1
|
Armstrong D, Dregan A, Ashworth M, White P. Risk of fibromyalgia following antibiotic prescriptions: A population-based case-control study. Eur J Pain 2024; 28:1008-1017. [PMID: 38260960 DOI: 10.1002/ejp.2239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/21/2023] [Accepted: 01/06/2024] [Indexed: 01/24/2024]
Abstract
BACKGROUND The health of the gut microbiome is now recognized to be an important component of the gut-brain axis which itself appears to be implicated in pain perception. Antibiotics are known to create dysbiosis in the microbiome, so whether fibromyalgia is more commonly diagnosed after antibiotic prescriptions provides a means of exploring the role of the microbiome in the experience of chronic pain. METHODS A case-control study was carried out using electronic health records collected in the UK's Clinical Practice Research Datalink (CPRD), a comprehensive database of primary care consultations. For each case of diagnosed fibromyalgia, three controls were identified and matched by age, gender and GP practice. The exposure variable was the number and timing of antibiotic prescriptions over previous years. The analysis involved adjusting for a wide range of co-variates that might be possible confounders. RESULTS A total of 44,674 cases of fibromyalgia were identified together with 133,513 controls. After adjusting for co-variates, it was found that both the total number of prescriptions and their timing was associated with an FM diagnosis. For example, the quartile with the highest number of prescriptions and that with the longest exposure had a greater than three-fold increase in FM diagnoses (number of prescriptions: odds ratio 3.92; 95% CIs: 3.71-4.13; exposure odds ratio 3.28; CIs: 3.13-3.43). Some antibiotics (such as tetracyclines and metronidazole) seemed to confer greater risk than others. CONCLUSIONS The results lend support for prior antibiotics being an important risk factor for a diagnosis of FM. SIGNIFICANCE This study shows an association between the volume as well as timing of prior antibiotic prescriptions and of a subsequent diagnosis of fibromyalgia in primary care.
Collapse
Affiliation(s)
- David Armstrong
- Department of Population Health Sciences, King's College London, London, UK
| | - Alex Dregan
- Department of Psychological Medicine, Institute of Psychiatry, Psychological, and Neurosciences, King's College London, London, UK
| | - Mark Ashworth
- Department of Population Health Sciences, King's College London, London, UK
| | - Patrick White
- Department of Population Health Sciences, King's College London, London, UK
| |
Collapse
|
2
|
Reynders A, Anissa Jhumka Z, Gaillard S, Mantilleri A, Malapert P, Magalon K, Etzerodt A, Salio C, Ugolini S, Castets F, Saurin AJ, Serino M, Hoeffel G, Moqrich A. Gut microbiota promotes pain chronicity in Myosin1A deficient male mice. Brain Behav Immun 2024; 119:750-766. [PMID: 38710336 DOI: 10.1016/j.bbi.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 04/23/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024] Open
Abstract
Chronic pain is a heavily debilitating condition and a huge socio-economic burden, with no efficient treatment. Over the past decade, the gut microbiota has emerged as an important regulator of nervous system's health and disease states. Yet, its contribution to the pathogenesis of chronic somatic pain remains poorly documented. Here, we report that male but not female mice lacking Myosin1a (KO) raised under single genotype housing conditions (KO-SGH) are predisposed to develop chronic pain in response to a peripheral tissue injury. We further underscore the potential of MYO1A loss-of-function to alter the composition of the gut microbiota and uncover a functional connection between the vulnerability to chronic pain and the dysbiotic gut microbiota of KO-SGH males. As such, parental antibiotic treatment modifies gut microbiota composition and completely rescues the injury-induced pain chronicity in male KO-SGH offspring. Furthermore, in KO-SGH males, this dysbiosis is accompanied by a transcriptomic activation signature in the dorsal root ganglia (DRG) macrophage compartment, in response to tissue injury. We identify CD206+CD163- and CD206+CD163+ as the main subsets of DRG resident macrophages and show that both are long-lived and self-maintained and exhibit the capacity to monitor the vasculature. Consistently, in vivo depletion of DRG macrophages rescues KO-SGH males from injury-induced chronic pain underscoring a deleterious role for DRG macrophages in a Myo1a-loss-of function context. Together, our findings reveal gene-sex-microbiota interactions in determining the predisposition to injury-induced chronic pain and point-out DRG macrophages as potential effector cells.
Collapse
Affiliation(s)
- Ana Reynders
- Aix-Marseille-Université, CNRS, Institut de Biologie du Développement de Marseille, Marseille, France.
| | - Z Anissa Jhumka
- Aix-Marseille-Université, CNRS, Institut de Biologie du Développement de Marseille, Marseille, France
| | | | - Annabelle Mantilleri
- Aix-Marseille-Université, CNRS, Institut de Biologie du Développement de Marseille, Marseille, France
| | - Pascale Malapert
- Aix-Marseille-Université, CNRS, Institut de Biologie du Développement de Marseille, Marseille, France
| | - Karine Magalon
- Aix-Marseille-Université, CNRS, Institut de Biologie du Développement de Marseille, Marseille, France
| | - Anders Etzerodt
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Chiara Salio
- Department of Veterinary Sciences, University of Turin, Grugliasco, TO, Italy
| | - Sophie Ugolini
- Aix-Marseille-Université, CNRS, INSER, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Francis Castets
- Aix-Marseille-Université, CNRS, Institut de Biologie du Développement de Marseille, Marseille, France
| | - Andrew J Saurin
- Aix-Marseille-Université, CNRS, Institut de Biologie du Développement de Marseille, Marseille, France
| | - Matteo Serino
- Institut de Recherche en Santé Digestive, Université de Toulouse-Paul Sabatier, INSERM, INRAe, ENVT, UPS, Toulouse, France
| | - Guillaume Hoeffel
- Aix-Marseille-Université, CNRS, INSER, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Aziz Moqrich
- Aix-Marseille-Université, CNRS, Institut de Biologie du Développement de Marseille, Marseille, France.
| |
Collapse
|
3
|
Crock LW, Rodgers R, Huck NA, Schriefer LA, Lawrence D, Wang L, Muwanga GP, Tawfik VL, Baldridge MT. Chronic pain and complex regional pain syndrome are associated with alterations to the intestinal microbiota in both humans and mice. An observational cross-sectional study. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2024; 16:100173. [PMID: 39670171 PMCID: PMC11636187 DOI: 10.1016/j.ynpai.2024.100173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/28/2024] [Accepted: 11/10/2024] [Indexed: 12/14/2024]
Abstract
Objective This study aimed to evaluate pain metrics and gut microbiota differences from human subjects with complex regional pain syndrome (CRPS) compared to cohabitants (HHC) and non-cohabitating (biobank) controls. In addition, we aimed evaluate longitudinal changes of gut microbiota using a mouse model of acute and chronic CRPS. Methods In an observational, cross-sectional study, 25 patients with CRPS and 24 household controls (HHC) were recruited, completed pain questionnaires, and submitted stool samples. 23 biobank stool samples were matched to the CRPS group. Additionally, longitudinal stool samples were collected from a mouse model of acute and chronic CRPS. 16S rRNA gene sequencing analysis was performed on all samples. Results A diagnosis of CRPS is associated with higher pain, increased pain interference, and decreased physical and social function when compared to HHC. Interestingly, 46% of HHC reported significant daily pain. In the households where HHC were also suffering from pain, there was decreased bacterial richness and diversity when compared to households wherein only the participant with CRPS suffered from pain. Furthermore, when comparing households where the HHC had significant pain, CRPS was clinically more severe. In the mouse model of CRPS, we observed decreased bacterial richness and diversity when compared to non-cohabitating littermate controls. Conclusions Both humans living in chronic pain households and mice shared distinct taxa over the time course of disease and pain chronicity. These findings suggest that microbiota changes seen in CRPS as well as in a mouse model of CRPS may reflect pain chronicity and may indicate that pain alone can contribute to microbiota dysbiosis. The trial was registered at ClinicalTrials.gov (NCT03612193).
Collapse
Affiliation(s)
- Lara W. Crock
- Department of Anesthesiology and Pain Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Rachel Rodgers
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Nolan A. Huck
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, USA
| | - Lawrence A. Schriefer
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Dylan Lawrence
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Leran Wang
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Gabriella P.B. Muwanga
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, USA
| | - Vivianne L. Tawfik
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, USA
| | - Megan T. Baldridge
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
4
|
Masaud K, Collins JM, Rubio RC, Corrigan M, Cotter PD, O'Brien N, Bluett R, Jimenez CK, O'Mahony SM, Shorten GD. The gut microbiota in persistent post-operative pain following breast cancer surgery. Sci Rep 2024; 14:12401. [PMID: 38811609 PMCID: PMC11137075 DOI: 10.1038/s41598-024-62397-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/16/2024] [Indexed: 05/31/2024] Open
Abstract
Persistent post-surgical pain (PPSP) is defined as pain which continues after a surgical operation in a significant form for at least three months (and is not related to pre-existing painful conditions). PPSP is a common, under-recognised, and important clinical problem which affects millions of patients worldwide. Preventative measures which are currently available include the selection of a minimally invasive surgical technique and an aggressive multimodal perioperative analgesic regimen. More recently, a role for the gut microbiota in pain modulation has become increasingly apparent. This study aims to investigate any relationship between the gut microbiota and PPSP. A prospective observational study of 68 female adult patients undergoing surgery for management of breast cancer was carried out. Stool samples from 45 of these patients were obtained to analyse the composition of the gut microbiota. Measures of pain and state-trait anxiety were also taken to investigate further dimensions in any relationship between the gut microbiota and PPSP. At 12 weeks postoperatively, 21 patients (51.2%) did not have any pain and 20 patients (48.8%) reported feeling pain that persisted at that time. Analysis of the gut microbiota revealed significantly lower alpha diversity (using three measures) in those patients reporting severe pain at the 60 min post-operative and the 12 weeks post-operative timepoints. A cluster of taxa represented by Bifidobacterium longum, and Faecalibacterium prausnitzii was closely associated with those individuals reporting no pain at 12 weeks postoperatively, while Megamonas hypermegale, Bacteroides pectinophilus, Ruminococcus bromii, and Roseburia hominis clustered relatively closely in the group of patients fulfilling the criteria for persistent post-operative pain. We report for the first time specific associations between the gut microbiota composition and the presence or absence of PPSP. This may provide further insights into mechanisms behind the role of the gut microbiota in the development of PPSP and could inform future treatment strategies.
Collapse
Affiliation(s)
- Khaled Masaud
- Department of Anaesthesia and Intensive Care Medicine, Cork University Hospital and University College Cork, Cork, Ireland
| | - James M Collins
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Raul Cabrera Rubio
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Valencia, Spain
| | - Mark Corrigan
- Cork Breast Research Centre, University College Cork, Cork, Ireland
| | - Paul D Cotter
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Niall O'Brien
- Department of Anaesthesia and Intensive Care Medicine, Cork University Hospital and University College Cork, Cork, Ireland
| | - Ronan Bluett
- Department of Anaesthesia and Intensive Care Medicine, Cork University Hospital and University College Cork, Cork, Ireland
| | - Clare Keaveney Jimenez
- Department of Anaesthesia and Intensive Care Medicine, Cork University Hospital and University College Cork, Cork, Ireland
| | - Siobhain M O'Mahony
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - George D Shorten
- Department of Anaesthesia and Intensive Care Medicine, Cork University Hospital and University College Cork, Cork, Ireland.
| |
Collapse
|
5
|
Tiwari N, Qiao LY. Sex Differences in Visceral Pain and Comorbidities: Clinical Outcomes, Preclinical Models, and Cellular and Molecular Mechanisms. Cells 2024; 13:834. [PMID: 38786056 PMCID: PMC11119472 DOI: 10.3390/cells13100834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
Sexual dimorphism of visceral pain has been documented in clinics and experimental animal models. Aside from hormones, emerging evidence suggests the sex-differential intrinsic neural regulation of pain generation and maintenance. According to the International Association for the Study of Pain (IASP) and the American College of Gastroenterology (ACG), up to 25% of the population have visceral pain at any one time, and in the United States 10-15 percent of adults suffer from irritable bowel syndrome (IBS). Here we examine the preclinical and clinical evidence of sex differences in visceral pain focusing on IBS, other forms of bowel dysfunction and IBS-associated comorbidities. We summarize preclinical animal models that provide a means to investigate the underlying molecular mechanisms in the sexual dimorphism of visceral pain. Neurons and nonneuronal cells (glia and immune cells) in the peripheral and central nervous systems, and the communication of gut microbiota and neural systems all contribute to sex-dependent nociception and nociplasticity in visceral painful signal processing. Emotion is another factor in pain perception and appears to have sexual dimorphism.
Collapse
Affiliation(s)
- Namrata Tiwari
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Liya Y. Qiao
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| |
Collapse
|
6
|
Fyntanidou B, Amaniti A, Soulioti E, Zagalioti SC, Gkarmiri S, Chorti A, Loukipoudi L, Ioannidis A, Dalakakis I, Menni AE, Shrewsbury AD, Kotzampassi K. Probiotics in Postoperative Pain Management. J Pers Med 2023; 13:1645. [PMID: 38138872 PMCID: PMC10745134 DOI: 10.3390/jpm13121645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Postoperative pain is the unpleasant sensory and emotional experience after surgery, its origin being both the inflammatory reaction induced by the surgical trauma on the abdominal wall and the splanchnic pain induced by the activation of nociceptors of the viscera, which are highly sensitive to distension, ischemia, and inflammation. Nowadays, it is well recognized that there is a close relationship between the gut microbiome and pain perception, and that microbiome is highly affected by both anesthesia and surgical manipulation. Thus, efforts to restore the disturbed microbiome via supplementation with beneficial bacteria, namely probiotics, seem to be effective. In this article, the knowledge gained mainly from experimental research on this topic is analyzed, the concluding message being that each probiotic strain works in its own way towards pain relief.
Collapse
Affiliation(s)
- Barbara Fyntanidou
- Department of Emergency Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (B.F.); (S.-C.Z.); (S.G.)
| | - Aikaterini Amaniti
- Department of Anesthesia & Intensive Care, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (A.A.); (L.L.); (I.D.)
| | - Eleftheria Soulioti
- Second Department of Anesthesiology, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece;
| | - Sofia-Chrysovalantou Zagalioti
- Department of Emergency Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (B.F.); (S.-C.Z.); (S.G.)
| | - Sofia Gkarmiri
- Department of Emergency Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (B.F.); (S.-C.Z.); (S.G.)
| | - Angeliki Chorti
- Department of Surgery, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (A.C.); (A.I.); (A.-E.M.); (A.D.S.)
| | - Lamprini Loukipoudi
- Department of Anesthesia & Intensive Care, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (A.A.); (L.L.); (I.D.)
| | - Aris Ioannidis
- Department of Surgery, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (A.C.); (A.I.); (A.-E.M.); (A.D.S.)
| | - Ioannis Dalakakis
- Department of Anesthesia & Intensive Care, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (A.A.); (L.L.); (I.D.)
| | - Alexandra-Eleftheria Menni
- Department of Surgery, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (A.C.); (A.I.); (A.-E.M.); (A.D.S.)
| | - Anne D. Shrewsbury
- Department of Surgery, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (A.C.); (A.I.); (A.-E.M.); (A.D.S.)
| | - Katerina Kotzampassi
- Department of Surgery, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (A.C.); (A.I.); (A.-E.M.); (A.D.S.)
| |
Collapse
|
7
|
Caputi V, Bastiaanssen TFS, Peterson V, Sajjad J, Murphy A, Stanton C, McNamara B, Shorten GD, Cryan JF, O'Mahony SM. Sex, pain, and the microbiome: The relationship between baseline gut microbiota composition, gender and somatic pain in healthy individuals. Brain Behav Immun 2022; 104:191-204. [PMID: 35688340 DOI: 10.1016/j.bbi.2022.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/19/2022] [Accepted: 06/05/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND AND AIM Relative to men, women present with pain conditions more commonly. Although consistent differences exist between men and women in terms of physiological pain sensitivity, the underlying mechanisms are incompletely understood and yet could inform the development of effective sex specific treatments for pain. The gut microbiota can modulate nervous system functioning, including pain signaling pathways. We hypothesized that the gut microbiota and critical components of the gut-brain axis might influence electrical pain thresholds. Further, we hypothesized that sex, menstrual cycle, and hormonal contraceptive use might account for inter-sex differences in pain perception. METHODS Healthy, non-obese males (N = 15) and females (N = 16), (nine of whom were using hormonal contraceptives), were recruited. Male subjects were invited to undergo testing once, whereas females were invited three times across the menstrual cycle, based on self-reported early follicular (EF), late follicular (LF), or mid-luteal (ML) phase. On test days, electrical stimulation on the right ankle was performed; salivary cortisol levels were measured in the morning; levels of lipopolysaccharide-binding protein (LBP), soluble CD14 (sCD14), pro-inflammatory cytokines were assessed in plasma, and microbiota composition and short-chain fatty acids (SCFAs) levels were determined in fecal samples. RESULTS We observed that the pain tolerance threshold/pain sensation threshold (PTT/PST) ratio was significantly lesser in women than men, but not PST or PTT alone. Further, hormonal contraceptive use was associated with increased LBP levels (LF & ML phase), whilst sCD14 levels or inflammatory cytokines were not affected. Interestingly, in women, hormonal contraceptive use was associated with an increase in the relative abundance of Erysipelatoclostridium, and the relative abundances of certain bacterial genera correlated positively with pain sensation thresholds (Prevotella and Megasphera) during the LF phase and cortisol awakening response (Anaerofustis) during the ML phase. In comparison with men, women displayed overall stronger associations between i) SCFAs data, ii) cortisol data, iii) inflammatory cytokines and PTT and PST. DISCUSSION AND CONCLUSION Our findings support the hypothesis that the gut microbiota may be one of the factors determining the physiological inter-sex differences in pain perception. Further research is needed to investigate the molecular mechanisms by which specific sex hormones and gut microbes modulate pain signaling pathways, but this study highlights the possibilities for innovative individual targeted therapies for pain management.
Collapse
Affiliation(s)
- Valentina Caputi
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Thomaz F S Bastiaanssen
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | | | - Jahangir Sajjad
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Amy Murphy
- Teagasc Food Research Centre, Moorepark, Co. Cork, Ireland
| | | | - Brian McNamara
- Department of Clinical Neurophysiology, Cork University Hospital, Co. Cork, Ireland
| | - George D Shorten
- Department of Anaesthesia and Intensive Care Medicine, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Siobhain M O'Mahony
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| |
Collapse
|
8
|
Abstract
The gut microbiome plays critical roles in human health and disease. Recent studies suggest it may also be associated with chronic pain and postoperative pain outcomes. In animal models, the composition of the gut microbiome changes after general anesthesia and affects the host response to medications, including anesthetics and opioids. In humans, the gut microbiome is associated with the development of postoperative pain and neurocognitive disorders. Additionally, the composition of the gut microbiome has been associated with pain conditions including visceral pain, nociplastic pain, complex regional pain syndrome, and headaches, partly through altered concentration of circulating bacterial-derived metabolites. Furthermore, animal studies demonstrate the critical role of the gut microbiome in neuropathic pain via immunomodulatory mechanisms. This article reviews basic concepts of the human gut microbiome and its interactions with the host and provide a comprehensive overview of the evidence linking the gut microbiome to anesthesiology, critical care, and pain medicine.
Collapse
|