1
|
Ning W, Yan S, Song Y, Xu H, Zhang J, Wang X. Virus-like particle: a nano-platform that delivers cancer antigens to elicit an anti-tumor immune response. Front Immunol 2025; 15:1504124. [PMID: 39840069 PMCID: PMC11747419 DOI: 10.3389/fimmu.2024.1504124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/16/2024] [Indexed: 01/23/2025] Open
Abstract
Virus-like particles (VLPs), as a unique form of nanocarrier, predominantly encompass hollow protein shells that exhibit analogous morphology and structure to naturally occurring viruses, yet devoid of genetic material. VLPs are considered safe, easily modifiable, and stable, making them suitable for preparation in various expression systems. They serve as precise biological instruments with broad applications in the field of medical biology. Leveraging their unique structural attributes and facile modification capabilities, VLPs can serve as an effective platform for the delivery of tumor antigens, thereby stimulating the immune system and facilitating the eradication of tumor cells.
Collapse
Affiliation(s)
- Weisen Ning
- School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Sheng Yan
- School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Yongyao Song
- School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Hanning Xu
- School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Jinling Zhang
- Department of Oncology, Wuhan Fourth Hospital, Wuhan Orthopedic Hospital, Wuhan, Hubei, China
| | - Xiaomei Wang
- School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
2
|
Asrorov AM, Ayubov MS, Tu B, Shi M, Wang H, Mirzaakhmedov S, Kumar Nayak A, Abdurakhmonov IY, Huang Y. Coronavirus spike protein-based vaccines. Vaccine delivery systems. MEDICINE IN DRUG DISCOVERY 2024; 24:100198. [DOI: 10.1016/j.medidd.2024.100198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024] Open
|
3
|
Ren M, Abdullah SW, Pei C, Guo H, Sun S. Use of virus-like particles and nanoparticle-based vaccines for combating picornavirus infections. Vet Res 2024; 55:128. [PMID: 39350170 PMCID: PMC11443892 DOI: 10.1186/s13567-024-01383-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/15/2024] [Indexed: 10/04/2024] Open
Abstract
Picornaviridae are non-enveloped ssRNA viruses that cause diseases such as poliomyelitis, hand-foot-and-mouth disease (HFMD), hepatitis A, encephalitis, myocarditis, and foot-and-mouth disease (FMD). Virus-like particles (VLPs) vaccines mainly comprise particles formed through the self-assembly of viral capsid proteins (for enveloped viruses, envelope proteins are also an option). They do not contain the viral genome. On the other hand, the nanoparticles vaccine (NPs) is mainly composed of self-assembling biological proteins or nanomaterials, with viral antigens displayed on the surface. The presentation of viral antigens on these particles in a repetitive array can elicit a strong immune response in animals. VLPs and NPs can be powerful platforms for multivalent antigen presentation. This review summarises the development of virus-like particle vaccines (VLPs) and nanoparticle vaccines (NPs) against picornaviruses. By detailing the progress made in the fight against various picornaviruses such as poliovirus (PV), foot-and-mouth disease virus (FMDV), enterovirus (EV), Senecavirus A (SVA), and encephalomyocarditis virus (EMCV), we in turn highlight the significant strides made in vaccine technology. These advancements include diverse construction methods, expression systems, elicited immune responses, and the use of various adjuvants. We see promising prospects for the continued development and optimisation of VLPs and NPs vaccines. Future research should focus on enhancing these vaccines' immunogenicity, stability, and delivery methods. Moreover, expanding our understanding of the interplay between these vaccines and the immune system will be crucial. We hope these insights will inspire and guide fellow researchers in the ongoing quest to combat picornavirus infections more effectively.
Collapse
Affiliation(s)
- Mei Ren
- State Key Laboratory for Animal Disease Control and Prevention, CollegeofVeterinaryMedicine, Lanzhou UniversityLanzhou Veterinary Research InstituteChinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gembloux Agro-Biotech, University of Liege, Gembloux, Belgium
| | - Sahibzada Waheed Abdullah
- Livestock and dairy development department peshawar, Government of Khyber Pakhtunkhwa, Peshawar, Pakistan
| | - Chenchen Pei
- State Key Laboratory for Animal Disease Control and Prevention, CollegeofVeterinaryMedicine, Lanzhou UniversityLanzhou Veterinary Research InstituteChinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Huichen Guo
- State Key Laboratory for Animal Disease Control and Prevention, CollegeofVeterinaryMedicine, Lanzhou UniversityLanzhou Veterinary Research InstituteChinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Shiqi Sun
- State Key Laboratory for Animal Disease Control and Prevention, CollegeofVeterinaryMedicine, Lanzhou UniversityLanzhou Veterinary Research InstituteChinese Academy of Agricultural Sciences, Lanzhou, 730000, China.
| |
Collapse
|
4
|
Buzas D, Sun H, Toelzer C, Yadav SKN, Borucu U, Gautam G, Gupta K, Bufton JC, Capin J, Sessions RB, Garzoni F, Berger I, Schaffitzel C. Engineering the ADDobody protein scaffold for generation of high-avidity ADDomer super-binders. Structure 2024; 32:342-351.e6. [PMID: 38198950 PMCID: PMC7616808 DOI: 10.1016/j.str.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/17/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024]
Abstract
Adenovirus-derived nanoparticles (ADDomer) comprise 60 copies of adenovirus penton base protein (PBP). ADDomer is thermostable, rendering the storage, transport, and deployment of ADDomer-based therapeutics independent of a cold chain. To expand the scope of ADDomers for new applications, we engineered ADDobodies, representing PBP crown domain, genetically separated from PBP multimerization domain. We inserted heterologous sequences into hyper-variable loops, resulting in monomeric, thermostable ADDobodies expressed at high yields in Escherichia coli. The X-ray structure of an ADDobody prototype validated our design. ADDobodies can be used in ribosome display experiments to select a specific binder against a target, with an enrichment factor of ∼104-fold per round. ADDobodies can be re-converted into ADDomers by genetically reconnecting the selected ADDobody with the PBP multimerization domain from a different species, giving rise to a multivalent nanoparticle, called Chimera, confirmed by a 2.2 Å electron cryo-microscopy structure. Chimera comprises 60 binding sites, resulting in ultra-high, picomolar avidity to the target.
Collapse
Affiliation(s)
- Dora Buzas
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK; Max Planck Bristol Centre for Minimal Biology, Cantock's Close, Bristol BS8 1TS, UK
| | - Huan Sun
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK; Max Planck Bristol Centre for Minimal Biology, Cantock's Close, Bristol BS8 1TS, UK
| | - Christine Toelzer
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Sathish K N Yadav
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Ufuk Borucu
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Gunjan Gautam
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Kapil Gupta
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK; Imophoron Ltd, Science Creates Old Market, Midland Road, Bristol BS2 0JZ, UK
| | - Joshua C Bufton
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Julien Capin
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Richard B Sessions
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Frederic Garzoni
- Imophoron Ltd, Science Creates Old Market, Midland Road, Bristol BS2 0JZ, UK
| | - Imre Berger
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK; Max Planck Bristol Centre for Minimal Biology, Cantock's Close, Bristol BS8 1TS, UK; School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| | | |
Collapse
|
5
|
Park JE. Porcine Epidemic Diarrhea: Insights and Progress on Vaccines. Vaccines (Basel) 2024; 12:212. [PMID: 38400195 PMCID: PMC10892315 DOI: 10.3390/vaccines12020212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 02/25/2024] Open
Abstract
Porcine epidemic diarrhea (PED) is a swine-wasting disease caused by coronavirus infection. It causes great economic damage to the swine industry worldwide. Despite the continued use of vaccines, PED outbreaks continue, highlighting the need to review the effectiveness of current vaccines and develop additional vaccines based on new platforms. Here, we review existing vaccine technologies for preventing PED and highlight promising technologies that may help control PED virus in the future.
Collapse
Affiliation(s)
- Jung-Eun Park
- Laboratory of Veterinary Public Health, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
6
|
Vernhes E, Larbi Chérif L, Ducrot N, Vanbergue C, Ouldali M, Zig L, Sidibe N, Hoos S, Ramirez-Chamorro L, Renouard M, Rossier O, England P, Schoehn G, Boulanger P, Benihoud K. Antigen self-anchoring onto bacteriophage T5 capsid-like particles for vaccine design. NPJ Vaccines 2024; 9:6. [PMID: 38177231 PMCID: PMC10766600 DOI: 10.1038/s41541-023-00798-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/12/2023] [Indexed: 01/06/2024] Open
Abstract
The promises of vaccines based on virus-like particles stimulate demand for universal non-infectious virus-like platforms that can be efficiently grafted with large antigens. Here, we harnessed the modularity and extreme affinity of the decoration protein pb10 for the capsid of bacteriophage T5. SPR experiments demonstrated that pb10 fused to mCherry or to the model antigen ovalbumin (Ova) retained picomolar affinity for DNA-free T5 capsid-like particles (T5-CLPs), while cryo-EM studies attested to the full occupancy of the 120 capsid binding sites. Mice immunization with CLP-bound pb10-Ova chimeras elicited strong long-lasting anti-Ova humoral responses involving a large panel of isotypes, as well as CD8+ T cell responses, without any extrinsic adjuvant. Therefore, T5-CLP constitutes a unique DNA-free bacteriophage capsid able to display a regular array of large antigens through highly efficient chemical-free anchoring. Its ability to elicit robust immune responses paves the way for further development of this novel vaccination platform.
Collapse
Affiliation(s)
- Emeline Vernhes
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Linda Larbi Chérif
- Université Paris-Saclay, Gustave Roussy, CNRS, Metabolic and systemic aspects of oncogenesis for new therapeutic approaches (METSY), 94805, Villejuif, France
| | - Nicolas Ducrot
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Clément Vanbergue
- Université Paris-Saclay, Gustave Roussy, CNRS, Metabolic and systemic aspects of oncogenesis for new therapeutic approaches (METSY), 94805, Villejuif, France
| | - Malika Ouldali
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Lena Zig
- Université Paris-Saclay, Gustave Roussy, CNRS, Metabolic and systemic aspects of oncogenesis for new therapeutic approaches (METSY), 94805, Villejuif, France
| | - N'diaye Sidibe
- Université Paris-Saclay, Gustave Roussy, CNRS, Metabolic and systemic aspects of oncogenesis for new therapeutic approaches (METSY), 94805, Villejuif, France
| | - Sylviane Hoos
- Institut Pasteur, Biophysique Moléculaire, CNRS UMR 3528, Paris, France
| | - Luis Ramirez-Chamorro
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Madalena Renouard
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Ombeline Rossier
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Patrick England
- Institut Pasteur, Biophysique Moléculaire, CNRS UMR 3528, Paris, France
| | - Guy Schoehn
- Univ. Grenoble Alpes, CNRS, CEA, IBS, F-38000, Grenoble, France
| | - Pascale Boulanger
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.
| | - Karim Benihoud
- Université Paris-Saclay, Gustave Roussy, CNRS, Metabolic and systemic aspects of oncogenesis for new therapeutic approaches (METSY), 94805, Villejuif, France.
| |
Collapse
|
7
|
Menzies SK, Arinto-Garcia R, Amorim FG, Cardoso IA, Abada C, Crasset T, Durbesson F, Edge RJ, El-Kazzi P, Hall S, Redureau D, Stenner R, Boldrini-França J, Sun H, Roldão A, Alves PM, Harrison RA, Vincentelli R, Berger I, Quinton L, Casewell NR, Schaffitzel C. ADDovenom: Thermostable Protein-Based ADDomer Nanoparticles as New Therapeutics for Snakebite Envenoming. Toxins (Basel) 2023; 15:673. [PMID: 38133177 PMCID: PMC10747859 DOI: 10.3390/toxins15120673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/13/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
Snakebite envenoming can be a life-threatening medical emergency that requires prompt medical intervention to neutralise the effects of venom toxins. Each year up to 138,000 people die from snakebites and threefold more victims suffer life-altering disabilities. The current treatment of snakebite relies solely on antivenom-polyclonal antibodies isolated from the plasma of hyperimmunised animals-which is associated with numerous deficiencies. The ADDovenom project seeks to deliver a novel snakebite therapy, through the use of an innovative protein-based scaffold as a next-generation antivenom. The ADDomer is a megadalton-sized, thermostable synthetic nanoparticle derived from the adenovirus penton base protein; it has 60 high-avidity binding sites to neutralise venom toxins. Here, we outline our experimental strategies to achieve this goal using state-of-the-art protein engineering, expression technology and mass spectrometry, as well as in vitro and in vivo venom neutralisation assays. We anticipate that the approaches described here will produce antivenom with unparalleled efficacy, safety and affordability.
Collapse
Affiliation(s)
- Stefanie K. Menzies
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
- Centre for Drugs & Diagnostics, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Raquel Arinto-Garcia
- iBET, Instituto de Biologia Experimental e Technológica, Apartado 12, 2781-901 Oeiras, Portugal
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Fernanda Gobbi Amorim
- Mass Spectrometry Laboratory, MolSys Research Unit, Allée du six Aout 11, Quartier Agora, Liège Université, 4000 Liège, Belgium
| | - Iara Aimê Cardoso
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Camille Abada
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Thomas Crasset
- Mass Spectrometry Laboratory, MolSys Research Unit, Allée du six Aout 11, Quartier Agora, Liège Université, 4000 Liège, Belgium
| | - Fabien Durbesson
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, 13009 Marseille, France
| | - Rebecca J. Edge
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Priscila El-Kazzi
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, 13009 Marseille, France
| | - Sophie Hall
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
- Max Planck Bristol Centre for Minimal Biology, Cantock’s Close, Bristol BS8 1TS, UK
| | - Damien Redureau
- Mass Spectrometry Laboratory, MolSys Research Unit, Allée du six Aout 11, Quartier Agora, Liège Université, 4000 Liège, Belgium
| | - Richard Stenner
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
- Max Planck Bristol Centre for Minimal Biology, Cantock’s Close, Bristol BS8 1TS, UK
| | - Johara Boldrini-França
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
- Max Planck Bristol Centre for Minimal Biology, Cantock’s Close, Bristol BS8 1TS, UK
| | - Huan Sun
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
- Max Planck Bristol Centre for Minimal Biology, Cantock’s Close, Bristol BS8 1TS, UK
| | - António Roldão
- iBET, Instituto de Biologia Experimental e Technológica, Apartado 12, 2781-901 Oeiras, Portugal
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Paula M. Alves
- iBET, Instituto de Biologia Experimental e Technológica, Apartado 12, 2781-901 Oeiras, Portugal
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Robert A. Harrison
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
- Centre for Drugs & Diagnostics, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Renaud Vincentelli
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, 13009 Marseille, France
| | - Imre Berger
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
- Max Planck Bristol Centre for Minimal Biology, Cantock’s Close, Bristol BS8 1TS, UK
| | - Loïc Quinton
- Mass Spectrometry Laboratory, MolSys Research Unit, Allée du six Aout 11, Quartier Agora, Liège Université, 4000 Liège, Belgium
| | - Nicholas R. Casewell
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
- Centre for Drugs & Diagnostics, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Christiane Schaffitzel
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| |
Collapse
|
8
|
Du P, Yan Q, Zhang XA, Zeng W, Xie K, Yuan Z, Liu X, Liu X, Zhang L, Wu K, Li X, Fan S, Zhao M, Chen J. Virus-like particle vaccines with epitopes from porcine epidemic virus and transmissible gastroenteritis virus incorporated into self-assembling ADDomer platform provide clinical immune responses in piglets. Front Immunol 2023; 14:1251001. [PMID: 37942329 PMCID: PMC10628522 DOI: 10.3389/fimmu.2023.1251001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/05/2023] [Indexed: 11/10/2023] Open
Abstract
Introduction Porcine epidemic diarrhea virus (PEDV) and transmissible gastroenteritis virus (TGEV) are major intestinal coronaviruses that cause vomiting, diarrhea, dehydration, and mortality in piglets. These viruses coexist and lead to significant economic losses in the swine industry. Virus-like particles (VLPs) have emerged as promising alternatives to conventional inactivated vaccines due to their exceptional safety, efficacy, and ability to provide multi-disease protection with a single dose. Methods Our study focused on specific antigenic epitopes from the PEDV S protein (SS2 and 2C10 regions) and the TGEV S protein (A and D sites) as target candidates. These epitopes were integrated into the ADDomer framework, and we successfully generated recombinant proteins AD, AD-P, AD-T, and AD-PT using the baculovirus expression vector system (BEVS). By meticulously optimizing conditions in High Five cells, we successfully expressed and purified the recombinant proteins. Subsequently, we developed the recombinant ADDomer-VLP vaccine and conducted a comprehensive evaluation of its efficacy in piglets. Results Following ultrafiltration concentration and sucrose gradient centrifugation purification, the recombinant proteins self-assembled into VLPs as observed by transmission electron microscopy (TEM). Administration of the vaccine did not result in any adverse reactions in the immunized piglets. Additionally, no significant instances of fever were detected in any of the experimental groups, and there were no notable changes in average daily weight gain compared to the control group that received PBS. The recombinant ADDomer-VLP vaccines demonstrated strong immunogenicity, effectively stimulating the production of neutralizing antibodies against both PEDV and TGEV. Moreover, the recombinant ADDomer-VLP vaccine induced elevated levels of IFN-γ, IL-2, and IL-4, and enhanced cytotoxic T lymphocyte (CTL) activity in the peripheral blood of piglets. Discussion These recombinant VLPs have demonstrated the ability to induce strong cellular and humoral immune responses in piglets, making them an incredibly promising platform for the rapid and simplified development of epitope vaccines.
Collapse
Affiliation(s)
- Pengfei Du
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Quanhui Yan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Xiao-Ai Zhang
- Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China
| | - Weijun Zeng
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Kaiyuan Xie
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Zhongmao Yuan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Xiaodi Liu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Xueyi Liu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Lihong Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Keke Wu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Xiaowen Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Shuangqi Fan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Mingqiu Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jinding Chen
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
9
|
Buzas D, Bunzel AH, Staufer O, Milodowski EJ, Edmunds GL, Bufton JC, Vidana Mateo BV, Yadav SKN, Gupta K, Fletcher C, Williamson MK, Harrison A, Borucu U, Capin J, Francis O, Balchin G, Hall S, Vega MV, Durbesson F, Lingappa S, Vincentelli R, Roe J, Wooldridge L, Burt R, Anderson RJL, Mulholland AJ, Bristol UNCOVER Group, Hare J, Bailey M, Davidson AD, Finn A, Morgan D, Mann J, Spatz J, Garzoni F, Schaffitzel C, Berger I. In vitro generated antibodies guide thermostable ADDomer nanoparticle design for nasal vaccination and passive immunization against SARS-CoV-2. Antib Ther 2023; 6:277-297. [PMID: 38075238 PMCID: PMC10702856 DOI: 10.1093/abt/tbad024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/12/2023] [Accepted: 10/14/2023] [Indexed: 01/10/2024] Open
Abstract
Background Due to COVID-19, pandemic preparedness emerges as a key imperative, necessitating new approaches to accelerate development of reagents against infectious pathogens. Methods Here, we developed an integrated approach combining synthetic, computational and structural methods with in vitro antibody selection and in vivo immunization to design, produce and validate nature-inspired nanoparticle-based reagents against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Results Our approach resulted in two innovations: (i) a thermostable nasal vaccine called ADDoCoV, displaying multiple copies of a SARS-CoV-2 receptor binding motif derived epitope and (ii) a multivalent nanoparticle superbinder, called Gigabody, against SARS-CoV-2 including immune-evasive variants of concern (VOCs). In vitro generated neutralizing nanobodies and electron cryo-microscopy established authenticity and accessibility of epitopes displayed by ADDoCoV. Gigabody comprising multimerized nanobodies prevented SARS-CoV-2 virion attachment with picomolar EC50. Vaccinating mice resulted in antibodies cross-reacting with VOCs including Delta and Omicron. Conclusion Our study elucidates Adenovirus-derived dodecamer (ADDomer)-based nanoparticles for use in active and passive immunization and provides a blueprint for crafting reagents to combat respiratory viral infections.
Collapse
Affiliation(s)
- Dora Buzas
- Max Planck Bristol Centre for Minimal Biology, University of Bristol, Bristol BS8 1TS, UK
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Adrian H Bunzel
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Oskar Staufer
- Max Planck Bristol Centre for Minimal Biology, University of Bristol, Bristol BS8 1TS, UK
- Leibniz Institute for New Materials, Helmholtz Institute for Pharmaceutical Research and Center for Biophysics, Saarland University, Saarbrücken 66123, Germany
| | | | - Grace L Edmunds
- Bristol Veterinary School, University of Bristol, Bristol BS40 5DU UK
| | - Joshua C Bufton
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | | | | | - Kapil Gupta
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
- Imophoron Ltd, Science Creates Old Market, Midland Rd, Bristol BS2 0JZ UK
| | | | - Maia K Williamson
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | | | - Ufuk Borucu
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Julien Capin
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Ore Francis
- Bristol Veterinary School, University of Bristol, Bristol BS40 5DU UK
| | - Georgia Balchin
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Sophie Hall
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Mirella V Vega
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Fabien Durbesson
- Architecture et Fonction des Macromolécules Biologiques, UMR 7257, CNRS, Aix-Marseille Université, Marseille, France
| | | | - Renaud Vincentelli
- Architecture et Fonction des Macromolécules Biologiques, UMR 7257, CNRS, Aix-Marseille Université, Marseille, France
| | - Joe Roe
- Bristol Veterinary School, University of Bristol, Bristol BS40 5DU UK
| | - Linda Wooldridge
- Bristol Veterinary School, University of Bristol, Bristol BS40 5DU UK
| | - Rachel Burt
- Bristol Veterinary School, University of Bristol, Bristol BS40 5DU UK
| | | | | | | | - Jonathan Hare
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - Mick Bailey
- Bristol Veterinary School, University of Bristol, Bristol BS40 5DU UK
| | - Andrew D Davidson
- Imophoron Ltd, Science Creates Old Market, Midland Rd, Bristol BS2 0JZ UK
| | - Adam Finn
- Bristol University COVID-19 Emergency Research Group, Bristol BS8 1TH, UK
- Children's Vaccine Centre, Bristol Medical School, Bristol BS2 8EF UK
| | - David Morgan
- Imophoron Ltd, Science Creates Old Market, Midland Rd, Bristol BS2 0JZ UK
| | - Jamie Mann
- Bristol Veterinary School, University of Bristol, Bristol BS40 5DU UK
| | - Joachim Spatz
- Max Planck Bristol Centre for Minimal Biology, University of Bristol, Bristol BS8 1TS, UK
- Max Planck Institute for Medical Research, Heidelberg 69120, Germany
| | - Frederic Garzoni
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - Christiane Schaffitzel
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
- Bristol University COVID-19 Emergency Research Group, Bristol BS8 1TH, UK
| | - Imre Berger
- Max Planck Bristol Centre for Minimal Biology, University of Bristol, Bristol BS8 1TS, UK
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
- School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
- Bristol University COVID-19 Emergency Research Group, Bristol BS8 1TH, UK
| |
Collapse
|
10
|
Setyo Utomo DI, Suhaimi H, Muhammad Azami NA, Azmi F, Mohd Amin MCI, Xu J. An Overview of Recent Developments in the Application of Antigen Displaying Vaccine Platforms: Hints for Future SARS-CoV-2 VLP Vaccines. Vaccines (Basel) 2023; 11:1506. [PMID: 37766182 PMCID: PMC10536610 DOI: 10.3390/vaccines11091506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/08/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Recently, a great effort has been devoted to studying attenuated and subunit vaccine development against SARS-CoV-2 since its outbreak in December 2019. It is known that diverse virus-like particles (VLPs) are extensively employed as carriers to display various antigenic and immunostimulatory cargo modules for vaccine development. Single or multiple antigens or antigenic domains such as the spike or nucleocapsid protein or their variants from SARS-CoV-2 could also be incorporated into VLPs via either a genetic or chemical display approach. Such antigen display platforms would help screen safer and more effective vaccine candidates capable of generating a strong immune response with or without adjuvant. This review aims to provide valuable insights for the future development of SARS-CoV-2 VLP vaccines by summarizing the latest updates and perspectives on the vaccine development of VLP platforms for genetic and chemical displaying antigens from SARS-CoV-2.
Collapse
Affiliation(s)
- Doddy Irawan Setyo Utomo
- Research Center for Vaccine and Drug, Research Organization for Health, National Research and Innovation Agency (BRIN), Gedung 611, LAPTIAB, KST Habibie, Serpong, Tangerang Selatan 15314, Indonesia;
| | - Hamizah Suhaimi
- Centre of Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (H.S.); (F.A.); (M.C.I.M.A.)
| | - Nor Azila Muhammad Azami
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia;
| | - Fazren Azmi
- Centre of Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (H.S.); (F.A.); (M.C.I.M.A.)
| | - Mohd Cairul Iqbal Mohd Amin
- Centre of Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (H.S.); (F.A.); (M.C.I.M.A.)
| | - Jian Xu
- Laboratory of Biology and Information Science, School of Life Sciences, East China Normal University, Shanghai 200062, China
| |
Collapse
|
11
|
Pedenko B, Sulbaran G, Guilligay D, Effantin G, Weissenhorn W. SARS-CoV-2 S Glycoprotein Stabilization Strategies. Viruses 2023; 15:v15020558. [PMID: 36851772 PMCID: PMC9960574 DOI: 10.3390/v15020558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/06/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
The SARS-CoV-2 pandemic has again shown that structural biology plays an important role in understanding biological mechanisms and exploiting structural data for therapeutic interventions. Notably, previous work on SARS-related glycoproteins has paved the way for the rapid structural determination of the SARS-CoV-2 S glycoprotein, which is the main target for neutralizing antibodies. Therefore, all vaccine approaches aimed to employ S as an immunogen to induce neutralizing antibodies. Like all enveloped virus glycoproteins, SARS-CoV-2 S native prefusion trimers are in a metastable conformation, which primes the glycoprotein for the entry process via membrane fusion. S-mediated entry is associated with major conformational changes in S, which can expose many off-target epitopes that deviate vaccination approaches from the major aim of inducing neutralizing antibodies, which mainly target the native prefusion trimer conformation. Here, we review the viral glycoprotein stabilization methods developed prior to SARS-CoV-2, and applied to SARS-CoV-2 S, in order to stabilize S in the prefusion conformation. The importance of structure-based approaches is highlighted by the benefits of employing stabilized S trimers versus non-stabilized S in vaccines with respect to their protective efficacy.
Collapse
|
12
|
Gupta R, Arora K, Roy SS, Joseph A, Rastogi R, Arora NM, Kundu PK. Platforms, advances, and technical challenges in virus-like particles-based vaccines. Front Immunol 2023; 14:1123805. [PMID: 36845125 PMCID: PMC9947793 DOI: 10.3389/fimmu.2023.1123805] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Viral infectious diseases threaten human health and global stability. Several vaccine platforms, such as DNA, mRNA, recombinant viral vectors, and virus-like particle-based vaccines have been developed to counter these viral infectious diseases. Virus-like particles (VLP) are considered real, present, licensed and successful vaccines against prevalent and emergent diseases due to their non-infectious nature, structural similarity with viruses, and high immunogenicity. However, only a few VLP-based vaccines have been commercialized, and the others are either in the clinical or preclinical phases. Notably, despite success in the preclinical phase, many vaccines are still struggling with small-scale fundamental research owing to technical difficulties. Successful production of VLP-based vaccines on a commercial scale requires a suitable platform and culture mode for large-scale production, optimization of transduction-related parameters, upstream and downstream processing, and monitoring of product quality at each step. In this review article, we focus on the advantages and disadvantages of various VLP-producing platforms, recent advances and technical challenges in VLP production, and the current status of VLP-based vaccine candidates at commercial, preclinical, and clinical levels.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Prabuddha K. Kundu
- Department of Research and Development, Premas Biotech Pvt Ltd., Sector IV, Industrial Model Township (IMT), Manesar, Gurgaon, India
| |
Collapse
|
13
|
Chu KB, Quan FS. Respiratory Viruses and Virus-like Particle Vaccine Development: How Far Have We Advanced? Viruses 2023; 15:v15020392. [PMID: 36851606 PMCID: PMC9965150 DOI: 10.3390/v15020392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023] Open
Abstract
With technological advancements enabling globalization, the intercontinental transmission of pathogens has become much easier. Respiratory viruses are one such group of pathogens that require constant monitoring since their outbreak leads to massive public health crises, as exemplified by the influenza virus, respiratory syncytial virus (RSV), and the recent coronavirus disease 2019 (COVID-19) outbreak caused by the SARS-CoV-2. To prevent the transmission of these highly contagious viruses, developing prophylactic tools, such as vaccines, is of considerable interest to the scientific community. Virus-like particles (VLPs) are highly sought after as vaccine platforms for their safety and immunogenicity profiles. Although several VLP-based vaccines against hepatitis B and human papillomavirus have been approved for clinical use by the United States Food and Drug Administration, VLP vaccines against the three aforementioned respiratory viruses are lacking. Here, we summarize the most recent progress in pre-clinical and clinical VLP vaccine development. We also outline various strategies that contributed to improving the efficacy of vaccines against each virus and briefly discuss the stability aspect of VLPs that makes it a highly desired vaccine platform.
Collapse
Affiliation(s)
- Ki-Back Chu
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, Core Research Institute (CRI), Kyung Hee University, Seoul 02447, Republic of Korea
| | - Fu-Shi Quan
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, Core Research Institute (CRI), Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Correspondence:
| |
Collapse
|
14
|
Xu J, Sekiguchi T, Boonyakida J, Kato T, Park EY. Display of multiple proteins on engineered canine parvovirus-like particles expressed in cultured silkworm cells and silkworm larvae. Front Bioeng Biotechnol 2023; 11:1096363. [PMID: 36873345 PMCID: PMC9977810 DOI: 10.3389/fbioe.2023.1096363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
Recent progress has been made dramatically in decorating virus-like particles (VLPs) on the surface or inside with functional molecules, such as antigens or nucleic acids. However, it is still challenging to display multiple antigens on the surface of VLP to meet the requirement as a practical vaccine candidate. Herein this study, we focus on the expression and engineering of the capsid protein VP2 of canine parvovirus for VLP display in the silkworm-expression system. The chemistry of the SpyTag/SpyCatcher (SpT/SpC) and SnoopTag/SnoopCatcher (SnT/SnC) are efficient protein covalent ligation systems to modify VP2 genetically, where SpyTag/SnoopTag are inserted into the N-terminus or two distinct loop regions (Lx and L2) of VP2. The SpC-EGFP and SnC-mCherry are employed as model proteins to evaluate their binding and display on six SnT/SnC-modified VP2 variants. From a series of protein binding assays between indicated protein partners, we showed that the VP2 variant with SpT inserted at the L2 region significantly enhanced VLP display to 80% compared to 5.4% from N-terminal SpT-fused VP2-derived VLPs. In contrast, the VP2 variant with SpT at the Lx region failed to form VLPs. Moreover, the SpT (Lx)/SnT (L2) double-engineered chimeric VP2 variants showed covalent conjugation capacity to both SpC/SnC protein partners. The orthogonal ligations between those binding partners were confirmed by both mixing purified proteins and co-infecting cultured silkworm cells or larvae with desired recombinant viruses. Our results indicate that a convenient VLP display platform was successfully developed for multiple antigen displays on demand. Further verifications can be performed to assess its capacity for displaying desirable antigens and inducing a robust immune response to targeted pathogens.
Collapse
Affiliation(s)
- Jian Xu
- Laboratory of Biotechnology, Green Chemistry Research Division, Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Tomofumi Sekiguchi
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Jirayu Boonyakida
- Laboratory of Biotechnology, Green Chemistry Research Division, Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Tatsuya Kato
- Laboratory of Biotechnology, Green Chemistry Research Division, Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan.,Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan.,Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Enoch Y Park
- Laboratory of Biotechnology, Green Chemistry Research Division, Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan.,Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan.,Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan
| |
Collapse
|
15
|
Zhang L, Xu W, Ma X, Sun X, Fan J, Wang Y. Virus-like Particles as Antiviral Vaccine: Mechanism, Design, and Application. BIOTECHNOL BIOPROC E 2023; 28:1-16. [PMID: 36627930 PMCID: PMC9817464 DOI: 10.1007/s12257-022-0107-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 01/09/2023]
Abstract
Virus-like particles (VLPs) are viral structural protein that are noninfectious as they do not contain viral genetic materials. They are safe and effective immune stimulators and play important roles in vaccine development because of their intrinsic immunogenicity to induce cellular and humoral immune responses. In the design of antiviral vaccine, VLPs based vaccines are appealing multifunctional candidates with the advantages such as self-assembling nanoscaled structures, repetitive surface epitopes, ease of genetic and chemical modifications, versatility as antigen presenting platforms, intrinsic immunogenicity, higher safety profile in comparison with live-attenuated vaccines and inactivated vaccines. In this review, we discuss the mechanism of VLPs vaccine inducing cellular and humoral immune responses. We outline the impact of size, shape, surface charge, antigen presentation, genetic and chemical modification, and expression systems when constructing effective VLPs based vaccines. Recent applications of antiviral VLPs vaccines and their clinical trials are summarized.
Collapse
Affiliation(s)
- Lei Zhang
- Xi'an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Department of Basic Medicine, Xi'an Medical University, Xi'an, 710021, Shaanxi China
| | - Wen Xu
- Xi'an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Department of Basic Medicine, Xi'an Medical University, Xi'an, 710021, Shaanxi China
| | - Xi Ma
- Xi'an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Department of Basic Medicine, Xi'an Medical University, Xi'an, 710021, Shaanxi China
| | - XiaoJing Sun
- Xi'an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Department of Basic Medicine, Xi'an Medical University, Xi'an, 710021, Shaanxi China
| | - JinBo Fan
- Xi'an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Department of Basic Medicine, Xi'an Medical University, Xi'an, 710021, Shaanxi China
| | - Yang Wang
- Xi'an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Department of Basic Medicine, Xi'an Medical University, Xi'an, 710021, Shaanxi China
| |
Collapse
|
16
|
Dicks MD, Rose LM, Russell RA, Bowman LA, Graham C, Jimenez-Guardeño JM, Doores KJ, Malim MH, Draper SJ, Howarth M, Biswas S. Modular capsid decoration boosts adenovirus vaccine-induced humoral immunity against SARS-CoV-2. Mol Ther 2022; 30:3639-3657. [PMID: 35949171 PMCID: PMC9364715 DOI: 10.1016/j.ymthe.2022.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/18/2022] [Accepted: 08/05/2022] [Indexed: 12/14/2022] Open
Abstract
Adenovirus vector vaccines have been widely and successfully deployed in response to coronavirus disease 2019 (COVID-19). However, despite inducing potent T cell immunity, improvement of vaccine-specific antibody responses upon homologous boosting is modest compared with other technologies. Here, we describe a system enabling modular decoration of adenovirus capsid surfaces with antigens and demonstrate potent induction of humoral immunity against these displayed antigens. Ligand attachment via a covalent bond was achieved using a protein superglue, DogTag/DogCatcher (similar to SpyTag/SpyCatcher), in a rapid and spontaneous reaction requiring only co-incubation of ligand and vector components. DogTag was inserted into surface-exposed loops in the adenovirus hexon protein to allow attachment of DogCatcher-fused ligands on virus particles. Efficient coverage of the capsid surface was achieved using various ligands, with vector infectivity retained in each case. Capsid decoration shielded particles from vector neutralizing antibodies. In prime-boost regimens, adenovirus vectors decorated with the receptor-binding domain of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) spike induced >10-fold higher SARS-CoV-2 neutralization titers compared with an undecorated vector encoding spike. Importantly, decorated vectors achieved equivalent or superior T cell immunogenicity against encoded antigens compared with undecorated vectors. We propose capsid decoration using protein superglues as a novel strategy to improve efficacy and boostability of adenovirus-based vaccines and therapeutics.
Collapse
Affiliation(s)
- Matthew D.J. Dicks
- SpyBiotech Ltd, 7600 The Quorum, Oxford Business Park North, Oxford, OX4 2JZ, UK,Corresponding author: Matthew D. J. Dicks, SpyBiotech Ltd, 7600 The Quorum, Oxford Business Park North, Oxford, OX4 2JZ, UK.
| | - Louisa M. Rose
- SpyBiotech Ltd, 7600 The Quorum, Oxford Business Park North, Oxford, OX4 2JZ, UK
| | - Rebecca A. Russell
- SpyBiotech Ltd, 7600 The Quorum, Oxford Business Park North, Oxford, OX4 2JZ, UK
| | - Lesley A.H. Bowman
- SpyBiotech Ltd, 7600 The Quorum, Oxford Business Park North, Oxford, OX4 2JZ, UK
| | - Carl Graham
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King’s College London, London SE1 9RT, UK
| | - Jose M. Jimenez-Guardeño
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King’s College London, London SE1 9RT, UK
| | - Katie J. Doores
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King’s College London, London SE1 9RT, UK
| | - Michael H. Malim
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King’s College London, London SE1 9RT, UK
| | - Simon J. Draper
- SpyBiotech Ltd, 7600 The Quorum, Oxford Business Park North, Oxford, OX4 2JZ, UK,Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Mark Howarth
- SpyBiotech Ltd, 7600 The Quorum, Oxford Business Park North, Oxford, OX4 2JZ, UK,Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Sumi Biswas
- SpyBiotech Ltd, 7600 The Quorum, Oxford Business Park North, Oxford, OX4 2JZ, UK,The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| |
Collapse
|
17
|
Stimulation of the immune system by a tumor antigen-bearing adenovirus-inspired VLP allows control of melanoma growth. Mol Ther Methods Clin Dev 2022; 28:76-89. [PMID: 36620074 PMCID: PMC9798141 DOI: 10.1016/j.omtm.2022.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Virus-like particles (VLPs) are versatile protein-based platforms that can be used as a vaccine platform mainly in infectiology. In the present work, we compared a previously designed, non-infectious, adenovirus-inspired 60-mer dodecahedric VLP to display short epitopes or a large tumor model antigen. To validate these two kinds of platforms as a potential immuno-stimulating approach, we evaluated their ability to control melanoma B16-ovalbumin (OVA) growth in mice. A set of adjuvants was screened, showing that polyinosinic-polycytidylic acid (poly(I:C)) was well suited to generate a homogeneous cellular and humoral response against the desired epitopes. In a prophylactic setting, vaccination with the VLP displaying these epitopes resulted in total inhibition of tumor growth 1 month after vaccination. A therapeutic vaccination strategy showed a delay in grafted tumor growth or its total rejection. If the "simple" epitope display on the VLP is sufficient to prevent tumor growth, then an improved engineered platform enabling display of a large antigen is a tool to overcome the barrier of immune allele restriction, broadening the immune response, and paving the way for its potential utilization in humans as an off-the-shelf vaccine.
Collapse
|
18
|
Liu ZH, Deng ZF, Lu Y, Fang WH, He F. A modular and self-adjuvanted multivalent vaccine platform based on porcine circovirus virus-like nanoparticles. J Nanobiotechnology 2022; 20:493. [PMID: 36424615 PMCID: PMC9685936 DOI: 10.1186/s12951-022-01710-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 11/15/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Virus-like particles (VLPs) are supramolecular structures composed of multiple protein subunits and resemble natural virus particles in structure and size, making them highly immunogenic materials for the development of next-generation subunit vaccines. The orderly and repetitive display of antigenic epitopes on particle surface allows efficient recognition and cross-link by B cell receptors (BCRs), thereby inducing higher levels of neutralizing antibodies and cellular immune responses than regular subunit vaccines. Here, we present a novel multiple antigen delivery system using SpyCatcher/Spytag strategy and self-assembled VLPs formed by porcine circovirus type 2 (PCV2) Cap, a widely used swine vaccine in solo. RESULTS Cap-SC, recombinant Cap with a truncated SpyCatcher polypeptide at its C-terminal, self-assembled into 26-nm VLPs. Based on isopeptide bonds formed between SpyCatcher and SpyTag, classical swine fever virus (CSFV) E2, the antigen of interest, was linked to SpyTag and readily surface-displayed on SpyCatcher decorated Cap-SC via in vitro covalent conjugation. E2-conjugated Cap VLPs (Cap-E2 NPs) could be preferentially captured by antigen presenting cells (APCs) and effectively stimulate APC maturation and cytokine production. In vivo studies confirmed that Cap-E2 NPs elicited an enhanced E2 specific IgG response, which was significantly higher than soluble E2, or the admixture of Cap VLPs and E2. Moreover, E2 displayed on the surface did not mask the immunodominant epitopes of Cap-SC VLPs, and Cap-E2 NPs induced Cap-specific antibody levels and neutralizing antibody levels comparable to native Cap VLPs. CONCLUSION These results demonstrate that this modularly assembled Cap-E2 NPs retains the immune potential of Cap VLP backbone, while the surface-displayed antigen significantly elevated E2-induced immune potency. This immune strategy provides distinctly improved efficacy than conventional vaccine combination. It can be further applied to the development of dual or multiple nanoparticle vaccines to prevent co-infection of PCV2 and other swine pathogens.
Collapse
Affiliation(s)
- Ze-Hui Liu
- grid.13402.340000 0004 1759 700XInstitute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, 866 Yuhangtang road, 310058 Hangzhou, China
| | - Zhuo-Fan Deng
- grid.13402.340000 0004 1759 700XInstitute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, 866 Yuhangtang road, 310058 Hangzhou, China
| | - Ying Lu
- grid.13402.340000 0004 1759 700XInstitute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, 866 Yuhangtang road, 310058 Hangzhou, China
| | - Wei-Huan Fang
- grid.13402.340000 0004 1759 700XInstitute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, 866 Yuhangtang road, 310058 Hangzhou, China ,grid.13402.340000 0004 1759 700XLaboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, 310058 Hangzhou, China
| | - Fang He
- grid.13402.340000 0004 1759 700XInstitute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, 866 Yuhangtang road, 310058 Hangzhou, China ,grid.13402.340000 0004 1759 700XLaboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, 310058 Hangzhou, China
| |
Collapse
|
19
|
Adenovirus-Inspired Virus-Like-Particles Displaying Melanoma Tumor Antigen Specifically Target Human DC Subsets and Trigger Antigen-Specific Immune Responses. Biomedicines 2022; 10:biomedicines10112881. [DOI: 10.3390/biomedicines10112881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/24/2022] [Accepted: 11/02/2022] [Indexed: 11/12/2022] Open
Abstract
Virus-like particles constitute versatile vectors that can be used as vaccine platforms in many fields from infectiology and more recently to oncology. We previously designed non-infectious adenovirus-inspired 60-mer dodecahedric virus-like particles named ADDomers displaying on their surface either a short epitope or a large tumor/viral antigen. In this work, we explored for the first time the immunogenicity of ADDomers exhibiting melanoma-derived tumor antigen/epitope and their impact on the features of human dendritic cell (DC) subsets. We first demonstrated that ADDomers displaying tumor epitope/antigen elicit a strong immune-stimulating potential of human DC subsets (cDC2s, cDC1s, pDCs), which were able to internalize and cross-present tumor antigen, and subsequently cross-prime antigen-specific T-cell responses. To further limit off-target effects and enhance DC targeting, we engineered specific motifs to de-target epithelial cells and improve DCs’ addressing. The improved engineered platform making it possible to display large antigen represents a tool to overcome the barrier of immune allele restriction, broadening the immune response, and paving the way to its potential utilization in humans as an off-the-shelf vaccine.
Collapse
|
20
|
Luo C, Yan Q, Huang J, Liu J, Li Y, Wu K, Li B, Zhao M, Fan S, Ding H, Chen J. Using Self-Assembling ADDomer Platform to Display B and T Epitopes of Type O Foot-and-Mouth Disease Virus. Viruses 2022; 14:1810. [PMID: 36016432 PMCID: PMC9416097 DOI: 10.3390/v14081810] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/13/2022] [Accepted: 08/13/2022] [Indexed: 11/16/2022] Open
Abstract
Foot-and-mouth disease virus (FMDV) is a highly contagious and devastating virus that infects cloven-hoofed livestock and various wildlife species. Vaccination is the best measure to prevent FMD. ADDomer, as a kind of non-infectious adenovirus-inspired nanoparticle, has the advantage of high thermal stability. In this study, two dominant B-cell antigen epitopes (residues 129~160 and 200~213) and a dominant T-cell antigen epitope (residues 16~44) of type O FMDV were inserted into the ADDomer variable loop (VL) and arginine-glycine-aspartic acid (RGD) loop. The 3D structure of the recombinant protein (ADDomer-RBT) was simulated by homology modeling. First, the recombinant proteins were expressed by the baculovirus expression system and detected by western blot and Q Exactive mass spectrometry. Then the formation of VLPs was observed under a transmission electron micrograph (TEM). Finally, we evaluated the immunogenicity of chimeric VLPs with a murine model. Bioinformatic software analysis preliminarily corroborated that the chosen epitopes were successfully exposed on the surface of ADDomer VLPs. The TEM assay demonstrated the structural integrity of the VLPs. After immunizing, it was found that FMDV-specific antibodies can be produced in mice to induce humoral and cellular immune responses. To sum up, the ADDomer platform can be used as an effective antigen carrier to deliver antigen epitopes. This study presents one of the candidate vaccines to prevent and control FMDV.
Collapse
Affiliation(s)
- Chaowei Luo
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Quanhui Yan
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Juncong Huang
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Jiameng Liu
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Yuwan Li
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Keke Wu
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Bingke Li
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Mingqiu Zhao
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Shuangqi Fan
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Hongxing Ding
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
| | - Jinding Chen
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| |
Collapse
|
21
|
Ogrina A, Skrastina D, Balke I, Kalnciema I, Jansons J, Bachmann MF, Zeltins A. Comparison of Bacterial Expression Systems Based on Potato Virus Y-like Particles for Vaccine Generation. Vaccines (Basel) 2022; 10:vaccines10040485. [PMID: 35455234 PMCID: PMC9030781 DOI: 10.3390/vaccines10040485] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/19/2022] [Accepted: 03/20/2022] [Indexed: 01/15/2023] Open
Abstract
Plant-based virus-like particle (VLP) vaccines have been studied for years, demonstrating their potential as antigen-presenting platforms. In this paper, we describe the development of, and compare between, simple Escherichia coli-based antigen display platforms for the generation of potato virus Y (PVY) VLP-derived vaccines, thus allowing the production of vaccines from a single bacterial cell culture. We constructed four systems with the major cat allergen Fel d 1; namely, direct fusion with plant virus PVY coat protein (CP), mosaic PVY VLPs, and two coexpression variants of conjugates (SpyTag/SpyCatcher) allowing coexpression and conjugation directly in E. coli cells. For control experiments, we included PVY VLPs chemically coupled with Fel d 1. All constructed PVY-Fel d 1 variants were well expressed and soluble, formed PVY-like filamentous particles, and were recognized by monoclonal Fel d 1 antibodies. Our results indicate that all vaccine variants induced high titers of anti-Fel d 1 antibodies in murine models. Mice that were immunized with the chemically coupled Fel d 1 antigen exhibited the highest antibody titers and antibody-antigen interaction specificity, as detected by binding avidity and recognition of native Fel d 1. IgG1 subclass antibodies were found to be the dominant IgG class against PVY-Fel d 1. PVY CP-derived VLPs represent an efficient platform for the comparison of various antigen presentation systems to help evaluate different vaccine designs.
Collapse
Affiliation(s)
- Anete Ogrina
- Plant Virology Laboratory, Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (A.O.); (D.S.); (I.B.); (I.K.); (J.J.)
| | - Dace Skrastina
- Plant Virology Laboratory, Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (A.O.); (D.S.); (I.B.); (I.K.); (J.J.)
| | - Ina Balke
- Plant Virology Laboratory, Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (A.O.); (D.S.); (I.B.); (I.K.); (J.J.)
| | - Ieva Kalnciema
- Plant Virology Laboratory, Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (A.O.); (D.S.); (I.B.); (I.K.); (J.J.)
| | - Juris Jansons
- Plant Virology Laboratory, Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (A.O.); (D.S.); (I.B.); (I.K.); (J.J.)
| | - Martin F. Bachmann
- Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland;
| | - Andris Zeltins
- Plant Virology Laboratory, Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (A.O.); (D.S.); (I.B.); (I.K.); (J.J.)
- Correspondence:
| |
Collapse
|