1
|
Lazarou E, Exarchos TP. Predicting stress levels using physiological data: Real-time stress prediction models utilizing wearable devices. AIMS Neurosci 2024; 11:76-102. [PMID: 38988886 PMCID: PMC11230864 DOI: 10.3934/neuroscience.2024006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/22/2024] [Accepted: 04/08/2024] [Indexed: 07/12/2024] Open
Abstract
Stress has emerged as a prominent and multifaceted health concern in contemporary society, manifesting detrimental effects on individuals' physical and mental health and well-being. The ability to accurately predict stress levels in real time holds significant promise for facilitating timely interventions and personalized stress management strategies. The increasing incidence of stress-related physical and mental health issues highlights the importance of thoroughly understanding stress prediction mechanisms. Given that stress is a contributing factor to a wide array of mental and physical health problems, objectively assessing stress is crucial for behavioral and physiological studies. While numerous studies have assessed stress levels in controlled environments, the objective evaluation of stress in everyday settings still needs to be explored, primarily due to contextual factors and limitations in self-report adherence. This short review explored the emerging field of real-time stress prediction, focusing on utilizing physiological data collected by wearable devices. Stress was examined from a comprehensive standpoint, acknowledging its effects on both physical and mental well-being. The review synthesized existing research on the development and application of stress prediction models, underscoring advancements, challenges, and future directions in this rapidly evolving domain. Emphasis was placed on examining and critically evaluating the existing research and literature on stress prediction, physiological data analysis, and wearable devices for stress monitoring. The synthesis of findings aimed to contribute to a better understanding of the potential of wearable technology in objectively assessing and predicting stress levels in real time, thereby informing the design of effective interventions and personalized stress management approaches.
Collapse
Affiliation(s)
| | - Themis P. Exarchos
- Bioinformatics and Human Electrophysiology Laboratory, Dept of Informatics, Ionian University, GR49132, Corfu, Greece
| |
Collapse
|
2
|
Roos LG, Slavich GM. Wearable technologies for health research: Opportunities, limitations, and practical and conceptual considerations. Brain Behav Immun 2023; 113:444-452. [PMID: 37557962 PMCID: PMC11233111 DOI: 10.1016/j.bbi.2023.08.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/31/2023] [Accepted: 08/06/2023] [Indexed: 08/11/2023] Open
Abstract
One of the most notable limitations of laboratory-based health research is its inability to continuously monitor health-relevant physiological processes as individuals go about their daily lives. As a result, we have generated large amounts of data with unknown generalizability to real-world situations and also created a schism between where data are collected (i.e., in the lab) and where we need to intervene to prevent disease (i.e., in the field). Devices using noninvasive wearable technology are changing all of this, however, with their ability to provide high-frequency assessments of peoples' ever-changing physiological states in daily life in a manner that is relatively noninvasive, affordable, and scalable. Here, we discuss critical points that every researcher should keep in mind when using these wearables in research, spanning device and metric decisions, hardware and software selection, and data quality and sampling rate issues, using research on stress and health as an example throughout. We also address usability and participant acceptability issues, and how wearable "digital biomarker" and behavioral data can be integrated to enhance basic science and intervention studies. Finally, we summarize 10 key questions that should be addressed to make every wearable study as strong as possible. Collectively, keeping these points in mind can improve our ability to study the psychobiology of human health, and to intervene, precisely where it matters most: in peoples' daily lives.
Collapse
Affiliation(s)
- Lydia G Roos
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA.
| | - George M Slavich
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
3
|
Qin X, Liu XX, Wang Y, Wang D, Song Y, Zou JX, Pan HQ, Zhai XZ, Zhang YM, Zhang YB, Hu P, Zhang WH. Early life stress induces anxiety-like behavior during adulthood through dysregulation of neuronal plasticity in the basolateral amygdala. Life Sci 2021; 285:119959. [PMID: 34536496 DOI: 10.1016/j.lfs.2021.119959] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 02/07/2023]
Abstract
AIMS Early life stress (ELS) increases the risk of psychiatric diseases such as anxiety disorders and depression in later life. Hyperactivation of the basolateral amygdala (BLA) neurons plays a pivotal role in the pathogenesis of stress-related diseases. However, the functional roles of BLA neurons in ELS-induced anxiety disorders are not completely understood. MAIN METHODS Mice were subjected to maternal separation (MS) during postnatal days 3 to 21 to mimic ELS. Anxiety-like behavior was tested by open field test (OFT), elevated plus maze (EPM), and novelty suppressed feeding (NSF). Then, c-fos expression, a proxy for neuronal activity, was evaluated by immunofluorescence. Finally, synaptic transmission and intrinsic excitability were measured by whole-cell patch-clamp recordings. KEY FINDINGS MS significantly increased anxiety-like behavior in adulthood, as indicated by less time spent in the center area of the OFT, less time spent in and fewer entries to the open arms of the EPM, and increased latency to feed in NSF. Mechanistically, MS increased the expression of c-fos in BLA. MS enhanced the excitatory, but not inhibitory, synaptic transmission onto BLA projection neurons (PNs), which was caused by enhanced presynaptic glutamate release. Moreover, MS also markedly increased the intrinsic neuronal excitability of BLA PNs, probably due to the reduced medium afterhyperpolarization (mAHP) in BLA PNs. SIGNIFICANCE Our results suggest that the changes of neuronal activity and synaptic transmission in the BLA PNs may play a crucial role in ELS-induced anxiety-like behavior, and these findings provide new insights into the pathological mechanisms of stress-related anxiety disorders.
Collapse
Affiliation(s)
- Xia Qin
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Laboratory of Fear and Anxiety Disorders, Institute of Life Science, Nanchang University, Nanchang 330031, China
| | - Xiao-Xuan Liu
- Laboratory of Fear and Anxiety Disorders, Institute of Life Science, Nanchang University, Nanchang 330031, China; Neurology Department, the Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Yu Wang
- Laboratory of Fear and Anxiety Disorders, Institute of Life Science, Nanchang University, Nanchang 330031, China
| | - Dan Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Ying Song
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Jia-Xin Zou
- Laboratory of Fear and Anxiety Disorders, Institute of Life Science, Nanchang University, Nanchang 330031, China
| | - Han-Qing Pan
- Laboratory of Fear and Anxiety Disorders, Institute of Life Science, Nanchang University, Nanchang 330031, China
| | - Xiao-Zhou Zhai
- Laboratory of Fear and Anxiety Disorders, Institute of Life Science, Nanchang University, Nanchang 330031, China
| | - Yong-Mei Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yang-Bo Zhang
- Department of Neurology, the Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Ping Hu
- Institute of Translational Medicine, Nanchang University, Nanchang 330001, China.
| | - Wen-Hua Zhang
- Laboratory of Fear and Anxiety Disorders, Institute of Life Science, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
4
|
A Review of Biophysiological and Biochemical Indicators of Stress for Connected and Preventive Healthcare. Diagnostics (Basel) 2021; 11:diagnostics11030556. [PMID: 33808914 PMCID: PMC8003811 DOI: 10.3390/diagnostics11030556] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/14/2021] [Accepted: 03/17/2021] [Indexed: 12/05/2022] Open
Abstract
Stress is a known contributor to several life-threatening medical conditions and a risk factor for triggering acute cardiovascular events, as well as a root cause of several social problems. The burden of stress is increasing globally and, with that, is the interest in developing effective stress-monitoring solutions for preventive and connected health, particularly with the help of wearable sensing technologies. The recent development of miniaturized and flexible biosensors has enabled the development of connected wearable solutions to monitor stress and intervene in time to prevent the progression of stress-induced medical conditions. This paper presents a review of the literature on different physiological and chemical indicators of stress, which are commonly used for quantitative assessment of stress, and the associated sensing technologies.
Collapse
|
5
|
Qin X, He Y, Wang N, Zou JX, Zhang YM, Cao JL, Pan BX, Zhang WH. Moderate maternal separation mitigates the altered synaptic transmission and neuronal activation in amygdala by chronic stress in adult mice. Mol Brain 2019; 12:111. [PMID: 31849343 PMCID: PMC6918580 DOI: 10.1186/s13041-019-0534-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 12/11/2019] [Indexed: 12/22/2022] Open
Abstract
Exposure to moderate level of stress during the perinatal period helps the organisms to cope well with stressful events in their later life, an effect known as stress inoculation. Amygdala is one of the kernel brain regions mediating stress-coping in the brain. However, little is known about whether early life stress may affect amygdala to have its inoculative effect. Here, we observed that moderate maternal separation (MS) from postnatal day 3 to day 21 (D3–21, 1 h per day) significantly alleviated the increased anxiety-like behavior induced by chronic social defeat stress (CSDS) in adulthood, suggesting an obvious inoculative effect of moderate MS. Further studies revealed that MS prevented CSDS-evoked augmentation of glutamatergic transmission onto principal neurons (PNs) in the basolateral amygdala (BLA) by inhibiting presynaptic glutamate release. By contrast, it did not affect GABAergic transmission in BLA PNs, as indicated by unaltered frequency and amplitude of miniature inhibitory postsynaptic currents (mIPSCs). Moreover, the CSDS-induced increase of neuronal excitability was also mitigated by MS in BLA PNs. In conclusion, our results suggest that MS may have its inoculative effect through alleviating the influences of later life stress on the glutamatergic transmission and neuronal activity in amygdala neurons.
Collapse
Affiliation(s)
- Xia Qin
- College of Life Science, Nanchang University, Nanchang, 330031, China.,Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.,Laboratory of Fear and Anxiety Disorders, Institute of Life Science, Nanchang University, Nanchang, 330031, China
| | - Ye He
- College of Life Science, Nanchang University, Nanchang, 330031, China.,Department of Pharmacology, Nanchang University, Nanchang, 330031, China
| | - Na Wang
- Department of Physiology, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Jia-Xin Zou
- College of Life Science, Nanchang University, Nanchang, 330031, China.,Laboratory of Fear and Anxiety Disorders, Institute of Life Science, Nanchang University, Nanchang, 330031, China
| | - Yong-Mei Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Jun-Li Cao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Bing-Xing Pan
- College of Life Science, Nanchang University, Nanchang, 330031, China.,Laboratory of Fear and Anxiety Disorders, Institute of Life Science, Nanchang University, Nanchang, 330031, China
| | - Wen-Hua Zhang
- College of Life Science, Nanchang University, Nanchang, 330031, China. .,Laboratory of Fear and Anxiety Disorders, Institute of Life Science, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|