1
|
Huang P, Wu G, Huang M, Deng Y, Chen X, Ye G, Yu X, Wang H, Wen H, Zhou Y. Copper-coordinated nanomedicine for the concurrent treatment of lung cancer through the induction of cuproptosis and apoptosis. Eur J Pharm Sci 2025; 204:106942. [PMID: 39437977 DOI: 10.1016/j.ejps.2024.106942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/09/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024]
Abstract
The resistance of tumor cells to apoptosis often leads to chemoresistance and treatment failure in clinic. In this study, we have developed a Cu2+-coordinated lignosulfonate (CLS) /doxorubicin (DOX) biological complex (referred to as LCD) with the aim of overcoming cellular resistance to apoptosis for combined lung cancer therapy. The copper complexes modified by CLS exhibit significant water solubility and excellent in vivo biocompatibility. The proportion of copper in the composite is simultaneously increased. Due to the coordination and π-π stacking effects, the self-assembled LCD exhibits nanometer-scale particle size, a narrow and homogeneous grain distribution, as well as excellent dispersion stability. Furthermore, LCD has the potential to disassemble in the presence of high levels of glutathione (GSH) and low pH, leading to effective drug release. Cu2+-mediated cuproptosis can lead to the down-regulation of FDX1 and DLAT protein expression by reducing mitochondrial membrane potential, resulting in non-apoptotic programmed cell death (PCD) regardless of cellular resistance to apoptosis. Moreover, the released DOX not only exhibits a preference for localizing in the cell nucleus to induce apoptosis for combined chemotherapy, but also generates a substantial amount of H2O2. This H2O2 further produces ROS to induce apoptosis through Fenton reaction with Cu2+. LCD demonstrates significant superiority over monotherapy in inhibiting tumor growth while minimizing systemic toxicity through the combined action of cuproptosis and apoptosis. This study may provide a potential avenue for the advancement of self-delivery nanomedicine to overcome resistance to apoptosis in tumor therapy.
Collapse
Affiliation(s)
- Pei Huang
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China; The Second Affiliated Hospital, Guangzhou Medical University, Guangdong, 510260, Guangzhou, PR China
| | - Gongfa Wu
- The Fourth Affiliated Hospital, Guangzhou Medical University, Guangdong, 511300, Guangzhou, PR China
| | - Min Huang
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Yating Deng
- The Second Affiliated Hospital, Guangzhou Medical University, Guangdong, 510260, Guangzhou, PR China
| | - Xuming Chen
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Guodong Ye
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Xiyong Yu
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - He Wang
- The Second Affiliated Hospital, Guangzhou Medical University, Guangdong, 510260, Guangzhou, PR China
| | - Huaying Wen
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China.
| | - Yi Zhou
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China.
| |
Collapse
|
2
|
Han T, Tong W, Xie J, Guo X, Zhang L. FOXF2 suppressed esophageal squamous cell carcinoma by reducing M2 TAMs via modulating RNF144A-FTO axis. Int Immunopharmacol 2024; 143:113422. [PMID: 39447407 DOI: 10.1016/j.intimp.2024.113422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/08/2024] [Accepted: 10/13/2024] [Indexed: 10/26/2024]
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the deadliest cancers because of its high invasiveness and low survival. Tumor-associated macrophages (TAMs) are closely associated with the tumor cell proliferation, metastasis and immunosuppression. As a member of the FOX family, forkhead box F2 (FOXF2) was down-regulated in ESCC. However, its role in ESCC and TAMs, as well as the underlying mechanism, remains unclear. We found that differentially expressed genes (DEGs) in ESCC were enriched in proliferation, migration, macrophage and cancer pathways. Among these DEGs, FOXF2 caught our eyes. FOXF2 was down-regulated in ESCC. Overexpression FOXF2 inhibited the proliferation of ESCC cells and the M2 polarization of TAMs, but silenced FOXF2 reversed these results. Notably, FOXF2 promoted the transcription of ring finger protein 144A (RNF144A), which is an E3 ubiquitin ligase, causing the ubiquitination and degradation of FTO Alpha-Ketoglutarate Dependent Dioxygenase (FTO), an N6-methyladenosine (m6A) demethylase. Furthermore, overexpression of FTO abolished the effects of FOXF2 on TAM polarization. In conclusion, FOXF2 alleviates ESCC via promoting the transcription of RNF144A which results in the ubiquitylation and degradation of FTO. Targeting FOXF2/RNF144A/FOT axis might be a possible strategy for the treatment of ESCC.
Collapse
Affiliation(s)
- Tianci Han
- Department of Thoracic Surgery, Cancer Hospital of Dalian University of Technology, Shenyang 110042, China; Department of Thoracic Surgery, Liaoning Cancer Hospital & Institute, Shenyang 110042, China
| | - Wei Tong
- Department of Thoracic Surgery, Cancer Hospital of Dalian University of Technology, Shenyang 110042, China; Department of Thoracic Surgery, Liaoning Cancer Hospital & Institute, Shenyang 110042, China
| | - Junwei Xie
- Department of Thoracic Surgery, Cancer Hospital of Dalian University of Technology, Shenyang 110042, China; Department of Thoracic Surgery, Liaoning Cancer Hospital & Institute, Shenyang 110042, China
| | - Xiaoqi Guo
- Liaoning University of Traditional Chinese Medicine, Shenyang 110847, China
| | - Liang Zhang
- Department of Thoracic Surgery, Cancer Hospital of Dalian University of Technology, Shenyang 110042, China; Department of Thoracic Surgery, Liaoning Cancer Hospital & Institute, Shenyang 110042, China.
| |
Collapse
|
3
|
Mo A, Wang H. WTAP-mediated m6A modification regulates NLRP3/Caspase-1/GSDMD to inhibit pyroptosis and exacerbate colorectal cancer. Biomark Med 2024; 18:945-955. [PMID: 39469841 PMCID: PMC11633406 DOI: 10.1080/17520363.2024.2416886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/11/2024] [Indexed: 10/30/2024] Open
Abstract
Aim: Wilms' tumor 1-associating protein (WTAP), plays a part in colorectal cancer (CRC) progression. However, it is not yet known how WTAP affects cancer progression by influencing leukocyte rich repeat containing proteins (NLR) - family members 3 (NLRP3) - related inflammasomes.Materials & methods: We first validated the expression of WTAP in CRC at the tissue and cellular levels. Subsequently, by transfecting si-NC and si-WTAP into cells, we verified functions of WTAP in proliferation, invasion, migration and apoptosis of CRC cells. Finally, we analyzed the N6-methyladenosine (m6A) modification of NLRP3 by WTAP using methylated RNA immunoprecipitation (MeRIP)-qPCR technology, confirming that WTAP mediated the repression of NLRP3 inflammasome and the malignant progression of tumor cells.Results: WTAP was substantially upregulated in CRC tissues and cells. WTAP reinforced the migration, proliferation and invasion ability of CRC cells, and repressed apoptosis. Mechanistically, WTAP mediated the m6A modification of NLRP3, which suppressed the expression of NLRP3 and dampened the NLRP3/Caspase-1/GSDMD axis activation as well as pyroptosis, thereby facilitating the malignant progression of CRC.Conclusion: WTAP mediates m6A modification to modulate the repression of the NLRP3/Caspase-1/GSDMD axis in pyroptosis, reinforcing the malignant progression of CRC.
Collapse
Affiliation(s)
- Anwei Mo
- Department of Oncology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou City, Hainan, 570311, China
| | - Huaiwen Wang
- Department of Anorectal Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou City, Hainan, 570311, China
| |
Collapse
|
4
|
Tang L, Tian H, Min Q, You H, Yin M, Yang L, Zhao Y, Wu X, Li M, Du F, Chen Y, Deng S, Li X, Chen M, Gu L, Sun Y, Xiao Z, Li W, Shen J. Decoding the epitranscriptome: a new frontier for cancer therapy and drug resistance. Cell Commun Signal 2024; 22:513. [PMID: 39434167 PMCID: PMC11492518 DOI: 10.1186/s12964-024-01854-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/25/2024] [Indexed: 10/23/2024] Open
Abstract
As the role of RNA modification in gene expression regulation and human diseases, the "epitranscriptome" has been shown to be an important player in regulating many physiological and pathological processes. Meanwhile, the phenomenon of cancer drug resistance is becoming more and more frequent, especially in the case of cancer chemotherapy resistance. In recent years, research on relationship between post-transcriptional modification and cancer including drug resistance has become a hot topic, especially the methylation of the sixth nitrogen site of RNA adenosine-m6A (N6-methyladenosine). m6A modification is the most common post-transcriptional modification of eukaryotic mRNA, accounting for 80% of RNA methylation modifications. At the same time, several other modifications of RNA, such as N1-methyladenosine (m1A), 5-methylcytosine (m5C), 3-methylcytosine (m3C), pseudouridine (Ψ) and N7-methylguanosine (m7G) have also been demonstrated to be involved in cancer and drug resistance. This review mainly discusses the research progress of RNA modifications in the field of cancer and drug resistance and targeting of m6A regulators by small molecule modulators, providing reference for future study and development of combination therapy to reverse cancer drug resistance.
Collapse
Affiliation(s)
- Lu Tang
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Scientific Research and Experimental Training Center, Sichuan College of Traditional Chinese Medicine, Mianyang, China
| | - Hua Tian
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- School of Nursing, Chongqing College of Humanities, Science & Technology, Chongqing, 401520, China
| | - Qi Min
- Department of Pharmacy, Mianyang Hospital of TCM, Sichuan Mianyang, 621000, China
| | - Huili You
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Mengshuang Yin
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Liqiong Yang
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Yueshui Zhao
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Xu Wu
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Mingxing Li
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Fukuan Du
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Yu Chen
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Shuai Deng
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Xiaobing Li
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Meijuan Chen
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Li Gu
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Yuhong Sun
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Zhangang Xiao
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China.
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China.
| | - Wanping Li
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China.
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China.
| | - Jing Shen
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China.
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China.
| |
Collapse
|
5
|
Jiang TQ, Wang H, Cheng WX, Xie C. Modulation of host N6-methyladenosine modification by gut microbiota in colorectal cancer. World J Gastroenterol 2024; 30:4175-4193. [PMID: 39493326 PMCID: PMC11525875 DOI: 10.3748/wjg.v30.i38.4175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/29/2024] [Accepted: 09/12/2024] [Indexed: 09/29/2024] Open
Abstract
As a research hotspot in the field of molecular biology, N6-methyladenosine (m6A) modification has made progress in the treatment of colorectal cancer (CRC), leukemia and other cancers. Numerous studies have demonstrated that the tumour microenvironment (TME) regulates the level of m6A modification in the host and activates a series of complex epigenetic signalling pathways through interactions with CRC cells, thus affecting the progression and prognosis of CRC. However, with the diversity in the composition of TME factors, this action is reciprocal and complex. Encouragingly, some studies have experimentally revealed that the intestinal flora can alter CRC cell proliferation by directly acting on m6A and thereby altering CRC cell proliferation. This review summarizes the data, supporting the idea that the intestinal flora can influence host m6A levels through pathways such as methyl donor metabolism and thus affect the progression of CRC. We also review the role of m6A modification in the diagnosis, treatment, and prognostic assessment of CRC and discuss the current status, limitations, and potential clinical value of m6A modification in this field. We propose that additional in-depth research on m6A alterations in CRC patients and their TME-related targeted therapeutic issues will lead to better therapeutic outcomes for CRC patients.
Collapse
Affiliation(s)
- Tian-Qi Jiang
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
- The First Clinical Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Hao Wang
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
- The First Clinical Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Wang-XinJun Cheng
- Queen Mary College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Chuan Xie
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| |
Collapse
|
6
|
Lin M, Hua Z, Li Z. FTO diversely influences sensitivity of neuroblastoma cells to various chemotherapeutic drugs. Front Pharmacol 2024; 15:1384141. [PMID: 39295930 PMCID: PMC11409730 DOI: 10.3389/fphar.2024.1384141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 08/16/2024] [Indexed: 09/21/2024] Open
Abstract
Chemotherapy resistance is a significant factor in treatment failure in patients with neuroblastoma (NB), and it directly affects patient prognosis. Therefore, identifying novel therapeutic targets to enhance chemosensitivity is essential to improve the cure rate and prognosis of patients with NB. In this study, we investigated the role of FTO in chemosensitivity of NB cells to various chemotherapeutic drugs. Our results showed that high FTO expression was positively correlated with increased survival probability and favorable prognostic factors in patients with NB. FTO overexpression inhibited cell proliferation, whereas FTO knockdown promoted cell proliferation in NB cells. FTO expression alteration had contrasting effects on NB cells' sensitivity to etoposide but had no significant impact on sensitivity to cisplatin. Downregulation of FTO reduced the sensitivity of NB cells to paclitaxel, whereas upregulation of FTO enhanced its sensitivity. Additionally, the sensitivities between patients with lower and higher FTO expression to various chemotherapeutic drugs or small-molecule inhibitors were different. Thus, FTO affects the sensitivities of NB cells differently depending on the different chemotherapeutic drugs and small-molecule inhibitors. This finding may guide physicians and patients choose the appropriate chemotherapeutic drugs or small-molecule inhibitors for treatment.
Collapse
Affiliation(s)
- Meizhen Lin
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Medical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhongyan Hua
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Medical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhijie Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Medical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
7
|
Li P, Ma X, Huang D. Role of the lncRNA/Wnt signaling pathway in digestive system cancer: a literature review. Eur J Med Res 2024; 29:447. [PMID: 39218950 PMCID: PMC11367813 DOI: 10.1186/s40001-024-02033-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
The long noncoding RNA (lncRNA)/Wingless (Wnt) axis is often dysregulated in digestive system tumors impacting critical cellular processes. Abnormal expression of specific Wnt-related lncRNAs such as LINC01606 (promotes motility), SLCO4A1-AS1 (promotes motility), and SH3BP5-AS1 (induces chemoresistance), plays a crucial role in these malignancies. These lncRNAs are promising targets for cancer diagnosis and therapy, offering new treatment perspectives. The lncRNAs, NEF and GASL1, differentially expressed in plasma show diagnostic potential for esophageal squamous cell carcinoma and gastric cancer, respectively. Additionally, Wnt pathway inhibitors like XAV-939 have demonstrated preclinical efficacy, underscoring their therapeutic potential. This review comprehensively analyzes the lncRNA/Wnt axis, highlighting its impact on cell proliferation, motility, and chemoresistance. By elucidating the complex molecular mechanisms of the lncRNA/Wnt axis, we aim to identify potential therapeutic targets for digestive system tumors to pave the way for the development of targeted treatment strategies.
Collapse
Affiliation(s)
- Penghui Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471000, Henan, China.
| | - Xiao Ma
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Di Huang
- Department of Child Health Care, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| |
Collapse
|
8
|
Chen D, Gu X, Nurzat Y, Xu L, Li X, Wu L, Jiao H, Gao P, Zhu X, Yan D, Li S, Xue C. Writers, readers, and erasers RNA modifications and drug resistance in cancer. Mol Cancer 2024; 23:178. [PMID: 39215288 PMCID: PMC11363509 DOI: 10.1186/s12943-024-02089-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Drug resistance in cancer cells significantly diminishes treatment efficacy, leading to recurrence and metastasis. A critical factor contributing to this resistance is the epigenetic alteration of gene expression via RNA modifications, such as N6-methyladenosine (m6A), N1-methyladenosine (m1A), 5-methylcytosine (m5C), 7-methylguanosine (m7G), pseudouridine (Ψ), and adenosine-to-inosine (A-to-I) editing. These modifications are pivotal in regulating RNA splicing, translation, transport, degradation, and stability. Governed by "writers," "readers," and "erasers," RNA modifications impact numerous biological processes and cancer progression, including cell proliferation, stemness, autophagy, invasion, and apoptosis. Aberrant RNA modifications can lead to drug resistance and adverse outcomes in various cancers. Thus, targeting RNA modification regulators offers a promising strategy for overcoming drug resistance and enhancing treatment efficacy. This review consolidates recent research on the role of prevalent RNA modifications in cancer drug resistance, with a focus on m6A, m1A, m5C, m7G, Ψ, and A-to-I editing. Additionally, it examines the regulatory mechanisms of RNA modifications linked to drug resistance in cancer and underscores the existing limitations in this field.
Collapse
Affiliation(s)
- Di Chen
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Xinyu Gu
- Department of Oncology, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Yeltai Nurzat
- State Key Laboratory of Respiratory Disease, Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lixia Xu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Xueyuan Li
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Lixin Wu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Henan Jiao
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Peng Gao
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Xuqiang Zhu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China.
| | - Dongming Yan
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China.
| | - Shaohua Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China.
| | - Chen Xue
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
9
|
Ren C, Cao Z, Liu Y, Wang R, Lin C, Wang Z. Medicinal chemistry aspects of fat mass and obesity associated protein: structure, function and inhibitors. Future Med Chem 2024; 16:1705-1726. [PMID: 39101588 PMCID: PMC11370915 DOI: 10.1080/17568919.2024.2380245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 07/09/2024] [Indexed: 08/06/2024] Open
Abstract
Adiposity and obesity-related proteins (FTO), the earliest identified mRNA N6-methyladenosine (m6A) demethylases, are known to play crucial roles in several biological processes. Therefore, FTO is a promising target for anticancer treatment. Understanding the biological functions and regulatory mechanisms of FTO targets can serve as guidelines for drug development. Despite significant efforts to develop FTO inhibitors, no specific small-molecule inhibitors have entered clinical trials so far. In this manuscript, we review the relationship between FTO and various cancers, the small-molecule inhibitors developed against FTO targets from the perspective of medicinal chemistry and other fields, and describe their structural optimization process and structure-activity relationship, providing clues for their future development direction.
Collapse
Affiliation(s)
- Changyu Ren
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu, 611130, China
| | - Zhi Cao
- Medical Quality Control & Evaluation Department, Chengdu Fifth People's Hospital, Chengdu, 611130, China
| | - Yang Liu
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, China
| | - Rui Wang
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, China
| | - Congcong Lin
- Department of Pharmaceutics, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Zishu Wang
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, China
| |
Collapse
|
10
|
He J, Qiu Z, Fan J, Xie X, Sheng Q, Sui X. Drug tolerant persister cell plasticity in cancer: A revolutionary strategy for more effective anticancer therapies. Signal Transduct Target Ther 2024; 9:209. [PMID: 39138145 PMCID: PMC11322379 DOI: 10.1038/s41392-024-01891-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/21/2024] [Accepted: 06/03/2024] [Indexed: 08/15/2024] Open
Abstract
Non-genetic mechanisms have recently emerged as important drivers of anticancer drug resistance. Among these, the drug tolerant persister (DTP) cell phenotype is attracting more and more attention and giving a predominant non-genetic role in cancer therapy resistance. The DTP phenotype is characterized by a quiescent or slow-cell-cycle reversible state of the cancer cell subpopulation and inert specialization to stimuli, which tolerates anticancer drug exposure to some extent through the interaction of multiple underlying mechanisms and recovering growth and proliferation after drug withdrawal, ultimately leading to treatment resistance and cancer recurrence. Therefore, targeting DTP cells is anticipated to provide new treatment opportunities for cancer patients, although our current knowledge of these DTP cells in treatment resistance remains limited. In this review, we provide a comprehensive overview of the formation characteristics and underlying drug tolerant mechanisms of DTP cells, investigate the potential drugs for DTP (including preclinical drugs, novel use for old drugs, and natural products) based on different medicine models, and discuss the necessity and feasibility of anti-DTP therapy, related application forms, and future issues that will need to be addressed to advance this emerging field towards clinical applications. Nonetheless, understanding the novel functions of DTP cells may enable us to develop new more effective anticancer therapy and improve clinical outcomes for cancer patients.
Collapse
Affiliation(s)
- Jun He
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Zejing Qiu
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Jingjing Fan
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Xiaohong Xie
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| | - Qinsong Sheng
- Department of Colorectal Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Xinbing Sui
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| |
Collapse
|
11
|
Zhang Y, Chen Y, Guo Q, Zhang Y, Liu A. Fat mass and obesity-associated protein (FTO)-induced upregulation of flotillin-2 (FLOT2) contributes to cancer aggressiveness in diffuse large B-cell lymphoma (DLBCL) via activating the PI3K/Akt/mTOR signal pathway. Arch Biochem Biophys 2024; 758:110072. [PMID: 38914215 DOI: 10.1016/j.abb.2024.110072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/11/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
The role of fat mass and obesity-associated protein (FTO)-mediated N6-methyladenosine (m6A)-demethylation has been investigated in various types of cancers, but it is still unclear whether FTO participates in the progression of diffuse large B-cell lymphoma (DLBCL). Here, by conducting Real-Time qPCR and Western Blot analysis, we verified that FTO was especially enriched in the DLBCL cells (RCK-8, LY-3, DHL-6 and U2932) compared to normal WIL2S cells. Then, the overexpression and silencing vectors for FTO were delivered into the LY-3 and U2932 cells, and our functional experiments confirmed that silencing of FTO suppressed cell viability and division, and induced apoptotic cell death in the DLBCL cells, whereas FTO-overexpression exerted opposite effects. Further mechanical experiments showed that FTO demethylated m6A modifications in flotillin-2 (FLOT2) mRNA to sustain its stability for FLOT2 upregulation, and elevated FLOT2 subsequently increased the expression levels of phosphorylated PI3K (p-PI3K), p-Akt and p-mTOR to activate the tumor-initiating PI3K/Akt/mTOR signal pathway. Of note, FLOT2 also serve as an oncogene to enhance cancer malignancy in DLBCL, and the rescuing experiments showed that FTO-ablation induced suppressing effects on the malignant phenotypes in DLBCL were all abrogated by overexpressing FLOT2. Taken together, those data hinted that FTO-mediated m6A-demethylation upregulated FLOT2 to activate the downstream PI3K/Akt/mTOR signal pathway, leading to the aggressiveness of DLBCL, which potentially provided diagnostic, therapeutic and prognostic biomarkers for DLBCL.
Collapse
Affiliation(s)
- Yujing Zhang
- Hemolymph Department, Harbin Medical University Cancer Hospital, Harbin, China; Department of Hematology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Yao Chen
- Hemolymph Department, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Qiang Guo
- Department of Hematology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Ying Zhang
- Department of Hematology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Aichun Liu
- Hemolymph Department, Harbin Medical University Cancer Hospital, Harbin, China.
| |
Collapse
|
12
|
Zhang S, Zhou L, Yang J, Lu J, Tao L, Feng Y, Cheng J, Zhao L. Rhein exerts anti-multidrug resistance in acute myeloid leukemia via targeting FTO to inhibit AKT/mTOR. Anticancer Drugs 2024; 35:597-605. [PMID: 38728095 DOI: 10.1097/cad.0000000000001608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Chemotherapy failure and resistance are the leading causes of mortality in patients with acute myeloid leukemia (AML). However, the role of m6A demethylase FTO and its inhibitor rhein in AML and AML drug resistance is unclear. Therefore, this study aimed to investigate the antileukemic effect of rhein on AML and explore its potential mechanisms underlying drug resistance. Bone marrow fluid was collected to assess FTO expression in AML. The Cell Counting Kit 8 reagent was used to assess cell viability. Migration assays were conducted to assess the cell migration capacity. Flow cytometry was used to determine the apoptotic effects of rhein and western blot analysis was used to detect protein expression. Online SynergyFinder software was used to calculate the drug synergy scores. The in-vivo antileukemic effect of rhein was assessed in an AML xenograft mouse model. We analyzed different types of AML bone marrow specimens to confirm that FTO is overexpressed in AML, particularly in cases of multidrug resistance. Subsequently, we conducted in-vivo and in-vitro investigations to explore the pharmacological activity and mechanism of rhein in AML and AML with multidrug resistance. The findings demonstrated that rhein effectively suppressed the proliferation and migration of AML cells in a time- and dose-dependent manner and induced apoptosis. Rhein targets FTO, inhibits the AKT/mTOR pathway, and exhibits synergistic antitumor effects when combined with azacitidine. This study elucidates the significant role of FTO and its inhibitor rhein in AML and AML with multidrug resistance, providing new insights for overcoming multidrug resistance in AML.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- Animals
- Mice
- Anthraquinones/pharmacology
- Drug Resistance, Neoplasm/drug effects
- Proto-Oncogene Proteins c-akt/metabolism
- Alpha-Ketoglutarate-Dependent Dioxygenase FTO/metabolism
- TOR Serine-Threonine Kinases/metabolism
- Apoptosis/drug effects
- Xenograft Model Antitumor Assays
- Drug Resistance, Multiple/drug effects
- Cell Proliferation/drug effects
- Female
- Male
- Cell Movement/drug effects
- Cell Line, Tumor
- Mice, Nude
- Middle Aged
- Mice, Inbred BALB C
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Shuling Zhang
- The First Clinical Medical College, Lanzhou University
| | - Lanxia Zhou
- Clinical Cellular Molecular Genetics and Immunology Laboratory
| | - Jincai Yang
- The First Clinical Medical College, Lanzhou University
| | - Jianle Lu
- The First Clinical Medical College, Lanzhou University
| | - Lili Tao
- The First Clinical Medical College, Lanzhou University
| | - Youfan Feng
- The First Clinical Medical College, Lanzhou University
| | - Juan Cheng
- Department of Hematology, The First Affiliated Hospital of Lanzhou University, Lanzhou, China
| | - Li Zhao
- Clinical Cellular Molecular Genetics and Immunology Laboratory
| |
Collapse
|
13
|
Iaiza A, Mazzanti G, Goeman F, Cesaro B, Cortile C, Corleone G, Tito C, Liccardo F, De Angelis L, Petrozza V, Masciarelli S, Blandino G, Fanciulli M, Fatica A, Fontemaggi G, Fazi F. WTAP and m 6A-modified circRNAs modulation during stress response in acute myeloid leukemia progenitor cells. Cell Mol Life Sci 2024; 81:276. [PMID: 38909325 PMCID: PMC11335200 DOI: 10.1007/s00018-024-05299-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/19/2024] [Accepted: 05/27/2024] [Indexed: 06/24/2024]
Abstract
N6-methyladenosine (m6A) is one of the most prevalent and conserved RNA modifications. It controls several biological processes, including the biogenesis and function of circular RNAs (circRNAs), which are a class of covalently closed-single stranded RNAs. Several studies have revealed that proteotoxic stress response induction could be a relevant anticancer therapy in Acute Myeloid Leukemia (AML). Furthermore, a strong molecular interaction between the m6A mRNA modification factors and the suppression of the proteotoxic stress response has emerged. Since the proteasome inhibition leading to the imbalance in protein homeostasis is strictly linked to the stress response induction, we investigated the role of Bortezomib (Btz) on m6A regulation and in particular its impact on the modulation of m6A-modified circRNAs expression. Here, we show that treating AML cells with Btz downregulated the expression of the m6A regulator WTAP at translational level, mainly because of increased oxidative stress. Indeed, Btz treatment promoted oxidative stress, with ROS generation and HMOX-1 activation and administration of the reducing agent N-acetylcysteine restored WTAP expression. Additionally, we identified m6A-modified circRNAs modulated by Btz treatment, including circHIPK3, which is implicated in protein folding and oxidative stress regulation. These results highlight the intricate molecular networks involved in oxidative and ER stress induction in AML cells following proteotoxic stress response, laying the groundwork for future therapeutic strategies targeting these pathways.
Collapse
MESH Headings
- Humans
- RNA, Circular/genetics
- RNA, Circular/metabolism
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/drug therapy
- Adenosine/analogs & derivatives
- Adenosine/metabolism
- Adenosine/pharmacology
- Oxidative Stress/drug effects
- Bortezomib/pharmacology
- Cell Line, Tumor
- Reactive Oxygen Species/metabolism
- RNA Splicing Factors/metabolism
- RNA Splicing Factors/genetics
- Cell Cycle Proteins/metabolism
- Cell Cycle Proteins/genetics
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/pathology
- Heme Oxygenase-1/metabolism
- Heme Oxygenase-1/genetics
- Protein Serine-Threonine Kinases
- Intracellular Signaling Peptides and Proteins
Collapse
Affiliation(s)
- Alessia Iaiza
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, P.le Aldo Moro, 5, 00185, Rome, Italy
| | - Gilla Mazzanti
- Section of Histology and Medical Embryology, Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Via A. Scarpa, 14-16, 00161, Rome, Italy
| | - Frauke Goeman
- SAFU, Department of Research, Diagnosis and Innovative Technologies, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Bianca Cesaro
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, P.le Aldo Moro, 5, 00185, Rome, Italy
| | - Clelia Cortile
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, P.le Aldo Moro, 5, 00185, Rome, Italy
- SAFU, Department of Research, Diagnosis and Innovative Technologies, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Giacomo Corleone
- SAFU, Department of Research, Diagnosis and Innovative Technologies, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Claudia Tito
- Section of Histology and Medical Embryology, Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Via A. Scarpa, 14-16, 00161, Rome, Italy
| | - Francesca Liccardo
- Section of Histology and Medical Embryology, Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Via A. Scarpa, 14-16, 00161, Rome, Italy
| | - Luciana De Angelis
- Section of Histology and Medical Embryology, Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Via A. Scarpa, 14-16, 00161, Rome, Italy
| | - Vincenzo Petrozza
- Department of Medico-Surgical Science and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Silvia Masciarelli
- Section of Histology and Medical Embryology, Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Via A. Scarpa, 14-16, 00161, Rome, Italy
| | - Giovanni Blandino
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Maurizio Fanciulli
- SAFU, Department of Research, Diagnosis and Innovative Technologies, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Alessandro Fatica
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, P.le Aldo Moro, 5, 00185, Rome, Italy.
| | - Giulia Fontemaggi
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy.
| | - Francesco Fazi
- Section of Histology and Medical Embryology, Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Via A. Scarpa, 14-16, 00161, Rome, Italy.
| |
Collapse
|
14
|
Jin H, Chen Y, Zhang D, Lin J, Huang S, Wu X, Deng W, Huang J, Yao Y. YTHDF2 favors protumoral macrophage polarization and implies poor survival outcomes in triple negative breast cancer. iScience 2024; 27:109902. [PMID: 38812540 PMCID: PMC11134561 DOI: 10.1016/j.isci.2024.109902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/11/2024] [Accepted: 05/01/2024] [Indexed: 05/31/2024] Open
Abstract
Patients with triple-negative breast cancer (TNBC) frequently experience resistance to chemotherapy, leading to recurrence. The approach of optimizing anti-tumoral immunological effect is promising in overcoming such resistance, given the heterogeneity and lack of biomarkers in TNBC. In this study, we focused on YTHDF2, an N6-methyladenosine (m6A) RNA-reader protein, in macrophages, one of the most abundant intra-tumoral immune cells. Using single-cell sequencing and ex vivo experiments, we discovered that YTHDF2 significantly promotes pro-tumoral phenotype polarization of macrophages and is closely associated with down-regulated antigen-presentation signaling to other immune cells in TNBC. The in vitro deprivation of YTHDF2 favors anti-tumoral effect. Expressions of multiple transcription factors, especially SPI1, were consistently observed in YTHDF2-high macrophages, providing potential therapeutic targets for new strategies. In conclusion, YTHDF2 in macrophages appears to promote pro-tumoral effects while suppressing immune activity, indicating the treatment targeting YTHDF2 or its transcription factors could be a promising strategy for chemoresistant TNBC.
Collapse
Affiliation(s)
- Hao Jin
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510120, China
| | - Yue Chen
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510120, China
| | - Dongbo Zhang
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510120, China
| | - Junfan Lin
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510120, China
| | - Songyin Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510120, China
| | - Xiaohua Wu
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510120, China
| | - Wen Deng
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510120, China
| | - Jiandong Huang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province 518055, China
- Clinical Oncology Center, Shenzhen Key Laboratory for Cancer Metastasis and Personalized Therapy, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Yandan Yao
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510120, China
- Shenshan Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Shanwei, Guangdong Province 516621, China
- Guangdong Provincial Key Laboratory of Cancer Pathogenesis and Precision Diagnosis and Treatment, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Shanwei, Guangdong Province 516621, China
| |
Collapse
|
15
|
Liu S, Liu M, Li Y, Song Q. N6-methyladenosine-dependent signaling in colorectal cancer: Functions and clinical potential. Crit Rev Oncol Hematol 2024; 198:104360. [PMID: 38615872 DOI: 10.1016/j.critrevonc.2024.104360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/29/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024] Open
Abstract
Colorectal cancer (CRC) ranks as the third most prevalent malignancy worldwide. Despite the gradual expansion of therapeutic options for CRC, its clinical management remains a formidable challenge. And, because of the current dearth of technical means for early CRC screening, most patients are diagnosed at an advanced stage. Therefore, it is imperative to develop novel diagnostic and therapeutic tools for this disease. N6-methyladenosine (m6A), the predominant RNA modification in eukaryotes, can be recognized by m6A-specific methylated reading proteins to modulate gene expression. Studies have revealed that CRC disrupts m6A homeostasis through various mechanisms, thereby sustaining aberrant signal transduction and promoting its own progression. Consequently, m6A-based diagnostic and therapeutic strategies have garnered widespread attention. Although utilizing m6A as a biomarker and drug target has demonstrated promising feasibility, existing observations primarily stem from preclinical models; henceforth necessitating further investigation and resolution of numerous outstanding issues.
Collapse
Affiliation(s)
- Shaojun Liu
- Department of Oncology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese medicine, Suzhou, Jiangsu, China
| | - Min Liu
- Department of Oncology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese medicine, Suzhou, Jiangsu, China
| | - Yuxuan Li
- Department of Oncology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese medicine, Suzhou, Jiangsu, China
| | - Qing Song
- Department of Oncology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese medicine, Suzhou, Jiangsu, China.
| |
Collapse
|
16
|
Guo J, Zhao L, Duan M, Yang Z, Zhao H, Liu B, Wang Y, Deng L, Wang C, Jiang X, Jiang X. Demethylases in tumors and the tumor microenvironment: Key modifiers of N 6-methyladenosine methylation. Biomed Pharmacother 2024; 174:116479. [PMID: 38537580 DOI: 10.1016/j.biopha.2024.116479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/09/2024] [Accepted: 03/19/2024] [Indexed: 05/01/2024] Open
Abstract
RNA methylation modifications are widespread in eukaryotes and prokaryotes, with N6-methyladenosine (m6A) the most common among them. Demethylases, including Fat mass and obesity associated gene (FTO) and AlkB homolog 5 (ALKBH5), are important in maintaining the balance between RNA methylation and demethylation. Recent studies have clearly shown that demethylases affect the biological functions of tumors by regulating their m6A levels. However, their effects are complicated, and even opposite results have appeared in different articles. Here, we summarize the complex regulatory networks of demethylases, including the most important and common pathways, to clarify the role of demethylases in tumors. In addition, we describe the relationships between demethylases and the tumor microenvironment, and introduce their regulatory mechanisms. Finally, we discuss evaluation of demethylases for tumor diagnosis and prognosis, as well as the clinical application of demethylase inhibitors, providing a strong basis for their large-scale clinical application in the future.
Collapse
Affiliation(s)
- Junchen Guo
- Departmentof Radiology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Liang Zhao
- Department of Anorectal Surgery, Shenyang Anorectal Hospital, Shenyang, Liaoning 110002, China
| | - Meiqi Duan
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Zhi Yang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - He Zhao
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Baiming Liu
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Yihan Wang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Liping Deng
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Chen Wang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Xiaodi Jiang
- Department of Infectious Diseases, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110002, China.
| | - Xiaofeng Jiang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China.
| |
Collapse
|
17
|
Jiang M, Han J, Ma Q, Chen X, Xu R, Wang Q, Zheng J, Wang W, Song J, Huang Y, Chen Y. Nicotine-derived NNK promotes CRC progression through activating TMUB1/AKT pathway in METTL14/YTHDF2-mediated m6A manner. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133692. [PMID: 38341886 DOI: 10.1016/j.jhazmat.2024.133692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/13/2024]
Abstract
Cigarette smoking substantially promotes tumorigenesis and progression of colorectal cancer; however, the underlying molecular mechanism remains unclear. Among 662 colorectal cancer patients, our investigation revealed a significant correlation between cigarette smoking and factors, such as large tumor size, poor differentiation, and high degree of invasion. Among the nicotine-derived nitrosamines, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) emerged as the most critical carcinogen, which significantly promoted the malignant progression of colorectal cancer both in vivo and in vitro. The results of methylated RNA immunoprecipitation and transcriptome sequencing indicated that NNK upregulated transmembrane and ubiquitin-like domain-containing protein 1 (TMUB1) via N6-adenosine methylation, which was regulated by methyltransferase-like 14 (METTL14) and YTH N6-methyladenosine RNA binding protein 2 (YTHDF2). Elevated TMUB1 levels were associated with a higher risk of cancer invasion and metastasis, leading to a high mortality risk in patients with colorectal cancer. Additionally, TMUB1 promoted lysine63-linked ubiquitination of AKT by interacting with AMFR, which led to the induction of malignant proliferation and metastasis in colorectal cancer cells exposed to NNK. In summary, this study provides a new insight, indicating that targeting TMUB1 expression via METTL14/YTHDF2 mediated N6-adenosine methylation may be a potential therapeutic and prognostic target for patients with colorectal cancer who smoke.
Collapse
Affiliation(s)
- Min Jiang
- School of Public Health, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; Center for Medical Statistics and Data Analysis, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Jingyi Han
- School of Public Health, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Qun Ma
- School of Public Health, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Xue Chen
- School of Public Health, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Renjie Xu
- School of Public Health, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Qing Wang
- School of Public Health, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Jia Zheng
- Department of Clinical Epidemiology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Weimin Wang
- Department of Oncology, Yixing Hospital Affiliated to Medical College of Yangzhou University, Yixing, Jiangsu, PR China
| | - Jun Song
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| | - Yefei Huang
- School of Public Health, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China.
| | - Yansu Chen
- School of Public Health, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; Center for Medical Statistics and Data Analysis, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China.
| |
Collapse
|
18
|
Li J, Li S, Xing X, Liu N, Lai S, Liao D, Li J. FTO-mediated ZNF687 accelerates tumor growth, metastasis, and angiogenesis in colorectal cancer through the Wnt/β-catenin pathway. Biotechnol Appl Biochem 2024; 71:245-255. [PMID: 37983718 DOI: 10.1002/bab.2536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 11/02/2023] [Indexed: 11/22/2023]
Abstract
Colorectal cancer (CRC) is a common and lethal cancer. ZNF687 has been disclosed to take part in diversified cancers' progression by serving as a facilitator. However, the detailed regulatory functions of ZNF687 in the CRC have not been investigated. This work is planned to probe the impacts of ZNF687 on CRC progression. The IHC, RT-qPCR, and western blot assays were used to examine mRNA and protein gene expressions. The cell proliferation measurement was accompanied by a CCK-8 assay. The Transwell assay was performed to evaluate cell invasion and migration. The angiogenesis ability was evaluated by a tube formation experiment. The m6A level was evaluated through MeRIP and m6A dot blot assays. The binding ability between ZNF687 and FTO (fat mass and obesity associated protein) was tested through an RIP assay. The β-catenin nuclear translocation was assessed through an immunofluorescence assay. The tumor growth was evaluated through an in vivo assay. ZNF687 exhibited higher expression in CRC cells and resulted in a poor prognosis. Additionally, ZNF687 inhibition suppressed CRC cell proliferation, invasion, migration, and angiogenesis. Furthermore, the suppression of ZNF687 retarded the Wnt pathway. Through rescue assays, the reduced cell migration, proliferation, invasion, and angiogenesis mediated by ZNF687 knockdown could be reversed after BML-284 (the activator of the Wnt pathway) treatment. Finally, it was explained that ZNF687 knockdown inhibited in vivo tumor growth. This study manifested that FTO-mediated ZNF687 aggravated tumor growth, metastasis, and angiogenesis of CRC through Wnt/β-catenin pathway. This finding may provide a hopeful molecular target for CRC treatment.
Collapse
Affiliation(s)
- Junyi Li
- Department of Surgery, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shixin Li
- Department of Oncology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Xiaoxiao Xing
- Department of Surgery, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Nini Liu
- Department of Anorectal Surgery, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Suyu Lai
- Department of Anorectal Surgery, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Daixiang Liao
- Department of Surgery, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jun Li
- Department of Surgery, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
19
|
Xu X, Qiu S, Zeng B, Huang Y, Wang X, Li F, Yang Y, Cao L, Zhang X, Wang J, Ma L. N 6-methyladenosine demethyltransferase FTO mediated m 6A modification of estrogen receptor alpha in non-small cell lung cancer tumorigenesis. Oncogene 2024; 43:1288-1302. [PMID: 38443681 DOI: 10.1038/s41388-024-02992-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/07/2024]
Abstract
Fat mass and obesity-associated protein (FTO), which is closely linked with obesity and dietary intake, plays an important role in diet-related metabolic diseases. However, the underlying mechanism of the N6-methyladenosine (m6A) demethyltransferase FTO in tumor development and progression remains largely unexplored. Here, we demonstrated that FTO expression was largely lower in non-small cell lung cancer (NSCLC) samples than in adjacent healthy tissues, and its expression negatively correlated with poor prognosis. Gain- and loss-of-function assays revealed that FTO inhibited NSCLC tumor cell growth and metastasis in vitro and in vivo. Mechanistically, estrogen receptor alpha (ESR1) is a target of FTO, and increased FTO expression significantly impaired the m6A levels of ESR1 mRNA. There were two clear m6A modification sites (5247A and 5409A) in the 3' untranslated region (3'UTR) of ESR1, and FTO could decrease their methylation. Moreover, the m6A readers YTHDF1 and IGF2BP3 recognized and bound the m6A sites in ESR1 mRNA, thereby enhancing its stability and facilitating tumor growth. We also showed that ESR1 has good diagnostic value for NSCLC. In conclusion, we uncovered an important mechanism of epitranscriptomic regulation by the FTO-YTHDF1-IGF2BP3-ESR1 axis and identified the potential of m6A-dependent therapeutic strategies for NSCLC.
Collapse
Affiliation(s)
- Xin Xu
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Shiyu Qiu
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Bingjie Zeng
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Yiwen Huang
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Xianzhao Wang
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Fusheng Li
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Yiran Yang
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Leiqun Cao
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Xiao Zhang
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| | - Jiayi Wang
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| | - Lifang Ma
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| |
Collapse
|
20
|
Ramasamy D, Thippannah M, Maharajan HRP, Balaiah M, Seshadri RA, Kodous AS, Herceg Z, Mehta A, Rao AKDM, Mani S. Transcriptome-wide profiling identifies colon cancer-associated m6A transcripts and potential RNA methyl modifiers. Mol Biol Rep 2024; 51:299. [PMID: 38345740 DOI: 10.1007/s11033-024-09217-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/05/2024] [Indexed: 02/15/2024]
Abstract
BACKGROUND N6-methyladenosine (m6A) is a prevalent and crucial RNA methylation modification that plays a significant role in various biological and pathological processes. The dysregulation of m6A has been linked to the initiation, progression, and metastasis of several cancer types, including colon cancer. The transcriptome of colon cancer indeed provides insight into dysregulated coding and non-coding RNAs, but it does not reveal the mechanisms, such as m6A modifications, that determine post-transcriptional and pre-translational regulations. This study using MeRIP sequencing aims to explain the distribution of m6A modification across altered gene expression and its association with colon cancer. METHODS AND RESULTS The levels of m6A in different colon cancer cell lines were quantified and correlated with the expression of m6A modifiers such as writers, readers, and erasers. Our results showed that global m6A levels in colon cancer were associated with METTL14, YTHDF2, and YTHDC1. We performed Epi-transcriptome profiling of m6A in colon cancer cell lines using Methylated RNA Immunoprecipitation (MeRIP) sequencing. The differential methylation analysis revealed 7312 m6A regions among the colon cancer cell lines. Our findings indicated that the m6A RNA methylation modifications were mainly distributed in the last exonic and 3' untranslated regions. We also discovered that non-coding RNAs such as miRNA, lncRNA, and circRNA carry m6A marks. Gene set enrichment and motif analysis suggested a strong association of m6A with post-transcriptional events, particularly splicing control. Overall, our study sheds light on the potential role of m6A in colon cancer and highlights the importance of further investigation in this area. CONCLUSION This study reports m6A enrichment in the last exonic regions and 3' UTRs of mRNA transcripts in colon cancer. METTL14, YTHDF2, and YTHDC1 were the most significant modifiers in colon cancer cells. The functions of m6A-modified genes were found to be RNA methylation and RNA capping. Overall, the study illustrates the transcriptome-wide distribution of m6A and its eminent role in mRNA splicing and translation control of colon cancer.
Collapse
Affiliation(s)
- Deepa Ramasamy
- Department of Molecular Oncology, Cancer Institute (W.I.A), Chennai, Tamil Nadu, 600036, India
| | - Megha Thippannah
- Department of Molecular Oncology, Cancer Institute (W.I.A), Chennai, Tamil Nadu, 600036, India
| | | | - Meenakumari Balaiah
- Department of Molecular Oncology, Cancer Institute (W.I.A), Chennai, Tamil Nadu, 600036, India
| | | | - Ahmad S Kodous
- Department of Molecular Oncology, Cancer Institute (W.I.A), Chennai, Tamil Nadu, 600036, India
- Radiation Biology Department, National Centre for Radiation Research & Technology, Egyptian Atomic-Energy Authority, P.O. Box 8029, Cairo, Egypt
| | - Zdenko Herceg
- Epigenomics Group, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Anurag Mehta
- Department of Research, Rajiv Gandhi Cancer Institute and Research Centre, Sector 5, Rohini, Delhi, 110085, India
| | | | - Samson Mani
- Department of Molecular Oncology, Cancer Institute (W.I.A), Chennai, Tamil Nadu, 600036, India.
- Department of Research, Rajiv Gandhi Cancer Institute and Research Centre, Sector 5, Rohini, Delhi, 110085, India.
| |
Collapse
|
21
|
Shao C, Han Y, Huang Y, Zhang Z, Gong T, Zhang Y, Tian X, Fang M, Han X, Li M. Targeting key RNA methylation enzymes to improve the outcome of colorectal cancer chemotherapy (Review). Int J Oncol 2024; 64:17. [PMID: 38131226 PMCID: PMC10783943 DOI: 10.3892/ijo.2023.5605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
RNA methylation modifications are closely linked to tumor development, migration, invasion and responses to various therapies. Recent studies have shown notable advancements regarding the roles of RNA methylation in tumor immunotherapy, the tumor microenvironment and metabolic reprogramming. However, research on the association between tumor chemoresistance and N6‑methyladenosine (m6A) methyltransferases in specific cancer types is still scarce. Colorectal cancer (CRC) is among the most common gastrointestinal cancers worldwide. Conventional chemotherapy remains the predominant treatment modality for CRC and chemotherapy resistance is the primary cause of treatment failure. The expression levels of m6A methyltransferases, including methyltransferase‑like 3 (METTL3), METTL14 and METTL16, in CRC tissue samples are associated with patients' clinical outcomes and chemotherapy efficacy. Natural pharmaceutical ingredients, such as quercetin, have the potential to act as METTL3 inhibitors to combat chemotherapy resistance in patients with CRC. The present review discussed the various roles of different types of key RNA methylation enzymes in the development of CRC, focusing on the mechanisms associated with chemotherapy resistance. The progress in the development of certain inhibitors is also listed. The potential of using natural remedies to develop antitumor medications that target m6A methylation is also outlined.
Collapse
Affiliation(s)
- Chiyun Shao
- Department of Oncology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210022, P.R. China
- No. 3 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Yanjie Han
- Department of Oncology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210022, P.R. China
- No. 3 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Yuying Huang
- Department of Oncology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210022, P.R. China
- No. 3 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Zhe Zhang
- Department of Oncology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210022, P.R. China
- No. 3 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Tao Gong
- Department of Oncology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210022, P.R. China
| | - Yajie Zhang
- Department of Oncology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210022, P.R. China
- Central Laboratory, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210022, P.R. China
| | - Xiaokang Tian
- Department of Oncology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210022, P.R. China
| | - Mingzhi Fang
- Department of Oncology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210022, P.R. China
| | - Xuan Han
- School of Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Min Li
- Department of Oncology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210022, P.R. China
| |
Collapse
|
22
|
Mao Z, Wang B, Zhang T, Cui B. The roles of m6A methylation in cervical cancer: functions, molecular mechanisms, and clinical applications. Cell Death Dis 2023; 14:734. [PMID: 37951987 PMCID: PMC10640579 DOI: 10.1038/s41419-023-06265-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/24/2023] [Accepted: 10/31/2023] [Indexed: 11/14/2023]
Abstract
Cervical cancer (CC) is a gynecological neoplasm with the highest incidence rate, primarily attributed to the persistent infection of high-risk Human papillomavirus (HPV). Despite extensive research, the pathogenesis of CC remains unclear. N6-methyladenosine (m6A) methylation, the most prevalent form of epigenetic modification in RNA, is intricately linked to cell proliferation, metastasis, metabolism, and therapeutic resistance within the tumor microenvironment (TME) of CC. The involvement of the writer, reader, and eraser in m6A modification impacts the advancement of tumors through the regulation of RNA stability, nuclear export, translation efficiency, and RNA degradation. Here, we discuss the biogenesis of m6A, the atypical expressions of m6A regulators, the mechanisms of molecular interactions, and their functions in CC. Furthermore, we elucidate m6A modification of non-coding RNA. In the context of precision medicine, and with the advancements of genomics, proteomics, and high-throughput sequencing technologies, we summarize the application of m6A in the clinical diagnosis and treatment of CC. Additionally, new perspectives on detection methods, immune regulation, and nano-drug development are presented, which lay the foundation for further research of m6A and provide new ideas for the clinical treatment of CC.
Collapse
Affiliation(s)
- Zhonghao Mao
- Cheeloo College of Medicine, Shandong University, No. 44 Wenhua West Road, Jinan City, 250012, Shandong Province, China
| | - Bingyu Wang
- Cheeloo College of Medicine, Shandong University, No. 44 Wenhua West Road, Jinan City, 250012, Shandong Province, China
| | - Teng Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, No. 107 Wenhua West Road, Jinan City, 250012, Shandong Province, China
| | - Baoxia Cui
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, No. 107 Wenhua West Road, Jinan City, 250012, Shandong Province, China.
| |
Collapse
|
23
|
Blachman A, Birocco AM, Curcio S, Camperi SA, Gianvincenzo PD, Rodriguez JA, Barredo-Vacchelli GR, Cenci G, Sosnik A, Moya S, Calabrese GC. Dermatan Sulfate/Chitosan Nanoparticles Loaded with an Anti-Inflammatory Peptide Increase the Response of Human Colorectal Cancer Cells to 5-Fluorouracil. Macromol Biosci 2023; 23:e2300193. [PMID: 37469233 DOI: 10.1002/mabi.202300193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/24/2023] [Accepted: 07/18/2023] [Indexed: 07/21/2023]
Abstract
The gold standard drug for colorectal cancer (CRC) treatment, 5-Fluorouracil (5-FU), induces pharmacological tolerance in long-term management. The transcriptional factor nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) plays a key role in 5-FU resistance. The aim of this work is to study the capability of polyelectrolytes complex nanoparticles of dermatan sulfate (DS) and chitosan (CS), loaded with the anti-inflammatory tripeptide IRW, to sensitize colorectal cancer cells to 5-FU. Fluorescence and flow cytometry studies confirmed the recognition by the nanoformulation, of the cluster of differentiation 44 (CD44) receptor, involved in the initiation and progression of colorectal tumors. Dynamic light scattering (DLS) and flow cytometry reinforced the importance of DS and CD44 receptor in the interaction, as the addition of DS or anti-CD44 antibody blocked the binding. Moreover, the nanoformulation also interacts with 3D colon cancer cultures, namely colonospheres, enriched in cancer stem cells (CSC), subpopulation responsible for drug resistance and metastasis. To evaluate the consequences of this interaction, the subcellular distribution of the transcriptional factor NFκB, is determined by immunofluorescence analysis. Internalization and the intracellular release of IRW inhibited nuclear translocation of NFκB and increased cellular sensitivity to 5-FU. Altogether, the nanoformulation could provide a selective delivery platform for IRW distribution to colorectal tumors, being an innovative strategy toward overcoming 5-FU resistance in CRC therapy.
Collapse
Affiliation(s)
- Agustín Blachman
- Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Ciencias Biológicas. Instituto de Química y Fisicoquímica Biológicas "Prof. Alejandro C. Paladini" (IQUIFIB), UBA- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Junín 956, C1113AAD Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Ariadna María Birocco
- Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Ciencias Biológicas. Instituto de Química y Fisicoquímica Biológicas "Prof. Alejandro C. Paladini" (IQUIFIB), UBA- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Junín 956, C1113AAD Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Sofía Curcio
- Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Ciencias Biológicas. Instituto de Química y Fisicoquímica Biológicas "Prof. Alejandro C. Paladini" (IQUIFIB), UBA- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Junín 956, C1113AAD Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Biotecnología. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Nanobiotecnología (NANOBIOTEC), Junín 956, C1113AAD, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Silvia Andrea Camperi
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Biotecnología. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Nanobiotecnología (NANOBIOTEC), Junín 956, C1113AAD, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Paolo Di Gianvincenzo
- Soft Matter Nanotechnology, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo Miramon 182 C, Donostia, San Sebastián, 20014, Spain
| | - Jésica Ayelén Rodriguez
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Biotecnología. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Nanobiotecnología (NANOBIOTEC), Junín 956, C1113AAD, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Gabriela Romina Barredo-Vacchelli
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Biotecnología. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Nanobiotecnología (NANOBIOTEC), Junín 956, C1113AAD, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Gloria Cenci
- Soft Matter Nanotechnology, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo Miramon 182 C, Donostia, San Sebastián, 20014, Spain
| | - Alejandro Sosnik
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering Technion-Israel Institute of Technology, Technion City, Haifa, 3200003, Israel
| | - Sergio Moya
- Soft Matter Nanotechnology, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo Miramon 182 C, Donostia, San Sebastián, 20014, Spain
| | - Graciela Cristina Calabrese
- Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Ciencias Biológicas. Instituto de Química y Fisicoquímica Biológicas "Prof. Alejandro C. Paladini" (IQUIFIB), UBA- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Junín 956, C1113AAD Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
24
|
Lin K, Zhou E, Shi T, Zhang S, Zhang J, Zheng Z, Pan Y, Gao W, Yu Y. m6A eraser FTO impairs gemcitabine resistance in pancreatic cancer through influencing NEDD4 mRNA stability by regulating the PTEN/PI3K/AKT pathway. J Exp Clin Cancer Res 2023; 42:217. [PMID: 37605223 PMCID: PMC10464189 DOI: 10.1186/s13046-023-02792-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/10/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Gemcitabine resistance has brought great challenges to the treatment of pancreatic cancer. The N6-methyladenosine (m6A) mutation has been shown to have a significant regulatory role in chemosensitivity; however, it is not apparent whether gemcitabine resistance can be regulated by fat mass and obesity-associated protein (FTO). METHODS Cells with established gemcitabine resistance and tissues from pancreatic cancer patients were used to evaluate FTO expression. The biological mechanisms of the effects of FTO on gemcitabine resistant cells were investigated using CCK-8, colony formation assay, flow cytometry, and inhibitory concentration 50. Immunoprecipitation/mass spectrometry, MeRIP-seq, RNA sequencing and RIP assays, RNA stability, luciferase reporter, and RNA pull down assays were employed to examine the mechanism of FTO affecting gemcitabine resistant pancreatic cancer cells. RESULTS The results revealed that FTO was substantially expressed in cells and tissues that were resistant to gemcitabine. Functionally, the gemcitabine resistance of pancreatic cancer could be enhanced by FTO, while its depletion inhibited the growth of gemcitabine resistant tumor cells in vivo. Immunoprecipitation/mass spectrometry showed that the FTO protein can be bound to USP7 and deubiquitinated by USP7, leading to the upregulation of FTO. At the same time, FTO knockdown significantly decreased the expression level of NEDD4 in an m6A-dependent manner. RNA pull down and RNA immunoprecipitation verified YTHDF2 as the reader of NEDD4, which promoted the chemoresistance of gemcitabine resistant cells. FTO knockdown markedly increased the PTEN expression level in an NEDD4-dependent manner and influenced the chemosensitivity to gemcitabine through the PI3K/AKT pathway in pancreatic cancer cells. CONCLUSION In conclusion, we found that gemcitabine resistance in pancreatic cancer can be influenced by FTO that demethylates NEDD4 RNA in a m6A-dependent manner, which then influences the PTEN expression level and thereby affects the PI3K/AKT pathway. We also identified that the FTO level can be upregulated by USP7.
Collapse
Affiliation(s)
- Kai Lin
- Department of Gastrointestinal Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Endi Zhou
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ting Shi
- Department of Hepatobiliary Surgery, The Afliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, China
| | - Siqing Zhang
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jinfan Zhang
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ziruo Zheng
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuetian Pan
- Medical Faculty of Ludwig Maximilians, University of Munich-Munich, Bayern, Germany
| | - Wentao Gao
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Yabin Yu
- Department of Hepatobiliary Surgery, The Afliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, China.
| |
Collapse
|
25
|
Zhang ZW, Zhao XS, Guo H, Huang XJ. The role of m 6A demethylase FTO in chemotherapy resistance mediating acute myeloid leukemia relapse. Cell Death Discov 2023; 9:225. [PMID: 37402730 DOI: 10.1038/s41420-023-01505-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/05/2023] [Accepted: 06/20/2023] [Indexed: 07/06/2023] Open
Abstract
Acute myeloid leukemia (AML) is the most common hematopoietic malignancies, and chemotherapy resistance is one of the main causes of relapse. Because of lower survival rate for patients with relapse, it is pivotal to identify etiological factors responsible for chemo-resistance. In this work, direct MeRIP-seq analysis of sequential samples at stage of complete remission (CR) and relapse identifies that dysregulated N6-methyladenosine (m6A) methylation is involved in this progression, and hypomethylated RNAs are related to cell differentiation. m6A demethylase FTO is overexpressed in relapse samples, which enhances the drug resistance of AML cells in vivo and in vitro. In addition, FTO knockdown cells exhibit stronger capacity of differentiation towards granules and myeloid lineages after cytosine arabinoside (Ara-C) treatment. Mechanistically, FOXO3 is identified as a downstream target of FTO, the hypomethylation of FOXO3 mRNA affects its RNA degradation and further reduces its own expression, which ultimately result in attenuated cell differentiation. Collectively, these results demonstrate that FTO-m6A-FOXO3 is the main regulatory axis to affect the chemotherapy resistance of AML cells and FTO is a potential therapeutic target of chemotherapy resistance in AML.
Collapse
Affiliation(s)
- Zhi-Wei Zhang
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, 100044, Beijing, China
| | - Xiao-Su Zhao
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, 100044, Beijing, China
| | - Huidong Guo
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, 100044, Beijing, China
| | - Xiao-Jun Huang
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, 100044, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, 100044, Beijing, China.
| |
Collapse
|
26
|
Shen J, Wang Q, Mao Y, Gao W, Duan S. Targeting the p53 signaling pathway in cancers: Molecular mechanisms and clinical studies. MedComm (Beijing) 2023; 4:e288. [PMID: 37256211 PMCID: PMC10225743 DOI: 10.1002/mco2.288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 04/25/2023] [Accepted: 05/08/2023] [Indexed: 06/01/2023] Open
Abstract
Tumor suppressor p53 can transcriptionally activate downstream genes in response to stress, and then regulate the cell cycle, DNA repair, metabolism, angiogenesis, apoptosis, and other biological responses. p53 has seven functional domains and 12 splice isoforms, and different domains and subtypes play different roles. The activation and inactivation of p53 are finely regulated and are associated with phosphorylation/acetylation modification and ubiquitination modification, respectively. Abnormal activation of p53 is closely related to the occurrence and development of cancer. While targeted therapy of the p53 signaling pathway is still in its early stages and only a few drugs or treatments have entered clinical trials, the development of new drugs and ongoing clinical trials are expected to lead to the widespread use of p53 signaling-targeted therapy in cancer treatment in the future. TRIAP1 is a novel p53 downstream inhibitor of apoptosis. TRIAP1 is the homolog of yeast mitochondrial intermembrane protein MDM35, which can play a tumor-promoting role by blocking the mitochondria-dependent apoptosis pathway. This work provides a systematic overview of recent basic research and clinical progress in the p53 signaling pathway and proposes that TRIAP1 is an important therapeutic target downstream of p53 signaling.
Collapse
Affiliation(s)
- Jinze Shen
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouZhejiangChina
| | - Qurui Wang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouZhejiangChina
| | - Yunan Mao
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouZhejiangChina
| | - Wei Gao
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouZhejiangChina
| | - Shiwei Duan
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouZhejiangChina
| |
Collapse
|
27
|
Lu J, Yu L, Xie N, Wu Y, Li B. METTL14 Facilitates the Metastasis of Pancreatic Carcinoma by Stabilizing LINC00941 in an m6A-IGF2BP2-Dependent Manner. J Cancer 2023; 14:1117-1131. [PMID: 37215454 PMCID: PMC10197944 DOI: 10.7150/jca.84070] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/08/2023] [Indexed: 05/24/2023] Open
Abstract
Pancreatic adenocarcinoma (PC), one of the most fatal diseases, usually generates a poor prognosis in advanced stages. N6-methyladenosine modification has emerged as a crucial participant in tumor development and recurrence. Methyltransferase-like 14 (METTL14), as a core member of methyltransferases, is involved in tumor progression and metastasis. However, the potential mechanism by which METTL14 regulates long noncoding RNAs (lncRNAs) in PC remains unclear. RNA immunoprecipitation (RIP), methylated RNA immunoprecipitation quantitative PCR (MeRIP-qPCR), and fluorescence in situ hybridization (FISH) were used to explore the underlying mechanisms. In our study, we found that METTL14 expression was upregulated in PC patients, and was associated with poor prognosis. In vitro and in vivo experiments, knocking down METTL14 suppressed tumor metastasis. RNA-seq and bioinformatics analyses were used to identify LINC00941 as the downstream target of METTL14. Mechanistically, LINC00941 was upregulated by METTL14 in an m6A-dependent way. LINC00941 was recruited and recognized by IGF2BP2. METTL14 enhanced the affinity of IGF2BP2 for LINC00941, while IGF2BP2 promoted the stabilization of LINC00941, which contributed to the migration and invasion of PC cells. Overall, our research revealed that METTL14 promoted the metastasis of PC through m6A modification of LINC00941. Targeting the METTL14-LINC00941-IGF2BP2 axis may provide promising therapeutic approaches for PC.
Collapse
Affiliation(s)
| | | | | | | | - Baiwen Li
- ✉ Corresponding author: Baiwen Li, MD, Department of Gastroenterology, Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China. E-mail:
| |
Collapse
|
28
|
Roles of RNA Methylations in Cancer Progression, Autophagy, and Anticancer Drug Resistance. Int J Mol Sci 2023; 24:ijms24044225. [PMID: 36835633 PMCID: PMC9959100 DOI: 10.3390/ijms24044225] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
RNA methylations play critical roles in RNA processes, including RNA splicing, nuclear export, nonsense-mediated RNA decay, and translation. Regulators of RNA methylations have been shown to be differentially expressed between tumor tissues/cancer cells and adjacent tissues/normal cells. N6-methyladenosine (m6A) is the most prevalent internal modification of RNAs in eukaryotes. m6A regulators include m6A writers, m6A demethylases, and m6A binding proteins. Since m6A regulators play important roles in regulating the expression of oncogenes and tumor suppressor genes, targeting m6A regulators can be a strategy for developing anticancer drugs. Anticancer drugs targeting m6A regulators are in clinical trials. m6A regulator-targeting drugs could enhance the anticancer effects of current chemotherapy drugs. This review summarizes the roles of m6A regulators in cancer initiation and progression, autophagy, and anticancer drug resistance. The review also discusses the relationship between autophagy and anticancer drug resistance, the effect of high levels of m6A on autophagy and the potential values of m6A regulators as diagnostic markers and anticancer therapeutic targets.
Collapse
|
29
|
Phan T, Nguyen VH, Su R, Li Y, Qing Y, Qin H, Cho H, Jiang L, Wu X, Chen J, Fakih M, Diamond DJ, Goel A, Melstrom LG. Targeting fat mass and obesity-associated protein mitigates human colorectal cancer growth in vitro and in a murine model. Front Oncol 2023; 13:1087644. [PMID: 36874096 PMCID: PMC9981948 DOI: 10.3389/fonc.2023.1087644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/27/2023] [Indexed: 02/19/2023] Open
Abstract
Introduction Colorectal cancer (CRC) remains a significant cause of cancer related mortality. Fat mass and obesity-associated protein (FTO) is a m6A mRNA demethylase that plays an oncogenic role in various malignancies. In this study we evaluated the role of FTO in CRC tumorigenesis. Methods Cell proliferation assays were conducted in 6 CRC cell lines with the FTO inhibitor CS1 (50-3200 nM) (± 5-FU 5-80 mM) and after lentivirus mediated FTO knockdown. Cell cycle and apoptosis assays were conducted in HCT116 cells (24 h and 48 h, 290 nM CS1). Western blot and m6A dot plot assays were performed to assess CS1 inhibition of cell cycle proteins and FTO demethylase activity. Migration and invasion assays of shFTO cells and CS1 treated cells were performed. An in vivo heterotopic model of HCT116 cells treated with CS1 or with FTO knockdown cells was performed. RNA-seq was performed on shFTO cells to assess which molecular and metabolic pathways were impacted. RT-PCR was conducted on select genes down-regulated by FTO knockdown. Results We found that the FTO inhibitor, CS1 suppressed CRC cell proliferation in 6 colorectal cancer cell lines and in the 5-Fluorouracil resistant cell line (HCT116-5FUR). CS1 induced cell cycle arrest in the G2/M phase by down regulation of CDC25C and promoted apoptosis of HCT116 cells. CS1 suppressed in vivo tumor growth in the HCT116 heterotopic model (p< 0.05). Lentivirus knockdown of FTO in HCT116 cells (shFTO) mitigated in vivo tumor proliferation and in vitro demethylase activity, cell growth, migration and invasion compared to shScr controls (p< 0.01). RNA-seq of shFTO cells compared to shScr demonstrated down-regulation of pathways related to oxidative phosphorylation, MYC and Akt/ mTOR signaling pathways. Discussion Further work exploring the targeted pathways will elucidate precise downstream mechanisms that can potentially translate these findings to clinical trials.
Collapse
Affiliation(s)
- Thuy Phan
- Department of Surgery, City of Hope National Medical Center, Duarte, CA, United States
| | - Vu H Nguyen
- Department of Hematology, City of Hope National Medical Center, Duarte, CA, United States
| | - Rui Su
- Beckman Research Institute, Department of Systems Biology, City of Hope National Medical Center, Monrovia, CA, United States
| | - Yangchan Li
- Beckman Research Institute, Department of Systems Biology, City of Hope National Medical Center, Monrovia, CA, United States
| | - Ying Qing
- Beckman Research Institute, Department of Systems Biology, City of Hope National Medical Center, Monrovia, CA, United States
| | - Hanjun Qin
- Beckman Research Institute, The Integrative Genomics Core, City of Hope National Medical Center, Duarte, CA, United States
| | - Hyejin Cho
- Beckman Research Institute, The Integrative Genomics Core, City of Hope National Medical Center, Duarte, CA, United States
| | - Lei Jiang
- Department of Molecular and Cellular Endocrinology, City of Hope National Medical Center, Duarte, CA, United States
| | - Xiwei Wu
- Beckman Research Institute, The Integrative Genomics Core, City of Hope National Medical Center, Duarte, CA, United States
| | - Jianjun Chen
- Beckman Research Institute, Department of Systems Biology, City of Hope National Medical Center, Monrovia, CA, United States
| | - Marwan Fakih
- Department of Medical Oncology, City of Hope National Medical Center, Duarte, CA, United States
| | - Don J Diamond
- Department of Hematology, City of Hope National Medical Center, Duarte, CA, United States
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, City of Hope National Medical Center, Monrovia, CA, United States
| | - Laleh G Melstrom
- Department of Surgery, City of Hope National Medical Center, Duarte, CA, United States
| |
Collapse
|
30
|
Jiang X, Jin Z, Yang Y, Zheng X, Chen S, Wang S, Zhang X, Qu N. m6A modification on the fate of colorectal cancer: functions and mechanisms of cell proliferation and tumorigenesis. Front Oncol 2023; 13:1162300. [PMID: 37152066 PMCID: PMC10162644 DOI: 10.3389/fonc.2023.1162300] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/30/2023] [Indexed: 05/09/2023] Open
Abstract
N6-methyladenosine (m6A) is the most pervasive RNA modification in eukaryotic cells. The dynamic and reversible m6A modification of RNA plays a critical role in the occurrence and progression of tumors by regulating RNA metabolism, including translocation, mRNA stability or decay, pre-mRNA splicing, and lncRNA processing. Numerous studies have shown that m6A modification is involved in the development of various cancers. This review aims to summarize the significant role of m6A modification in the proliferation and tumorigenesis of CRC, as well as the potential of modulating m6A modification for tumor treatment. These findings may offer new therapeutic strategies for clinical implementation of m6A modification in CRC in the near future.
Collapse
Affiliation(s)
- Xiaohan Jiang
- Department of Pathology, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Ziyao Jin
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuzhong Yang
- Department of Pathology, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Xiang Zheng
- Department of Pathology, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Shaohua Chen
- Department of Breast and Thyroid Surgery, Liuzhou People’s Hospital Affiliated to Guangxi Medical University, Liuzhou, China
| | - Shuaijie Wang
- Department of Pathology, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Xuemei Zhang
- Department of Pathology, Liuzhou People’s Hospital Affiliated to Guangxi Medical University, Liuzhou, China
- *Correspondence: Xuemei Zhang, ; Nanfang Qu,
| | - Nanfang Qu
- Department of Gastroenterology, Affiliated Hospital of Guilin Medical University, Guilin, China
- *Correspondence: Xuemei Zhang, ; Nanfang Qu,
| |
Collapse
|