1
|
Shah SK, Bhandari K, Shah A, Chaurasiya G. COVID-19: vaccination, therapeutics and a review of the science and public health. Ann Med Surg (Lond) 2024; 86:5343-5353. [PMID: 39239001 PMCID: PMC11374161 DOI: 10.1097/ms9.0000000000002374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/06/2024] [Indexed: 09/07/2024] Open
Abstract
COVID-19, stemming from the SARS-CoV-2 virus, has initiated a worldwide respiratory pandemic. Remarkable headway has been made in the realm of vaccination, as nearly every nation has initiated COVID-19 vaccine deployment. However, a mere 32.6% of individuals in low-income countries have received only a single vaccine dose. Unprecedented research and development endeavors have yielded over 170 COVID-19 vaccines, several of which are now in practical use. These vaccines have demonstrated remarkable efficacy in averting severe illness, hospitalization, and fatalities from COVID-19, even against emerging variants. Research pursuits persist, concentrating on novel vaccine technologies, oral and nasal vaccines, broader coronavirus protection, and vaccine combinations. In the realm of therapeutics, there have been significant strides in developing oral antiviral medications and monoclonal antibodies. Nonetheless, challenges in COVID-19 vaccination persist, encompassing issues of hesitancy, accessibility, financial barriers, knowledge gaps, and logistical hindrances. Robust monitoring via global agencies and reporting systems remains pivotal. Strategies for enhancing vaccination efficacy are rooted in fostering trust, countering misinformation, and expanding access. As for therapeutics, the approach involves dedicated research, clinical trials, regulatory streamlining, stockpiling, and international collaboration. Telemedicine and public awareness campaigns play integral roles in this effort, with coordination being the linchpin for preserving lives and mitigating the disease's impact. The global campaign against COVID-19 has witnessed substantial advancements, with an ongoing research focus on developing vaccines and therapeutics that are not only more accessible and affordable but also more effective, particularly for populations in low-income countries and vulnerable communities.
Collapse
Affiliation(s)
| | | | - Avish Shah
- Kist Medical College and Teaching Hospital, Imadol, Lalitpur
- Everest Hospital, New Baneshwor, Kathmandu, Nepal
| | | |
Collapse
|
2
|
Wang C, Yuan F. A comprehensive comparison of DNA and RNA vaccines. Adv Drug Deliv Rev 2024; 210:115340. [PMID: 38810703 PMCID: PMC11181159 DOI: 10.1016/j.addr.2024.115340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/06/2024] [Accepted: 05/18/2024] [Indexed: 05/31/2024]
Abstract
Nucleic acid technology has revolutionized vaccine development, enabling rapid design and production of RNA and DNA vaccines for prevention and treatment of diseases. The successful deployment of mRNA and plasmid DNA vaccines against COVID-19 has further validated the technology. At present, mRNA platform is prevailing due to its higher efficacy, while DNA platform is undergoing rapid evolution because it possesses unique advantages that can potentially overcome the problems associated with the mRNA platform. To help understand the recent performances of the two vaccine platforms and recognize their clinical potentials in the future, this review compares the advantages and drawbacks of mRNA and DNA vaccines that are currently known in the literature, in terms of development timeline, financial cost, ease of distribution, efficacy, safety, and regulatory approval of products. Additionally, the review discusses the ongoing clinical trials, strategies for improvement, and alternative designs of RNA and DNA platforms for vaccination.
Collapse
Affiliation(s)
- Chunxi Wang
- Department of Biomedical Engineering, Duke University, Durham, NC 27705, United States
| | - Fan Yuan
- Department of Biomedical Engineering, Duke University, Durham, NC 27705, United States.
| |
Collapse
|
3
|
Gül A, Erkunt Alak S, Can H, Karakavuk M, Korukluoğlu G, Altaş AB, Gül C, Karakavuk T, Köseoğlu AE, Ülbeği Polat H, Yazıcı Malkoçoğlu H, Taş Ekiz A, Abacı İ, Aksoy Ö, Enül H, Adıay C, Uzar S, Saraç F, Ün C, Gürüz AY, Kantarcı AG, Akbaba H, Erel Akbaba G, Yılmaz H, Değirmenci Döşkaya A, Taşbakan M, Pullukçu H, Karasulu E, Tekin Ş, Döşkaya M. Immunogenicity and protection efficacy of a COVID-19 DNA vaccine encoding spike protein with D614G mutation and optimization of large-scale DNA vaccine production. Sci Rep 2024; 14:13865. [PMID: 38879684 PMCID: PMC11180131 DOI: 10.1038/s41598-024-64690-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 06/12/2024] [Indexed: 06/19/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 had devastating consequences for human health. Despite the introduction of several vaccines, COVID-19 continues to pose a serious health risk due to emerging variants of concern. DNA vaccines gained importance during the pandemic due to their advantages such as induction of both arms of immune response, rapid development, stability, and safety profiles. Here, we report the immunogenicity and protective efficacy of a DNA vaccine encoding spike protein with D614G mutation (named pcoSpikeD614G) and define a large-scale production process. According to the in vitro studies, pcoSpikeD614G expressed abundant spike protein in HEK293T cells. After the administration of pcoSpikeD614G to BALB/c mice through intramuscular (IM) route and intradermal route using an electroporation device (ID + EP), it induced high level of anti-S1 IgG and neutralizing antibodies (P < 0.0001), strong Th1-biased immune response as shown by IgG2a polarization (P < 0.01), increase in IFN-γ levels (P < 0.01), and increment in the ratio of IFN-γ secreting CD4+ (3.78-10.19%) and CD8+ (5.24-12.51%) T cells. Challenging K18-hACE2 transgenic mice showed that pcoSpikeD614G administered through IM and ID + EP routes conferred 90-100% protection and there was no sign of pneumonia. Subsequently, pcoSpikeD614G was evaluated as a promising DNA vaccine candidate and scale-up studies were performed. Accordingly, a large-scale production process was described, including a 36 h fermentation process of E. coli DH5α cells containing pcoSpikeD614G resulting in a wet cell weight of 242 g/L and a three-step chromatography for purification of the pcoSpikeD614G DNA vaccine.
Collapse
MESH Headings
- Vaccines, DNA/immunology
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/genetics
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/genetics
- Animals
- Humans
- SARS-CoV-2/immunology
- SARS-CoV-2/genetics
- Mice
- COVID-19/prevention & control
- COVID-19/immunology
- HEK293 Cells
- Mice, Inbred BALB C
- COVID-19 Vaccines/immunology
- COVID-19 Vaccines/administration & dosage
- Mutation
- Antibodies, Viral/immunology
- Antibodies, Viral/blood
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/blood
- Female
- Immunogenicity, Vaccine
- Immunoglobulin G/blood
- Immunoglobulin G/immunology
Collapse
Affiliation(s)
- Aytül Gül
- Vaccine Development Application and Research Center, Ege University, 35100, İzmir, Türkiye
- Department of Bioengineering, Faculty of Engineering, Ege University, İzmir, Türkiye
- Department of Bioengineering, Graduate School of Natural and Applied Sciences, Ege University, İzmir, Türkiye
| | - Sedef Erkunt Alak
- Vaccine Development Application and Research Center, Ege University, 35100, İzmir, Türkiye
- Department of Biology, Molecular Biology Section, Faculty of Science, Ege University, İzmir, Türkiye
| | - Hüseyin Can
- Vaccine Development Application and Research Center, Ege University, 35100, İzmir, Türkiye
- Department of Biology, Molecular Biology Section, Faculty of Science, Ege University, İzmir, Türkiye
- Department of Vaccine Studies, Institute of Health Sciences, Ege University, İzmir, Türkiye
| | - Muhammet Karakavuk
- Vaccine Development Application and Research Center, Ege University, 35100, İzmir, Türkiye
- Department of Vaccine Studies, Institute of Health Sciences, Ege University, İzmir, Türkiye
- Ödemiş Vocational School, Ege University, İzmir, Türkiye
| | - Gülay Korukluoğlu
- Republic of Türkiye, General Directorate of Public Health, Ministry of Health, National Virology Reference Central Laboratory, Ankara, Türkiye
- Department of Medical Microbiology, Ankara Bilkent City Hospital, University of Health Sciences, Ankara, Türkiye
| | - Ayşe Başak Altaş
- Republic of Türkiye, General Directorate of Public Health, Ministry of Health, National Virology Reference Central Laboratory, Ankara, Türkiye
| | - Ceren Gül
- Vaccine Development Application and Research Center, Ege University, 35100, İzmir, Türkiye
- Department of Biotechnology, Graduate School of Natural and Applied Sciences, Ege University, İzmir, Türkiye
| | - Tuğba Karakavuk
- Vaccine Development Application and Research Center, Ege University, 35100, İzmir, Türkiye
- Department of Biotechnology, Graduate School of Natural and Applied Sciences, Ege University, İzmir, Türkiye
| | - Ahmet Efe Köseoğlu
- Department of Biology, Molecular Biology Section, Faculty of Science, Ege University, İzmir, Türkiye
- Department of Environmental Microbiology and Biotechnology, Faculty of Chemistry, Duisburg-Essen University, Essen, Germany
| | - Hivda Ülbeği Polat
- TÜBİTAK Marmara Research Center, Vice Presidency of Life Sciences, Kocaeli, Türkiye
| | | | - Arzu Taş Ekiz
- TÜBİTAK Marmara Research Center, Vice Presidency of Life Sciences, Kocaeli, Türkiye
| | - İrem Abacı
- TÜBİTAK Marmara Research Center, Vice Presidency of Life Sciences, Kocaeli, Türkiye
| | - Özge Aksoy
- TÜBİTAK Marmara Research Center, Vice Presidency of Life Sciences, Kocaeli, Türkiye
| | - Hakan Enül
- Pendik Veterinary Control Institute, İstanbul, Türkiye
| | - Cumhur Adıay
- Pendik Veterinary Control Institute, İstanbul, Türkiye
| | - Serdar Uzar
- Pendik Veterinary Control Institute, İstanbul, Türkiye
| | - Fahriye Saraç
- Pendik Veterinary Control Institute, İstanbul, Türkiye
| | - Cemal Ün
- Vaccine Development Application and Research Center, Ege University, 35100, İzmir, Türkiye
- Department of Biology, Molecular Biology Section, Faculty of Science, Ege University, İzmir, Türkiye
- Department of Vaccine Studies, Institute of Health Sciences, Ege University, İzmir, Türkiye
| | - Adnan Yüksel Gürüz
- Vaccine Development Application and Research Center, Ege University, 35100, İzmir, Türkiye
- Department of Vaccine Studies, Institute of Health Sciences, Ege University, İzmir, Türkiye
- Department of Parasitology, Faculty of Medicine, Ege University, İzmir, Türkiye
| | - Ayşe Gülten Kantarcı
- Vaccine Development Application and Research Center, Ege University, 35100, İzmir, Türkiye
- Department of Vaccine Studies, Institute of Health Sciences, Ege University, İzmir, Türkiye
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Ege University, İzmir, Türkiye
| | - Hasan Akbaba
- Department of Vaccine Studies, Institute of Health Sciences, Ege University, İzmir, Türkiye
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Ege University, İzmir, Türkiye
| | - Gülşah Erel Akbaba
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, İzmir Katip Çelebi University, İzmir, Türkiye
| | - Habibe Yılmaz
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Trakya University, Edirne, Türkiye
| | - Aysu Değirmenci Döşkaya
- Vaccine Development Application and Research Center, Ege University, 35100, İzmir, Türkiye
- Department of Vaccine Studies, Institute of Health Sciences, Ege University, İzmir, Türkiye
- Department of Parasitology, Faculty of Medicine, Ege University, İzmir, Türkiye
| | - Meltem Taşbakan
- Department of Vaccine Studies, Institute of Health Sciences, Ege University, İzmir, Türkiye
- Department of Infectious Diseases, Faculty of Medicine, Ege University, İzmir, Türkiye
| | - Hüsnü Pullukçu
- Department of Vaccine Studies, Institute of Health Sciences, Ege University, İzmir, Türkiye
- Department of Infectious Diseases, Faculty of Medicine, Ege University, İzmir, Türkiye
| | - Ercüment Karasulu
- Ege University Research and Application Center of Drug Development and Pharmacokinetics, İzmir, Türkiye
| | - Şaban Tekin
- Department of Basic Medical Sciences, Medical Biology, Faculty of Medicine, University of Health Sciences, İstanbul, Türkiye
| | - Mert Döşkaya
- Vaccine Development Application and Research Center, Ege University, 35100, İzmir, Türkiye.
- Department of Vaccine Studies, Institute of Health Sciences, Ege University, İzmir, Türkiye.
- Department of Parasitology, Faculty of Medicine, Ege University, İzmir, Türkiye.
| |
Collapse
|
4
|
Pavlin M, Škorja Milić N, Kandušer M, Pirkmajer S. Importance of the electrophoresis and pulse energy for siRNA-mediated gene silencing by electroporation in differentiated primary human myotubes. Biomed Eng Online 2024; 23:47. [PMID: 38750477 PMCID: PMC11097476 DOI: 10.1186/s12938-024-01239-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 04/23/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Electrotransfection is based on application of high-voltage pulses that transiently increase membrane permeability, which enables delivery of DNA and RNA in vitro and in vivo. Its advantage in applications such as gene therapy and vaccination is that it does not use viral vectors. Skeletal muscles are among the most commonly used target tissues. While siRNA delivery into undifferentiated myoblasts is very efficient, electrotransfection of siRNA into differentiated myotubes presents a challenge. Our aim was to develop efficient protocol for electroporation-based siRNA delivery in cultured primary human myotubes and to identify crucial mechanisms and parameters that would enable faster optimization of electrotransfection in various cell lines. RESULTS We established optimal electroporation parameters for efficient siRNA delivery in cultured myotubes and achieved efficient knock-down of HIF-1α while preserving cells viability. The results show that electropermeabilization is a crucial step for siRNA electrotransfection in myotubes. Decrease in viability was observed for higher electric energy of the pulses, conversely lower pulse energy enabled higher electrotransfection silencing yield. Experimental data together with the theoretical analysis demonstrate that siRNA electrotransfer is a complex process where electropermeabilization, electrophoresis, siRNA translocation, and viability are all functions of pulsing parameters. However, despite this complexity, we demonstrated that pulse parameters for efficient delivery of small molecule such as PI, can be used as a starting point for optimization of electroporation parameters for siRNA delivery into cells in vitro if viability is preserved. CONCLUSIONS The optimized experimental protocol provides the basis for application of electrotransfer for silencing of various target genes in cultured human myotubes and more broadly for electrotransfection of various primary cell and cell lines. Together with the theoretical analysis our data offer new insights into mechanisms that underlie electroporation-based delivery of short RNA molecules, which can aid to faster optimisation of the pulse parameters in vitro and in vivo.
Collapse
Affiliation(s)
- Mojca Pavlin
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Vrazov Trg 2, 1000, Ljubljana, Slovenia.
- Group for Nano and Biotechnological Applications, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia.
| | - Nives Škorja Milić
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000, Ljubljana, Slovenia
- Institute of Anatomy, Faculty of Medicine, University of Ljubljana, Korytkova 2, Ljubljana, Slovenia
| | - Maša Kandušer
- Group for Nano and Biotechnological Applications, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
- Pharmacy Institute, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Sergej Pirkmajer
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000, Ljubljana, Slovenia.
| |
Collapse
|
5
|
Wang N, Wang T. Innovative translational platforms for rapid developing clinical vaccines against COVID-19 and other infectious disease. Biotechnol J 2024; 19:e2300658. [PMID: 38403469 DOI: 10.1002/biot.202300658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/18/2023] [Accepted: 12/28/2023] [Indexed: 02/27/2024]
Abstract
A vaccine is a biological preparation that contains the antigen capable of stimulating the immune system to form the defense against pathogens. Vaccine development often confronts big challenges, including time/energy-consuming, low efficacy, lag to pathogen emergence and mutation, and even safety concern. However, these seem now mostly conquerable through constructing the advanced translational platforms that can make innovative vaccines, sometimes, potentiated with a distinct multifunctional VADS (vaccine adjuvant delivery system), as evidenced by the development of various vaccines against the covid-19 pandemic at warp speed. Particularly, several covid-19 vaccines, such as the viral-vectored vaccines, mRNA vaccines and DNA vaccines, regarded as the innovative ones that are rapidly made via the high technology-based translational platforms. These products have manifested powerful efficacy while showing no unacceptable safety profile in clinics, allowing them to be approved for massive vaccination at also warp speed. Now, the proprietary translational platforms integrated with the state-of-the-art biotechnologies, and even the artificial intelligence (AI), represent an efficient mode for rapid making innovative clinical vaccines against infections, thus increasingly attracting interests of vaccine research and development. Herein, the advanced translational platforms for making innovative vaccines, together with their design principles and immunostimulatory efficacies, are comprehensively elaborated.
Collapse
Affiliation(s)
- Ning Wang
- School of Food and Biological engineering, Hefei University of Technology, Hefei, Anhui Province, China
| | - Ting Wang
- School of Pharmacy, Anhui Medical University, Hefei, Anhui Province, China
| |
Collapse
|
6
|
Batista Napotnik T, Kos B, Jarm T, Miklavčič D, O'Connor RP, Rems L. Genetically engineered HEK cells as a valuable tool for studying electroporation in excitable cells. Sci Rep 2024; 14:720. [PMID: 38184741 PMCID: PMC10771480 DOI: 10.1038/s41598-023-51073-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/30/2023] [Indexed: 01/08/2024] Open
Abstract
Electric pulses used in electroporation-based treatments have been shown to affect the excitability of muscle and neuronal cells. However, understanding the interplay between electroporation and electrophysiological response of excitable cells is complex, since both ion channel gating and electroporation depend on dynamic changes in the transmembrane voltage (TMV). In this study, a genetically engineered human embryonic kidney cells expressing NaV1.5 and Kir2.1, a minimal complementary channels required for excitability (named S-HEK), was characterized as a simple cell model used for studying the effects of electroporation in excitable cells. S-HEK cells and their non-excitable counterparts (NS-HEK) were exposed to 100 µs pulses of increasing electric field strength. Changes in TMV, plasma membrane permeability, and intracellular Ca2+ were monitored with fluorescence microscopy. We found that a very mild electroporation, undetectable with the classical propidium assay but associated with a transient increase in intracellular Ca2+, can already have a profound effect on excitability close to the electrostimulation threshold, as corroborated by multiscale computational modelling. These results are of great relevance for understanding the effects of pulse delivery on cell excitability observed in context of the rapidly developing cardiac pulsed field ablation as well as other electroporation-based treatments in excitable tissues.
Collapse
Affiliation(s)
- Tina Batista Napotnik
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška Cesta 25, 1000, Ljubljana, Slovenia
| | - Bor Kos
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška Cesta 25, 1000, Ljubljana, Slovenia
| | - Tomaž Jarm
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška Cesta 25, 1000, Ljubljana, Slovenia
| | - Damijan Miklavčič
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška Cesta 25, 1000, Ljubljana, Slovenia
| | - Rodney P O'Connor
- École des Mines de Saint-Étienne, Department of Bioelectronics, Georges Charpak Campus, Centre Microélectronique de Provence, 880 Route de Mimet, 13120, Gardanne, France
| | - Lea Rems
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška Cesta 25, 1000, Ljubljana, Slovenia.
| |
Collapse
|
7
|
Nakagami H, Matsumoto T, Takazawa K, Sekino H, Matsuoka O, Inoue S, Furuie H, Morishita R. Long Term Follow-Up Study of a Randomized, Open-Label, Uncontrolled, Phase I/II Study to Assess the Safety and Immunogenicity of Intramuscular and Intradermal Doses of COVID-19 DNA Vaccine (AG0302-COVID19). Vaccines (Basel) 2023; 11:1535. [PMID: 37896939 PMCID: PMC10611071 DOI: 10.3390/vaccines11101535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Pharmacological studies have demonstrated antibody production and infection prevention with an intradermal coronavirus disease 2019 (COVID-19) DNA vaccine (AG0302-COVID-19). This clinical trial aimed to investigate the safety and immunogenicity of high doses of AG0302-COVID19 when injected intramuscularly and intradermally. Healthy adults were randomly divided into three intramuscular vaccination groups (2 mg, three times at 2-week intervals; 4 mg, twice at 4-week intervals; and 8 mg, twice at 4-week intervals) and two intradermal groups (1 mg, three times at 2-week intervals or twice at 4-week intervals). After a one-year follow-up, no serious adverse events were related to AG0302-COVID-19. At Week 52, the changes in the geometric mean titer (GMT) ratios of the anti-S antibodies were 2.5, 2.4, and 3.2 in the 2, 4, and 8 mg intramuscular groups, respectively, and 3.2 and 5.1 in the three times and twice injected intradermal groups, respectively. The number of INF-γ-producing cells responsive to S protein increased after the first dose and was sustained for several months. AG0302-COVID-19 showed an acceptable safety profile, but the induction of a humoral immune response was insufficient to justify progressing to a Phase 3 program.
Collapse
Affiliation(s)
- Hironori Nakagami
- Department of Health Development and Medicine, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita 565-0871, Japan
| | - Tetsuya Matsumoto
- Department of Infectious Diseases, Graduate School of Medicine, International University of Health and Welfare, Narita Hospital, 852 Hatakeda Narita, Chiba 286-0124, Japan;
| | - Kenji Takazawa
- Medical Corporation Shinanokai Shinanozaka Clinic, 20 Samon-cho, Shinjuku-ku, Tokyo 160-0017, Japan
| | - Hisakuni Sekino
- Sekino Clinical Pharmacology Clinic, 3-28-3 Ikebukuro, Toshima-Ku, Tokyo 171-0014, Japan
| | - Osamu Matsuoka
- Medical Corporation Heishinkai ToCROM Clinic, 4-9, Yotsuyasanei-cho, Shinjuku-ku, Tokyo 160-0008, Japan
| | - Satoshi Inoue
- Medical Corporation Heishinkai OCROM Clinic, 4-12-11, Kasuga, Suita 565-0853, Japan;
| | - Hidetoshi Furuie
- Osaka Pharmacology Clinical Research Hospital, 4-1-29, Miyahara, Yodogawa-ku, Osaka 532-0003, Japan;
| | - Ryuichi Morishita
- Department of Clinical Gene Therapy, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita 565-0871, Japan;
| |
Collapse
|
8
|
Wen Z, Yuan Y, Zhao Y, Wang H, Han Z, Li M, Yuan J, Sun C. Enhancement of SARS-CoV-2 N Antigen-Specific T Cell Functionality by Modulating the Autophagy-Mediated Signal Pathway in Mice. Viruses 2023; 15:1316. [PMID: 37376617 DOI: 10.3390/v15061316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/28/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
The frequent SARS-CoV-2 variants have caused a continual challenge, weakening the effectiveness of current vaccines, and thus it is of great importance to induce robust and conserved T cellular immunity for developing the next-generation vaccine against SARS-CoV-2 variants. In this study, we proposed a conception of enhancing the SARS-CoV-2 specific T cell functionality by fusing autophagosome-associated LC3b protein to the nucleocapsid (N) (N-LC3b). When compared to N protein alone, the N-LC3b protein was more effectively targeted to the autophagosome/lysosome/MHC II compartment signal pathway and thus elicited stronger CD4+ and CD8+ T cell immune responses in mice. Importantly, the frequency of N-specific polyfunctional CD4+ and CD8+ T cells, which can simultaneously secrete multiple cytokines (IFN-γ+/IL-2+/TNF-α+), in the N-LC3b group was significantly higher than that in the N alone group. Moreover, there was a significantly improved T cell proliferation, especially for CD8+ T cells in the N-LC3b group. In addition, the N-LC3b also induced a robust humoral immune response, characterized by the Th1-biased IgG2a subclass antibodies against the SARS-CoV-2 N protein. Overall, these findings demonstrated that our strategy could effectively induce a potential SARS-CoV-2 specific T cellular immunity with enhanced magnitude, polyfunctionality, and proliferation, and thus provided insights to develop a promising strategy for the design of a novel universal vaccine against SARS-CoV-2 variants and other emerging infectious diseases.
Collapse
Affiliation(s)
- Ziyu Wen
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Yue Yuan
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Yangguo Zhao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Haohang Wang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Zirong Han
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Minchao Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Jianhui Yuan
- Nanshan District Center for Disease Control and Prevention, Shenzhen 518000, China
| | - Caijun Sun
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou 510080, China
| |
Collapse
|
9
|
Maslow JN, Kwon I, Kudchodkar SB, Kane D, Tadesse A, Lee H, Park YK, Muthumani K, Roberts CC. DNA Vaccines for Epidemic Preparedness: SARS-CoV-2 and Beyond. Vaccines (Basel) 2023; 11:1016. [PMID: 37376404 DOI: 10.3390/vaccines11061016] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/10/2023] [Accepted: 05/17/2023] [Indexed: 06/29/2023] Open
Abstract
We highlight the significant progress in developing DNA vaccines during the SARS-CoV-2 pandemic. Specifically, we provide a comprehensive review of the DNA vaccines that have progressed to Phase 2 testing or beyond, including those that have received authorization for use. DNA vaccines have significant advantages with regard to the rapidity of production, thermostability, safety profile, and cellular immune responses. Based on user needs and cost, we compare the three devices used in the SARS-CoV-2 clinical trials. Of the three devices, the GeneDerm suction device offers numerous benefits, particularly for international vaccination campaigns. As such, DNA vaccines represent a promising option for future pandemics.
Collapse
Affiliation(s)
- Joel N Maslow
- GeneOne Life Science, Inc., Seoul 04500, Republic of Korea
- Department of Medicine, Morristown Medical Center, Morristown, NJ 07960, USA
| | - Ijoo Kwon
- GeneOne Life Science, Inc., Seoul 04500, Republic of Korea
| | | | - Deborah Kane
- GeneOne Life Science, Inc., Seoul 04500, Republic of Korea
| | - Amha Tadesse
- GeneOne Life Science, Inc., Seoul 04500, Republic of Korea
| | - Hyojin Lee
- GeneOne Life Science, Inc., Seoul 04500, Republic of Korea
| | - Young K Park
- GeneOne Life Science, Inc., Seoul 04500, Republic of Korea
| | - Kar Muthumani
- GeneOne Life Science, Inc., Seoul 04500, Republic of Korea
| | | |
Collapse
|
10
|
D'Alessio F, Lione L, Salvatori E, Bucci F, Muzi A, Roscilli G, Compagnone M, Pinto E, Battistuzzi G, Conforti A, Aurisicchio L, Palombo F. Immunogenicity of COVID-eVax Delivered by Electroporation Is Moderately Impacted by Temperature and Molecular Isoforms. Vaccines (Basel) 2023; 11:vaccines11030678. [PMID: 36992261 DOI: 10.3390/vaccines11030678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/19/2023] Open
Abstract
DNA integrity is a key issue in gene therapy and genetic vaccine approaches based on plasmid DNA. In contrast to messenger RNA that requires a controlled cold chain for efficacy, DNA molecules are considered to be more stable. In this study, we challenged this concept by characterizing the immunological response induced by a plasmid DNA vaccine delivered using electroporation. As a model, we used COVID-eVax, a plasmid DNA-based vaccine that targets the receptor binding domain (RBD) of the SARS-CoV-2 spike protein. Increased nicked DNA was produced by using either an accelerated stability protocol or a lyophilization protocol. Surprisingly, the immune response induced in vivo was only minimally affected by the percentage of open circular DNA. This result suggests that plasmid DNA vaccines, such as COVID-eVax that have recently completed a phase I clinical trial, retain their efficacy upon storage at higher temperatures, and this feature may facilitate their use in low-/middle-income countries.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Luigi Aurisicchio
- Takis, 00128 Rome, Italy
- Neomatrix, 00128 Rome, Italy
- Evvivax, 00128 Rome, Italy
| | - Fabio Palombo
- Takis, 00128 Rome, Italy
- Neomatrix, 00128 Rome, Italy
| |
Collapse
|