1
|
Zhou J, Liu S, Zhang J, Zeng Q, Lin Z, Fu R, Lin Y, Hu Z. Discovery and validation of Hsa-microRNA-3665 promoter methylation as a potential biomarker for the prognosis of esophageal squaous cell carcinoma. Int J Clin Oncol 2025; 30:309-319. [PMID: 39630213 PMCID: PMC11785691 DOI: 10.1007/s10147-024-02656-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 11/03/2024] [Indexed: 02/01/2025]
Abstract
BACKGROUND Methylation of microRNA (miRNA) promoters associated with diseases is a common epigenetic mechanism in the development of various human cancers. However, its relationship with prognosis in esophageal squamous cell carcinoma (ESCC) remains unclear. This study aims to explore the association between the methylation level of has-miR-3665 promoter and prognosis in ESCC. METHODS Human miRNA data were downloaded from miRbase, and we identified CpG islands of these human miRNAs by genomics browser analysis. MiRNA methylation levels were detected by methylation-specific high-resolution melting. Gene ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were used to explore the molecular mechanism of hsa-miR-3665. Cox regression analysis was used to investigate prognostic factors. The overall survival rate was predicted by a nomogram. RESULTS We found that 88 human miRNAs had promoter methylatio, of which 15 miRNAs were found to be epigenetically regulated in ESCC cells compared with their normal counterparts, including hsa-miR-3665. Meanwhile, hsa-miR-3665 expression was significantly lower in ESCC tumour tissue than in adjacent tissue (P = 0.03). GO and KEGG analyses demonstrated that the target genes are involved in protein transport, transcription regulator activity, MAPK and RAS signaling pathway. High hsa-miR-3665 promoter methylation levels were associated with a poor prognosis (HR = 3.89, 95% CI 1.11 ~ 13.55). Moreover, a nomogram incorporating the hsa-miR-3665 methylation level and clinical factors presented a good performance for predicting survival in the training and validation tests, with C-indices of 0.748 and 0.751, respectively. CONCLUSIONS High hsa-miR-3665 promoter methylation levels may be a potential biomarker for the progression of ESCC.
Collapse
Affiliation(s)
- Jinsong Zhou
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, 1 Xue Yuan Road, University Town, Fuzhou, 350122, China
| | - Shuang Liu
- Sun Yat-Sen University Cancer Center/Cancer Hospital, Guangzhou, 510060, China
| | - Juwei Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, 1 Xue Yuan Road, University Town, Fuzhou, 350122, China
| | - Qiaoyan Zeng
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, 1 Xue Yuan Road, University Town, Fuzhou, 350122, China
| | - Zheng Lin
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, 1 Xue Yuan Road, University Town, Fuzhou, 350122, China
| | - Rong Fu
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, 1 Xue Yuan Road, University Town, Fuzhou, 350122, China
| | - Yulan Lin
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, 1 Xue Yuan Road, University Town, Fuzhou, 350122, China
| | - Zhijian Hu
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, 1 Xue Yuan Road, University Town, Fuzhou, 350122, China.
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350108, China.
| |
Collapse
|
2
|
He L, Li L, Zhao L, Guan X, Guo Y, Han Q, Guo H, Liu H, Zhang C. CircCCT2/miR-146a-5p/IRAK1 axis promotes the development of head and neck squamous cell carcinoma. BMC Cancer 2025; 25:84. [PMID: 39810134 PMCID: PMC11734332 DOI: 10.1186/s12885-025-13464-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC), a highly invasive malignancy with a poor prognosis, is one of the most common cancers globally. Circular RNAs (circRNAs) have become key regulators of human malignancies, but further studies are necessary to fully understand their functions and possible causes in HNSCC. METHODS CircCCT2 expression levels in HNSCC tissues and cells were measured via qPCR. CircCCT2 was characterized by Sanger sequencing, qRT-PCR, RNase R & Actinomycin D treatment, nucleoplasmic separation and FISH experiments. CCK-8 and colony formation assays were performed to determine cell proliferation, and Transwell assays were used to determine migration and invasion. A xenograft tumor model was used to study the influence of circCCT2 on HNSCC in vivo. Dual-luciferase gene reporter, RIP, western blotting, and rescue experiments, were used to explore target-binding relationships and regulatory mechanisms. RESULTS CircCCT2 was significantly upregulated in HNSCC tissues and cells. High circCCT2 levels were associated with advanced T stage, N stage, clinical stage and poor prognosis. Functionally, we verified that circCCT2 promotes HNSCC development in vitro and in vivo. Mechanistically, functioning as a competitive endogenous RNA (ceRNA) or miRNA sponge, circCCT2 binds directly to miR-146a-5p and increases interleukin-1 receptor-associated kinase 1 (IRAK1) levels, which enhances the malignant development of HNSCC by driving epithelial-mesenchymal transition (EMT). CONCLUSION CircCCT2 promotes HNSCC development through the miR-146a-5p/IRAK1 axis, revealing that circCCT2 is a potential biomarker and target for HNSCC.
Collapse
Affiliation(s)
- Long He
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.
| | - Lanruo Li
- The First Clinical Medical College of Shanxi Medical University, Taiyuan, 030001, China
| | - Liting Zhao
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Xiaoya Guan
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Yujia Guo
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Qi Han
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Huina Guo
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.
| | - Hongliang Liu
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.
- Department of Otolaryngology Head and Neck Surgery, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.
- Departments of Cell Biology and Genetics, the Basic Medical School of Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| | - Chunming Zhang
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.
- Department of Otolaryngology Head and Neck Surgery, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|
3
|
Pirhoushiaran M, Heidarzadehpilehrood R, Mokhtarinejad M, Hesami S, Rezaei N, Farahani AS. Upregulated PCAT-1 predicts poor prognosis and reduced immune cell infiltration in head and neck squamous cell carcinoma through the miR-145-5p / FSCN-1 axis. Mol Biol Rep 2025; 52:121. [PMID: 39806246 DOI: 10.1007/s11033-024-10208-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 12/29/2024] [Indexed: 01/16/2025]
Abstract
BACKGROUND LncRNA PCAT-1 is known to promote cancer proliferation, invasion, and metastasis. However, its significance in HNSCC is not fully understood. This research investigates how the PCAT-1 / miR-145-5p / FSCN-1 axis promote HNSCC. METHODS AND RESULTS We analyzed the gene expression patterns on 238 fresh-frozen samples, comparing tumors with their normal adjacent tissues (NATs). HNSCC samples showed higher PCAT-1 and FSCN-1 expression compared to NATs (p < 0.001 and p < 0.001, respectively). In contrast, miR-145-5p expression was markedly downregulated compared to NATs (p < 0.001). Notably, ROC curve analysis revealed exceptional diagnostic power, with an AUC of 0.83 for PCAT-1, 0.95 for miR-145-5p, and 0.91 for FSCN-1. Pearson correlation analysis unveiled a significant positive correlation between PCAT-1 and FSCN-1 expression levels (r = 0.084, p < 0.001) and negative correlations between FSCN-1 and miR-145-5p (r = -0.710, p < 0.001) as well as between PCAT-1 and miR-145-5p (r = -0.759, p < 0.001). Distinct molecular profiles were observed in the levels of PCAT-1, miR-145-5p, and FSCN-1 between HPV (-) and HPV ( +) 16 and 18 genotypes (p = 0.007, p = 0.027, and p = 0.002). MiR-145-5p expression showed significant differences between HPV (-) and HPV ( +) other genotypes (p = 0.035). FSCN-1 expression showed notable distinctions between HPV ( +) 18 & 16 and HPV ( +) other genotypes (p = 0.031). CONCLUSIONS Elevated levels of lncRNA PCAT-1 promote HNSCC through the miR-145-5p/FSCN-1 axis and are associated with poor prognosis and reduced immune cell infiltration levels.
Collapse
Affiliation(s)
- Maryam Pirhoushiaran
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, 1417613151, Iran
| | - Roozbeh Heidarzadehpilehrood
- Department of Obstetrics & Gynaecology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Mahnoosh Mokhtarinejad
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, 1417613151, Iran
| | - Sara Hesami
- Medical Genetic Ward, Faculty of Medicine, Imam Khomeini Hospital Complex, IKHC, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Stockholm, Sweden
| | - Abbas Shakoori Farahani
- Medical Genetic Ward, Faculty of Medicine, Imam Khomeini Hospital Complex, IKHC, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Luo YW, Fang Y, Zeng HX, Ji YC, Wu MZ, Li H, Chen JY, Zheng LM, Fang JH, Zhuang SM. HIF1α Counteracts TGFβ1-Driven TSP1 Expression in Endothelial Cells to Stimulate Angiogenesis in the Hypoxic Tumor Microenvironment. Cancer Res 2025; 85:69-83. [PMID: 39356626 DOI: 10.1158/0008-5472.can-24-2324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/12/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024]
Abstract
Emerging evidence suggests that TGFβ1 can inhibit angiogenesis, contradicting the coexistence of active angiogenesis and high abundance of TGFβ1 in the tumor microenvironment. Here, we investigated how tumors overcome the antiangiogenic effect of TGFβ1. TGFβ1 treatment suppressed physiologic angiogenesis in chick chorioallantoic membrane and zebrafish models but did not affect angiogenesis in mouse hepatoma xenografts. The suppressive effect of TGFβ1 on angiogenesis was recovered in mouse xenografts by a hypoxia-inducible factor 1α (HIF1α) inhibitor. In contrast, a HIF1α stabilizer abrogated angiogenesis in zebrafish, indicating that hypoxia may attenuate the antiangiogenic role of TGFβ1. Under normoxic conditions, TGFβ1 inhibited angiogenesis by upregulating antiangiogenic factor thrombospondin 1 (TSP1) in endothelial cells (EC) via TGFβ type I receptor (TGFβR1)-SMAD2/3 signaling. In a hypoxic microenvironment, HIF1α induced miR145 expression; miR145 abolished the inhibitory effect of TGFβ1 on angiogenesis by binding and repressing SMAD2/3 expression and subsequently reducing TSP1 levels in ECs. Primary ECs isolated from human hepatocellular carcinoma displayed increased miR145 and decreased SMAD3 and TSP1 compared with ECs from adjacent nontumor livers. The reduced SMAD3 or TSP1 in ECs was associated with increased angiogenesis in hepatocellular carcinoma tissues. Collectively, this study identified that TGFβ1-TGFβR1-SMAD2/3-TSP1 signaling in ECs inhibits angiogenesis. This inhibition can be circumvented by a hypoxia-HIF1α-miR145 axis, elucidating a mechanism by which hypoxia promotes angiogenesis. Significance: Suppression of angiogenesis by TGFβ1 is mediated by TSP1 upregulation in endothelial cells and abrogated by HIF1α-miR145 activity in the hypoxic tumor microenvironment, providing potential targets to remodel the tumor vasculature.
Collapse
MESH Headings
- Animals
- Humans
- Thrombospondin 1/metabolism
- Thrombospondin 1/genetics
- Tumor Microenvironment
- Transforming Growth Factor beta1/metabolism
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Mice
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Neovascularization, Pathologic/genetics
- Zebrafish
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Liver Neoplasms/blood supply
- Liver Neoplasms/genetics
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/blood supply
- Carcinoma, Hepatocellular/genetics
- Signal Transduction
- Cell Line, Tumor
- Chick Embryo
- Gene Expression Regulation, Neoplastic
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Mice, Nude
- Xenograft Model Antitumor Assays
- Angiogenesis
Collapse
Affiliation(s)
- Yu-Wei Luo
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou, P. R. China
| | - Yang Fang
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou, P. R. China
| | - Hui-Xian Zeng
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou, P. R. China
| | - Yu-Chen Ji
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou, P. R. China
| | - Meng-Zhi Wu
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou, P. R. China
| | - Hui Li
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou, P. R. China
| | - Jie-Ying Chen
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou, P. R. China
| | - Li-Min Zheng
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou, P. R. China
| | - Jian-Hong Fang
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou, P. R. China
| | - Shi-Mei Zhuang
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou, P. R. China
- Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| |
Collapse
|
5
|
Komitova KS, Dimitrov LD, Stancheva GS, Kyurkchiyan SG, Petkova V, Dimitrov SI, Skelina SP, Kaneva RP, Popov TM. A Critical Review on microRNAs as Prognostic Biomarkers in Laryngeal Carcinoma. Int J Mol Sci 2024; 25:13468. [PMID: 39769234 PMCID: PMC11676902 DOI: 10.3390/ijms252413468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/07/2024] [Accepted: 12/11/2024] [Indexed: 01/03/2025] Open
Abstract
During the past decade, a vast number of studies were dedicated to unravelling the obscurities of non-coding RNAs in all fields of the medical sciences. A great amount of data has been accumulated, and consequently a natural need for organization and classification in all subfields arises. The aim of this review is to summarize all reports on microRNAs that were delineated as prognostic biomarkers in laryngeal carcinoma. Additionally, we attempt to allocate and organize these molecules according to their association with key pathways and oncogenes affected in laryngeal carcinoma. Finally, we critically analyze the common shortcomings and biases of the methodologies in some of the published papers in this area of research. A literature search was performed using the PubMed and MEDLINE databases with the keywords "laryngeal carcinoma" OR "laryngeal cancer" AND "microRNA" OR "miRNA" AND "prognostic marker" OR "prognosis". Only research articles written in English were included, without any specific restrictions on study type. We have found 43 articles that report 39 microRNAs with prognostic value associated with laryngeal carcinoma, and all of them are summarized along with the major characteristics and methodology of the respective studies. A second layer of the review is structural analysis of the outlined microRNAs and their association with oncogenes and pathways connected with the cell cycle (p53, CCND1, CDKN2A/p16, E2F1), RTK/RAS/PI3K cascades (EGFR, PI3K, PTEN), cell differentiation (NOTCH, p63, FAT1), and cell death (FADD, TRAF3). Finally, we critically review common shortcomings in the methodology of the papers and their possible effect on their results.
Collapse
Affiliation(s)
| | | | | | | | - Veronika Petkova
- Molecular Medicine Center, Medical University, 1000 Sofia, Bulgaria
| | | | | | - Radka P. Kaneva
- Molecular Medicine Center, Medical University, 1000 Sofia, Bulgaria
| | - Todor M. Popov
- Department of ENT, Medical University, 1000 Sofia, Bulgaria
| |
Collapse
|
6
|
Yu M, Cao H, Yang J, Liu T, Wang B. Hsa_circ_0000825 promotes the progression of laryngeal squamous cell carcinoma by sponging miR-766 and interacting with ELAVL1. Heliyon 2024; 10:e37264. [PMID: 39319166 PMCID: PMC11419913 DOI: 10.1016/j.heliyon.2024.e37264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/16/2024] [Accepted: 08/29/2024] [Indexed: 09/26/2024] Open
Abstract
Emerging evidence suggests that circular RNAs (circRNAs) are involved in the regulation of tumourigenesis and progression of a variety of malignant tumours. In this study, we aimed to identify laryngeal squamous cell carcinoma (LSCC)-specific circRNAs and explore their biological functions and underlying molecular mechanisms. Employing microarray and qRT-PCR, hsa_circ_0000825 was found to be significantly increased in LSCC tissues versus para-cancerous tissues. High hsa_circ_0000825 expression was positively associated with advanced clinical stages, lymph node metastasis, and poor survival. Furthermore, the overexpression of hsa_circ_0000825 in TU177 and AMC-HN-8 cells promoted cell proliferation. Transwell assays showed enhanced migration and invasion of TU177 and AMC-HN-8 cells upon overexpression of hsa_circ_0000825. Conversely, the knockdown of hsa_circ_0000825 had the opposite effect. Xenograft tumours in BALB/c nude mice derived from hsa_circ_0000825-overexpressed TU177 cells showed greater volume and weight than those derived from control TU177 cells. Mechanistically, nuclear-cytoplasmic fractionation assay confirmed that hsa_circ_0000825 was mainly located in the cytoplasm of TU177 and AMC-HN-8 cells. The AGO2-RNA immunoprecipitation (RIP) assay revealed that hsa_circ_0000825 was significantly enriched in the AGO2-precipitated complex in both TU177 and AMC-HN-8 cells, suggesting that this circRNA may function via a competitive endogenous RNA (ceRNA) mechanism. Next, bioinformatics analysis, biotinylated-oligo pull-down assay and dual-luciferase reporter assay verified that miR-766 could be sponged by hsa_circ_0000825 and also target 3'UTR of HOXD10 mRNA. Moreover, miR-766 was shown to be involved in the pro-oncogenic effect of hsa_circ_0000825. This occurred via the mediation of hsa_circ_0000825-enhanced HOXD10 mRNA by the ceRNA mechanism in TU177 and AMC-HN-8 cells. Besides, RNA-binding protein (RBP) ELAVL1 interacted with hsa_circ_0000825 in TU177 and AMC-HN-8 cells, as revealed through bioinformatics analysis, biotinylated-oligo pull-down assays, and RIP assays. ELAVL1 knockdown decreased cell proliferation by 38 % and 34 % in hsa_circ_0000825-overexpressed TU177 and AMC-HN-8 cells (P < 0.05). Similarly, ELAVL1 was involved in the pro-migration and pro-invasion effects of hsa_circ_0000825 overexpression. In addition, comprehensive analysis of mRNA-seq in hsa_circ_0000825-overexpressed TU177 cells, as well as catRAPID and TCGA databases, suggested that ITGB2, HOXD10, and MTCL1 might be crucial downstream target mRNAs of ELAVL1 in LSCC, participating in the hsa_circ_0000825-ELAVL1 axis pro-oncogenic effect. Taken together, hsa_circ_0000825 plays a pro-oncogenic role in LSCC via the miR-766/HOXD10 axis and ELAVL1 and may serve as a promising specific biomarker and therapeutic target for LSCC.
Collapse
Affiliation(s)
- Miaomiao Yu
- Department of Otorhinolaryngology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Huan Cao
- Department of Otorhinolaryngology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jianwang Yang
- Department of Otorhinolaryngology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Tao Liu
- Department of Otorhinolaryngology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Baoshan Wang
- Department of Otorhinolaryngology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
7
|
Dai F, Yuan Y, Hao J, Cheng X, Zhou X, Zhou L, Tian R, Zhao Y, Xiang T. PDCD2 as a prognostic biomarker in glioma correlates with malignant phenotype. Genes Dis 2024; 11:101106. [PMID: 39022129 PMCID: PMC11252777 DOI: 10.1016/j.gendis.2023.101106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/04/2023] [Indexed: 07/20/2024] Open
Abstract
Programmed cell death 2 (PDCD2) is related to cancer progression and chemotherapy sensitivity. The role of PDCD2 in solid cancers (excluding hematopoietic malignancies) and their diagnosis and prognosis remains unclear. The TCGA, CGGA, GEPIA, cBioPortal, and GTEx databases were analyzed for expression, prognostic value, and genetic modifications of PDCD2 in cancer patients. Functional enrichment analysis, CCK8, colony formation assay, transwell assay, and xenograft tumor model were undertaken to study the PDCD2's biological function in glioma (GBMLGG). The PDCD2 gene was associated with solid cancer progression. In the functional enrichment analysis results, PDCD2 was shown to participate in several important GBMLGG biological processes. GBMLGG cells may be inhibited in their proliferation, migration, invasion, and xenograft tumor growth by knocking down PDCD2. Our research can provide new insights into solid cancer prognostic biomarkers of PDCD2.
Collapse
Affiliation(s)
- Fengsheng Dai
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Yixiao Yuan
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Jiaqi Hao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xing Cheng
- Department of Neuro-Oncology, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Xiangyi Zhou
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Li Zhou
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Rui Tian
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Yi Zhao
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Tingxiu Xiang
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China
| |
Collapse
|
8
|
Armstrong L, Willoughby CE, McKenna DJ. The Suppression of the Epithelial to Mesenchymal Transition in Prostate Cancer through the Targeting of MYO6 Using MiR-145-5p. Int J Mol Sci 2024; 25:4301. [PMID: 38673886 PMCID: PMC11050364 DOI: 10.3390/ijms25084301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Aberrant expression of miR-145-5p has been observed in prostate cancer where is has been suggested to play a tumor suppressor role. In other cancers, miR-145-5p acts as an inhibitor of epithelial-to-mesenchymal transition (EMT), a key molecular process for tumor progression. However, the interaction between miR-145-5p and EMT remains to be elucidated in prostate cancer. In this paper the link between miR-145-5p and EMT in prostate cancer was investigated using a combination of in silico and in vitro analyses. miR-145-5p expression was significantly lower in prostate cancer cell lines compared to normal prostate cells. Bioinformatic analysis of The Cancer Genome Atlas prostate adenocarcinoma (TCGA PRAD) data showed significant downregulation of miR-145-5p in prostate cancer, correlating with disease progression. Functional enrichment analysis significantly associated miR-145-5p and its target genes with EMT. MYO6, an EMT-associated gene, was identified and validated as a novel target of miR-145-5p in prostate cancer cells. In vitro manipulation of miR-145-5p levels significantly altered cell proliferation, clonogenicity, migration and expression of EMT-associated markers. Additional TCGA PRAD analysis suggested miR-145-5p tumor expression may be useful predictor of disease recurrence. In summary, this is the first study to report that miR-145-5p may inhibit EMT by targeting MYO6 in prostate cancer cells. The findings suggest miR-145-5p could be a useful diagnostic and prognostic biomarker for prostate cancer.
Collapse
Affiliation(s)
| | | | - Declan J. McKenna
- Genomic Medicine Research Group, Ulster University, Cromore Road, Coleraine BT52 1SA, UK; (L.A.); (C.E.W.)
| |
Collapse
|
9
|
Liu H, Hao W, Wang X, Zhang Y, He L, Xue X, Yang J, Zhang C. Identification of novel molecules and pathways associated with fascin actin‑bundling protein 1 in laryngeal squamous cell carcinoma through comprehensive transcriptome analysis. Int J Mol Med 2024; 53:39. [PMID: 38426543 PMCID: PMC10914310 DOI: 10.3892/ijmm.2024.5363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/14/2024] [Indexed: 03/02/2024] Open
Abstract
Laryngeal squamous cell carcinoma (LSCC) is a common malignant tumor with a poor prognosis. Fascin actin‑bundling protein 1 (FSCN1) has been reported to play a crucial role in the development and progression of LSCC; however, the underlying molecular mechanisms remain unknown. Herein, a whole transcriptome microarray analysis was performed to screen for differentially expressed genes (DEGs) in cells in which FSCN1 was knocked down. A total of 462 up and 601 downregulated mRNA transcripts were identified. Functional annotation analysis revealed that these DEGs were involved in multiple biological functions, such as transcriptional regulation, response to radiation, focal adhesion, extracellular matrix‑receptor interaction, steroid biosynthesis and others. Through co‑expression and protein‑protein interaction analysis, FSCN1 was linked to novel functions, including defense response to virus and steroid biosynthesis. Furthermore, crosstalk analysis with FSCN1‑interacting proteins revealed seven DEGs, identified as FSCN1‑interacting partners, in LSCC cells, three of which were selected for further validation. Co‑immunoprecipitation validation confirmed that FSCN1 interacted with prostaglandin reductase 1 and 24‑dehydrocholesterol reductase (DHCR24). Of note, DHCR24 is a key enzyme involved in cholesterol biosynthesis, and its overexpression promotes the proliferation and migration of LSCC cells. These findings suggest that DHCR24 is a novel molecule associated with FSCN1 in LSCC, and that the FSCN1‑DHCR24 interaction may promote LSCC progression by regulating cholesterol metabolism‑related signaling pathways.
Collapse
Affiliation(s)
- Hongliang Liu
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
- Department of Otolaryngology Head and Neck Surgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
- Department of Cell Biology, The Basic Medical School of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Wenjing Hao
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
- Department of Cell Biology, The Basic Medical School of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Xinfang Wang
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
- Department of Cell Biology, The Basic Medical School of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Yuliang Zhang
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Long He
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Xuting Xue
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Jiao Yang
- Department of Anatomy, The Basic Medical School of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Chunming Zhang
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
- Department of Otolaryngology Head and Neck Surgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| |
Collapse
|
10
|
Yan X, Qi Y, Yao X, Zhou N, Ye X, Chen X. DNMT3L inhibits hepatocellular carcinoma progression through DNA methylation of CDO1: insights from big data to basic research. J Transl Med 2024; 22:128. [PMID: 38308276 PMCID: PMC10837993 DOI: 10.1186/s12967-024-04939-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/27/2024] [Indexed: 02/04/2024] Open
Abstract
BACKGROUND DNMT3L is a crucial DNA methylation regulatory factor, yet its function and mechanism in hepatocellular carcinoma (HCC) remain poorly understood. Bioinformatics-based big data analysis has increasingly gained significance in cancer research. Therefore, this study aims to elucidate the role of DNMT3L in HCC by integrating big data analysis with experimental validation. METHODS Dozens of HCC datasets were collected to analyze the expression of DNMT3L and its relationship with prognostic indicators, and were used for molecular regulatory relationship evaluation. The effects of DNMT3L on the malignant phenotypes of hepatoma cells were confirmed in vitro and in vivo. The regulatory mechanisms of DNMT3L were explored through MSP, western blot, and dual-luciferase assays. RESULTS DNMT3L was found to be downregulated in HCC tissues and associated with better prognosis. Overexpression of DNMT3L inhibits cell proliferation and metastasis. Additionally, CDO1 was identified as a target gene of DNMT3L and also exhibits anti-cancer effects. DNMT3L upregulates CDO1 expression by competitively inhibiting DNMT3A-mediated methylation of CDO1 promoter. CONCLUSIONS Our study revealed the role and epi-transcriptomic regulatory mechanism of DNMT3L in HCC, and underscored the essential role and applicability of big data analysis in elucidating complex biological processes.
Collapse
Affiliation(s)
- Xiaokai Yan
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| | - Yao Qi
- Shanghai Molecular Medicine Engineering Technology Research Center, Shanghai, 201203, China
- Shanghai National Engineering Research Center of Biochip, Shanghai, 201203, China
| | - Xinyue Yao
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Nanjing Zhou
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xinxin Ye
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xing Chen
- Department of Hepatopancreatobiliary Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
| |
Collapse
|
11
|
Guo H, Han Q, Guan X, Li Z, Wang Y, He L, Guo Y, Zhao L, Xue X, Liu H, Zhang C. M6A reader YTHDF1 promotes malignant progression of laryngeal squamous carcinoma through activating the EMT pathway by EIF4A3. Cell Signal 2024; 114:111002. [PMID: 38048860 DOI: 10.1016/j.cellsig.2023.111002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/09/2023] [Accepted: 12/01/2023] [Indexed: 12/06/2023]
Abstract
Laryngeal squamous cell carcinoma (LSCC) is one of the common malignant tumors in the head and neck region, and its high migration and invasion seriously threaten the survival and health of patients. In cancer development, m6A RNA modification plays a crucial role in regulating gene expression and signaling. This study delved into the function and mechanism of the m6A reading protein YTHDF1 in LSCC. It was found that YTHDF1 was highly expressed in the GEO database and LSCC tissues. Cell function experiments confirmed that the downregulation of YTHDF1 significantly inhibited the proliferation, migration, and invasion ability of LSCC cells. Further studies revealed that EIF4A3 was a downstream target gene of YTHDF1, and knockdown of EIF4A3 similarly significantly inhibited the malignant progression of LSCC in both in vivo and in vitro experiments. The molecular mechanism studies suggested that YTHDF1-EIF4A3 may promote the malignant development of LSCC by activating the EMT signaling pathway. This study provides important clues for an in-depth understanding of the pathogenesis of LSCC and is a solid foundation for the discovery of new therapeutic targets and approaches.
Collapse
Affiliation(s)
- Huina Guo
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, China; Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Qi Han
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, China; Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Xiaoya Guan
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, China; Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Zhongxun Li
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, China; Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Ying Wang
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, China; Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Long He
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, China; Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Yujia Guo
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, China; Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Liting Zhao
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, China; Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Xuting Xue
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, China; Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Hongliang Liu
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, China; Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, China; Department of Otolaryngology Head & Neck Surgery, First Hospital of Shanxi Medical University, Taiyuan 030001, China; Department of Cell Biology and Genetics, the Basic Medical School of Shanxi Medical University, Taiyuan 030001, Shanxi, China.
| | - Chunming Zhang
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, China; Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, China; Department of Otolaryngology Head & Neck Surgery, First Hospital of Shanxi Medical University, Taiyuan 030001, China.
| |
Collapse
|
12
|
Zhang L, Zhang Z, Zheng X, Lu Y, Dai L, Li W, Liu H, Wen S, Xie Q, Zhang X, Wang P, Wu Y, Gao W. A novel microRNA panel exhibited significant potential in evaluating the progression of laryngeal squamous cell carcinoma. Noncoding RNA Res 2023; 8:550-561. [PMID: 37602318 PMCID: PMC10432973 DOI: 10.1016/j.ncrna.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 08/22/2023] Open
Abstract
Background Laryngeal squamous cell carcinoma (LSCC) is a common cancer of the head and neck in humans. The 5-years survival rate of patients with LSCC have declined in the past four decades. microRNAs (miRNAs) has been reported to be capable of predicting the prognosis outcomes of patients with different cancers. However, there are no reports on the usage of multi-miRNAs model as signature for the diagnosis or prognosis of LSCC. Methods To establish the miRNAs expression-associated model for diagnosis, prognosis prediction and aided therapy of patients with LSCC, the present study enrolled 107 patients with LSCC in clinic and obtained 117 LSCC samples data from TCGA database for evaluation, respectively. Next generation sequencing (NGS), raw data processing, the least absolute shrinkage and selection operator algorithm, Cox regression analysis, construction of nomogram and cell function assays (including proliferation, migration and invasion assays) were sequentially performed. Results There were massively dysregulated miRNAs in the LSCC compared to normal tissues. A six-miRNAs signature consists of miR-137-3p, miR-3934-5p, miR-1276, miR-129-5p, miR-7-5p and miR-105-5p was built for prognosis prediction of LSCC patients. The six-miRNAs signature is strongly associated with the poor overall survival (OS, p = 2.5e-05, HR: 4.30 [2.20-8.50]), progression free interval (PFI, p = 0.025, HR: 1.94 [1.08-3.46]) and disease specific survival (DSS, p = 1.1e-05, HR: 5.00 [2.50-10.00]). A nomogram for prediction of 2-, 3- and 5-years OS was also developed based on the six-miRNAs signature and clinical features. Furthermore, blocking the function of each of the six miRNAs inhibited proliferation, invasion and migration of LSCC cells. Conclusions The performance of six-miRNAs signature described in the current study demonstrated remarkable potential for progression assessment of LSCC. Moreover, the six-miRNAs signature may serve as predictive tool for prognosis and therapeutic targets of LSCC in clinic.
Collapse
Affiliation(s)
- Linshi Zhang
- Department of Thyroid Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, PR China
| | - Zhe Zhang
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, PR China
- Shenzhen Eye Institute, Shenzhen Eye Hospital, Shenzhen, 518040, Guangdong, PR China
| | - Xiwang Zheng
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, PR China
| | - Yan Lu
- Department of Otolaryngology Head & Neck Surgery, First Hospital of Jinzhou Medical University, Jinzhou, 121011, Liaoning, PR China
| | - Li Dai
- Department of Otolaryngology Head & Neck Surgery, Shanxi Bethune Hospital, Taiyuan, 030032, Shanxi, PR China
| | - Wenqi Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, PR China
| | - Hui Liu
- Department of Hepatobiliary Surgery, Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy Center, Shenzhen University, Shenzhen, 518055, Guangdong, PR China
| | - Shuxin Wen
- Department of Otolaryngology Head & Neck Surgery, Shanxi Bethune Hospital, Taiyuan, 030032, Shanxi, PR China
| | - Qiuping Xie
- Department of Thyroid Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, PR China
| | - Xiangmin Zhang
- Department of Otolaryngology Head & Neck Surgery, Longgang Ear-Nose-Throat Hospital, Shenzhen, 518172, Guangdong, PR China
- Shenzhen Institute of Otolaryngology & Key Laboratory of Otolaryngology, Longgang Ear-Nose-Throat Hospital, Shenzhen, 518172, Guangdong, PR China
| | - Ping Wang
- Department of Thyroid Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, PR China
| | - Yongyan Wu
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, PR China
- Department of Otolaryngology Head & Neck Surgery, Longgang Ear-Nose-Throat Hospital, Shenzhen, 518172, Guangdong, PR China
- Shenzhen Institute of Otolaryngology & Key Laboratory of Otolaryngology, Longgang Ear-Nose-Throat Hospital, Shenzhen, 518172, Guangdong, PR China
| | - Wei Gao
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, PR China
- Department of Otolaryngology Head & Neck Surgery, Longgang Ear-Nose-Throat Hospital, Shenzhen, 518172, Guangdong, PR China
- Shenzhen Institute of Otolaryngology & Key Laboratory of Otolaryngology, Longgang Ear-Nose-Throat Hospital, Shenzhen, 518172, Guangdong, PR China
| |
Collapse
|
13
|
Su J, Wei Q, Ma K, Wang Y, Hu W, Meng H, Li Q, Zhang Y, Zhang W, Li H, Fu X, Zhang C. P-MSC-derived extracellular vesicles facilitate diabetic wound healing via miR-145-5p/ CDKN1A-mediated functional improvements of high glucose-induced senescent fibroblasts. BURNS & TRAUMA 2023; 11:tkad010. [PMID: 37860579 PMCID: PMC10583213 DOI: 10.1093/burnst/tkad010] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 01/01/2023] [Accepted: 02/14/2023] [Indexed: 10/21/2023]
Abstract
Background Persistent hyperglycaemia in diabetes causes functional abnormalities of human dermal fibroblasts (HDFs), partially leading to delayed skin wound healing. Extracellular vesicles (EVs) containing multiple pro-healing microRNAs (miRNAs) have been shown to exert therapeutic effects on diabetic wound healing. The present study aimed to observe the effects of EVs derived from placental mesenchymal stem cells (P-MSC-EVs) on diabetic wound healing and high glucose (HG)-induced senescent fibroblasts and to explore the underlying mechanisms. Methods P-MSC-EVs were isolated by differential ultracentrifugation and locally injected into the full-thickness skin wounds of diabetic mice, to observe the beneficial effects on wound healing in vivo by measuring wound closure rates and histological analysis. Next, a series of assays were conducted to evaluate the effects of low (2.28 x 1010 particles/ml) and high (4.56 x 1010 particles/ml) concentrations of P-MSC-EVs on the senescence, proliferation, migration, and apoptosis of HG-induced senescent HDFs in vitro. Then, miRNA microarrays and real-time quantitative PCR (RT-qPCR) were carried out to detect the differentially expressed miRNAs in HDFs after EVs treatment. Specific RNA inhibitors, miRNA mimics, and small interfering RNA (siRNA) were used to evaluate the role of a candidate miRNA and its target genes in P-MSC-EV-induced improvements in the function of HG-induced senescent HDFs. Results Local injection of P-MSC-EVs into diabetic wounds accelerated wound closure and reduced scar widths, with better-organized collagen deposition and decreased p16INK4a expression. In vitro, P-MSC-EVs enhanced the antisenescence, proliferation, migration, and antiapoptotic abilities of HG-induced senescent fibroblasts in a dose-dependent manner. MiR-145-5p was found to be highly enriched in P-MSC-EVs. MiR-145-5p inhibitors effectively attenuated the P-MSC-EV-induced functional improvements of senescent fibroblasts. MiR-145-5p mimics simulated the effects of P-MSC-EVs on functional improvements of fibroblasts by suppressing the expression of cyclin-dependent kinase inhibitor 1A and activating the extracellular signal regulated kinase (Erk)/protein kinase B (Akt) signaling pathway. Furthermore, local application of miR-145-5p agomir mimicked the effects of P-MSC-EVs on wound healing. Conclusions These results suggest that P-MSC-EVs accelerate diabetic wound healing by improving the function of senescent fibroblasts through the transfer of miR-145-5p, which targets cyclin-dependent kinase inhibitor 1A to activate the Erk/Akt signaling pathway. P-MSC-EVs are promising therapeutic candidates for diabetic wound treatment.
Collapse
Affiliation(s)
- Jianlong Su
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing 100048, China
- School of Medicine, NanKai University, 94 Weijin Road, Nankai District, Tianjin 300071, China
| | - Qian Wei
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing 100048, China
| | - Kui Ma
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing 100048, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, 51 Fucheng Road, Haidian District, Beijing 100048, China
| | - Yaxi Wang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing 100048, China
| | - Wenzhi Hu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing 100048, China
| | - Hao Meng
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing 100048, China
| | - Qiankun Li
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing 100048, China
| | - Yuehou Zhang
- Burn and Plastic Surgery, Zhongda Hospital Affiliated Southeast University, Dingjiaqiao 87, Gulou District, Nanjing 210009, China
| | - Wenhua Zhang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing 100048, China
| | - Haihong Li
- Department of Wound Repair, Institute of Wound Repair and Regeneration Medicine, Southern University of Science and Technology Hospital, Southern University of Science and Technology School of Medicine, 6019 Xililiuxian Road, Nanshan District, Shenzhen 518055, China
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing 100048, China
- School of Medicine, NanKai University, 94 Weijin Road, Nankai District, Tianjin 300071, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, 51 Fucheng Road, Haidian District, Beijing 100048, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, 51 Fucheng Road, Haidian District, Beijing 100048, China
| | - Cuiping Zhang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing 100048, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, 51 Fucheng Road, Haidian District, Beijing 100048, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, 51 Fucheng Road, Haidian District, Beijing 100048, China
| |
Collapse
|
14
|
Bai W, Ren JS, Xia M, Zhao Y, Ding JJ, Chen X, Jiang Q. Targeting FSCN1 with an oral small-molecule inhibitor for treating ocular neovascularization. J Transl Med 2023; 21:555. [PMID: 37596693 PMCID: PMC10436462 DOI: 10.1186/s12967-023-04225-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/25/2023] [Indexed: 08/20/2023] Open
Abstract
BACKGROUND Ocular neovascularization is a leading cause of blindness and visual impairment. While intravitreal anti-VEGF agents can be effective, they do have several drawbacks, such as endophthalmitis and drug resistance. Additional studies are necessary to explore alternative therapeutic targets. METHODS Bioinformatics analysis and quantitative RT-PCR were used to detect and verify the FSCN1 expression levels in oxygen-induced retinopathy (OIR) and laser-induced choroidal neovascularization (CNV) mice model. Transwell, wound scratching, tube formation, three-dimensional bead sprouting assay, rhodamine-phalloidin staining, Isolectin B4 staining and immunofluorescent staining were conducted to detect the role of FSCN1 and its oral inhibitor NP-G2-044 in vivo and vitro. HPLC-MS/MS analysis, cell apoptosis assay, MTT assay, H&E and tunnel staining, visual electrophysiology testing, visual cliff test and light/dark transition test were conducted to assess the pharmacokinetic and security of NP-G2-044 in vivo and vitro. Co-Immunoprecipitation, qRT-PCR and western blot were conducted to reveal the mechanism of FSCN1 and NP-G2-044 mediated pathological ocular neovascularization. RESULTS We discovered that Fascin homologue 1 (FSCN1) is vital for angiogenesis both in vitro and in vivo, and that it is highly expressed in oxygen-induced retinopathy (OIR) and laser-induced choroidal neovascularization (CNV). We found that NP-G2-044, a small-molecule inhibitor of FSCN1 with oral activity, can impede the sprouting, migration, and filopodia formation of cultured endothelial cells. Oral NP-G2-044 can effectively and safely curb the development of OIR and CNV, and increase efficacy while overcoming anti-VEGF resistance in combination with intravitreal aflibercept (Eylea) injection. CONCLUSION Collectively, FSCN1 inhibition could serve as a promising therapeutic approach to block ocular neovascularization.
Collapse
Affiliation(s)
- Wen Bai
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Jun-Song Ren
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Min Xia
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Ya Zhao
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Jing-Juan Ding
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Xi Chen
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
- Department of Ophthalmology, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Qin Jiang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China.
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
15
|
Xia S, Li JD, Yan SB, Huang ZG, Liu ZS, Jing SW, Li DZ, Song C, Chen Y, Wang LT, Zhou YH, Huang R, Shi N, Lan SY, Chen G, Fan XH. Clinicopathological value of hematopoietic cell kinase overexpression in laryngeal squamous cell carcinoma tissues. Pathol Res Pract 2023; 247:154534. [PMID: 37201466 DOI: 10.1016/j.prp.2023.154534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/26/2023] [Accepted: 05/11/2023] [Indexed: 05/20/2023]
Abstract
Laryngeal squamous cell carcinoma (LSCC) is the most lethal cancer in head and neck tumors. Although hematopoietic cell kinase (HCK) has been proven to be an oncogene in several solid tumors, its roles in LSCC remain obscure. This is the first study to evaluate the clinical value of HCK in LSCC, with the aim of exploring its expression status and potential molecular mechanisms underlying LSCC. LSCC tissue-derived gene chips and RNA-seq data were collected for a quantitive integration of HCK mRNA expression level. To confirm the protein expression level of HCK, a total of 82 LSCC tissue specimens and 56 non-tumor laryngeal epithelial controls were collected for in-house tissue microarrays and immunohistochemical staining. Kaplan-Meier curves were generated to determine the ability of HCK in predicting overall survival, progress-free survival, and disease-free survival of LSCC patients. LSCC overexpressed genes and HCK co-expressed genes were intersected to preliminarily explore the enriched signaling pathways of HCK. It was noticed that HCK mRNA was markedly overexpressed in 323 LSCC tissues compared with 196 non-LSCC controls (standardized mean difference = 0.81, p < 0.0001). Upregulated HCK mRNA displayed a moderate discriminatory ability between LSCC tissues and non-tumor laryngeal epithelial controls (area under the curve = 0.78, sensitivity = 0.76, specificity = 0.68). The higher expression level of HCK mRNA could predict worse overall survival and disease-free survival for LSCC patients (p = 0.041 and p = 0.013). Lastly, upregulated co-expression genes of HCK were significantly enriched in leukocyte cell-cell adhesion, secretory granule membrane, and extracellular matrix structural constituent. Immune-related pathways were the predominantly activated signals, such as cytokine-cytokine receptor interaction, Th17 cell differentiation, and Toll-like receptor signaling pathway. In conclusion, HCK was upregulated in LSCC tissues and could be utilized as a risk predictor. HCK may promote the development of LSCC by disturbing immune signaling pathways.
Collapse
Affiliation(s)
- Shuang Xia
- Department of Human Anatomy, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi, Zhuang Autonomous Region 530021, PR China
| | - Jian-Di Li
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi, Zhuang Autonomous Region 530021, PR China
| | - Shi-Bai Yan
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi, Zhuang Autonomous Region 530021, PR China
| | - Zhi-Guang Huang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi, Zhuang Autonomous Region 530021, PR China
| | - Zhi-Su Liu
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi, Zhuang Autonomous Region 530021, PR China
| | - Shu-Wen Jing
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi, Zhuang Autonomous Region 530021, PR China
| | - Da-Zhi Li
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi, Zhuang Autonomous Region 530021, PR China
| | - Chang Song
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi, Zhuang Autonomous Region 530021, PR China
| | - Yi Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi, Zhuang Autonomous Region 530021, PR China
| | - Li-Ting Wang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi, Zhuang Autonomous Region 530021, PR China
| | - Yu-Hong Zhou
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi, Zhuang Autonomous Region 530021, PR China
| | - Rong Huang
- Department of Human Anatomy, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi, Zhuang Autonomous Region 530021, PR China
| | - Nan Shi
- Department of Otorhinolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi, Zhuang Autonomous Region 530021, PR China
| | - Song-Yao Lan
- Department of Human Anatomy, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi, Zhuang Autonomous Region 530021, PR China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi, Zhuang Autonomous Region 530021, PR China
| | - Xiao-Hui Fan
- Department of Immunology and Microbiology, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi, Zhuang Autonomous Region 530021, PR China.
| |
Collapse
|
16
|
Hegazy M, Elkady MA, Yehia AM, Elsakka EGE, Abulsoud AI, Abdelmaksoud NM, Elshafei A, Abdelghany TM, Elkhawaga SY, Ismail A, Mokhtar MM, El-Mahdy HA, Doghish AS. The role of miRNAs in laryngeal cancer pathogenesis and therapeutic resistance - A focus on signaling pathways interplay. Pathol Res Pract 2023; 246:154510. [PMID: 37167812 DOI: 10.1016/j.prp.2023.154510] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 04/30/2023] [Accepted: 05/05/2023] [Indexed: 05/13/2023]
Abstract
Laryngeal cancer (LC)is the malignancy of the larynx (voice box). The majority of LC are squamous cell carcinomas. Many risk factors were reported to be associated with LC as tobacco use, obesity, alcohol intake, human papillomavirus (HPV) infection, and asbestos exposure. Besides, epigenetics as non-coding nucleic acids also have a great role in LC. miRNAs are short nucleic acid molecules that can modulate multiple cellular processes by regulating the expression of their genes. Therefore, LC progression, apoptosis evasions, initiation, EMT, and angiogenesis are associated with dysregulated miRNA expressions. miRNAs also could have some vital signaling pathways such as mTOR/P-gp, Wnt/-catenin signaling, JAK/STAT, KRAS, and EGF. Besides, miRNAs also have a role in the modulation of LC response to different therapeutic modalities. In this review, we have provided a comprehensive and updated overview highlighting the microRNAs biogenesis, general biological functions, regulatory mechanisms, and signaling dysfunction in LC carcinogenesis, in addition to their clinical potential for LC diagnosis, prognosis, and chemotherapeutics response implications.
Collapse
Affiliation(s)
- Maghawry Hegazy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Mohamed A Elkady
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Amr Mohamed Yehia
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Nourhan M Abdelmaksoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Ahmed Elshafei
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Tamer M Abdelghany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt
| | - Samy Y Elkhawaga
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Mahmoud Mohamed Mokhtar
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt.
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt.
| |
Collapse
|
17
|
Song M, Xu P, Wang L, Liu J, Hou X. Hsa_circ_0001326 inhibited the proliferation, migration, and invasion of trophoblast cells via miR-145-5p/TGFB2 axis. Am J Reprod Immunol 2023; 89:e13682. [PMID: 36670490 DOI: 10.1111/aji.13682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/29/2022] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
PROBLEM Preeclampsia (PE) is an obstetric disease involving multiple systems, which account for maternal and fetal complications and increased mortality. Circular RNAs (circRNAs) were recently deemed to associate with the pathogenesis of PE. This study aims to clarify the correlation between circRNA hsa_circ_0001326 and PE and explore its biological function in PE. METHOD OF STUDY The expression of hsa_circ_0001326 in PE placentas was detected by real-time quantitative PCR (qRT-PCR). After overexpressing or inhibiting hsa_circ_0001326 in trophoblast cells, the cell growth, migration, and invasion were evaluated by Cell Counting Kit-8 (CCK-8) and transwell assays. Western blot assay was applied to detect the epithelial-mesenchymal transition (EMT) proteins, E-cadherin and Vimentin. Furthermore, a dual-luciferase reporter assay was applied to verify the binding sites of hsa_circ_0001326, miR-145-5p, and transforming growth factor beta 2 (TGFB2). RESULTS Hsa_circ_0001326 was found to be higher expressed in PE placentas than in normal placentas. Furthermore, hsa_circ_0001326 played a negative regulating role in trophoblast cell viability, migration, and invasion. Overexpression of hsa_circ_0001326 inhibited the viability, migration, and invasion of trophoblast cells, while inhibition of hsa_circ_0001326 showed opposite effects. Mechanistically, hsa_circ_0001326 sponged miR-145-5p to elevate TGFB2 expression in trophoblast cells. CONCLUSION This study provided evidence that the up-regulated hsa_circ_0001326 in PE restrained trophoblast cells proliferation, migration, and invasion by sponging miR-145-5p to elevate TGFB2 expression. Our results might provide a novel insight into the role of hsa_circ_0001326 in the pathogenesis of PE.
Collapse
Affiliation(s)
- Meiyu Song
- Department of Obstetrics, Yantai Yantaishan Hospital, Yantai, Shandong, China
| | - Peng Xu
- Department of Nursing, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Li Wang
- Department of Pediatrics, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Jie Liu
- Department of Obstetrics, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Xiaofei Hou
- Department of Clinical Laboratory, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| |
Collapse
|
18
|
Al-Hawary SIS, Asghar W, Amin A, Mustafa YF, Hjazi A, Almulla AF, Ali SAJ, Ali SS, Romero-Parra RM, Abdulhussien Alazbjee AA, Mahmoudi R, Fard SRH. Circ_0067934 as a novel therapeutic target in cancer: From mechanistic to clinical perspectives. Pathol Res Pract 2023; 245:154469. [PMID: 37100022 DOI: 10.1016/j.prp.2023.154469] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 04/28/2023]
Abstract
Circular RNAs, as a type of non-coding RNAs, are identified in a various cell. Circular RNAs have stable structures, conserved sequence, and tissue and cell-specific level. High throughput technologies have proposed that circular RNAs act via various mechanisms like sponging microRNAs and proteins, regulating transcription factors, and scaffolding mediators. Cancer is one of the major threat for human health. Emerging data have proposed that circular RNAs are dysregulated in cancers as well as are associated with aggressive behaviors of cancer -related behaviors like cell cycle, proliferation, apoptosis, invasion, migration, and epithelial-mesenchymal transition (EMT). Among them, circ_0067934 was shown to act as an oncogene in cancers to enhance migration, invasion, proliferation, cell cycle, EMT, and inhibit cell apoptosis. In addition, these studies have proposed that it could be a promising diagnostic and prognostic biomarker in cancer. This study aimed to review the expression and molecular mechanism of circ_0067934 in modulating the malignant behaviors of cancers as well as to explore its potential as a target in cancer chemotherapy, diagnosis, prognosis and treatment.
Collapse
Affiliation(s)
| | | | - Aaima Amin
- Quaid e Azam Medical College, Bahawal Victorial Hospital, Bahawalpur, Pakistan
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Abbas F Almulla
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | | | - Sally Saad Ali
- College of Dentistry, Al-Bayan University, Baghdad, Iraq
| | | | | | - Reza Mahmoudi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Seyed Reza Hosseini Fard
- Department of Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
19
|
Broseghini E, Filippini DM, Fabbri L, Leonardi R, Abeshi A, Dal Molin D, Fermi M, Ferracin M, Fernandez IJ. Diagnostic and Prognostic Value of microRNAs in Patients with Laryngeal Cancer: A Systematic Review. Noncoding RNA 2023; 9:ncrna9010009. [PMID: 36827542 PMCID: PMC9966707 DOI: 10.3390/ncrna9010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Laryngeal squamous cell cancer (LSCC) is one of the most common malignant tumors of the head and neck region, with a poor survival rate (5-year overall survival 50-80%) as a consequence of an advanced-stage diagnosis and high recurrence rate. Tobacco smoking and alcohol abuse are the main risk factors of LSCC development. An early diagnosis of LSCC, a prompt detection of recurrence and a more precise monitoring of the efficacy of different treatment modalities are currently needed to reduce the mortality. Therefore, the identification of effective diagnostic and prognostic biomarkers for LSCC is crucial to guide disease management and improve clinical outcomes. In the past years, a dysregulated expression of small non-coding RNAs, including microRNAs (miRNAs), has been reported in many human cancers, including LSCC, and many miRNAs have been explored for their diagnostic and prognostic potential and proposed as biomarkers. We searched electronic databases for original papers that were focused on miRNAs and LSCC, using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol. According to the outcome, 566 articles were initially screened, of which 177 studies were selected and included in the analysis. In this systematic review, we provide an overview of the current literature on the function and the potential diagnostic and prognostic role of tissue and circulating miRNAs in LSCC.
Collapse
Affiliation(s)
- Elisabetta Broseghini
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, Università di Bologna, 40138 Bologna, Italy
- Correspondence: (E.B.); (D.M.F.)
| | - Daria Maria Filippini
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, Università di Bologna, 40138 Bologna, Italy
- Division of Medical Oncology, IRCCS Azienda Ospedaliero, Universitaria Policlinico Sant’Orsola Malpighi of Bologna, 40138 Bologna, Italy
- Correspondence: (E.B.); (D.M.F.)
| | - Laura Fabbri
- Division of Medical Oncology, IRCCS Azienda Ospedaliero, Universitaria Policlinico Sant’Orsola Malpighi of Bologna, 40138 Bologna, Italy
| | - Roberta Leonardi
- Division of Medical Oncology, IRCCS Azienda Ospedaliero, Universitaria Policlinico Sant’Orsola Malpighi of Bologna, 40138 Bologna, Italy
| | - Andi Abeshi
- Department of Otorhinolaryngology—Head and Neck Surgery, IRCCS Azienda Ospedaliero, Universitaria di Bologna, Policlinico S. Orsola-Malpighi, 40138 Bologna, Italy
| | - Davide Dal Molin
- Department of Otorhinolaryngology—Head and Neck Surgery, IRCCS Azienda Ospedaliero, Universitaria di Bologna, Policlinico S. Orsola-Malpighi, 40138 Bologna, Italy
| | - Matteo Fermi
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, Università di Bologna, 40138 Bologna, Italy
- Department of Otorhinolaryngology—Head and Neck Surgery, IRCCS Azienda Ospedaliero, Universitaria di Bologna, Policlinico S. Orsola-Malpighi, 40138 Bologna, Italy
| | - Manuela Ferracin
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, Università di Bologna, 40138 Bologna, Italy
- IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy
| | - Ignacio Javier Fernandez
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, Università di Bologna, 40138 Bologna, Italy
- Department of Otorhinolaryngology—Head and Neck Surgery, IRCCS Azienda Ospedaliero, Universitaria di Bologna, Policlinico S. Orsola-Malpighi, 40138 Bologna, Italy
| |
Collapse
|
20
|
Cheng T, Huang F, Zhang Y, Zhou Z. Knockdown of circGOLPH3 inhibits cell progression and glycolysis by targeting miR-145-5p/lysine demethylase 2A (KDM2A) axis in oral squamous cell carcinoma. Head Neck 2023; 45:225-236. [PMID: 36268878 DOI: 10.1002/hed.27229] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/06/2022] [Accepted: 10/12/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is one of the most common head and neck malignancies. The aim of this study is to explore the role of circRNA Golgi phosphoprotein 3 (GOLPH3) (circGOLPH3) in OSCC. METHODS Quantitative real-time polymerase chain reaction (qRT-PCR) and western blot were performed to detect changes in the levels of circGOLPH3, microRNA-145-5p (miR-145-5p), and lysine demethylase 2A (KDM2A). The functions of circGOLPH3 were assessed using in vitro and in vivo assays. Dual-luciferase reporter assay detected the interaction of miR-145-5p with circGOLPH3 or KDM2A. RESULTS circGOLPH3 expression was upregulated in OSCC. circGOLPH3 downregulation inhibited cell growth, metastasis, and glycolysis in vitro, and in vivo experiments revealed that circGOLPH3 inhibited tumor growth. In addition, circGOLPH3 bound to miR-145-5p and competitively inhibited KDM2A expression, thereby regulating OSCC cell behaviors as well as glycolysis. CONCLUSION circGOLPH3 exerted pro-oncogenic effects through the miR-145-5p/KDM2A axis to regulate OSCC cell behaviors.
Collapse
Affiliation(s)
- Tao Cheng
- Department of Stomatolory, Hanyang Hospital, Medical College of Wuhan University of Science and Technology, Wuhan, China
| | - Feifei Huang
- Department of Respiratory Medicine, Dongxihu District People's Hospital, Wuhan, China
| | - Yin Zhang
- Department of Stomatolory, Hanyang Hospital, Medical College of Wuhan University of Science and Technology, Wuhan, China
| | - Zhen Zhou
- Department of Stomatolory, Hanyang Hospital, Medical College of Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
21
|
Zheng X, Gao W, Zhang Z, Xue X, Mijiti M, Guo Q, Wusiman D, Wang K, Zeng X, Xue L, Guo Z, An C, Wu Y. Identification of a seven-lncRNAs panel that serves as a prognosis predictor and contributes to the malignant progression of laryngeal squamous cell carcinoma. Front Oncol 2023; 13:1106249. [PMID: 37205188 PMCID: PMC10188209 DOI: 10.3389/fonc.2023.1106249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/11/2023] [Indexed: 05/21/2023] Open
Abstract
Background Laryngeal squamous cell carcinoma (LSCC) is one of the most frequent head and neck cancers worldwide. Long non-coding RNAs (lncRNAs) play a critical role in tumorigenesis. However, the clinical significance of lncRNAs in LSCC remains largely unknown. Methods In this study, transcriptome sequencing was performed on 107 LSCC and paired adjacent normal mucosa (ANM) tissues. Furthermore, RNA expression and clinical data of 111 LSCC samples were obtained from The Cancer Genome Atlas (TCGA) database. Bioinformatics analysis were performed to construct a model for predicting the overall survival (OS) of LSCC patients. Moreover, we investigated the roles of lncRNAs in LSCC cells through loss-of-function experiments. Results A seven-lncRNAs panel including ENSG00000233397, BARX1-DT, LSAMP-AS1, HOXB-AS4, MNX1-AS1, LINC01385, and LINC02893 was identified. The Kaplan-Meier analysis demonstrated that the seven-lncRNAs panel was significantly associated with OS (HR:6.21 [3.27-11.81], p-value<0.0001), disease-specific survival (DSS) (HR:4.34 [1.83-10.26], p-value=0.0008), and progression-free interval (PFI) (HR:3.78 [1.92-7.43], p-value=0.0001). ROC curves showed the seven-lncRNAs panel predicts OS with good specificity and sensitivity. Separately silencing the seven lncRNAs inhibited the proliferation, migration, and invasion capacity of LSCC cells. Conclusion Collectively, this seven-lncRNAs panel is a promising signature for predicting the prognosis of LSCC patients, and these lncRNAs could serve as potential targets for LSCC treatment.
Collapse
Affiliation(s)
- Xiwang Zheng
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Wei Gao
- Department of Otolaryngology Head & Neck Surgery, Longgang Otolaryngology Hospital, Shenzhen, Guangdong, China
- Shenzhen Institute of Otolaryngology & Key Laboratory of Otolaryngology, Longgang Otolaryngology Hospital, Shenzhen, Guangdong, China
- *Correspondence: Wei Gao, ; Changming An, ; Yongyan Wu,
| | - Zhe Zhang
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, Guangdong, China
| | - Xuting Xue
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Maierhaba Mijiti
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Qingbo Guo
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Dilinaer Wusiman
- Department of Head and Neck Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kai Wang
- Department of Otolaryngology Head & Neck Surgery, Southern University of Science and Technology Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Xianhai Zeng
- Department of Otolaryngology Head & Neck Surgery, Longgang Otolaryngology Hospital, Shenzhen, Guangdong, China
- Shenzhen Institute of Otolaryngology & Key Laboratory of Otolaryngology, Longgang Otolaryngology Hospital, Shenzhen, Guangdong, China
| | - Lingbin Xue
- Department of Otolaryngology Head & Neck Surgery, Longgang Otolaryngology Hospital, Shenzhen, Guangdong, China
- Shenzhen Institute of Otolaryngology & Key Laboratory of Otolaryngology, Longgang Otolaryngology Hospital, Shenzhen, Guangdong, China
| | - Zekun Guo
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Changming An
- Department of Head and Neck Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Wei Gao, ; Changming An, ; Yongyan Wu,
| | - Yongyan Wu
- Department of Otolaryngology Head & Neck Surgery, Longgang Otolaryngology Hospital, Shenzhen, Guangdong, China
- Shenzhen Institute of Otolaryngology & Key Laboratory of Otolaryngology, Longgang Otolaryngology Hospital, Shenzhen, Guangdong, China
- *Correspondence: Wei Gao, ; Changming An, ; Yongyan Wu,
| |
Collapse
|
22
|
Application of an Interpretable Machine Learning Model to Predict Lymph Node Metastasis in Patients with Laryngeal Carcinoma. JOURNAL OF ONCOLOGY 2022; 2022:6356399. [PMID: 36411795 PMCID: PMC9675609 DOI: 10.1155/2022/6356399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/01/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022]
Abstract
Objectives A more accurate preoperative prediction of lymph node metastasis (LNM) plays a decisive role in the selection of treatment in patients with laryngeal carcinoma (LC). This study aimed to develop a machine learning (ML) prediction model for predicting LNM in patients with LC. Methods We collected and retrospectively analysed 4887 LC patients with detailed demographical characteristics including age at diagnosis, race, sex, primary site, histology, number of tumours, T-stage, grade, and tumour size in the National Institutes of Health (NIH) Surveillance, Epidemiology, and End Results (SEER) database from 2005 to 2015. A correlation analysis of all variables was evaluated by the Pearson correlation. Independent risk factors for LC patients with LNM were identified by univariate and multivariate logistic regression analyses. Afterward, patients were randomly divided into training and test sets in a ratio of 8 to 2. On this basis, we established logistic regression (LR), k-nearest neighbor (KNN), support vector machine (SVM), extreme gradient boosting (XGBoost), random forest (RF), and light gradient boosting machine (LightGBM) algorithm models based on ML. The area under the receiver operating characteristic curve (AUC) value, accuracy, precision, recall rate, F1-score, specificity, and Brier score was adopted to evaluate and compare the prediction performance of the models. Finally, the Shapley additive explanation (SHAP) method was used to interpret the association between each feature variable and target variables based on the best model. Results Of the 4887 total LC patients, 3409 were without LNM (69.76%), and 1478 had LNM (30.24%). The result of the Pearson correlation showed that variables were weakly correlated with each other. The independent risk factors for LC patients with LNM were age at diagnosis, race, primary site, number of tumours, tumour size, grade, and T-stage. Among six models, XGBoost displayed a better performance for predicting LNM, with five performance metrics outperforming other models in the training set (AUC: 0.791 (95% CI: 0.776–0.806), accuracy: 0.739, recall rate: 0.638, F1-score: 0.663, and Brier score: 0.165), and similar results were observed in the test set. Moreover, the SHAP value of XGBoost was calculated, and the result showed that the three features, T-stage, primary site, and grade, had the greatest impact on predicting the outcomes. Conclusions The XGBoost model performed better and can be applied to forecast the LNM of LC, offering a valuable and significant reference for clinicians in advanced decision-making.
Collapse
|
23
|
Liang L, Xu WY, Shen A, Cen HY, Chen ZJ, Tan L, Zhang LM, Zhang Y, Fu JJ, Qin AP, Lei XP, Li SP, Qin YY, Huang JH, Yu XY. Promoter methylation-regulated miR-148a-3p inhibits lung adenocarcinoma (LUAD) progression by targeting MAP3K9. Acta Pharmacol Sin 2022; 43:2946-2955. [PMID: 35388129 PMCID: PMC9622742 DOI: 10.1038/s41401-022-00893-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 02/21/2022] [Indexed: 01/27/2023] Open
Abstract
Lung adenocarcinoma (LUAD) characterized by high metastasis and mortality is the leading subtype of non-small cell lung cancer. Evidence shows that some microRNAs (miRNAs) may act as oncogenes or tumor suppressor genes, leading to malignant tumor occurrence and progression. To better understand the molecular mechanism associated with miRNA methylation in LUAD progression and clinical outcomes, we investigated the correlation between miR-148a-3p methylation and the clinical features of LUAD. In the LUAD cell lines and tumor tissues from patients, miR-148a-3p was found to be significantly downregulated, while the methylation of miR-148a-3p promoter was notably increased. Importantly, miR-148a-3p hypermethylation was closely associated with lymph node metastasis. We demonstrated that mitogen-activated protein (MAP) kinase kinase kinase 9 (MAP3K9) was the target of miR-148a-3p and that MAP3K9 levels were significantly increased in both LUAD cell lines and clinical tumor tissues. In A549 and NCI-H1299 cells, overexpression of miR-148a-3p or silencing MAP3K9 significantly inhibited cell growth, migration, invasion and cytoskeleton reorganization accompanied by suppressing the epithelial-mesenchymal transition. In a nude mouse xenograft assay we found that tumor growth was effectively inhibited by miR-148a-3p overexpression. Taken together, the promoter methylation-associated decrease in miR-148a-3p could lead to lung cancer metastasis by targeting MAP3K9. This study suggests that miR-148a-3p and MAP3K9 may act as novel therapeutic targets for the treatment of LUAD and have potential clinical applications.
Collapse
Affiliation(s)
- Lu Liang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Wen-Yan Xu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Ao Shen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Hui-Yu Cen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Zhi-Jun Chen
- Department of Medical Imaging, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China
| | - Lin Tan
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Ling-Min Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yu Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Ji-Jun Fu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Ai-Ping Qin
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xue-Ping Lei
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Song-Pei Li
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yu-Yan Qin
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Jiong-Hua Huang
- Department of Cardiovascular Disease, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, China.
| | - Xi-Yong Yu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
24
|
Global microRNA expression profile in laryngeal carcinoma unveils new prognostic biomarkers and novel insights into field cancerization. Sci Rep 2022; 12:17051. [PMID: 36224266 PMCID: PMC9556831 DOI: 10.1038/s41598-022-20338-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/12/2022] [Indexed: 12/30/2022] Open
Abstract
Laryngeal carcinoma is still a worldwide burden that has shown no significant improvement during the last few decades regarding definitive treatment strategies. The lack of suitable biomarkers for personalized treatment protocols and delineating field cancerization prevents further progress in clinical outcomes. In the light of this perspective, MicroRNAs could be promising biomarkers both in terms of diagnostic and prognostic value. The aim of this prospective study is to find strong prognostic microRNA biomarkers for advanced laryngeal carcinoma and molecular signatures of field cancerization. Sixty patients were enrolled and four samples were collected from each patient: tumor surface and depth, peritumor normal mucosa, and control distant laryngeal mucosa. Initially, a global microRNA profile was conducted in twelve patients from the whole cohort and subsequently, we validated a selected group of 12 microRNAs with RT-qPCR. The follow-up period was 24 months (SD ± 13 months). Microarray expression profile revealed 59 dysregulated microRNAs. The validated expression levels of miR-93-5p (χ2(2) = 4.68, log-rank p = 0.03), miR-144-3p (χ2(2) = 4.53, log-rank p = 0.03) and miR-210-3p (χ2(2) = 4.53, log-rank p = 0.03) in tumor samples exhibited strong association with recurrence-free survival as higher expression levels of these genes predict worse outcome. Tumor suppressor genes miR-144-3p (mean rank 1.58 vs 2.14 vs 2.29, p = 0.000) and miR-145-5p (mean rank 1.57 vs 2.15 vs 2.28, p = 0.000) were significantly dysregulated in peritumor mucosa with a pattern of expression consistent with paired tumor samples thus revealing a signature of field cancerization in laryngeal carcinoma. Additionally, miR-1260b, miR-21-3p, miR-31-3p and miR-31-5p were strongly associated with tumor grade. Our study reports the first global microRNA profile specifically in advanced laryngeal carcinoma that includes survival analysis and investigates the molecular signature of field cancerization. We report two strong biomarkers of field cancerization and three predictors for recurrence in advance stage laryngeal cancer.
Collapse
|
25
|
Pilala KM, Papadimitriou MA, Panoutsopoulou K, Barbarigos P, Levis P, Kotronopoulos G, Stravodimos K, Scorilas A, Avgeris M. Epigenetic regulation of MIR145 core promoter controls miR-143/145 cluster in bladder cancer progression and treatment outcome. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 30:311-322. [PMID: 36320325 PMCID: PMC9614648 DOI: 10.1016/j.omtn.2022.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 10/05/2022] [Indexed: 11/07/2022]
Abstract
Owing to its highly heterogeneous molecular landscape, bladder cancer (BlCa) is still characterized by non-personalized treatment and lifelong surveillance. Motivated by our previous findings on miR-143/145 value in disease prognosis, we have studied the underlying epigenetic regulation of the miR-143/145 cluster in BlCa. Expression and DNA methylation of miR-143/145 cluster were analyzed in our screening (n = 162) and The Cancer Genome Atlas Urothelial Bladder Carcinoma (TCGA-BLCA; n = 412) cohorts. Survival analysis was performed using tumor relapse and progression as clinical endpoints for non-muscle-invasive bladder cancer (NMIBC; TaT1), while disease progression and patients' death were used for muscle-invasive bladder cancer (MIBC; T2-T4). TCGA-BLCA served as validation cohort. Bootstrap analysis was carried out for internal validation, while decision curve analysis was used to evaluate clinical benefit. TCGA-BLCA and screening cohorts highlighted MIR145 core promoter as the pivotal, epigenetic regulatory region on cluster's expression. Lower methylation of MIR145 core promoter was associated with aggressive disease phenotype, higher risk for NMIBC short-term progression, and poor MIBC survival. MIR145 methylation-fitted multivariate models with established disease markers clearly enhanced patients' risk stratification and prediction of treatment outcome. MIR145 core promoter methylation was identified as a potent epigenetic regulator of miR-143/145 cluster, supporting modern personalized risk stratification and management in BlCa.
Collapse
Affiliation(s)
- Katerina-Marina Pilala
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Maria-Alexandra Papadimitriou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Konstantina Panoutsopoulou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Petros Barbarigos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Panagiotis Levis
- First Department of Urology, “Laiko” General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Georgios Kotronopoulos
- First Department of Urology, “Laiko” General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Konstantinos Stravodimos
- First Department of Urology, “Laiko” General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15771 Athens, Greece,Corresponding author Andreas Scorilas, Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15771 Athens, Greece.
| | - Margaritis Avgeris
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15771 Athens, Greece,Laboratory of Clinical Biochemistry – Molecular Diagnostics, Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, "P. & A. Kyriakou" Children’s Hospital, 11527 Athens, Greece,Corresponding author Dr. Margaritis Avgeris, Laboratory of Clinical Biochemistry - Molecular Diagnostics, Second Department of Pediatrics, "P. & A. Kyriakou" Children’s Hospital, School of Medicine, National and Kapodistrian University of Athens, 24 Mesogeion Ave, 11527 Athens, Greece.
| |
Collapse
|
26
|
Fang P, Zhou J, Li X, Luan S, Xiao X, Shang Q, Zhang H, Yang Y, Zeng X, Yuan Y. Prognostic value of micro-RNA 375, 133, 143, 145 in esophageal carcinoma: A systematic review and meta-analysis. Front Oncol 2022; 12:828339. [PMID: 36176382 PMCID: PMC9513119 DOI: 10.3389/fonc.2022.828339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Many studies have confirmed that micro-RNA (mir) is related to the prognosis of esophageal carcinoma (EC), suggesting the mir could be used to guide the therapeutic strategy of EC. Some of mir molecules are considered as favorable prognostic factors for EC. The purpose of our study is to evaluate the prognostic potential of mir-375, 133, 143, 145 in primary EC, we summarized all the results from available studies, aiming delineating the prognostic role of mir in EC. Relevant studies were identified by searching databases including Medline, Embase, Web of science, Cochrane Library. The studies which explored the prognostic value of mir-375, 133, 143, 145 expressions on survival outcomes in patients with EC were included in this study. The hazard ratios (HR) and their responding 95% confidence interval (CI) were also extracted. A total of 25 studies were collected, including 1260 patients, and the prognostic values of four mirs in EC were analyzed. Survival outcomes including overall survival (OS), progression-free survival (PFS) and disease-free survival (DFS) were used as the primary endpoint to evaluate the prognostic value of mir. The pooled analysis results showed that up-regulation of mir-375 indicated favorable OS (HR=0.50; 95%CI: 0.37-0.69; P<0.001). In addition, the up-regulation of mir-133 (HR=0.40, 95%CI: 0.24-0.65, P<0.001), 143 (HR=0.40, 95%CI: 0.21-0.76, P < 0.001) and 145 (HR=0.55, 95%CI: 0.34-0.90, P<0.001) are also proved as protected factors in EC. Therefore, our study demonstrated that these mirs may have the potential to be used as prognostic biomarkers for EC in clinical practice.
Collapse
Affiliation(s)
- Pinhao Fang
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Jianfeng Zhou
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaokun Li
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Siyuan Luan
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Xiao
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Qixin Shang
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Hanlu Zhang
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yushang Yang
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoxi Zeng
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yong Yuan
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Yong Yuan,
| |
Collapse
|
27
|
Epithelial-to-Mesenchymal Transition in Metastasis: Focus on Laryngeal Carcinoma. Biomedicines 2022; 10:biomedicines10092148. [PMID: 36140250 PMCID: PMC9496235 DOI: 10.3390/biomedicines10092148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 11/18/2022] Open
Abstract
In epithelial neoplasms, such as laryngeal carcinoma, the survival indexes deteriorate abruptly when the tumor becomes metastatic. A molecular phenomenon that normally appears during embryogenesis, epithelial-to-mesenchymal transition (EMT), is reactivated at the initial stage of metastasis when tumor cells invade the adjacent stroma. The hallmarks of this phenomenon are the abolishment of the epithelial and acquisition of mesenchymal traits by tumor cells which enhance their migratory capacity. EMT signaling is mediated by complex molecular pathways that regulate the expression of crucial molecules contributing to the tumor’s metastatic potential. Effectors of EMT include loss of adhesion, cytoskeleton remodeling, evasion of apoptosis and immune surveillance, upregulation of metalloproteinases, neovascularization, acquisition of stem-cell properties, and the activation of tumor stroma. However, the current approach to EMT involves a holistic model that incorporates the acquisition of potentials beyond mesenchymal transition. As EMT is inevitably associated with a reverse mesenchymal-to-epithelial transition (MET), a model of partial EMT is currently accepted, signifying the cell plasticity associated with invasion and metastasis. In this review, we identify the cumulative evidence which suggests that various aspects of EMT theory apply to laryngeal carcinoma, a tumor of significant morbidity and mortality, introducing novel molecular targets with prognostic and therapeutic potential.
Collapse
|
28
|
Toraih EA, Fawzy MS, Ning B, Zerfaoui M, Errami Y, Ruiz EM, Hussein MH, Haidari M, Bratton M, Tortelote GG, Hilliard S, Nilubol N, Russell JO, Shama MA, El-Dahr SS, Moroz K, Hu T, Kandil E. A miRNA-Based Prognostic Model to Trace Thyroid Cancer Recurrence. Cancers (Basel) 2022; 14:cancers14174128. [PMID: 36077665 PMCID: PMC9454675 DOI: 10.3390/cancers14174128] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/12/2022] [Accepted: 08/21/2022] [Indexed: 12/03/2022] Open
Abstract
Simple Summary Some thyroid tumors elected for surveillance remain indolent, while others progress. The mechanism responsible for this difference is poorly understood, making it challenging to devise patient surveillance plans. Early prediction is important for tailoring treatment and follow-up in high-risk patients. The aim of our study was to identify predictive markers for progression. We leveraged a highly sensitive test that accurately predicts which thyroid nodules are more likely to develop lymph node metastasis, thereby improving care and outcomes for cancer patients. Abstract Papillary thyroid carcinomas (PTCs) account for most endocrine tumors; however, screening and diagnosing the recurrence of PTC remains a clinical challenge. Using microRNA sequencing (miR-seq) to explore miRNA expression profiles in PTC tissues and adjacent normal tissues, we aimed to determine which miRNAs may be associated with PTC recurrence and metastasis. Public databases such as TCGA and GEO were utilized for data sourcing and external validation, respectively, and miR-seq results were validated using quantitative real-time PCR (qRT-PCR). We found miR-145 to be significantly downregulated in tumor tissues and blood. Deregulation was significantly related to clinicopathological features of PTC patients including tumor size, lymph node metastasis, TNM stage, and recurrence. In silico data analysis showed that miR-145 can negatively regulate multiple genes in the TC signaling pathway and was associated with cell apoptosis, proliferation, stem cell differentiation, angiogenesis, and metastasis. Taken together, the current study suggests that miR-145 may be a biomarker for PTC recurrence. Further mechanistic studies are required to uncover its cellular roles in this regard.
Collapse
Affiliation(s)
- Eman A. Toraih
- Division of Endocrine and Oncologic Surgery, Department of Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA
- Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
- Correspondence: ; Tel.: +1-346-907-4237
| | - Manal S. Fawzy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
- Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar P.O. Box 1321, Saudi Arabia
| | - Bo Ning
- Department of Biochemistry and Molecular Biology, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Mourad Zerfaoui
- Division of Endocrine and Oncologic Surgery, Department of Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Youssef Errami
- Division of Endocrine and Oncologic Surgery, Department of Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Emmanuelle M. Ruiz
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Mohammad H. Hussein
- Division of Endocrine and Oncologic Surgery, Department of Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Muhib Haidari
- School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Melyssa Bratton
- Biospecimen Core Laboratory, Louisiana Cancer Research Center, New Orleans, LA 70112, USA
| | - Giovane G. Tortelote
- Section of Pediatric Nephrology, Department of Pediatrics, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Sylvia Hilliard
- Section of Pediatric Nephrology, Department of Pediatrics, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Naris Nilubol
- Endocrine Oncology Branch, National Cancer Institute, National Institute of Health, Bethesda, MD 20814, USA
| | - Jonathon O. Russell
- Division of Head and Neck Endocrine Surgery, Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins, Baltimore, MD 21287, USA
| | - Mohamed A. Shama
- Division of Endocrine and Oncologic Surgery, Department of Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Samir S. El-Dahr
- Section of Pediatric Nephrology, Department of Pediatrics, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Krzysztof Moroz
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Tony Hu
- Department of Biochemistry and Molecular Biology, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Emad Kandil
- Division of Endocrine and Oncologic Surgery, Department of Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| |
Collapse
|
29
|
Zhang N, Gao Y, Bian Q, Wang Q, Shi Y, Zhao Z, Yu H. The role of fascin-1 in the pathogenesis, diagnosis and management of respiratory related cancers. Front Oncol 2022; 12:948110. [PMID: 36033434 PMCID: PMC9404296 DOI: 10.3389/fonc.2022.948110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/25/2022] [Indexed: 11/15/2022] Open
Abstract
Human cancer statistics report that respiratory related cancers such as lung, laryngeal, oral and nasopharyngeal cancers account for a large proportion of tumors, and tumor metastasis remains the major reason for patient death. The metastasis of tumor cells requires actin cytoskeleton remodeling, in which fascin-1 plays an important role. Fascin-1 can cross-link F-actin microfilaments into bundles and form finger-like cell protrusions. Some studies have shown that fascin-1 is overexpressed in human tumors and is associated with tumor growth, migration and invasion. The role of fascin-1 in respiratory related cancers is not very clear. The main purpose of this study was to provide an updated literature review on the role of fascin-1 in the pathogenesis, diagnosis and management of respiratory related cancers. These studies suggested that fascin-1 can serve as an emerging biomarker and potential therapeutic target, and has attracted widespread attention.
Collapse
Affiliation(s)
- Naibin Zhang
- Department of biochemistry, Jining Medical University, Jining, China
| | - Yankun Gao
- Department of biochemistry, Jining Medical University, Jining, China
| | - Qiang Bian
- Collaborative Innovation Center, Jining Medical University, Jining, China
- Department of Pathophysiology, Weifang Medical University, Weifang, China
| | - Qianqian Wang
- Department of biochemistry, Jining Medical University, Jining, China
| | - Ying Shi
- Department of biochemistry, Jining Medical University, Jining, China
| | - Zhankui Zhao
- The Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Honglian Yu
- Department of biochemistry, Jining Medical University, Jining, China
- Collaborative Innovation Center, Jining Medical University, Jining, China
- *Correspondence: Honglian Yu,
| |
Collapse
|
30
|
Zhang T, Yu S, Zhao S. Hsa_circ_0005100 regulates tumorigenicity of colorectal carcinoma via miR-145-5p/MACC1 axis. J Clin Lab Anal 2022; 36:e24533. [PMID: 35766445 PMCID: PMC9396189 DOI: 10.1002/jcla.24533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/28/2022] [Accepted: 05/19/2022] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) are a kind of RNA molecules involved in the regulation of cancer progression, including colorectal carcinoma (CRC); nevertheless, their regulation mode is blurry. In the present work, we attempted to reveal the characteristics of hsa_hsa_circ_0005100 in CRC. METHODS Differential expressions of hsa_circ_0005100, FMN2 mRNA, microRNA-145-5p (miR-145-5p), and MACC1 were indicated by qRT-PCR and Western blot. The capacities of cell growth and motility were validated by the MTT assay, flow cytometry assay, EdU assay, colony formation assay, and transwell assay. Moreover, the targeted relationship of miR-145-5p and hsa_circ_0005100 or MACC1 was distinguished by dual-luciferase reporter assay. The animal experiment was implemented to confirm the influence of hsa_circ_0005100 on tumorigenesis in vivo. RESULTS Hsa_circ_0005100 and MACC1 expression levels were increased, but miR-145-5p expression level was diminished in CRC. Hsa_circ_0005100 knockdown repressed cell proliferation, cell cycle, migration, and invasion, while expedited cell apoptosis in CRC cells. Furthermore, miR-145-5p was disclosed to block CRC via overturning MACC1. Hsa_circ_0005100 targeted miR-145-5p to modulate MACC1. Additionally, hsa_circ_0005100 knockdown also attenuated tumorigenesis in vivo. CONCLUSION Hsa_circ_0005100 was a vital regulator in the development of CRC by miR-145-5p/MACC1 axis, which deepened the understanding of CRC pathogenesis from circRNA insights.
Collapse
Affiliation(s)
- Tongtong Zhang
- Department of Gastrointestinal Surgery, The Third Hospital Affiliated to Hebei Medical University, Shijiazhuang, China
| | - Suyang Yu
- Department of Gastrointestinal Surgery, The Third Hospital Affiliated to Hebei Medical University, Shijiazhuang, China
| | - Shipeng Zhao
- Department of Gastrointestinal Surgery, The Third Hospital Affiliated to Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
31
|
Qian L, Ni T, Fei B, Sun H, Ni H. An immune-related lncRNA pairs signature to identify the prognosis and predict the immune landscape of laryngeal squamous cell carcinoma. BMC Cancer 2022; 22:545. [PMID: 35568824 PMCID: PMC9107277 DOI: 10.1186/s12885-022-09524-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 04/08/2022] [Indexed: 01/13/2023] Open
Abstract
Background
Laryngeal squamous cell carcinoma (LSCC) is the most common squamous cell carcinoma. Though significant effort has been focused on molecular pathogenesis, development, and recurrence of LSCC, little is known about its relationship with the immune-related long non-coding RNA (lncRNA) pairs. Methods After obtaining the transcriptome profiling data sets and the corresponding clinical characteristics of LSCC patients and normal samples from The Cancer Genome Atlas (TCGA) database, a series of bioinformatic analysis was conducted to select the differently expressed immune-related lncRNAs and build a signature of immune-related lncRNA pairs. Then, the effectiveness of the signature was validated. Results A total of 111 LSCC patients and 12 normal samples’ transcriptome profiling data sets were retrieved from TCGA. 301 differently expressed immune-related lncRNAs were identified and 35,225 lncRNA pairs were established. After univariate Cox analysis, LASSO regression and multivariate Cox analysis, 7 lncRNA pairs were eventually selected to construct a signature. The riskscore was computed using the following formula: Riskscore = 0.95 × (AL133330.1|AC132872.3) + (-1.23) × (LINC01094|LINC02154) + 0.65 × (LINC02575|AC122685.1) + (-1.15) × (MIR9-3HG|LINC01748) + 1.45 × (AC092687.3|SNHG12) + (-0.87) × (AC090204.1|AL158166.1) + 0.64 × (LINC01063|Z82243.1). Patients were classified into the high-risk group (> 1.366) and the low-risk group (< 1.366) according to the cutoff value (1.366), which is based on the 5-year riskscore ROC curve. The survival analysis showed that the low-risk group had a better prognosis (P < 0.001). The riskscore was better than other clinical characteristics in prognostic prediction and the area under the curves (AUCs) for the 1-, 3-, and 5-year survivals were 0.796, 0.946, and 0.895, respectively. Combining age, gender, grade, stage, and riskscore, a nomograph was developed to predict survival probability in LSCC patients. Then, the riskscore was confirmed to be related with the content of tumor-infiltration immune cells and the model could serve as a potential predictor for chemosensitivity. Conclusion We successfully established a more stable signature of 7 immune-related lncRNA pairs, which has demonstrated a better prognostic ability for LSCC patients and may assist clinicians to precisely prescribe chemo drugs. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09524-1.
Collapse
Affiliation(s)
- Lvsheng Qian
- Department of Otolaryngology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Tingting Ni
- Department of Oncology, Nantong Tumor Hospital, Nantong, 226001, Jiangsu, China
| | - Bing Fei
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, 223002, Jiangsu, China
| | - Hui Sun
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Haosheng Ni
- Department of Otolaryngology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
32
|
Study on the Function and Mechanism of miR-585-3p Inhibiting the Progression of Ovarian Cancer Cells by Targeting FSCN1 to Block the MAPK Signaling Pathway. Anal Cell Pathol (Amst) 2022; 2022:1732365. [PMID: 35602576 PMCID: PMC9122712 DOI: 10.1155/2022/1732365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/22/2022] [Accepted: 04/09/2022] [Indexed: 11/17/2022] Open
Abstract
Ovarian cancer (OC) is the leading cause of death for women diagnosed with gynecological cancer. Studies have shown that dysregulated miRNA expression is related to various cancers, including OC. Here, we aimed to explore the biological function and mechanism of miR-585-3p in the occurrence and development of OC. The expression level of miR-585-3p was found to be low in OC tissues and cells. We analyzed the biological function of miR-585-3p in OC through in vitro cell experiments. The results indicated that overexpression of miR-585-3p inhibited the proliferation, invasion, and migration of SW626 cells, while low expression of miR-585-3p had the opposite effect in SKOV3 cells. We then screened the target genes of miR-585-3p through miRDB database and detected the expression of target genes in OC cells. FSCN1 was found to be most significantly upregulated in OC cells. Dual-luciferase reporter assays revealed FSCN1 as a potential target of miR-585-3p. Western blot analysis showed that miR-585-3p targeted FSCN1 to inhibit protein phosphorylation of ERK. In vivo animal experiments also confirmed that miR-585-3p targets FSCN1 to inhibit tumor growth and block the MAPK signaling pathway. In summary, miR-585-3p inhibits the proliferation, migration, and invasion of OC cells by targeting FSCN1, and its mechanism of action may be achieved by inhibiting the activation of the MAPK signaling pathway. miR-585-3p may serve as a potential biomarker and therapeutic target for OC.
Collapse
|
33
|
Li S, Zhang Y, He Z, Xu Q, Li C, Xu B. Knockdown of circMYOF inhibits cell growth, metastasis, and glycolysis through miR-145-5p/OTX1 regulatory axis in laryngeal squamous cell carcinoma. Funct Integr Genomics 2022; 22:1-13. [PMID: 35474406 DOI: 10.1007/s10142-022-00862-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/11/2022] [Accepted: 04/11/2022] [Indexed: 11/28/2022]
Abstract
New evidence suggests that abnormal expression of circular RNA (circRNA) is associated with the development of human cancers. This study aims to reveal circMYOF roles in the malignant phenotype of laryngeal squamous cell carcinoma (LSCC). The expression of circMYOF, microRNA (miR)-145-5p, and orthodenticle homeobox 1 (OTX1) was detected by quantitative real-time PCR. Cell proliferation, migration, invasion, and apoptosis were determined using colony formation assay and EdU assay, wound healing assay, transwell assay, and flow cytometry, respectively. Protein expression was examined by western blot analysis. Cell glycolysis was assessed by detecting glucose consumption and lactate production. Mice xenograft models were constructed to evaluate the regulation of circMYOF on LSCC tumorigenesis. The regulatory relationships among circMYOF, miR-145-5p, and OTX1 were identified using dual-luciferase reporter assay and RIP assay. Serum exosomes were isolated to confirm the existence of circMYOF in LSCC patients. CircMYOF was upregulated in LSCC tissues and cells, and its knockdown suppressed LSCC cell growth, metastasis, and glycolysis, as well as inhibited LSCC tumor growth. MiR-145-5p had decreased expression in LSCC, and it could be sponged by circMYOF. The inhibition effect of circMYOF lentivirus short hairpin RNA (sh-circMYOF) on LSCC progression was restored by the inhibitor of miR-145-5p (in-miR-145-5p). Also, OTX1 was targeted by miR-145-5p and was positively regulated by circMYOF. MiR-145-5p could repress LSCC progression, and OTX1 overexpression also eliminated this effect. In addition, we found that circMYOF was significantly overexpressed in the serum exosomes of LSCC patients. Our data revealed that circMYOF contributed to LSCC progression by promoting cell growth, metastasis, and glycolysis through miR-145-5p/OTX1 axis.
Collapse
Affiliation(s)
- Shihua Li
- Department of ENT & HN Surgery, Stomatological Hospital affiliated to Kunming Medical University, Yunnan Province, Kunming, 650032, People's Republic of China.,Department of Acupuncture and Massage, Yuxi People's Hospital, Yunnan Province, Yuxi, 653199, People's Republic of China
| | - Ying Zhang
- Department of Acupuncture and Massage, Yuxi People's Hospital, Yunnan Province, Yuxi, 653199, People's Republic of China
| | - Zhongshun He
- Department of ENT & HN Surgery, Stomatological Hospital affiliated to Kunming Medical University, Yunnan Province, Kunming, 650032, People's Republic of China
| | - Qiannan Xu
- Department of Acupuncture and Massage, Yuxi People's Hospital, Yunnan Province, Yuxi, 653199, People's Republic of China
| | - Cailian Li
- Department of Acupuncture and Massage, Yuxi People's Hospital, Yunnan Province, Yuxi, 653199, People's Republic of China
| | - Biao Xu
- Department of Oral and Maxillofacial Surgery, Yuxi People's Hospital, Yunnan Province, 653100, Yuxi, People's Republic of China. .,, Kunming City, People's Republic of China.
| |
Collapse
|
34
|
Song H, Zhang H, Li L. Bone Marrow Mesenchymal Stem Cells (BMSCs) Restrain the Malignant Behaviors of A549 Lung Cancer Cells Under Hypoxia via miR-145. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.2926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Deriving from bone marrow, the bone marrow mesenchymal stem cells (BMSCs) possess multipolar chemotaxis, proliferation potential, along with the capability to differentiate into various types of cells. Moreover, the hypoxic stimulation can effectively induce BMSCs differentiation. This
study intends to explore the impediment of BMSCs on malignant behaviors of lung cancer stem cells under hypoxia. A co-culture system of BMSCs with A549 cells was established and then assigned into normoxia group, hypoxia group (50, 100, and 200 nmol/L) followed by analysis of cell viability
by CCK-8 assay and miR-145 expression by qRT-PCR. In addition, A549 cells were grouped into NC group, miR-145-mimics group, and miR-145-inhibitors group followed by analysis of cell invasion and levels of miR-145 and Oct4. Hypoxia group exhibited a reduced cell viability and higher miR-145
expression (146.01±21.23%) compared to normoxia group (P < 0.05). Transfection of miR-145-mimic significantly upregulated miR-145 and decreased cell invasion (7.49±1.43%) compared with miR-145-inhibitors group or NC group (P < 0.05). Meanwhile, Oct4 level
in miR-145-mimics group (0.934±2.98) was significantly decreased (P < 0.05). In conclusion, under hypoxia condition, the co-culture with BMSCs can upregulated miR-145 level, effectively reduce the viability of lung cancer stem cells and restrain proliferation capability.
Collapse
Affiliation(s)
- Haibin Song
- Department of Oncology, Wuhan Integrated TCM & Western Medicine Hospital (Wuhan No. 1 Hospital), Wuhan, 430022, China
| | - Heng Zhang
- Department of Oncology, Wuhan Integrated TCM & Western Medicine Hospital (Wuhan No. 1 Hospital), Wuhan, 430022, China
| | - Lei Li
- Department of Oncology, Wuhan Asia General Hospital, Wuhan, 430056, China
| |
Collapse
|
35
|
Zhu S, Yang N, Niu C, Wang W, Wang X, Bai J, Qiao Y, Deng S, Guan Y, Chen J. The miR-145–MMP1 axis is a critical regulator for imiquimod-induced cancer stemness and chemoresistance. Pharmacol Res 2022; 179:106196. [DOI: 10.1016/j.phrs.2022.106196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/10/2022] [Accepted: 03/25/2022] [Indexed: 11/28/2022]
|
36
|
Noguchi S, Tanimoto N, Nishida R, Matsui A. Functional analysis of the miR-145/Fascin1 cascade in canine oral squamous cell carcinoma. Oral Dis 2022; 29:1495-1504. [PMID: 35103365 DOI: 10.1111/odi.14143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/04/2022] [Accepted: 01/26/2022] [Indexed: 11/27/2022]
Abstract
OBJECTIVES Canine oral squamous cell carcinoma (SCC) often develops in the gingiva and tonsils. The biological behaviour of canine oral SCC is similar to that of human head and neck SCC (HNSCC). Inhibiting invasion and metastasis is major importance for the treatment of canine and human HNSCC. In this study, the significance of microRNA (miR)-145 and Fascin1 (FSCN1) in the invasion of canine oral SCC was explored. MATERIALS AND METHODS Canine oral SCC tissues and cell lines were used for miR-145 and FSCN1 expression analysis via real-time PCR and immunohistochemistry. Canine oral SCC cell lines were used for in vitro assays. RESULTS miR-145 was downregulated while FSCN1 mRNA was upregulated in canine oral SCC. Immunohistochemistry revealed that FSCN1 was upregulated in SCC when compared to normal mucosa. Transfection of canine SCC cells with miR-145 or FSCN1 siRNA suppressed cell growth and attenuated cell migration as well as invasion by inhibiting the epithelial-to-mesenchymal transition. Furthermore, the promoter region of miR-145 was highly methylated in SCC cell lines and tissues. CONCLUSION The expression profile and functions of miR-145 in canine oral SCC are similar to those in human HNSCC. Thus, canine oral SCC may represent a valuable preclinical model for human HNSCC.
Collapse
Affiliation(s)
- Shunsuke Noguchi
- Laboratory of Veterinary Radiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku Ourai Kita, Izumisano-shi, Osaka, 598-8531, Japan
| | - Nanami Tanimoto
- Laboratory of Veterinary Radiology, College of Life, Environment, and Advanced Sciences, Osaka Prefecture University, 1-58 Rinku Ourai Kita, Izumisano-shi, Osaka, 598-8531, Japan
| | - Ruisa Nishida
- Laboratory of Veterinary Radiology, College of Life, Environment, and Advanced Sciences, Osaka Prefecture University, 1-58 Rinku Ourai Kita, Izumisano-shi, Osaka, 598-8531, Japan
| | - Asuka Matsui
- Laboratory of Veterinary Radiology, College of Life, Environment, and Advanced Sciences, Osaka Prefecture University, 1-58 Rinku Ourai Kita, Izumisano-shi, Osaka, 598-8531, Japan
| |
Collapse
|
37
|
Zhuang X, Chen B, Huang S, Han J, Zhou G, Xu S, Chen M, Zeng Z, Zhang S. Hypermethylation of miR-145 promoter-mediated SOX9-CLDN8 pathway regulates intestinal mucosal barrier in Crohn's disease. EBioMedicine 2022; 76:103846. [PMID: 35124427 PMCID: PMC8829091 DOI: 10.1016/j.ebiom.2022.103846] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 12/20/2022] Open
Abstract
Background Intestinal barrier impairment plays an essential role in the pathogenesis of Crohn's disease (CD), and claudins (CLDNs) dysfunction contributes to intestinal mucosa injury. SOX9, an important transcription factor, is upregulated in the disease-affected colon of patients with CD; however, its precise role in CD remains largely unknown. Our aim was to explore the interaction between SOX9 and CLDNs, and further elucidate the underlying mechanisms in CD. Methods SOX9 expression in patients with CD was evaluated using quantitative polymerase chain reaction, immunoblotting, and immunohistochemistry. The regulatory relationship between SOX9 and CLDNs was analyzed via a dual-luciferase reporter assay, chromatin immunoprecipitation, overexpression, and RNA interference methods. MicroRNAs (miRNAs) involved in the SOX9-CLDN pathway were predicted with bioinformatics analysis, and the upstream molecular mechanism was interpreted using MassARRAY methylation detection. Findings Upregulated expression of SOX9 in the disease-affected intestine mucosa was identified in both patients with CD and mice challenged with trinitrobenzene sulfonic acid (TNBS). SOX9 negatively regulated the expression of CLDN8, accompanying reduced intestinal permeability. MiR-145-5p downregulation was found in patients with CD and TNBS-induced colitis mice owing to an aberrant miR-145 promoter hypermethylation, which subsequently interfered the SOX9-CLDN8 pathway. MiR-145-5p agomir treatment alleviated TNBS-induced colitis in wild-type mice by inhibiting Sox9 expression and restoring Cldn8 expression, whereas similar findings were not apparent in the Cldn8−/− mice. Interpretation SOX9 mediates the crosstalk between upstream miR-145-5p and downstream CLDN8, and further impairs intestinal mucosal barrier homeostasis in CD. Targeting the miR-145-5p/SOX9/CLDN8 pathway represents a promising therapeutic strategy for CD. Funding The National Natural Science Foundation of China (#81870374, #81670498, #81630018, #82070538, #8210031148), the Guangdong Science and Technology (#2017A030306021, #2020A1515111087), the Guangzhou Science and Technology Department (#202002030041), and the Fundamental Research Funds for the Central Universities (#19ykzd11).
Collapse
Affiliation(s)
- Xiaojun Zhuang
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Baili Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shanshan Huang
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jing Han
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Gaoshi Zhou
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shu Xu
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Minhu Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhirong Zeng
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Shenghong Zhang
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
38
|
Function of miRNA-145-5p in the pathogenesis of human disorders. Pathol Res Pract 2022; 231:153780. [DOI: 10.1016/j.prp.2022.153780] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/08/2022] [Accepted: 01/22/2022] [Indexed: 01/09/2023]
|
39
|
Heawchaiyaphum C, Ekalaksananan T, Patarapadungkit N, Worawichawong S, Pientong C. Epstein-Barr Virus Infection Alone or Jointly with Human Papillomavirus Associates with Down-Regulation of miR-145 in Oral Squamous-Cell Carcinoma. Microorganisms 2021; 9:microorganisms9122496. [PMID: 34946098 PMCID: PMC8708579 DOI: 10.3390/microorganisms9122496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 11/28/2022] Open
Abstract
Down-regulation of tumor-suppressive miR-145 has been reported in various malignancies, including oral squamous-cell carcinoma (OSCC) that is influenced by several factors, including Epstein-Barr virus (EBV) and human papillomavirus (HPV). Oncoviruses can modulate the expression of cellular microRNAs. Therefore, we sought to investigate the association of miR-145 down-regulation in OSCC with EBV and/or HPV infection, which might be a possible mechanism of these viruses in oral carcinogenesis. Herein, prevalence of EBV, HPV, and their co-infection was significantly higher in tumors than normal tissues of OSCC. EBV infection alone or jointly with HPV was significantly associated with down-regulation of miR-145 in tumors compared with normal adjacent tissues. In cell lines infected with EBV or HPV, miR-145 was also down-regulated. Consistently, methylation of miR-145 was significantly greater in tumors, and well correlated with increased expression of DNMT3B, which was influenced by infection with EBV and HPV. In cell lines, only EBV infection was associated with increased expression of DNMT3B. Moreover, the level of EBV-LMP1 mRNA in tumors was negatively correlated with miR-145 and positively correlated with DNMT3B. Therefore, EBV alone or jointly with HPV is associated with down-regulation of miR-145 and may influence on miR-145 promoter methylation through the induction of DNMT3B in OSCC.
Collapse
Affiliation(s)
- Chukkris Heawchaiyaphum
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (C.H.); (T.E.)
- HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Tipaya Ekalaksananan
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (C.H.); (T.E.)
- HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Natcha Patarapadungkit
- HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen 40002, Thailand;
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Suchin Worawichawong
- Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand;
| | - Chamsai Pientong
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (C.H.); (T.E.)
- HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen 40002, Thailand;
- Correspondence:
| |
Collapse
|
40
|
Circ_0005033 is an oncogene in laryngeal squamous cell carcinoma and regulates cell progression and Cisplatin sensitivity via miR-107/IGF1R axis. Anticancer Drugs 2021; 33:245-256. [PMID: 34845162 DOI: 10.1097/cad.0000000000001260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Transcriptome expression profiles of laryngeal squamous cell carcinoma (LSCC) are altered, and we aimed to investigate expression and role of hsa_circ_0005033 (circ_0005033), microRNA (miR)-107 and insulin-like growth factor 1 receptor (IGF1R) in LSCC. Real-time PCR, western blotting and immunohistochemistry detected RNA and protein expression levels. Functional assays were performed using MTT assay, EdU assay, apoptosis assay, flow cytometry, Transwell assay, and xenograft tumor model. Direct interaction was predicted by Starbase algorithm and validated by dual-luciferase reporter assay and RNA immunoprecipitation. Expression of circ_0005033 was substantially upregulated in LSCC tissues and cells, and allied with miR-107 downregulation and IGF1R upregulation. Circ_0005033 showed a closed-loop structure and long half-life. Essentially, circ_0005033 and IGF1R were competing endogenous RNAs for miR-107 via target binding. Silencing circ_0005033 facilitated apoptosis rate and lowered cell viability, proliferation, migration and invasion of LSCC cells, as well as delayed xenograft tumor growth. Allied with that, cleaved-caspase 3/8/9 expression was elevated via death receptor-mediated and mitochondrial pathways, and expression of matrix metalloproteinase-2 (MMP2), MMP9, cyclin D1 and proliferating cell nuclear antigen was decreased. Moreover, Cisplatin-induced inhibition of cell viability was exacerbated by inhibiting circ_0005033. These functional effects of circ_0005033 depression were consistent with those of miR-107 overexpression. Furthermore, depleting miR-107 and restoring IGF1R abated the effects of circ_0005033 knockdown and miR-107 overexpression, respectively. Circ_0005033 was oncogenic in LSCC by regulating cell progression and Cisplatin sensitivity at least via miR-107/IGF1R axis.
Collapse
|
41
|
Gupta I, Vranic S, Al-Thawadi H, Al Moustafa AE. Fascin in Gynecological Cancers: An Update of the Literature. Cancers (Basel) 2021; 13:cancers13225760. [PMID: 34830909 PMCID: PMC8616296 DOI: 10.3390/cancers13225760] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Fascin, an actin-binding protein, is upregulated in different types of human cancers. It is reportedly responsible for increasing the invasive and metastatic ability of cancer cells by reducing cell–cell adhesions. This review provides a brief overview of fascin and its interactions with other genes and oncoviruses to induce the onset and progression of cancer. Abstract Fascin is an actin-binding protein that is encoded by the FSCN1 gene (located on chromosome 7). It triggers membrane projections and stimulates cell motility in cancer cells. Fascin overexpression has been described in different types of human cancers in which its expression correlated with tumor growth, migration, invasion, and metastasis. Moreover, overexpression of fascin was found in oncovirus-infected cells, such as human papillomaviruses (HPVs) and Epstein-Barr virus (EBV), disrupting the cell–cell adhesion and enhancing cancer progression. Based on these findings, several studies reported fascin as a potential biomarker and a therapeutic target in various cancers. This review provides a brief overview of the FSCN1 role in various cancers with emphasis on gynecological malignancies. We also discuss fascin interactions with other genes and oncoviruses through which it might induce cancer development and progression.
Collapse
Affiliation(s)
- Ishita Gupta
- Department of Basic Medical Science, College of Medicine, QU Health, Qatar University, Doha 2713, Qatar; (I.G.); (S.V.); (H.A.-T.)
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha 2713, Qatar
| | - Semir Vranic
- Department of Basic Medical Science, College of Medicine, QU Health, Qatar University, Doha 2713, Qatar; (I.G.); (S.V.); (H.A.-T.)
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha 2713, Qatar
| | - Hamda Al-Thawadi
- Department of Basic Medical Science, College of Medicine, QU Health, Qatar University, Doha 2713, Qatar; (I.G.); (S.V.); (H.A.-T.)
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha 2713, Qatar
| | - Ala-Eddin Al Moustafa
- Department of Basic Medical Science, College of Medicine, QU Health, Qatar University, Doha 2713, Qatar; (I.G.); (S.V.); (H.A.-T.)
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha 2713, Qatar
- Biomedical Research Centre, QU Health, Qatar University, Doha 2713, Qatar
- Correspondence: ; Tel.: +974-4403-7817
| |
Collapse
|
42
|
卜 倩, 高 伟, 吴 勇, 郭 培, 王 斌. [Research progress of microRNA in laryngeal squamous cell carcinoma]. LIN CHUANG ER BI YAN HOU TOU JING WAI KE ZA ZHI = JOURNAL OF CLINICAL OTORHINOLARYNGOLOGY, HEAD, AND NECK SURGERY 2021; 35:947-951. [PMID: 34628823 PMCID: PMC10127703 DOI: 10.13201/j.issn.2096-7993.2021.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Indexed: 11/12/2022]
Abstract
Laryngeal carcinoma is one of the most common malignant tumors in the area of head and neck, and the main pathological type is laryngeal squamous cell carcinoma. Due to the fact that the disease usually have no overt clinical symptoms at the early stage and easy to relapse, it has a poor prognosis and low five-year survival rate. microRNA is a class of endogenous, non-coding RNA with a length of 19-25 nucleotides. microRNAs, mainly regulate the expression of target genes at the post-transcriptional level after complementing and pairing with the 3'-UTR area of the target gene. Studies have shown that the abnormal expression of microRNA is closely related to the occurrence, development, metastasis and prognosis of various cancers including laryngeal carcinoma. In this article, the research progress of microRNA in laryngeal squamous cell carcinoma is reviewed.
Collapse
Affiliation(s)
- 倩倩 卜
- 山西医科大学第一医院耳鼻咽喉头颈外科 耳鼻咽喉头颈肿瘤山西省重点实验室(太原,030001)
| | - 伟 高
- 山西医科大学第一医院耳鼻咽喉头颈外科 耳鼻咽喉头颈肿瘤山西省重点实验室(太原,030001)
| | - 勇延 吴
- 山西医科大学第一医院耳鼻咽喉头颈外科 耳鼻咽喉头颈肿瘤山西省重点实验室(太原,030001)
| | - 培钰 郭
- 山西医科大学第一医院耳鼻咽喉头颈外科 耳鼻咽喉头颈肿瘤山西省重点实验室(太原,030001)
| | - 斌全 王
- 山西医科大学第一医院耳鼻咽喉头颈外科 耳鼻咽喉头颈肿瘤山西省重点实验室(太原,030001)
| |
Collapse
|
43
|
Wu Y, Dai F, Zhang Y, Zheng X, Li L, Zhang Y, Cao J, Gao W. miR-1207-5p suppresses laryngeal squamous cell carcinoma progression by downregulating SKA3 and inhibiting epithelial-mesenchymal transition. MOLECULAR THERAPY-ONCOLYTICS 2021; 22:152-165. [PMID: 34514096 PMCID: PMC8416975 DOI: 10.1016/j.omto.2021.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/12/2021] [Indexed: 12/12/2022]
Abstract
Laryngeal squamous cell carcinoma (LSCC) is the second most common head and neck cancer. Previously, we discovered that miR-1207-5p was downregulated in LSCC. In this study, the clinical significance, function, and mechanism of miR-1207-5p in LSCC were investigated. Downregulation of miR-1207-5p was found to be strongly linked to the malignant progression of LSCC. Functional studies revealed that miR-1207-5p upregulation suppressed LSCC cell proliferation, invasion, migration, and xenograft tumor growth. Bioinformatics analysis revealed that miR-1207-5p target genes were involved in cell cycle regulation, proliferation, adhesion, and the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. Mechanistic studies revealed that miR-1207-5p interacts directly with the 3′ untranslated region of spindle and kinetochore associated complex subunit 3 (SKA3) and downregulates SKA3 expression. Furthermore, SKA3 was found to be overexpressed in LSCC, and its high expression was associated with tumor progression and a poor prognosis. Rescue experiments demonstrated that miR-1207-5p inhibited the malignant phenotypes of LSCC via SKA3. Furthermore, miR-1207-5p upregulation or knockdown of SKA3 inhibited the epithelial-mesenchymal transition (EMT). Collectively, miR-1207-5p inhibited LSCC malignant progression by downregulating SKA3 and preventing EMT. These findings provide new insights into the mechanism of LSCC progression, as well as new potential biomarkers and therapeutic targets for LSCC diagnosis and treatment.
Collapse
Affiliation(s)
- Yongyan Wu
- General Hospital, Clinical Medical Academy, Shenzhen University, Shenzhen 518055, Guangdong, China.,Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, China.,Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, Shanxi, China.,Department of Biochemistry & Molecular Biology, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Fengsheng Dai
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Yuliang Zhang
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Xiwang Zheng
- General Hospital, Clinical Medical Academy, Shenzhen University, Shenzhen 518055, Guangdong, China.,Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Li Li
- Department of Cell biology and Genetics, Basic Medical School of Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Yu Zhang
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Jimin Cao
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Wei Gao
- General Hospital, Clinical Medical Academy, Shenzhen University, Shenzhen 518055, Guangdong, China.,Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, China.,Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, Shanxi, China.,Department of Cell biology and Genetics, Basic Medical School of Shanxi Medical University, Taiyuan 030001, Shanxi, China
| |
Collapse
|
44
|
Ma J, Hu X, Dai B, Wang Q, Wang H. Prediction of the mechanism of miRNAs in laryngeal squamous cell carcinoma based on the miRNA-mRNA regulatory network. PeerJ 2021; 9:e12075. [PMID: 34513340 PMCID: PMC8395572 DOI: 10.7717/peerj.12075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/06/2021] [Indexed: 12/19/2022] Open
Abstract
In this study, a bioinformatics analysis is conducted to screen differentially expressed miRNAs and mRNAs in laryngeal squamous cell carcinoma (LSCC). Based on this information, we explored the possible roles of miRNAs in the pathogenesis of LSCC. The RNA-Seq data from 79 laryngeal cancer samples in the Gene Expression Omnibus (GEO) database were sorted. Differentially expressed miRNAs and mRNAs in LSCC are screened using the PERL programming language, and it was analysed by Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). The miRNA-mRNA regulatory network of LSCC is constructed using Cytoscape software. Then, quantitative real-time PCR (QRT- PCR), Cell Counting Kit-8 (CCK8) and flow cytometry analysis we are used to further validate key miRNAs. We identified 99 differentially expressed miRNAs and 2,758 differentially expressed mRNAs in LSCC tissues from the GEO database. Four more important miRNAs displaying a high degree of connectivity are selected, these results suggest that they play an important role in the pathogenesis of LSCC. As shown in the present study, we identified specific miRNA-mRNA networks associated with the occurrence and development of LSCC through bioinformatics analysis. We found a miRNA molecule closely related to LSCC based on miRNA-mRNA network: miR-140-3p was down-regulated in LSCC. In addition, the potential antitumor effect of miR-140-3p in LSCC was verified in the experiment, and it was proved that overexpression of miR-140-3p could inhibit the proliferation of LSCC cells and promote cell apoptosis, suggesting that miR-140-3p may be a potential tumor marker in LSCC.
Collapse
Affiliation(s)
- Jinhua Ma
- Department of Otolaryngology, Cangzhou Central Hospital, Cangzhou, China
| | - Xiaodong Hu
- Department of Otolaryngology, Cangzhou Central Hospital, Cangzhou, China
| | - Baoqiang Dai
- Department of Otolaryngology, Cangzhou Central Hospital, Cangzhou, China
| | - Qiang Wang
- Department of Otolaryngology, Cangzhou Central Hospital, Cangzhou, China
| | - Hongqin Wang
- Department of Otolaryngology, Cangzhou Central Hospital, Cangzhou, China
| |
Collapse
|
45
|
Zhang C, Shen B, Chen X, Gao S, Ying X, Dong P. Identification of a prognostic 4-mRNA signature in laryngeal squamous cell carcinoma. J Cancer 2021; 12:5807-5816. [PMID: 34475994 PMCID: PMC8408111 DOI: 10.7150/jca.47557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/18/2021] [Indexed: 12/24/2022] Open
Abstract
Background: Laryngeal squamous cell carcinoma (LSCC) is one of the most common malignancy in the respiratory tract and could reduce the quality of life seriously like dyspnea, dysphonia and dysphagia. Moreover, 5-year survival rate has decreased over the past 40 years. This study was designed to identify mRNAs that related to prognosis in LSCC to enable early detection and outcome improvement. Methods: Gene expression profiles from Gene Expression Omnibus (GEO) (GSE59102, GSE84957) and The Cancer Genome Atlas (TCGA) were analyzed to identify differentially expressed genes (DEGs) with the help of bioinformatics tools. Functional enrichment analyses including Gene Ontology (GO) and pathway analysis were carried out to investigate the role of those genes and underlying molecular mechanisms in LSCC. Cox's regression analyses (univariate, LASSO and multivariate in order) were utilized to identify DEGs related with patients' overall survival and a 4-mRNA-based prognostic risk score model was established. Univariate and multivariate Cox's regression analyses were then performed on LSCC data (90 patients left) to identify independent predictors of OS, including the signature and clinicopathologic variables. The prognostic value of the gene signature was further validated and the genes were analyzed by GEPIA to get pan-cancer expression profiles. Results: 444 differentially expressed mRNAs (250 up-regulated, 194 down-regulated) were identified based on the threshold of fold change > 2 and adjusted p value < 0.05. Univariate Cox's regression analysis showed that high risk score (HR: 3.056, 95% confidence interval [CI]: 0.135-0.649, p<0.001) and female (HR: 0.296, 95% CI: 2.020-4.624, p=0.002) were associated with relatively poor prognosis. Further multivariate Cox's regression analysis indicated that risk score and gender were independent prognostic factors (p<0.05). The risk score model could stratify patients into high- and low‑risk groups, which presents significantly differential overall survival (p= 8.252e-04). The AUCs of 1-, 3- and 5-year OS were 0.724, 0.783 and 0.818, respectively. Conclusions: Our study provides evidence that the four-mRNA signature could serve as a biomarker to predict prognosis in LSCC, especially in long-term.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Otorhinolaryngology-head and neck surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Shen
- Department of Otorhinolaryngology-head and neck surgery, Shanghai General Hospital, Shanghai, China
| | - Xinwei Chen
- Department of Otorhinolaryngology-head and neck surgery, Shanghai General Hospital, Shanghai, China
| | - Shang Gao
- Department of Otorhinolaryngology-head and neck surgery, Shanghai General Hospital, Shanghai, China
| | - Xinjiang Ying
- Department of Otorhinolaryngology-head and neck surgery, Shanghai General Hospital, Shanghai, China
| | - Pin Dong
- Department of Otorhinolaryngology-head and neck surgery, Shanghai General Hospital, Shanghai, China
| |
Collapse
|
46
|
Chen F, Lao Z, Zhang H, Wang J, Wang S. Knockdown of circ_0001883 may inhibit epithelial-mesenchymal transition in laryngeal squamous cell carcinoma via the miR-125-5p/PI3K/AKT axis. Exp Ther Med 2021; 22:1007. [PMID: 34345289 PMCID: PMC8311254 DOI: 10.3892/etm.2021.10440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 06/09/2021] [Indexed: 12/27/2022] Open
Abstract
Laryngeal squamous cell carcinoma (LSCC) is a malignant tumor with increasing incidence and poor prognosis. Circular RNAs (circRNAs) are known to modulate tumorigenesis and cancer development that may function through microRNAs (miRs). The aim of the present study was to investigate the functional roles of circ_0001883 in LSCC and the underlying molecular mechanism. The expression of circ_0001883 was upregulated and measured using reverse transcription-quantitative PCR (RT-qPCR) and RNase R. miR-125b-5p expression was downregulated in LSCC tissues and cells as determined using RT-qPCR. Subsequently, knockdown of circ_0001883 inhibited LSCC cell migration, invasion and epithelial-mesenchymal transition (EMT), which were tested by wound healing assays, Transwell assays and western blotting, respectively. Bioinformatics analysis predicted that circ_0001883 was a sponge of miR-125b-5p, which was verified using a dual-luciferase reporter assay. Knockdown of circ_0001883 played a functional role by sponging miR-125b-5p. Additionally, circ_0001883 and miR-125b-5p influenced phosphorylation of PI3K and AKT, detected via western blotting. In an in vivo study, knockdown of circ_0001883 reduced tumor volume and weight in mice, along with enhanced miR-125b-5p and E-cadherin expression levels, and decreased N-cadherin, phosphorylated (p)-PI3K/PI3K and p-AKT/AKT ratios. In conclusion, knockdown of circ_0001883 inhibited cell migration, invasion and EMT of LSCC by sponging miR-125b-5p. This is hypothesized to be via the PI3K/AKT signaling pathway, which suggested that circ_0001883 has potential for LSCC therapy.
Collapse
Affiliation(s)
- Fu Chen
- Department of Radiation Oncology, Eye and ENT Hospital of Fudan University, Shanghai 200031, P.R. China
| | - Zheng Lao
- Radiotherapy Division, Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Haiyan Zhang
- Department of Radiation Oncology, Eye and ENT Hospital of Fudan University, Shanghai 200031, P.R. China
| | - Jie Wang
- Department of Radiation Oncology, Eye and ENT Hospital of Fudan University, Shanghai 200031, P.R. China
| | - Shengzi Wang
- Department of Radiation Oncology, Eye and ENT Hospital of Fudan University, Shanghai 200031, P.R. China
| |
Collapse
|
47
|
Wahab A, Hyytiäinen A, Wahbi W, Tuomainen K, Tervo S, Conesa-Zamora P, Jauhiainen L, Mäkinen LK, Paavonen T, Toppila-Salmi S, Salem A, Almangush A, Salo T, Al-Samadi A. The effect of fascin 1 inhibition on head and neck squamous cell carcinoma cells. Eur J Oral Sci 2021; 129:e12819. [PMID: 34346523 DOI: 10.1111/eos.12819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 12/11/2022]
Abstract
Fascin 1 plays important pro-metastatic roles in head and neck carcinoma (HNSCC) migration, invasion, and metastasis. However, limited advancement in targeting metastasis remains a major obstacle in improving HNSCC patients' survival. Therefore, we assessed the therapeutic potential of fascin 1 targeted inhibition and its potential prognostic value in HNSCC patients. Using in vitro and in vivo approaches, we investigated the effect of compound G2, a novel fascin 1 inhibitor, on HNSCC cells migration, invasion, and metastasis. High-throughput screening (HTS) was used to assess cytotoxic activity of compound G2 alone or combined with irradiation. We also evaluated the prognostic potential of fascin 1 in HNSCC patients. Interestingly, compound G2 reduced carcinoma cells migration and invasion in vitro and inhibited metastasis in vivo. Moreover, HTS revealed a modest cytotoxic activity of the compound G2 on HNSCC cell lines. Irradiation did not synergistically enhance the compound G2-mediated cytotoxic activity. Survival analyses showed that high fascin 1 immunoexpression, at the tumor invasive front, was associated with cancer-specific mortality in the advanced stages of HNSCC. Collectively, our findings suggest that fascin 1 represents a promising anti-metastatic therapeutic target and a useful prognostic marker in patients with HNSCC. Novel anti-metastatic agents could provide a valuable addition to cancer therapy.
Collapse
Affiliation(s)
- Awais Wahab
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, Helsinki, Finland.,Translational Immunology Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Aini Hyytiäinen
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, Helsinki, Finland.,Translational Immunology Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Wafa Wahbi
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, Helsinki, Finland.,Translational Immunology Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Katja Tuomainen
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, Helsinki, Finland.,Translational Immunology Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Sanni Tervo
- Haartman Institute, University of Helsinki, Helsinki, Finland.,Department of Pathology, Faculty of Medicine and Health Technology and Fimlab Laboratories, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Pablo Conesa-Zamora
- Pathology and Histology Department, Health Faculty, Universidad Católica de Murcia, Campus de los Jerónimos, Guadalupe, Murcia, Spain.,Clinical Analysis Department, Group of Molecular Pathology and Pharmacogenetics, Biomedical Research Institute Murcia, Hospital Universitario Santa Lucía, Cartagena, Spain
| | | | - Laura K Mäkinen
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Timo Paavonen
- Department of Pathology, Faculty of Medicine and Health Technology and Fimlab Laboratories, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Sanna Toppila-Salmi
- Skin and Allergy Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Abdelhakim Salem
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, Helsinki, Finland.,Translational Immunology Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Alhadi Almangush
- Department of Pathology, University of Helsinki, Helsinki, Finland.,Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Institute of Biomedicine, Pathology, University of Turku, Turku, Finland
| | - Tuula Salo
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, Helsinki, Finland.,Translational Immunology Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Cancer Research and Translational Medicine Research Unit, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Ahmed Al-Samadi
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, Helsinki, Finland.,Translational Immunology Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
48
|
Huang Y, Gu M, Tang Y, Sun Z, Luo J, Li Z. Systematic review and meta-analysis of prognostic microRNA biomarkers for survival outcome in laryngeal squamous cell cancer. Cancer Cell Int 2021; 21:316. [PMID: 34158050 PMCID: PMC8220842 DOI: 10.1186/s12935-021-02021-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/11/2021] [Indexed: 12/29/2022] Open
Abstract
Background Laryngeal carcinoma is a primary malignant tumor originating from the laryngeal mucosa, and its pathogenesis is not fully understood. It is a rare type of cancer that shows a downward trend in the 5-year survival rate. In clinical practice, dysregulated microRNAs are often observed in patients with laryngeal cancer. In recent years, an increasing number of studies have confirmed that the strong biomarker potential of microRNAs. We conducted a systematic review and meta-analysis to identify and highlight multiple microRNAs as biomarkers for disease prognosis in patients with laryngeal cancer. Methods We actively searched the systematic reviews in PubMed, Embase, Web of Science and The Cochrane Library to select the studies that met the proposed guidelines. A total of 5307 patients with laryngeal cancer were included in this study to evaluate the association between microRNAs expression levels and patient outcomes. For overall survival in the clinical stage, a hazard ratio (HR) and corresponding 95% confidence interval (CI) are calculated to assess the effect of survival. Results A total of 36 studies on microRNAs and laryngeal cancer recovery were included in this meta-analysis. The selected endpoints for these studies included overall survival (OS) and disease-free survival (DFS).The comorbidities of overexpression and underexpression of microRNAs were 1.13 (95% CI 1.06–1.20, P < 0.05) and 1.10 (95% CI 1.00–1.20, P < 0.05), respectively. Conclusion MiRNA-100, miRNA-155, miRNA-21, miRNA-34a, miRNA-195 and miR-let-7 are expected to be potential noninvasive and simple markers for laryngeal cancer.
Collapse
Affiliation(s)
- Yan Huang
- Department of Radiotherapy, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China.,Department of Head and Neck Surgery, Graduate School of Dalian Medical University, Dalian, China
| | - Min Gu
- Department of Stomatology, Affiliated Third Hospital of Soochow University, The First People's Hospital of Changzhou City, Changzhou, China
| | - Yiting Tang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Zhiqiang Sun
- Department of Radiotherapy, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Judong Luo
- Department of Radiotherapy, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China.
| | - Zhe Li
- Department of Breast Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
49
|
You H, Xu J, Qin X, Qian G, Wang Y, Chen F, Shen X, Zhao D, Liu Q. Fascin promotes the invasion of pituitary adenoma through partial dependence on epithelial-mesenchymal transition. J Mol Histol 2021; 52:823-838. [PMID: 34097178 DOI: 10.1007/s10735-021-09995-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/03/2021] [Indexed: 11/30/2022]
Abstract
The aim of the present study was to investigate the role and potential regulatory mechanisms of fascin in the invasion and epithelial-to-mesenchymal transition of pituitary adenoma cells. A total of 30 specimens were assessed in the present study. The expression levels of fascin in the invasive pituitary adenoma group and non-invasive pituitary adenoma group were determined by immunochemistry. Fascin was downregulated via small interfering RNA in mouse pituitary AtT-20 cells. The proliferation, cell cycle and apoptosis of AtT-20 cells were assessed using Cell Counting Kit‑8 and flow cytometry. The invasion of AtT-20 cells was detected using a Transwell assay. Transmission electron microscopy was utilized to observe the ultrastructure of AtT-20 cells. Real-time quantitative PCR, Western blotting and immunofluorescence staining were utilized to detect the expression levels of fascin and EMT markers. In the present study, fascin expression and clinical characteristics were not significantly correlated in pituitary adenoma. The protein expression level of fascin in invasive pituitary adenoma was higher than that in non-invasive pituitary adenoma, as assessed by immunochemistry. Downregulation of fascin resulted in significant decreases in cell viability, proliferation and invasion, arrested the cell cycle at the G1 phase and increased apoptosis. In addition, downregulation of fascin significantly decreased the expression levels of N-cadherin, the mesenchymal cell marker vimentin and the transcription factor Twist but significantly increased the expression levels of the epithelial cell marker E-cadherin. Further experiments revealed that overexpression of E-cadherin resulted in significant decreases in cell viability, proliferation, invasion, and the expression of fascin and transcription factor Twist and also arrested the cell cycle at the G2 phase. The results of the present study suggest that suppressing the expression level of fascin could regulate the invasion, proliferation and apoptosis of pituitary tumour cells and alter the expression level of various EMT markers. The present study identified that fascin effectively promotes the invasion, proliferation and apoptosis of pituitary tumour cells partially via the EMT pathway.
Collapse
Affiliation(s)
- Hong You
- Department of Neurosurgery, The First Affiliated Hospital, Shihezi University School of Medicine, North 2 Road, Shihezi, 832000, Xinjiang, China
| | - Jian Xu
- Department of Neurosurgery, The First Affiliated Hospital, Shihezi University School of Medicine, North 2 Road, Shihezi, 832000, Xinjiang, China
| | - Xiaochun Qin
- Department of Neurosurgery, The First Affiliated Hospital, Shihezi University School of Medicine, North 2 Road, Shihezi, 832000, Xinjiang, China
| | - Guodong Qian
- Department of Neurosurgery, The First Affiliated Hospital, Shihezi University School of Medicine, North 2 Road, Shihezi, 832000, Xinjiang, China
| | - Yang Wang
- Department of Neurosurgery, The First Affiliated Hospital, Shihezi University School of Medicine, North 2 Road, Shihezi, 832000, Xinjiang, China
| | - Fulei Chen
- Department of Neurosurgery, The First Affiliated Hospital, Shihezi University School of Medicine, North 2 Road, Shihezi, 832000, Xinjiang, China
| | - Xiaoxu Shen
- Department of Neurosurgery, The First Affiliated Hospital, Shihezi University School of Medicine, North 2 Road, Shihezi, 832000, Xinjiang, China
| | - Dong Zhao
- Department of Neurosurgery, The First Affiliated Hospital, Shihezi University School of Medicine, North 2 Road, Shihezi, 832000, Xinjiang, China
| | - Qi Liu
- Department of Neurosurgery, The First Affiliated Hospital, Shihezi University School of Medicine, North 2 Road, Shihezi, 832000, Xinjiang, China.
| |
Collapse
|
50
|
Vahabi M, Blandino G, Di Agostino S. MicroRNAs in head and neck squamous cell carcinoma: a possible challenge as biomarkers, determinants for the choice of therapy and targets for personalized molecular therapies. Transl Cancer Res 2021; 10:3090-3110. [PMID: 35116619 PMCID: PMC8797920 DOI: 10.21037/tcr-20-2530] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/10/2020] [Indexed: 12/11/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) are referred to a group of heterogeneous cancers that include structures of aerodigestive tract such as oral and nasal cavity, salivary glands, oropharynx, pharynx, larynx, paranasal sinuses, and local lymph nodes. HNSCC is characterized by frequent alterations of several genes such as TP53, PIK3CA, CDKN2A, NOTCH1, and MET as well as copy number increase in EGFR, CCND1, and PIK3CA. These genomic alterations play a role in terms of resistance to chemotherapy, molecular targeted therapy, and prediction of patient outcome. MicroRNAs (miRNAs) are small single-stranded noncoding RNAs which are about 19-25 nucleotides. They are involved in the tumorigenesis of HNSCC including dysregulation of cell survival, proliferation, cellular differentiation, adhesion, and invasion. The discovery of the stable presence of the miRNAs in all human body made them attractive biomarkers for diagnosis and prognosis or as targets for novel therapeutic ways, enabling personalized treatment for HNSCC. In recent times the number of papers concerning the characterization of miRNAs in the HNSCC tumorigenesis has grown a lot. In this review, we discuss the very recent studies on different aspects of miRNA dysregulation with their clinical significance and we apologize for the many past and most recent works that have not been mentioned. We also discuss miRNA-based therapy that are being tested on patients by clinical trials.
Collapse
Affiliation(s)
- Mahrou Vahabi
- IRCCS Regina Elena National Cancer Institute, Oncogenomic and Epigenetic Laboratory, via Elio Chianesi, Rome, Italy
| | - Giovanni Blandino
- IRCCS Regina Elena National Cancer Institute, Oncogenomic and Epigenetic Laboratory, via Elio Chianesi, Rome, Italy
| | - Silvia Di Agostino
- Department of Health Sciences, University “Magna Graecia” of Catanzaro, viale Europa, Catanzaro, Italy
| |
Collapse
|