1
|
Chen Y, Chen X, Li X, Liu Y, Guo Y, Wang Z, Dong Z. Effects of bisphenol AF on growth, behavior, histology and gene expression in marine medaka (Oryzias melastigma). CHEMOSPHERE 2022; 308:136424. [PMID: 36116629 DOI: 10.1016/j.chemosphere.2022.136424] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
Bisphenol AF (BPAF) is one of the substitutes for bisphenol A (BPA), which has endocrine-disrupting, reproductive and neurological toxicity. BPAF has frequently been detected in the aquatic environment, which has been a long-term threat to the health of aquatic organisms. In this study, female marine medaka (Oryzias melastigma) were exposed to 6.7 μg/L, 73.4 μg/L, and 367.0 μg/L BPAF for 120 d. The effects of BPAF on behavior, growth, liver and ovarian histology, gene transcriptional profiles, and reproduction of marine medaka were determined. The results showed that with the increase of BPAF concentration, the swimming speed of female marine medaka showed an increasing trend and then decreasing trend. BPAF (367.0 μg/L) significantly increased body weight and condition factors in females. BPAF (73.4 μg/L and 367.0 μg/L) significantly delayed oocyte maturation. Exposure to 367.0 μg/L BPAF showed an increasing trend in the transcript levels of lipid synthesis and transport-related genes such as fatty acid synthase (fasn), sterol regulatory element binding protein (srebf), diacylglycerol acyltransferase (dgat), solute carrier family 27 member 4 (slc27a4), fatty acid-binding protein (fabp), and peroxisome proliferator-activated receptor gamma (pparγ) in the liver. In addition, 6.7 μg/L BPAF significantly down-regulated the expression levels of antioxidant-related genes [superoxide dismutase (sod), glutathione peroxidase (gpx), and catalase (cat)], and complement system-related genes [complement component 5 (c5), complement component 7a (c7a), mannan-binding lectin serine peptidase 1 (masp1), and tumor necrosis factor (tnf)] were significantly up-regulated in the 73.4 and 367.0 μg/L groups, which implies the effect of BPAF on the immune system in the liver. In the hypothalamic-pituitary-ovarian axis (HPG) results, the transcription levels of estrogen receptor α (erα), estrogen receptor β (erβ), androgen receptor (arα), gonadotropin-releasing hormone 2 (gnrh2), cytochrome P450 19b (cyp19b), aromatase (cyp19a), and luteinizing hormone receptor (lhr) in the brain and ovary, and vitellogenin (vtg) and choriogenin (chg) in the liver of 367.0 μg/L BPAF group showed a downward trend. In addition, exposure to 367.0 μg/L BPAF for 120 d inhibited the spawning behavior of marine medaka. Our results showed that long-term BPAF treatment influenced growth (body weight and condition factors), lipid metabolism, and ovarian maturation, and significantly altered the immune response and the transcriptional expression levels of HPG axis-related genes.
Collapse
Affiliation(s)
- Yuebi Chen
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fishery, Guangdong Ocean University, Zhanjiang, China
| | - Xiaotian Chen
- Center for Industrial Analysis and Testing, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Xueyou Li
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, China
| | - Yue Liu
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, China
| | - Yusong Guo
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, China
| | - Zhongduo Wang
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, China; State Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University School, Changsha, China
| | - Zhongdian Dong
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fishery, Guangdong Ocean University, Zhanjiang, China.
| |
Collapse
|
2
|
Baldrick P. Nonclinical Immunotoxicity Testing in the Pharmaceutical World: The Past, Present, and Future. Ther Innov Regul Sci 2019:2168479019864555. [PMID: 31409131 DOI: 10.1177/2168479019864555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An examination for potential direct or indirect adverse effects on the immune system (immunotoxicity) is an established component of nonclinical testing to support safe use of new drugs. Testing recommendations occur in various regulatory guidance documents, especially ICH S8, and these will be presented. Key evaluation usually occurs in toxicology studies with further investigative work a consideration if a positive signal is seen. Expectations around whether findings may occur are related to the type of compound being developed, including a chemically synthesized small molecule, a small molecule oncology drug, a biopharmaceutical, an oligonucleotide, a gene therapy/stem cell product, a vaccine, or reformulation of drugs in liposomes or depots. Examples of immunotoxicity/immunogenicity findings will be discussed for all of these types of compound. Overall, it can be concluded that our main tool for evaluation of potential immunotoxicity/immunogenicity for a new drug still remains standard toxicology study testing with key assessment for effects on clinical pathology and lymphoid organs/tissues (weights and cellularity). Additional evaluation from studies using a T cell-dependent antibody response (TDAR) and lymphocyte phenotyping is also valuable, if needed. Thus, using the tools from the past, it is the role of toxicologists to work with clinical teams now and in the future, to interpret findings from nonclinical testing to possible adverse findings in humans.
Collapse
Affiliation(s)
- Paul Baldrick
- 1 Covance Laboratories Ltd, England, United Kingdom
- 2 Lincoln School of Pharmacy, University of Lincoln, United Kingdom
| |
Collapse
|
3
|
Schultze N, Wanka H, Zwicker P, Lindequist U, Haertel B. Mitochondrial functions of THP-1 monocytes following the exposure to selected natural compounds. Toxicology 2016; 377:57-63. [PMID: 28013001 DOI: 10.1016/j.tox.2016.12.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 12/19/2016] [Accepted: 12/20/2016] [Indexed: 12/24/2022]
Abstract
The immune system is an important target of various xenobiotics, which may lead to severe adverse effects including immunosuppression or inappropriate immunostimulation. Mitochondrial toxicity is one possibility by which xenobiotics exert their toxic effects in cells or organs. In this study, we investigated the impact of three natural compounds, cyclosporine A (CsA), deoxynivalenol (DON) and cannabidiol (CBD) on mitochondrial functions in the THP-1 monocytic cell line. The cells were exposed for 24h to two different concentrations (IC10 and IC50 determined by MTT) of each compound. The cells showed concentration-dependent elevated intracellular reactive oxygen species (iROS) and induction of apoptosis (except DON) in response to the three test compounds. Mitochondrial functions were characterized by using bioenergetics profiling experiments. In THP-1 monocytes, the IC50 of CsA decreased basal and maximal respiration as well as ATP production with an impact on spare capacity indicating a mitochondrial dysfunction. Similar reaction patterns were observed following CBD exposure. The basal respiration level and ATP-production decreased in the THP-1 cells exposed to the IC50 of DON with no major impact on mitochondrial function. In conclusion, impaired mitochondrial function was accompanied by elevated iROS and apoptosis level in a monocytic cell line exposed to CsA and CBD. Mitochondrial dysfunction may be one explanation for the cytotoxicity of CBD and CsA also in other in immune cells.
Collapse
Affiliation(s)
- Nadin Schultze
- Institute of Pharmacy, Pharmaceutical Biology, Ernst-Moritz-Arndt University of Greifswald, D17489 Greifswald, Germany.
| | - Heike Wanka
- Institute of Physiology, University Medicine of Greifswald, D17495 Karlsburg, Germany
| | - Paula Zwicker
- Institute of Pharmacy, Pharmaceutical Biology, Ernst-Moritz-Arndt University of Greifswald, D17489 Greifswald, Germany
| | - Ulrike Lindequist
- Institute of Pharmacy, Pharmaceutical Biology, Ernst-Moritz-Arndt University of Greifswald, D17489 Greifswald, Germany
| | - Beate Haertel
- Institute of Pharmacy, Pharmaceutical Biology, Ernst-Moritz-Arndt University of Greifswald, D17489 Greifswald, Germany
| |
Collapse
|
4
|
Sewald K, Braun A. Assessment of immunotoxicity using precision-cut tissue slices. Xenobiotica 2013; 43:84-97. [PMID: 23199366 PMCID: PMC3518294 DOI: 10.3109/00498254.2012.731543] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 09/12/2012] [Accepted: 09/14/2012] [Indexed: 01/06/2023]
Abstract
1.When the immune system encounters incoming infectious agents, this generally leads to immunity. The evoked immune response is usually robust, but can be severely perturbed by potentially harmful environmental agents such as chemicals, pharmaceuticals and allergens. 2.Immunosuppression, hypersensitivity and autoimmunity may occur due to changed immune activity. Evaluation of the immunotoxic potency of agents as part of risk assessment is currently established in vivo with animal models and in vitro with cell lines or primary cells. 3.Although in vivo testing is usually the most relevant situation for many agents, more and more in vitro models are being developed for assessment of immunotoxicity. In this context, hypersensitivity and immunosuppression are considered to be a primary focus for developing in vitro methods. Three-dimensional organotypic tissue models are also part of current research in immunotoxicology. 4.In recent years, there has been a revival of interest in organotypic tissue models. In the context of immunotoxicity testing, precision-cut lung slices in particular have been intensively studied. Therefore, this review is very much focused on pulmonary immunotoxicology. Respiratory hypersensitivity and inflammation are further highlighted aspects of this review. Immunotoxicity assessment currently is of limited use in other tissue models, which are therefore described only briefly within this review.
Collapse
Affiliation(s)
- Katherina Sewald
- Department of Airway Immunology , Fraunhofer ITEM, Hannover, Germany.
| | | |
Collapse
|
5
|
Descotes J. Safety immunopharmacology: evaluation of the adverse potential of pharmaceuticals on the immune system. J Pharmacol Toxicol Methods 2012; 66:79-83. [PMID: 22587937 PMCID: PMC7111030 DOI: 10.1016/j.vascn.2012.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 04/24/2012] [Accepted: 05/05/2012] [Indexed: 02/08/2023]
Abstract
The ICH S6R1 and S8 guidelines define a general framework for the immunotoxicity evaluation of biotechnology-derived pharmaceuticals and human pharmaceuticals, respectively. As severe and unpredicted adverse events dramatically showed in the recent years that the immune system is a critical aspect of drug safety, this framework needs to be revisited to enhance the prediction of nonclinical immune safety evaluation. Safety immunopharmacology is deemed to contribute to this awaited improvement by enabling early screening of the potential for drug candidates to induce unexpected immunosuppressive and immunostimulatory effects as well as nonimmune-mediated hypersensitivity reactions. Dedicated safety immunopharmacology can also generate mechanistic data to determine which relevant additional immunotoxicity studies should be conducted. Immunological assays and models that can be considered for use in the context of safety pharmacology studies are presented as well as perspectives for their timely development.
Collapse
Affiliation(s)
- Jacques Descotes
- Poison Center and Pharmacovigilance Department, Lyon University Hospitals, and Claude Bernard University, Lyon, France.
| |
Collapse
|
6
|
Martini F, Fernández C, Tarazona JV, Pablos MV. Gene expression of heat shock protein 70, interleukin-1β and tumor necrosis factor α as tools to identify immunotoxic effects on Xenopus laevis: a dose-response study with benzo[a]pyrene and its degradation products. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2012; 160:28-33. [PMID: 22035922 DOI: 10.1016/j.envpol.2011.09.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 09/06/2011] [Accepted: 09/14/2011] [Indexed: 05/31/2023]
Abstract
The exposure to benzo[a]pyrene (B[a]P) results in an alteration of immune function in mammals and fish, and the analysis of cytokine mRNA levels has been suggested for predicting the immunomodulatory potential of chemicals. To obtain evidence of the innate immune responses to B[a]P in Xenopus laevis, the present study monitored the mRNA expression of interleukin 1-β (IL-1β), tumor necrosis factor α (TNF-α) and heat shock protein 70 (HSP70) in a laboratorial exposure. Tadpoles exposed to 8.36, 14.64, 89.06 and 309.47 μg/L of B[a]P,were used for detecting hsp70, IL-1β and TNF-α mRNA induction. A dose-response increase in the expression of hsp70 and IL-1β mRNA was found. The results of this study confirmed the use of hsp70 and IL-1β, but not TNF-α, as sensitive indicators of immunotoxic effect of B[a]P in X. laevis. Further research would be required for the validation of these endpoints.
Collapse
Affiliation(s)
- Federica Martini
- Laboratory for Ecotoxicology, Department of Environment, Spanish National Institute for Agricultural and Food Research and Technology (INIA), Carretera de la Coruña, Km 7.5, 28040 Madrid, Spain.
| | | | | | | |
Collapse
|
7
|
|
8
|
Lankveld DPK, Van Loveren H, Baken KA, Vandebriel RJ. In vitro testing for direct immunotoxicity: state of the art. Methods Mol Biol 2010; 598:401-23. [PMID: 19967527 DOI: 10.1007/978-1-60761-401-2_26] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Immunotoxicity is defined as the toxicological effects of xenobiotics including pharmaceuticals on the functioning of the immune system and can be induced in either direct or indirect ways. Direct immunotoxicity is caused by the effects of chemicals on the immune system, leading to immunosuppression and subsequently to reduced resistance to infectious diseases or certain forms of nongenotoxic carcinogenicity.In vitro testing has several advantages over in vivo testing, such as detailed mechanistic understanding, species extrapolation (parallelogram approach), and reduction, refinement, and replacement of animal experiments. In vitro testing for direct immunotoxicity can be done in a two-tiered approach, the first tier measuring myelotoxicity. If this type of toxicity is apparent, the compound can be designated immunotoxic. If not, the compound is tested for lymphotoxicity (second tier). Several in vitro assays for lymphotoxicity exist, each comprising specific functions of the immune system (cytokine production, cell proliferation, cytotoxic T-cell activity, natural killer cell activity, antibody production, and dendritic cell maturation). A brief description of each assay is provided. Only one assay, the human whole blood cytokine release assay, has undergone formal prevalidation, while another one, the lymphocyte proliferation assay, is progressing towards that phase.Progress in in vitro testing for direct immunotoxicity includes prevalidation of existing assays and selection of the assay (or combination of assays) that performs best. To avoid inter-species extrapolation, assays should preferably use human cells. Furthermore, the use of whole blood has the advantage of comprising multiple cell types in their natural proportion and environment. The so-called "omics" techniques provide additional mechanistic understanding and hold promise for the characterization of classes of compounds and prediction of specific toxic effects. Technical innovations such as high-content screening and high-throughput analysis will greatly expand the opportunities for in vitro testing.
Collapse
|
9
|
Plaza DF, Mariño A, Delgado G. Characterizing the Effect of Pentamidine Isethionate on the Immune System Using Mouse Splenocytes as an Experimental Model. J Immunotoxicol 2008; 4:279-85. [DOI: 10.1080/15476910701680087] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
10
|
Dobrovolskaia MA, McNeil SE. Immunological properties of engineered nanomaterials. NATURE NANOTECHNOLOGY 2007; 2:469-78. [PMID: 18654343 DOI: 10.1038/nnano.2007.223] [Citation(s) in RCA: 1181] [Impact Index Per Article: 65.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Most research on the toxicology of nanomaterials has focused on the effects of nanoparticles that enter the body accidentally. There has been much less research on the toxicology of nanoparticles that are used for biomedical applications, such as drug delivery or imaging, in which the nanoparticles are deliberately placed in the body. Moreover, there are no harmonized standards for assessing the toxicity of nanoparticles to the immune system (immunotoxicity). Here we review recent research on immunotoxicity, along with data on a range of nanotechnology-based drugs that are at different stages in the approval process. Research shows that nanoparticles can stimulate and/or suppress the immune responses, and that their compatibility with the immune system is largely determined by their surface chemistry. Modifying these factors can significantly reduce the immunotoxicity of nanoparticles and make them useful platforms for drug delivery.
Collapse
Affiliation(s)
- Marina A Dobrovolskaia
- Nanotechnology Characterization Laboratory, Advanced Technology Program, SAIC-Frederick, NCI-Frederick, 1050 Boyles St, Bldg 469, Frederick, Maryland 21702, USA.
| | | |
Collapse
|
11
|
Carfi' M, Gennari A, Malerba I, Corsini E, Pallardy M, Pieters R, Van Loveren H, Vohr HW, Hartung T, Gribaldo L. In vitro tests to evaluate immunotoxicity: A preliminary study. Toxicology 2007; 229:11-22. [PMID: 17092623 DOI: 10.1016/j.tox.2006.09.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Revised: 09/05/2006] [Accepted: 09/06/2006] [Indexed: 11/25/2022]
Abstract
The implementation of Registration, Evaluation and Authorisation of new and existing Chemicals (REACH) will increase the number of laboratory animals used, if alternative methods will not be available. In the meantime, REACH promotes the use of in vitro tests and, therefore, a set of appropriated alternative testing methods and assessment strategies are needed. The immune system can be a target for many chemicals including environmental contaminants and drugs with potential adverse effects on human health. The aim of this study was to evaluate the predictivity of a set of in vitro assays to detect immunosuppression. The tests have been performed on human, rat and murine cells. Different endpoints have been assessed: cytotoxicity, cytokine release, myelotoxicity and mitogen responsiveness. For each of these endpoints IC50s values have been calculated. Six chemical substances, representative of the full range of in vivo responses and for which good human and/or animal data are available either from databases or literature, have been selected: two chemicals classified as not immunotoxic (Urethane and Furosemide), and four (tributyltin chloride (TBTC), Verapamil, Cyclosporin A, Benzo(a)pyrene) with different effect on immune system. All the tests confirmed the strong immunotoxic effect of TBTC as well as they confirmed the negative controls. For one chemical (Verapamil) the IC50 is similar through the different tests. The IC50s obtained with the other chemicals depend on the endpoints and on the animal species. The clonogenic test (CFU-GM) and the mitogen responsiveness showed similar IC50s between human and rodent cells except for Cyclosporin A and TBTC. All different tests classified the compounds analyzed in the same way.
Collapse
Affiliation(s)
- M Carfi'
- ECVAM, IHCP, JRC, 21020 Ispra (VA), Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Gore ER. Immune Function Tests for Hazard Identification: A Paradigm Shift in Drug Development. Basic Clin Pharmacol Toxicol 2006; 98:331-5. [PMID: 16623854 DOI: 10.1111/j.1742-7843.2006.pto_374.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Routine immune function testing in preclinical drug development was established as a regulatory requirement in June of 2000 under the Committee of Proprietary Medicinal Products (CPMP) Note for Guidance on Repeated Dose Toxicity (CPMP/SWP/1042/99). The purpose of the more stringent approach to immunotoxicology testing was to better identify unintended immunosuppression; however, the requirement was met with much discussion and debate. At the center of the discussion was an attempt to reconcile opposing regulatory directives from agencies outside of Europe that adhere to a more selective, weight-of-evidence approach to functional evaluations. Uncertainty over the predictive value of the recommended immune function tests relative to conventional toxicology parameters prompted an investigation by the International Committee on Harmonization (ICH). The results of a preliminary, industry-wide survey indicated that only a low percentage of pharmaceuticals adversely affect immune function without alterations to standard toxicology parameters. Expected ICH guidelines will ultimately determine to what extent and for what purpose immune function tests will be conducted. In the meantime, optimization of the recommended immune function tests is ongoing. The T-cell dependent antibody response (TDAR) by either conventional Sheep Red Blood Cell (SRBC) plaque assay or by the modified ELISA method using either SRBC or keyhole limpet hemocyanin (KLH) as antigen is being extensively evaluated to determine best practices and procedures for preclinical immunotoxicity evaluations. This review addresses some aspects of the debate concerning the appropriateness of immune function tests for hazard identification, along with recommendations for optimizing TDAR methodology to ensure adequate sensitivity and predictability in risk assessments for immunotoxicity.
Collapse
Affiliation(s)
- Elizabeth R Gore
- Department of Safety Assessment, GlaxoSmithKline Pharmaceuticals, King of Prussia, PA 19406, USA.
| |
Collapse
|
13
|
Weed DL. Weight of evidence: a review of concept and methods. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2005; 25:1545-57. [PMID: 16506981 DOI: 10.1111/j.1539-6924.2005.00699.x] [Citation(s) in RCA: 181] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
"Weight of evidence" (WOE) is a common term in the published scientific and policy-making literature, most often seen in the context of risk assessment (RA). Its definition, however, is unclear. A systematic review of the scientific literature was undertaken to characterize the concept. For the years 1994 through 2004, PubMed was searched for publications in which "weight of evidence" appeared in the abstract and/or title. Of the 276 papers that met these criteria, 92 were selected for review: 71 papers published in 2003 and 2004 (WOE appeared in abstract/title) and 21 from 1994 through 2002 (WOE appeared in title). WOE has three characteristic uses in this literature: (1) metaphorical, where WOE refers to a collection of studies or to an unspecified methodological approach; (2) methodological, where WOE points to established interpretative methodologies (e.g., systematic narrative review, meta-analysis, causal criteria, and/or quality criteria for toxicological studies) or where WOE means that "all" rather than some subset of the evidence is examined, or rarely, where WOE points to methods using quantitative weights for evidence; and (3) theoretical, where WOE serves as a label for a conceptual framework. Several problems are identified: the frequent lack of definition of the term "weight of evidence," multiple uses of the term and a lack of consensus about its meaning, and the many different kinds of weights, both qualitative and quantitative, which can be used in RA. A practical recommendation emerges: the WOE concept and its associated methods should be fully described when used. A research agenda should examine the advantages of quantitative versus qualitative weighting schemes, how best to improve existing methods, and how best to combine those methods (e.g., epidemiology's causal criteria with toxicology's quality criteria).
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW Drug hypersensitivity reactions are relatively rare but may result in severe morbidity and fatalities. Due to the idiosyncratic nature and multifactorial etiology of these reactions, development of a single animal model to study the immunosensitizing mechanisms of all drugs is impossible. This hampers the development of predictive screening models that are urgently needed to assess the immunostimulating capacity of newly developed drugs. The present review will focus on recent findings on mechanisms of drug hypersensitivity reactions obtained with murine models, and on the use of these models as potential screening tools to assess the immunostimulating capacity of drugs. RECENT FINDINGS Mechanisms of drug-induced sensitization versus tolerance appear dependent on generally accepted immunological paradigms. For instance, co-stimulatory signaling by antigen-presenting cells is decisive in drug-induced immunosensitization and both T cells and antigen-presenting cells are important for the induction of tolerance to orally administered drugs. From recent studies it has been hypothesized that expression of stress-associated transcription factors and the expression of costimulatory molecules or cytokine production within hours or days after the initial exposure may be representative of drug-induced hypersensitivity reactions and may thus be used as predictive parameters to screen for immunosensitizing drugs. SUMMARY The development of animal models to study mechanisms of drug hypersensitivity reactions is still in its infancy. Much effort has been made, however, to search for early indicators of immunostimulation in murine animal models that may eventually appear useful in a tiered strategy to assess drug-induced sensitization.
Collapse
Affiliation(s)
- Stefan Nierkens
- Department of Immunotoxicology, Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands.
| | | |
Collapse
|
15
|
Ryle PR. Justification for routine screening of pharmaceutical products in immune function tests: a review of the recommendations of Putman et al. (2003). Fundam Clin Pharmacol 2005; 19:317-22; discussion 329-30. [PMID: 15910654 DOI: 10.1111/j.1472-8206.2005.00337.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In a recent publication by Putman et al. (2003), salmeterol, morphine/methadone and buprenorphine were quoted as examples of pharmaceutical drugs whose immunotoxicity has only been revealed by conduct of specific immune function tests in non-clinical studies. Review of the published non-clinical data for these drugs has shown that there is no clear evidence of immunotoxicity of salmeterol in these studies, and in addition, there are no clinical issues regarding adverse immunological effects of this drug. Of the opioid drugs, only very minor evidence of immunosuppression by morphine, and marginal evidence of slight immunostimulation by buprenorphine were detected in the non-clinical immune function assays performed at high doses. Methadone showed no effects on immune function assays in animals. As some immunomodulation by opioid drugs might have been expected based on the known pharmacological properties of this drug class, the marginal effects, or lack of effects observed in the immune function tests does raise a question about the sensitivity and specificity of the assays to detect clinically relevant changes. This review has suggested that, based on the cited examples, there is no strong case for routine non-clinical immune function testing of all new pharmaceutical products. A more rigorous evaluation of non-clinical immune function tests, and their ability to discriminate between clinically relevant and non-clinically relevant immunosuppression, is needed before definitive regulatory guidance in this area can be finalized.
Collapse
Affiliation(s)
- Peter R Ryle
- PR BioServices Ltd, Ramsey St Mary's, Huntingdon, Cambs PE26 2SR, UK.
| |
Collapse
|