing antibodies, CD8 T cells and partial protection from challenge with RSV. Complete protection was accomplished through co-immunization with AAV-G and an AAV expressing cotton rat interferon α.
Collapse
|
33
|
Potter RA, Griffin DA, Heller KN, Peterson EL, Clark EK, Mendell JR, Rodino-Klapac LR. Dose-Escalation Study of Systemically Delivered rAAVrh74.MHCK7.micro-dystrophin in the mdx Mouse Model of Duchenne Muscular Dystrophy. Hum Gene Ther 2021; 32:375-389. [PMID: 33397205 PMCID: PMC8063270 DOI: 10.1089/hum.2019.255] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a rare, X-linked, fatal, degenerative neuromuscular disease caused by mutations in the DMD gene. More than 2,000 mutations of the DMD gene are responsible for progressive loss of muscle strength, loss of ambulation, and generally respiratory and cardiac failure by age 30. Recently, gene transfer therapy has received widespread interest as a disease-modifying treatment for all patients with DMD. We designed an adeno-associated virus vector (rAAVrh74) containing a codon-optimized human micro-dystrophin transgene driven by a skeletal and cardiac muscle-specific promoter, MHCK7. To test the efficacy of rAAVrh74.MHCK7.micro-dystrophin, we evaluated systemic injections in mdx (dystrophin-null) mice at low (2 × 1012 vector genome [vg] total dose, 8 × 1013 vg/kg), intermediate (6 × 1012 vg total dose, 2 × 1014 vg/kg), and high doses (1.2 × 1013 vg total dose, 6 × 1014 vg/kg). Three months posttreatment, specific force increased in the diaphragm (DIA) and tibialis anterior muscle, with intermediate and high doses eliciting force outputs at wild-type (WT) levels. Histological improvement included reductions in fibrosis and normalization of myofiber size, specifically in the DIA, where results for low and intermediate doses were not significantly different from the WT. Significant reduction in central nucleation was also observed, although complete normalization to WT was not seen. No vector-associated toxicity was reported either by clinical or organ-specific laboratory assessments or following formal histopathology. The findings in this preclinical study provided proof of principle for safety and efficacy of systemic delivery of rAAVrh74.MHCK7.micro-dystrophin at high vector titers, supporting initiation of a Phase I/II safety study in boys with DMD.
Collapse
Affiliation(s)
- Rachael A Potter
- Sarepta Therapeutics, Inc., Cambridge, Massachusetts, USA.,Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Danielle A Griffin
- Sarepta Therapeutics, Inc., Cambridge, Massachusetts, USA.,Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Kristin N Heller
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Ellyn L Peterson
- Sarepta Therapeutics, Inc., Cambridge, Massachusetts, USA.,Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Emma K Clark
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Jerry R Mendell
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics and Neurology, The Ohio State University, Columbus, Ohio, USA
| | - Louise R Rodino-Klapac
- Sarepta Therapeutics, Inc., Cambridge, Massachusetts, USA.,Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics and Neurology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
34
|
Huang L, Wan J, Wu Y, Tian Y, Yao Y, Yao S, Ji X, Wang S, Su Z, Xu H. Challenges in adeno-associated virus-based treatment of central nervous system diseases through systemic injection. Life Sci 2021; 270:119142. [PMID: 33524419 DOI: 10.1016/j.lfs.2021.119142] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 12/19/2022]
Abstract
Adeno-associated virus (AAV) vector, an excellent gene therapy vector, has been widely used in the treatment of various central nervous system (CNS) diseases. Due to the presence of the blood-brain barrier (BBB), early attempts at AAV-based CNS diseases treatment were mainly performed through intracranial injections. Subsequently, systemic injections of AAV9, the first AAV that was shown to have BBB-crossing ability in newborn and adult mice, were assessed in clinical trials for multiple CNS diseases. However, the development of systemic AAV injections to treat CNS diseases is still associated with many challenges, such as the efficiency of AAV in crossing the BBB, the peripheral toxicity caused by the expression of AAV-delivered genes, and the immune barrier against AAV in the blood. In this review, we will introduce the biology of the AAV vector and the advantages of systemic AAV injections to treat CNS diseases. Most importantly, we will introduce the challenges associated with systemic injection of therapeutic AAV in treating CNS diseases and suggest feasible solutions.
Collapse
Affiliation(s)
- Lan Huang
- Department of Immunology, Jiangsu University, Zhenjiang 212013, China
| | - Jie Wan
- Department of Immunology, Jiangsu University, Zhenjiang 212013, China; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Yinqiu Wu
- Department of Immunology, Jiangsu University, Zhenjiang 212013, China
| | - Yu Tian
- Department of Immunology, Jiangsu University, Zhenjiang 212013, China
| | - Yizheng Yao
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Shun Yao
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Xiaoyun Ji
- Department of Immunology, Jiangsu University, Zhenjiang 212013, China
| | - Shengjun Wang
- Department of Immunology, Jiangsu University, Zhenjiang 212013, China
| | - Zhaoliang Su
- Department of Immunology, Jiangsu University, Zhenjiang 212013, China
| | - Huaxi Xu
- Department of Immunology, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
35
|
Fernández-Eulate G, Leturcq F, Laforêt P, Richard I, Stojkovic T. [Sarcoglycanopathies: state of the art and therapeutic perspectives]. Med Sci (Paris) 2021; 36 Hors série n° 2:22-27. [PMID: 33427632 DOI: 10.1051/medsci/2020243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Sarcoglycanopathies are the third most common cause of autosomal recessive limb girdle muscular dystrophies (LGMD). They are the result of a deficiency in one of the sarcoglycans a, b, g, or d. The usual clinical presentation is that of a symmetrical involvement of the muscles of the pelvic and scapular girdles as well as of the trunk, associated with more or less severe cardio-respiratory impairment and a marked increase of serum CK levels. The first symptoms appear during the first decade, the loss of ambulation occurring often during the second decade. Lesions observed on the muscle biopsy are dystrophic. This is associated with a decrease or an absence of immunostaining of the sarcoglycan corresponding to the mutated gene and, to a lesser degree, of the other three sarcoglycans. Many mutations have been reported in the four incriminated genes and some of them are prevalent in certain populations. To date, there is no curative treatment, which does not prevent the development of many clinical trials, especially in gene therapy.
Collapse
Affiliation(s)
- Gorka Fernández-Eulate
- Centre de Référence des maladies neuromusculaires Nord/Est/Île-de-France, APHP, Groupe Hospitalier Pitié-Salpêtrière, Sorbonne Université, Paris, France
| | - France Leturcq
- Laboratoire de biochimie génétique. APHP, Hôpital Cochin, Paris, France
| | - Pascal Laforêt
- Centre de Référence des maladies neuromusculaires Nord/Est/Île-de-France. APHP, CHU Raymond Poincaré, Garches. Université Paris-Saclay, France
| | - Isabelle Richard
- Généthon, 91000, Évry, France - Université Paris-Saclay, Université d'Evry, Inserm, Généthon, unité de recherche Integrare UMR_S951, 91000, Évry, France
| | - Tanya Stojkovic
- Centre de Référence des maladies neuromusculaires Nord/Est/Île-de-France, APHP, Groupe Hospitalier Pitié-Salpêtrière, Sorbonne Université, Paris, France
| |
Collapse
|
36
|
Skopenkova VV, Egorova TV, Bardina MV. Muscle-Specific Promoters for Gene Therapy. Acta Naturae 2021; 13:47-58. [PMID: 33959386 PMCID: PMC8084301 DOI: 10.32607/actanaturae.11063] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 07/30/2020] [Indexed: 12/19/2022] Open
Abstract
Many genetic diseases that are responsible for muscular disorders have been described to date. Gene replacement therapy is a state-of-the-art strategy used to treat such diseases. In this approach, the functional copy of a gene is delivered to the affected tissues using viral vectors. There is an urgent need for the design of short, regulatory sequences that would drive a high and robust expression of a therapeutic transgene in skeletal muscles, the diaphragm, and the heart, while exhibiting limited activity in non-target tissues. This review focuses on the development and improvement of muscle-specific promoters based on skeletal muscle α-actin, muscle creatine kinase, and desmin genes, as well as other genes expressed in muscles. The current approaches used to engineer synthetic muscle-specific promoters are described. Other elements of the viral vectors that contribute to tissue-specific expression are also discussed. A special feature of this review is the presence of up-to-date information on the clinical and preclinical trials of gene therapy drug candidates that utilize muscle-specific promoters.
Collapse
Affiliation(s)
- V. V. Skopenkova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia
- Marlin Biotech LLC, Moscow, 121205 Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia
| | - T. V. Egorova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia
- Marlin Biotech LLC, Moscow, 121205 Russia
| | - M. V. Bardina
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia
- Marlin Biotech LLC, Moscow, 121205 Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia
| |
Collapse
|
37
|
Flotats-Bastardas M, Hahn A. New Therapeutics Options for Pediatric Neuromuscular Disorders. Front Pediatr 2020; 8:583877. [PMID: 33330280 PMCID: PMC7719776 DOI: 10.3389/fped.2020.583877] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/22/2020] [Indexed: 12/14/2022] Open
Abstract
Neuromuscular disorders (NMDs) of Childhood onset are a genetically heterogeneous group of diseases affecting the anterior horn cell, the peripheral nerve, the neuromuscular junction, or the muscle. For many decades, treatment of NMDs has been exclusively symptomatic. But this has changed fundamentally in recent years due to the development of new drugs attempting either to ameliorate secondary pathophysiologic consequences or to modify the underlying genetic defect itself. While the effects on the course of disease are still modest in some NMDs (e.g., Duchenne muscular dystrophy), new therapies have substantially prolonged life expectancy and improved motor function in others (e.g., spinal muscular atrophy and infantile onset Pompe disease). This review summarizes recently approved medicaments and provides an outlook for new therapies that are on the horizon in this field.
Collapse
Affiliation(s)
| | - Andreas Hahn
- Department of Child Neurology, University of Giessen, Giessen, Germany
| |
Collapse
|
38
|
Brenner D, Ludolph AC, Weishaupt JH. Gene specific therapies - the next therapeutic milestone in neurology. Neurol Res Pract 2020; 2:25. [PMID: 33324928 PMCID: PMC7650126 DOI: 10.1186/s42466-020-00075-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023] Open
Abstract
Gene selective approaches that either correct a disease mutation or a pathogenic mechanism will fundamentally change the treatment of neurological disorders. Basically, gene specific therapies are designed to manipulate RNA expression or reconstitute gene expression and function depending on the disease mechanism. Considerable methodological advances in the last years have made successful clinical translation of gene selective approaches possible, based on RNA interference or viral gene reconstitution in spinal muscular atrophy (SMA), Duchenne muscular dystrophy (DMD), and familial amyloid polyneuropathy (FAP). In this review, we provide an overview of the existing and coming gene specific therapies in neurology and discuss benefits, risks and challenges.
Collapse
Affiliation(s)
- David Brenner
- Department of Neurology, University of Ulm, Ulm, Germany
- Division of Neurodegenerative Diseases, Neurology Department, University Medicine Mannheim, Mannheim, Germany
| | - Albert C. Ludolph
- Department of Neurology, University of Ulm, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE), Ulm, Germany
| | - Jochen H. Weishaupt
- Department of Neurology, University of Ulm, Ulm, Germany
- Division of Neurodegenerative Diseases, Neurology Department, University Medicine Mannheim, Mannheim, Germany
| |
Collapse
|
39
|
The ties that bind: functional clusters in limb-girdle muscular dystrophy. Skelet Muscle 2020; 10:22. [PMID: 32727611 PMCID: PMC7389686 DOI: 10.1186/s13395-020-00240-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/16/2020] [Indexed: 12/13/2022] Open
Abstract
The limb-girdle muscular dystrophies (LGMDs) are a genetically pleiomorphic class of inherited muscle diseases that are known to share phenotypic features. Selected LGMD genetic subtypes have been studied extensively in affected humans and various animal models. In some cases, these investigations have led to human clinical trials of potential disease-modifying therapies, including gene replacement strategies for individual subtypes using adeno-associated virus (AAV) vectors. The cellular localizations of most proteins associated with LGMD have been determined. However, the functions of these proteins are less uniformly characterized, thus limiting our knowledge of potential common disease mechanisms across subtype boundaries. Correspondingly, broad therapeutic strategies that could each target multiple LGMD subtypes remain less developed. We believe that three major "functional clusters" of subcellular activities relevant to LGMD merit further investigation. The best known of these is the glycosylation modifications associated with the dystroglycan complex. The other two, mechanical signaling and mitochondrial dysfunction, have been studied less systematically but are just as promising with respect to the identification of significant mechanistic subgroups of LGMD. A deeper understanding of these disease pathways could yield a new generation of precision therapies that would each be expected to treat a broader range of LGMD patients than a single subtype, thus expanding the scope of the molecular medicines that may be developed for this complex array of muscular dystrophies.
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW As a group, the limb-girdle muscular dystrophies (LGMDs) are the fourth most prevalent genetic muscle disease, yet they are still not well known or understood. This article defines and describes LGMDs, delineates a diagnostic strategy, and discusses treatment of the LGMDs. RECENT FINDINGS In 2018, the definition of the LGMDs was further refined, and a new nomenclature was proposed. Diagnosis of the LGMDs was long guided by the distinctive clinical characteristics of each particular subtype but now integrates use of genetics-with next-generation sequencing panels, exomes, and full genome analysis-early in the diagnostic assessment. Appreciation of the phenotypic diversity of each LGMD subtype continues to expand. This emphasizes the need for precision genetic diagnostics to better understand each subtype and formulate appropriate management for individual patients. Of significant relevance, the explosion of research into therapeutic options accentuates the need for accurate diagnosis, comprehensive disease characterization, and description of the natural histories of the LGMDs to move the field forward and to mitigate disease impact on patients with LGMD. SUMMARY The LGMDs are genetic muscle diseases that superficially appear similar to one another but have important differences in rates of progression and concomitant comorbidities. Definitive diagnoses are crucial to guide management and treatment now and in the future. As targeted treatments emerge, it will be important for clinicians to understand the nomenclature, diagnosis, clinical manifestations, and treatments of the LGMDs.
Collapse
|
41
|
Taheri F, Taghizadeh E, Pour MJR, Rostami D, Renani PG, Rastgar-Moghadam A, Hayat SMG. Limb-girdle Muscular Dystrophy and Therapy: Insights into Cell and Gene-based Approaches. Curr Gene Ther 2020; 19:386-394. [PMID: 32067617 DOI: 10.2174/1566523220666200218113526] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/11/2020] [Accepted: 02/04/2020] [Indexed: 12/17/2022]
Abstract
The Limb-Girdle Muscular Dystrophies (LGMD) are genetically heterogeneous disorders, responsible for muscle wasting and severe form of dystrophies. Despite the critical developments in the insight and information of pathomechanisms of limb-girdle muscular dystrophy, any definitive treatments do not exist, and current strategies are only based on the improvement of the signs of disorder and to enhance the life quality without resolving an underlying cause. There is a crucial relationship between pharmacological therapy and different consequences; therefore, other treatment strategies will be required. New approaches, such as gene replacement, gene transfer, exon skipping, siRNA knockdown, and anti-myostatin therapy, which can target specific cellular or molecular mechanism of LGMD, could be a promising avenue for the treatment. Recently, genome engineering strategies with a focus on molecular tools such as CRISPR-Cas9 are used to different types of neuromuscular disorders and show the highest potential for clinical translation of these therapies. Thus, recent advancements and challenges in the field will be reviewed in this paper.
Collapse
Affiliation(s)
- Forough Taheri
- Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Eskandar Taghizadeh
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.,Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad J R Pour
- Department of Biology, Faculty of Sciences, Mashhad-Branch, Islamic Azad University, Mashhad, Iran
| | - Daryoush Rostami
- Department of School Allied, Zabol University of Medical Sciences, Zabol, Iran
| | - Pedram G Renani
- Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Azam Rastgar-Moghadam
- Department of Genetics, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Seyed M G Hayat
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
42
|
Asher DR, Thapa K, Dharia SD, Khan N, Potter RA, Rodino-Klapac LR, Mendell JR. Clinical development on the frontier: gene therapy for duchenne muscular dystrophy. Expert Opin Biol Ther 2020; 20:263-274. [PMID: 32031420 DOI: 10.1080/14712598.2020.1725469] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: The development of adeno-associated virus (AAV) vectors as safe vehicles for in vivo delivery of therapeutic genes has been a major milestone in the advancement of gene therapy, enabling a promising strategy for ameliorating a wide range of diseases, including Duchenne muscular dystrophy (DMD).Areas covered: Based on experience with the development of a gene transfer therapy agent for DMD, we discuss ways in which gene therapy for rare disease challenges traditional clinical development paradigms, and recommend a step-wise approach for design and evaluation to support broader applicability of gene therapy.Expert opinion: The gene therapy development approach should intentionally design the therapeutic construct and the clinical study to systematically evaluate agent delivery, safety, and efficacy. Rigorous preclinical work is essential for establishing an effective gene delivery platform and determining the efficacious dose. Clinical studies should thoroughly evaluate transduction, on-target transgene expression at the tissue and cellular level, and functional efficacy.
Collapse
Affiliation(s)
- Damon R Asher
- Sarepta Therapeutics, Inc, Cambridge, Massachusetts, USA
| | | | - Sachi D Dharia
- Sarepta Therapeutics, Inc, Cambridge, Massachusetts, USA
| | - Navid Khan
- Sarepta Therapeutics, Inc, Cambridge, Massachusetts, USA
| | | | | | - Jerry R Mendell
- Center for Gene Therapy, The Abigail Wexner, Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics and Neurology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
43
|
Abstract
Skeletal muscle fibres are multinucleated cells that contain postmitotic nuclei (i.e. they are no longer able to divide) and perform muscle contraction. They are formed by fusion of muscle precursor cells, and grow into elongating myofibres by the addition of further precursor cells, called satellite cells, which are also responsible for regeneration following injury. Skeletal muscle regeneration occurs in most muscular dystrophies in response to necrosis of muscle fibres. However, the complex environment within dystrophic skeletal muscle, which includes inflammatory cells, fibroblasts and fibro-adipogenic cells, together with the genetic background of the in vivo model and the muscle being studied, complicates the interpretation of laboratory studies on muscular dystrophies. Many genes are expressed in satellite cells and in other tissues, which makes it difficult to determine the molecular cause of various types of muscular dystrophies. Here, and in the accompanying poster, we discuss our current knowledge of the cellular mechanisms that govern the growth and regeneration of skeletal muscle, and highlight the defects in satellite cell function that give rise to muscular dystrophies. Summary: The mechanisms of skeletal muscle development, growth and regeneration are described. We discuss whether these processes are dysregulated in inherited muscle diseases and identify pathways that may represent therapeutic targets.
Collapse
Affiliation(s)
- Jennifer Morgan
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK .,National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London WC1N 1EH, UK
| | - Terence Partridge
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK.,National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London WC1N 1EH, UK.,Center for Genetic Medicine Research, Children's National Medical Center, 111 Michigan Ave NW, Washington, DC 20010, USA
| |
Collapse
|
44
|
Zhang Y, Li H, Min YL, Sanchez-Ortiz E, Huang J, Mireault AA, Shelton JM, Kim J, Mammen PPA, Bassel-Duby R, Olson EN. Enhanced CRISPR-Cas9 correction of Duchenne muscular dystrophy in mice by a self-complementary AAV delivery system. SCIENCE ADVANCES 2020; 6:eaay6812. [PMID: 32128412 PMCID: PMC7030925 DOI: 10.1126/sciadv.aay6812] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 12/03/2019] [Indexed: 05/25/2023]
Abstract
Duchenne muscular dystrophy (DMD) is a lethal neuromuscular disease caused by mutations in the dystrophin gene (DMD). Previously, we applied CRISPR-Cas9-mediated "single-cut" genome editing to correct diverse genetic mutations in animal models of DMD. However, high doses of adeno-associated virus (AAV) are required for efficient in vivo genome editing, posing challenges for clinical application. In this study, we packaged Cas9 nuclease in single-stranded AAV (ssAAV) and CRISPR single guide RNAs in self-complementary AAV (scAAV) and delivered this dual AAV system into a mouse model of DMD. The dose of scAAV required for efficient genome editing were at least 20-fold lower than with ssAAV. Mice receiving systemic treatment showed restoration of dystrophin expression and improved muscle contractility. These findings show that the efficiency of CRISPR-Cas9-mediated genome editing can be substantially improved by using the scAAV system. This represents an important advancement toward therapeutic translation of genome editing for DMD.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hui Li
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yi-Li Min
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Efrain Sanchez-Ortiz
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jian Huang
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Alex A. Mireault
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - John M. Shelton
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jiwoong Kim
- Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Pradeep P. A. Mammen
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rhonda Bassel-Duby
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Eric N. Olson
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
45
|
Dupont JB, Guo J, Renaud-Gabardos E, Poulard K, Latournerie V, Lawlor MW, Grange RW, Gray JT, Buj-Bello A, Childers MK, Mack DL. AAV-Mediated Gene Transfer Restores a Normal Muscle Transcriptome in a Canine Model of X-Linked Myotubular Myopathy. Mol Ther 2019; 28:382-393. [PMID: 31784415 DOI: 10.1016/j.ymthe.2019.10.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 09/13/2019] [Accepted: 10/31/2019] [Indexed: 12/27/2022] Open
Abstract
Multiple clinical trials employing recombinant adeno-associated viral (rAAV) vectors have been initiated for neuromuscular disorders, including Duchenne and limb-girdle muscular dystrophies, spinal muscular atrophy, and recently X-linked myotubular myopathy (XLMTM). Our previous work on a canine model of XLMTM showed that a single rAAV8-cMTM1 systemic infusion corrected structural abnormalities within the muscle and restored contractile function, with affected dogs surviving more than 4 years post injection. This remarkable therapeutic efficacy presents a unique opportunity to identify the downstream molecular drivers of XLMTM pathology and to what extent the whole muscle transcriptome is restored to normal after gene transfer. Herein, RNA-sequencing was used to examine the transcriptomes of the Biceps femoris and Vastus lateralis in a previously described canine cohort that showed dose-dependent clinical improvements after rAAV8-cMTM1 gene transfer. Our analysis confirmed several dysregulated genes previously observed in XLMTM mice but also identified transcripts linked to XLMTM pathology. We demonstrated XLMTM transcriptome remodeling and dose-dependent normalization of gene expression after gene transfer and created metrics to pinpoint potential biomarkers of disease progression and correction.
Collapse
Affiliation(s)
- Jean-Baptiste Dupont
- Department of Rehabilitation Medicine, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Jianjun Guo
- Audentes Therapeutics, San Francisco, CA 94108, USA
| | - Edith Renaud-Gabardos
- Genethon, INSERM UMR S951, Université Evry Val-d'Essone, Université Paris-Saclay, 91000 Evry, France
| | - Karine Poulard
- Genethon, INSERM UMR S951, Université Evry Val-d'Essone, Université Paris-Saclay, 91000 Evry, France
| | - Virginie Latournerie
- Genethon, INSERM UMR S951, Université Evry Val-d'Essone, Université Paris-Saclay, 91000 Evry, France
| | - Michael W Lawlor
- Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Robert W Grange
- Department of Human Nutrition, Foods, and Exercise, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
| | - John T Gray
- Audentes Therapeutics, San Francisco, CA 94108, USA
| | - Ana Buj-Bello
- Genethon, INSERM UMR S951, Université Evry Val-d'Essone, Université Paris-Saclay, 91000 Evry, France
| | - Martin K Childers
- Department of Rehabilitation Medicine, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - David L Mack
- Department of Rehabilitation Medicine, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA; Department of Bioengineering, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
46
|
Fox MD, Carson VJ, Feng HZ, Lawlor MW, Gray JT, Brigatti KW, Jin JP, Strauss KA. TNNT1 nemaline myopathy: natural history and therapeutic frontier. Hum Mol Genet 2019; 27:3272-3282. [PMID: 29931346 DOI: 10.1093/hmg/ddy233] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/06/2018] [Indexed: 02/03/2023] Open
Abstract
We describe the natural history of 'Amish' nemaline myopathy (ANM), an infantile-onset, lethal disease linked to a pathogenic c.505G>T nonsense mutation of TNNT1, which encodes the slow fiber isoform of troponin T (TNNT1; a.k.a. TnT). The TNNT1 c.505G>T allele has a carrier frequency of 6.5% within Old Order Amish settlements of North America. We collected natural history data for 106 ANM patients born between 1923 and 2017. Over the last two decades, mean age of molecular diagnosis was 16 ± 27 days. TNNT1 c.505G>T homozygotes were normal weight at birth but failed to thrive by age 9 months. Presenting neonatal signs were axial hypotonia, hip and shoulder stiffness, and tremors, followed by progressive muscle weakness, atrophy and contractures. Affected children developed thoracic rigidity, pectus carinatum and restrictive lung disease during infancy, and all succumbed to respiratory failure by 6 years of age (median survival 18 months, range 0.2-66 months). Muscle histology from two affected children showed marked fiber size variation owing to both Type 1 myofiber smallness (hypotrophy) and Type 2 fiber hypertrophy, with evidence of nemaline rods, myofibrillar disarray and vacuolar pathology in both fiber types. The truncated slow TNNT1 (TnT) fragment (p.Glu180Ter) was undetectable in ANM muscle, reflecting its rapid proteolysis and clearance from sarcoplasm. Similar functional and histological phenotypes were observed in other human cohorts and two transgenic murine models (Tnnt1-/- and Tnnt1 c.505G>T). These findings have implications for emerging molecular therapies, including the suitably of TNNT1 gene replacement for newborns with ANM or other TNNT1-associated myopathies.
Collapse
Affiliation(s)
- Michael D Fox
- Clinic for Special Children, Strasburg, PA, USA
- Department of Pediatrics, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
- Diagnostic Referral Division, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | | | - Han-Zhong Feng
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Michael W Lawlor
- Department of Pathology and Laboratory Medicine and Neuroscience Research Center, The Medical College of Wisconsin, Milwaukee, WI, USA
| | - John T Gray
- Audentes Therapeutics, San Francisco, CA, USA
| | | | - J-P Jin
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| | | |
Collapse
|
47
|
Giesige CR, Wallace LM, Heller KN, Eidahl JO, Saad NY, Fowler AM, Pyne NK, Al-Kharsan M, Rashnonejad A, Chermahini GA, Domire JS, Mukweyi D, Garwick-Coppens SE, Guckes SM, McLaughlin KJ, Meyer K, Rodino-Klapac LR, Harper SQ. AAV-mediated follistatin gene therapy improves functional outcomes in the TIC-DUX4 mouse model of FSHD. JCI Insight 2018; 3:123538. [PMID: 30429376 DOI: 10.1172/jci.insight.123538] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/10/2018] [Indexed: 01/08/2023] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant or digenic disorder linked to derepression of the toxic DUX4 gene in muscle. There is currently no pharmacological treatment. The emergence of DUX4 enabled development of cell and animal models that could be used for basic and translational research. Since DUX4 is toxic, animal model development has been challenging, but progress has been made, revealing that tight regulation of DUX4 expression is critical for creating viable animals that develop myopathy. Here, we report such a model - the tamoxifen-inducible FSHD mouse model called TIC-DUX4. Uninduced animals are viable, born in Mendelian ratios, and overtly indistinguishable from WT animals. Induced animals display significant DUX4-dependent myopathic phenotypes at the molecular, histological, and functional levels. To demonstrate the utility of TIC-DUX4 mice for therapeutic development, we tested a gene therapy approach aimed at improving muscle strength in DUX4-expressing muscles using adeno-associated virus serotype 1.Follistatin (AAV1.Follistatin), a natural myostatin antagonist. This strategy was not designed to modulate DUX4 but could offer a mechanism to improve muscle weakness caused by DUX4-induced damage. AAV1.Follistatin significantly increased TIC-DUX4 muscle mass and strength even in the presence of DUX4 expression, suggesting that myostatin inhibition may be a promising approach to treat FSHD-associated weakness. We conclude that TIC-DUX4 mice are a relevant model to study DUX4 toxicity and, importantly, are useful in therapeutic development studies for FSHD.
Collapse
Affiliation(s)
- Carlee R Giesige
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, Ohio, USA.,Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Lindsay M Wallace
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Kristin N Heller
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Jocelyn O Eidahl
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Nizar Y Saad
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Allison M Fowler
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Nettie K Pyne
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Mustafa Al-Kharsan
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Afrooz Rashnonejad
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | | | - Jacqueline S Domire
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Diana Mukweyi
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Sara E Garwick-Coppens
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Susan M Guckes
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - K John McLaughlin
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| | - Kathrin Meyer
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Louise R Rodino-Klapac
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| | - Scott Q Harper
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, Ohio, USA.,Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
48
|
Abstract
There has been an ever-expanding list of the Limb-Girdle Muscular Dystrophies (LGMD). There are currently 8 subtypes of autosomal dominant (AD) and 26 subtypes of autosomal recessive (AR) LGMD. Despite continued research efforts to conquer this group of genetic neuromuscular disease, patients continue to be treated symptomatically with the aim of prevention or addressing complications. Mouse models have been helpful in clarifying disease pathogenesis as well as strategizing pathways for treatment. Discoveries in translational research as well as molecular therapeutic approaches have kept clinicians optimistic that more promising clinical trials will lead the way to finding the cure for these devastating disorders. It is well known that the challenge for these rare diseases is the ability to assemble adequate numbers of patients for a clinically meaningful trial, but current efforts in developing patient registries have been encouraging. Natural history studies will be essential in establishing and interpreting the appropriate outcome measures for clinical trials. Nevertheless, animal studies continue to be key in providing proof of concept that will be necessary in moving research along. This review will briefly discuss each type of LGMD, highlighting their distinguishing features, then focus on research efforts that have been published in the literature for the past few years, many of which are still in the preclinical trial stage.
Collapse
Affiliation(s)
- Mary Lynn Chu
- Department of Neurology, New York University School of Medicine, New York, New York, 10016, USA.
- New York University Langone Orthopedic Hospital, 301 East 17th Street, New York, New York, 10003, USA.
| | - Ellen Moran
- Division of Clinical Genetics, Center for Children, Hassenfeld Children's Hospital at New York University Langone, New York University Langone Orthopedic Hospital, 301 East 17th Street, New York, New York, 10003, USA
| |
Collapse
|
49
|
Angelini C, Giaretta L, Marozzo R. An update on diagnostic options and considerations in limb-girdle dystrophies. Expert Rev Neurother 2018; 18:693-703. [PMID: 30084281 DOI: 10.1080/14737175.2018.1508997] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Limb-girdle muscular dystrophies (LGMDs) encompass a clinically heterogeneous group of rare, genetic progressive muscle disorders presenting with weakness and atrophy of predominant pelvic and shoulder muscles. The spectrum of disease severity ranges from severe childhood-onset muscular dystrophy to adult-onset dystrophy. Areas covered: The review presents an update of the clinical phenotypes and diagnostic options for LGMD including both dominant and recessive LGMD and consider their differential clinical and histopathological features. An overview of most common phenotypes and of possible complications is given. The management of the main clinical respiratory, cardiac, and central nervous system complications are covered. The instrumental, muscle imaging, and laboratory exams to assess and reach diagnosis are described. The use of recent genetic techniques such as next generation sequencing (NGS), whole-exome sequencing compared to other techniques (e.g. DNA sequencing, protein analysis) is covered. Currently available drugs or gene therapy and rehabilitation management are focused on. Expert commentary: Many LGMD cases, which for a long time previously remained without a molecular diagnosis, can now be investigated by NGS. Gene mutation analysis is always required to obtain a certain molecular diagnosis, fundamental to select homogeneous group of patients for future pharmaceutical and gene trials.
Collapse
Affiliation(s)
- Corrado Angelini
- a Neuromuscular Center , San Camillo Hospital IRCCS , Venice , Italy
| | - Laura Giaretta
- a Neuromuscular Center , San Camillo Hospital IRCCS , Venice , Italy
| | - Roberta Marozzo
- a Neuromuscular Center , San Camillo Hospital IRCCS , Venice , Italy
| |
Collapse
|
50
|
Potter RA, Griffin DA, Sondergaard PC, Johnson RW, Pozsgai ER, Heller KN, Peterson EL, Lehtimäki KK, Windish HP, Mittal PJ, Albrecht DE, Mendell JR, Rodino-Klapac LR. Systemic Delivery of Dysferlin Overlap Vectors Provides Long-Term Gene Expression and Functional Improvement for Dysferlinopathy. Hum Gene Ther 2018; 29:749-762. [PMID: 28707952 PMCID: PMC6066196 DOI: 10.1089/hum.2017.062] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 07/12/2017] [Indexed: 01/07/2023] Open
Abstract
Dysferlinopathies comprise a family of disorders caused by mutations in the dysferlin (DYSF) gene, leading to a progressive dystrophy characterized by chronic muscle fiber loss, fat replacement, and fibrosis. To correct the underlying histopathology and function, expression of full-length DYSF is required. Dual adeno-associated virus vectors have been developed, defined by a region of homology, to serve as a substrate for reconstitution of the full 6.5 kb dysferlin cDNA. Previous work studied the efficacy of this treatment through intramuscular and regional delivery routes. To maximize clinical efficacy, dysferlin-deficient mice were treated systemically to target all muscles through the vasculature for efficacy and safety studies. Mice were evaluated at multiple time points between 4 and 13 months post treatment for dysferlin expression and functional improvement using magnetic resonance imaging and magnetic resonance spectroscopy and membrane repair. A systemic dose of 6 × 1012 vector genomes resulted in widespread gene expression in the muscles. Treated muscles showed a significant decrease in central nucleation, collagen deposition, and improvement of membrane repair to wild-type levels. Treated gluteus muscles were significantly improved compared to placebo-treated muscles and were equivalent to wild type in volume, intra- and extramyocellular lipid accumulation, and fat percentage using magnetic resonance imaging and magnetic resonance spectroscopy. Dual-vector treatment allows for production of full-length functional dysferlin with no toxicity. This confirms previous safety data and validates translation of systemic gene delivery for dysferlinopathy patients.
Collapse
Affiliation(s)
- Rachael A. Potter
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Danielle A. Griffin
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Patricia C. Sondergaard
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Ryan W. Johnson
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Eric R. Pozsgai
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
- Integrated Biomedical Science Graduate Program, College of Medicine, The Ohio State University, Columbus, Ohio; The Ohio State University, Columbus, Ohio
| | - Kristin N. Heller
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Ellyn L. Peterson
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | | | | | | | | | - Jerry R. Mendell
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
- Department of Pediatrics and Neurology, The Ohio State University, Columbus, Ohio; The Ohio State University, Columbus, Ohio
| | - Louise R. Rodino-Klapac
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
- Department of Pediatrics and Neurology, The Ohio State University, Columbus, Ohio; The Ohio State University, Columbus, Ohio
- Integrated Biomedical Science Graduate Program, College of Medicine, The Ohio State University, Columbus, Ohio; The Ohio State University, Columbus, Ohio
| |
Collapse
|