1
|
Crooks I, Clements J, Curren R, Guo X, Hollings M, Lloyd M, Smart D, Thorne D, Weber E, Moore M. Key Challenges for In Vitro Testing of Tobacco Products for Regulatory Applications: Recommendations for the In Vitro Mouse Lymphoma Assay. Altern Lab Anim 2024; 52:42-59. [PMID: 38055860 DOI: 10.1177/02611929231219153] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
The Institute for In Vitro Sciences (IIVS) is sponsoring a series of workshops to develop recommendations for optimal scientific and technical approaches for conducting in vitro assays to assess potential toxicity within and across traditional tobacco and various tobacco and nicotine next-generation products (NGPs), including Heated Tobacco Products (HTPs) and Electronic Nicotine Delivery Systems (ENDS). This report was developed by a working group composed of attendees of the seventh IIVS workshop, 'Approaches and recommendations for conducting the mouse lymphoma gene mutation assay (MLA) and introduction to in vitro disease models', which was held virtually on 21-23 June 2022. This publication provides a background overview of the MLA, and includes the description of assay conduct and data interpretation, key challenges and recommended best practices for evaluating tobacco and nicotine products, with a focus on the evaluation of NGPs, and a summary of how the assay has been used to evaluate and compare tobacco and nicotine products.
Collapse
Affiliation(s)
- Ian Crooks
- B.A.T. (Investments) Limited, Southampton, UK
| | | | - Rodger Curren
- Institute for In Vitro Sciences, Gaithersburg, MD, USA
| | - Xiaoqing Guo
- National Center for Toxicological Research, Jefferson, AR, USA
| | | | - Mel Lloyd
- Labcorp Early Development Services, Harrogate, UK
| | - Daniel Smart
- Philip Morris International R&D, Philip Morris Products S.A., Neuchatel, Switzerland
| | | | - Elisabeth Weber
- Oekolab Ges. F. Umweltanalytik, A member of the JT International Group of Companies, Vienna, Austria
| | | |
Collapse
|
2
|
Moore MM, Abraham I, Ballantyne M, Behrsing H, Cao X, Clements J, Gaca M, Gillman G, Hashizume T, Heflich RH, Hurtado S, Jordan KG, Leverette R, McHugh D, Miller-Holt J, Phillips G, Recio L, Roy S, Scian M, Simms L, Smart DJ, Stankowski LF, Tarran R, Thorne D, Weber E, Wieczorek R, Yoshino K, Curren R. Key Challenges and Recommendations for In Vitro Testing of Tobacco Products for Regulatory Applications: Consideration of Test Materials and Exposure Parameters. Altern Lab Anim 2023; 51:55-79. [PMID: 36821083 DOI: 10.1177/02611929221146536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
The Institute for In Vitro Sciences (IIVS) is sponsoring a series of workshops to identify, discuss and develop recommendations for optimal scientific and technical approaches for conducting in vitro assays, to assess potential toxicity within and across tobacco and various next generation nicotine and tobacco products (NGPs), including heated tobacco products (HTPs) and electronic nicotine delivery systems (ENDS). The third workshop (24-26 February 2020) summarised the key challenges and made recommendations concerning appropriate methods of test article generation and cell exposure from combustible cigarettes, HTPs and ENDS. Expert speakers provided their research, perspectives and recommendations for the three basic types of tobacco-related test articles: i) pad-collected material (PCM); ii) gas vapour phase (GVP); and iii) whole smoke/aerosol. These three types of samples can be tested individually, or the PCM and GVP can be combined. Whole smoke/aerosol can be bubbled through media or applied directly to cells at the air-liquid interface. Summaries of the speaker presentations and the recommendations developed by the workgroup are presented. Following discussion, the workshop concluded the following: that there needs to be greater standardisation in aerosol generation and collection processes; that methods for testing the NGPs need to be developed and/or optimised, since simply mirroring cigarette smoke testing approaches may be insufficient; that understanding and quantitating the applied dose is fundamental to the interpretation of data and conclusions from each study; and that whole smoke/aerosol approaches must be contextualised with regard to key information, including appropriate experimental controls, environmental conditioning, analytical monitoring, verification and performance criteria.
Collapse
Affiliation(s)
| | | | - Mark Ballantyne
- 63899Labcorp Early Development Laboratories Limited, Harrogate, North Yorkshire, UK
| | - Holger Behrsing
- 329003Institute for In Vitro Sciences, Gaithersburg, MD, USA
| | - Xuefei Cao
- 4136National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, USA
| | - Julie Clements
- 63899Labcorp Early Development Laboratories Limited, Harrogate, North Yorkshire, UK
| | - Marianna Gaca
- 195179British American Tobacco, R&D, Southampton, Hampshire, UK
| | - Gene Gillman
- 520154Enthalpy Analytical, Inc., Durham, NC, USA
| | - Tsuneo Hashizume
- 74193Japan Tobacco Inc., Scientific Product Assessment Centre, Yokohama, Kanagawa, Japan
| | - Robert H Heflich
- 4136National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, USA
| | - Sara Hurtado
- 66661Charles River Laboratories - Skokie, LLC., Skokie, IL, USA
| | - Kristen G Jordan
- RAI Services Company, Scientific & Regulatory Affairs, Winston-Salem, NC, USA
| | - Robert Leverette
- RAI Services Company, Scientific & Regulatory Affairs, Winston-Salem, NC, USA
| | - Damian McHugh
- 161931Philip Morris International R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | | | - Gary Phillips
- Life Science Technologies Ltd, Eastleigh, Hampshire, UK
| | - Leslie Recio
- 298616ILS, PO Box 13501, Research Triangle Park, NC, USA
| | | | | | | | - Daniel J Smart
- 161931Philip Morris International R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | | | - Robert Tarran
- Department of Cell Biology and Physiology, 2332University of North Carolina, Chapel Hill, NC, USA
| | - David Thorne
- 195179British American Tobacco, R&D, Southampton, Hampshire, UK
| | - Elisabeth Weber
- 588402Oekolab Ges. f. Umweltanalytik, A Member of the JT International Group of Companies, Vienna, Austria
| | | | - Kei Yoshino
- 74193Japan Tobacco Inc., Scientific Product Assessment Centre, Yokohama, Kanagawa, Japan
| | - Rodger Curren
- 329003Institute for In Vitro Sciences, Gaithersburg, MD, USA
| |
Collapse
|
3
|
Poussin C, van der Toorn M, Scheuner S, Piault R, Kondylis A, Savioz R, Dulize R, Peric D, Guedj E, Maranzano F, Merg C, Morelli M, Egesipe AL, Johne S, Majeed S, Pak C, Schneider T, Schlage WK, Ivanov NV, Peitsch MC, Hoeng J. Systems toxicology study reveals reduced impact of heated tobacco product aerosol extract relative to cigarette smoke on premature aging and exacerbation effects in aged aortic cells in vitro. Arch Toxicol 2021; 95:3341-3359. [PMID: 34313809 PMCID: PMC8448694 DOI: 10.1007/s00204-021-03123-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/15/2021] [Indexed: 12/17/2022]
Abstract
Aging and smoking are major risk factors for cardiovascular diseases (CVD). Our in vitro study compared, in the context of aging, the effects of the aerosol of Tobacco Heating System 2.2 (THS; an electrically heated tobacco product) and 3R4F reference cigarette smoke (CS) on processes that contribute to vascular pathomechanisms leading to CVD. Young and old human aortic smooth muscle cells (HAoSMC) were exposed to various concentrations of aqueous extracts (AE) from 3R4F CS [0.014-0.22 puffs/mL] or THS aerosol [0.11-1.76 puffs/mL] for 24 h. Key markers were measured by high-content imaging, transcriptomics profiling and multianalyte profiling. In our study, in vitro aging increased senescence, DNA damage, and inflammation and decreased proliferation in the HAoSMCs. At higher concentrations of 3R4F AE, young HAoSMCs behaved similarly to aged cells, while old HAoSMCs showed additional DNA damage and apoptosis effects. At 3R4F AE concentrations with the maximum effect, the THS AE showed no significant effect in young or old HAoSMCs. It required an approximately ten-fold higher concentration of THS AE to induce effects similar to those observed with 3R4F. These effects were independent of nicotine, which did not show a significant effect on HAoSMCs at any tested concentration. Our results show that 3R4F AE accelerates aging in young HAoSMCs and exacerbates the aging effect in old HAoSMCs in vitro, consistent with CS-related contributions to the risk of CVD. Relative to 3R4F AE, the THS AE showed a significantly reduced impact on HAoSMCs, suggesting its lower risk for vascular SMC-associated pathomechanisms leading to CVD.
Collapse
Affiliation(s)
- Carine Poussin
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland.
| | - Marco van der Toorn
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Sophie Scheuner
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Romain Piault
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Athanasios Kondylis
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Rebecca Savioz
- Consultants in Science Sàrl, Biopole, Route de la Corniche 4, 1066, Epalinges, Switzerland
| | - Rémi Dulize
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Dariusz Peric
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Emmanuel Guedj
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Fabio Maranzano
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Celine Merg
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Moran Morelli
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Anne-Laure Egesipe
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Stéphanie Johne
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Shoaib Majeed
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Claudius Pak
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Thomas Schneider
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Walter K Schlage
- Biology Consultant, Max-Baermann-Str. 21, 51429, Bergisch Gladbach, Germany
| | - Nikolai V Ivanov
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Manuel C Peitsch
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Julia Hoeng
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| |
Collapse
|
4
|
Wang H, Chen H, Huang L, Li X, Wang L, Li S, Liu M, Zhang M, Han S, Jiang X, Fu Y, Tian Y, Hou H, Hu Q. In vitro toxicological evaluation of a tobacco heating product THP COO and 3R4F research reference cigarette on human lung cancer cells. Toxicol In Vitro 2021; 74:105173. [PMID: 33848590 DOI: 10.1016/j.tiv.2021.105173] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/28/2021] [Accepted: 04/09/2021] [Indexed: 12/01/2022]
Abstract
Cigarette smoking increases health risks, such as respiratory diseases and heart diseases. Despite the decline in smoking rates in some countries, millions of adults still choose to smoke cigarettes. The use of next-generation nicotine delivery devices, such as tobacco heating products (THPs), may become a potentially safer alternative to smoking. Here, we report on the development of an electrically heated THP, coded as THP COO, with three different flavored tobacco sticks. The purpose of the study was to measure the levels of a list of harmful and potentially harmful constituents (HPHCs) in the total particulate matter (TPM) generated and to conduct a set of toxicological assessments of THP COO as compared with 3R4F reference cigarette. For all 55 HPHCs identified, the levels generated by the THP tobacco sticks were significantly lower in comparison to those in 3R4F TPM. The rate of reduction of HPHCs was between 68.6% and 99.9% under Health Canada Intense (HCI) smoking regimen. Human lung cancer cells (NCI-H292) exposed to 3R4F TPM showed dose-dependent responses for most of the 15 in vitro toxicity endpoints, whereas those exposed to comparable doses of THP COO TPMs did not. Therefore, exclusive use of the THP COO products may reduce the exposure of those tested HPHCs and thus potentially reduce health risk of smoking.
Collapse
Affiliation(s)
- Hongjuan Wang
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, China
| | - Huan Chen
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, China
| | - Long Huang
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, China
| | - Xiangyu Li
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, China
| | - Lulu Wang
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, China
| | - Shigang Li
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, China
| | - Min Liu
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, China
| | - Manying Zhang
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, China
| | - Shulei Han
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, China
| | - Xingyi Jiang
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, China
| | - Yaning Fu
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, China
| | - Yushan Tian
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, China
| | - Hongwei Hou
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, China.
| | - Qingyuan Hu
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, China.
| |
Collapse
|
5
|
Kogel U, Wong ET, Szostak J, Tan WT, Lucci F, Leroy P, Titz B, Xiang Y, Low T, Wong SK, Guedj E, Ivanov NV, Schlage WK, Peitsch MC, Kuczaj A, Vanscheeuwijck P, Hoeng J. Impact of whole-body versus nose-only inhalation exposure systems on systemic, respiratory, and cardiovascular endpoints in a 2-month cigarette smoke exposure study in the ApoE -/- mouse model. J Appl Toxicol 2021; 41:1598-1619. [PMID: 33825214 PMCID: PMC8519037 DOI: 10.1002/jat.4149] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 11/09/2022]
Abstract
Cigarette smoking is one major modifiable risk factor in the development and progression of chronic obstructive pulmonary disease and cardiovascular disease. To characterize and compare cigarette smoke (CS)-induced disease endpoints after exposure in either whole-body (WB) or nose-only (NO) exposure systems, we exposed apolipoprotein E-deficient mice to filtered air (Sham) or to the same total particulate matter (TPM) concentration of mainstream smoke from 3R4F reference cigarettes in NO or WB exposure chambers (EC) for 2 months. At matching TPM concentrations, we observed similar concentrations of carbon monoxide, acetaldehyde, and acrolein, but higher concentrations of nicotine and formaldehyde in NOEC than in WBEC. In both exposure systems, CS exposure led to the expected adaptive changes in nasal epithelia, altered lung function, lung inflammation, and pronounced changes in the nasal epithelial transcriptome and lung proteome. Exposure in the NOEC caused generally more severe histopathological changes in the nasal epithelia and a higher stress response as indicated by body weight decrease and lower blood lymphocyte counts compared with WB exposed mice. Erythropoiesis, and increases in total plasma triglyceride levels and atherosclerotic plaque area were observed only in CS-exposed mice in the WBEC group but not in the NOEC group. Although the composition of CS in the breathing zone is not completely comparable in the two exposure systems, the CS-induced respiratory disease endpoints were largely confirmed in both systems, with a higher magnitude of severity after NO exposure. CS-accelerated atherosclerosis and other pro-atherosclerotic factors were only significant in WBEC.
Collapse
Affiliation(s)
- Ulrike Kogel
- Philip Morris International Research and Development, Philip Morris Products S.A., Neuchatel, Switzerland
| | - Ee Tsin Wong
- Philip Morris International Research Laboratories Pte. Ltd., Science Park II, Singapore
| | - Justyna Szostak
- Philip Morris International Research and Development, Philip Morris Products S.A., Neuchatel, Switzerland
| | - Wei Teck Tan
- Philip Morris International Research Laboratories Pte. Ltd., Science Park II, Singapore
| | - Francesco Lucci
- Philip Morris International Research and Development, Philip Morris Products S.A., Neuchatel, Switzerland
| | - Patrice Leroy
- Philip Morris International Research and Development, Philip Morris Products S.A., Neuchatel, Switzerland
| | - Bjoern Titz
- Philip Morris International Research and Development, Philip Morris Products S.A., Neuchatel, Switzerland
| | - Yang Xiang
- Philip Morris International Research and Development, Philip Morris Products S.A., Neuchatel, Switzerland
| | - Tiffany Low
- Philip Morris International Research Laboratories Pte. Ltd., Science Park II, Singapore
| | - Sin Kei Wong
- Philip Morris International Research Laboratories Pte. Ltd., Science Park II, Singapore
| | - Emmanuel Guedj
- Philip Morris International Research and Development, Philip Morris Products S.A., Neuchatel, Switzerland
| | - Nikolai V Ivanov
- Philip Morris International Research and Development, Philip Morris Products S.A., Neuchatel, Switzerland
| | - Walter K Schlage
- Biology Consultant, Max-Baermann-Str. 21, Bergisch Gladbach, Germany
| | - Manuel C Peitsch
- Philip Morris International Research and Development, Philip Morris Products S.A., Neuchatel, Switzerland
| | - Arkadiusz Kuczaj
- Philip Morris International Research and Development, Philip Morris Products S.A., Neuchatel, Switzerland
| | - Patrick Vanscheeuwijck
- Philip Morris International Research and Development, Philip Morris Products S.A., Neuchatel, Switzerland
| | - Julia Hoeng
- Philip Morris International Research and Development, Philip Morris Products S.A., Neuchatel, Switzerland
| |
Collapse
|
6
|
Hirn C, Kanemaru Y, Stedeford T, Paschke T, Baskerville-Abraham I. Comparative and cumulative quantitative risk assessments on a novel heated tobacco product versus the 3R4F reference cigarette. Toxicol Rep 2020; 7:1502-1513. [PMID: 33209587 PMCID: PMC7658373 DOI: 10.1016/j.toxrep.2020.10.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 10/09/2020] [Accepted: 10/23/2020] [Indexed: 12/16/2022] Open
Abstract
Novel tobacco products that heat rather than burn tobacco (heated tobacco products or HTPs) have been shown to produce lower levels of harmful and potentially harmful constituents than conventional combusted cigarettes. The present study uses a quantitative risk assessment approach to compare non-cancer and cancer risk estimates for emissions generated by an HTP with smoke from a reference cigarette (3R4F). Fifty-four analytes were evaluated from the HTP aerosol and the 3R4F cigarette smoke. Emissions were generated using the ISO and the Health Canada Intense smoking regimes. The measured values were extrapolated to define a conservative exposure assumption for per day use and lifetime use based on an estimated maximum usage level of 400 puffs per day i.e., approximately 8 HTP tobacco capsules or 40 combustible cigarettes. Non-cancer and cancer risk estimates were calculated using these exposure assumptions for individual and per health outcome domains based on toxicological reference values derived by regulatory and/or public health agencies. The results of this assessment showed a reduction of non-cancer and cancer risk estimates by more than 90 % for the HTP versus the 3R4F cigarette, regardless of the smoking regime.
Collapse
Affiliation(s)
| | | | | | - Thilo Paschke
- Scientific and Regulatory Affairs, JT International SA, Geneva, Switzerland
| | | |
Collapse
|
7
|
Igarashi A, Aida J, Kusama T, Tabuchi T, Tsuboya T, Sugiyama K, Yamamoto T, Osaka K. Heated Tobacco Products Have Reached Younger or More Affluent People in Japan. J Epidemiol 2020; 31:187-193. [PMID: 32224597 PMCID: PMC7878708 DOI: 10.2188/jea.je20190260] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Background The trend of the diffusion of heated tobacco products (HTPs) is a great concern because HTPs have become available worldwide. This study examined the sociodemographic characteristics of HTPs users in Japan, where HTPs were first launched. Methods This cross-sectional study used data from an online survey conducted in 2017. A total of 4,926 participants, aged 20–69 years, were included. The dependent variable was the type of tobacco products used. The independent variables were age and equivalent income. Two analyses estimated the odds ratios (ORs) for 1) being smokers compared to “non-smokers,” and 2) being “HTP smokers” compared to “only combustible cigarette smokers.” Analyses were stratified by sex. Educational attainment and occupation were also used in the sensitivity analyses. Results The percentages of “non-smokers,” “only combustible cigarette smokers,” and “HTP smokers” were 82.8%, 14.2%, and 3.0%, respectively. When compared to the oldest participants (aged 60–69), the youngest participants (aged 20–29) tended to be “HTP smokers” (OR 7.90; 95% confidence interval [CI], 3.09–20.22 for men and OR 9.28; 95% CI, 2.14–40.28 for women). Compared to participants with the lowest incomes (<2 million), those with the highest incomes (≥4 million) tended to use HTPs (OR 2.93; 95% CI, 1.56–5.49 in men and OR 1.82; 95% CI, 0.73–4.54 in women). These trends were consistent when analyses included only smokers. There were consistent results in other SES measurements, including educational attainment and occupation. Conclusions Younger or more affluent people tended to use HTPs, although smoking rates among these populations were generally lower. New tobacco control efforts are required.
Collapse
Affiliation(s)
- Ayaka Igarashi
- Department of International and Community Oral Health, Tohoku University Graduate School of Dentistry
| | - Jun Aida
- Department of International and Community Oral Health, Tohoku University Graduate School of Dentistry
| | - Taro Kusama
- Department of International and Community Oral Health, Tohoku University Graduate School of Dentistry
| | | | - Toru Tsuboya
- Department of International and Community Oral Health, Tohoku University Graduate School of Dentistry
| | - Kemmyo Sugiyama
- Department of International and Community Oral Health, Tohoku University Graduate School of Dentistry
| | - Takafumi Yamamoto
- Department of International and Community Oral Health, Tohoku University Graduate School of Dentistry
| | - Ken Osaka
- Department of International and Community Oral Health, Tohoku University Graduate School of Dentistry
| |
Collapse
|
8
|
LoPachin RM, Geohagen BC, Nordstroem LU. Mechanisms of soft and hard electrophile toxicities. Toxicology 2019; 418:62-69. [PMID: 30826385 PMCID: PMC6494464 DOI: 10.1016/j.tox.2019.02.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/24/2019] [Accepted: 02/10/2019] [Indexed: 12/21/2022]
Abstract
Electron-deficient chemicals (electrophiles) react with compounds that have one or more unshared valence electron pairs (nucleophiles). The resulting covalent reactions between electrophiles and nucleophiles (e.g., Michael addition, SN2 reactions) are important, not only to Organic Chemistry, but also to the fields of Molecular Biology and Toxicology. Specifically, covalent bond formation is the operational basis of many critically important cellular processes; e.g., enzyme function, neurotransmitter release, and membrane-vesicle fusion. Given this context it is understandable that these reactions are also relevant to Toxicology, since a significant number of xenobiotic chemicals are toxic electrophiles that can react with endogenous nucleophilic residues. Therefore, the purpose of this Review is to discuss electrophile-nucleophile chemistry as it pertains to cell injury and resulting organ toxicity. Our discussion will involve an introduction to the Hard and Soft, Acids and Bases (HSAB) theory of Pearson. The HSAB concept provides a framework for calculation of quantum chemical parameters that classify the electrophile and nucleophile covalent components according to their respective electronic nature (softness/hardness) and reactivity (electrophilicity/nucleophilicity). The calculated quantum indices in conjunction with corroborative in vivo, in chemico (cell free) and in vitro research can offer an illuminating approach to mechanistic discovery. Accordingly, we will provide examples that demonstrate how this approach has been used to discern mechanisms and sites of electrophile action.
Collapse
Affiliation(s)
- Richard M LoPachin
- Department of Anesthesiology, Montefiore Medical Center, Albert Einstein College of Medicine, 111 E. 210th St, Bronx NY 10467, United States.
| | - Brian C Geohagen
- Department of Anesthesiology, Montefiore Medical Center, Albert Einstein College of Medicine, 111 E. 210th St, Bronx NY 10467, United States
| | - Lars U Nordstroem
- The Chemical Synthesis & Biology Core Facility, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
9
|
Phillips B, Szostak J, Titz B, Schlage WK, Guedj E, Leroy P, Vuillaume G, Martin F, Buettner A, Elamin A, Sewer A, Sierro N, Choukrallah MA, Schneider T, Ivanov NV, Teng C, Tung CK, Lim WT, Yeo YS, Vanscheeuwijck P, Peitsch MC, Hoeng J. A six-month systems toxicology inhalation/cessation study in ApoE -/- mice to investigate cardiovascular and respiratory exposure effects of modified risk tobacco products, CHTP 1.2 and THS 2.2, compared with conventional cigarettes. Food Chem Toxicol 2019; 126:113-141. [PMID: 30763686 DOI: 10.1016/j.fct.2019.02.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/24/2019] [Accepted: 02/04/2019] [Indexed: 02/06/2023]
Abstract
Smoking is one of the major modifiable risk factors in the development and progression of chronic obstructive pulmonary disease (COPD) and cardiovascular disease (CVD). Modified-risk tobacco products (MRTP) are being developed to provide substitute products for smokers who are unable or unwilling to quit, to lessen the smoking-related health risks. In this study, the ApoE-/- mouse model was used to investigate the impact of cigarette smoke (CS) from the reference cigarette 3R4F, or aerosol from two potential MRTPs based on the heat-not-burn principle, carbon heated tobacco product 1.2 (CHTP1.2) and tobacco heating system 2.2 (THS 2.2), on the cardiorespiratory system over a 6-month period. In addition, cessation or switching to CHTP1.2 after 3 months of CS exposure was assessed. A systems toxicology approach combining physiology, histology and molecular measurements was used to evaluate the impact of MRTP aerosols in comparison to CS. CHTP1.2 and THS2.2 aerosols, compared with CS, demonstrated lower impact on the cardiorespiratory system, including low to absent lung inflammation and emphysematous changes, and reduced atherosclerotic plaque formation. Molecular analyses confirmed the lower engagement of pathological mechanisms by MRTP aerosols than CS. Both cessation and switching to CHTP1.2 reduced the observed CS effects to almost sham exposure levels.
Collapse
Affiliation(s)
- Blaine Phillips
- PMI R&D, Philip Morris International Research Laboratories Pte. Ltd., Science Park II, Singapore.
| | - Justyna Szostak
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland.
| | - Bjoern Titz
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland.
| | | | - Emmanuel Guedj
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland.
| | - Patrice Leroy
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland.
| | - Gregory Vuillaume
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland.
| | - Florian Martin
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland.
| | | | - Ashraf Elamin
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland.
| | - Alain Sewer
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland.
| | - Nicolas Sierro
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland.
| | | | - Thomas Schneider
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland.
| | - Nikolai V Ivanov
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland.
| | - Charles Teng
- PMI R&D, Philip Morris International Research Laboratories Pte. Ltd., Science Park II, Singapore.
| | - Ching Keong Tung
- PMI R&D, Philip Morris International Research Laboratories Pte. Ltd., Science Park II, Singapore.
| | - Wei Ting Lim
- PMI R&D, Philip Morris International Research Laboratories Pte. Ltd., Science Park II, Singapore.
| | - Ying Shan Yeo
- PMI R&D, Philip Morris International Research Laboratories Pte. Ltd., Science Park II, Singapore.
| | - Patrick Vanscheeuwijck
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland.
| | - Manuel C Peitsch
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland.
| | - Julia Hoeng
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland.
| |
Collapse
|
10
|
McAdam K, Davis P, Ashmore L, Eaton D, Jakaj B, Eldridge A, Liu C. Influence of machine-based puffing parameters on aerosol and smoke emissions from next generation nicotine inhalation products. Regul Toxicol Pharmacol 2019; 101:156-165. [DOI: 10.1016/j.yrtph.2018.11.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 11/04/2018] [Accepted: 11/12/2018] [Indexed: 11/27/2022]
|
11
|
He R, Han L, Liu P, Hu H, Yang J, Cai H, Huang C, Wang L, Liu J, Huang J, Ha L, Liu Y, Wu J, Zhu M, Zhao B. Lung Function Decline after 24 Weeks of Moxa Smoke Exposure in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2019; 2019:9236742. [PMID: 30755777 PMCID: PMC6348917 DOI: 10.1155/2019/9236742] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 12/03/2018] [Accepted: 12/20/2018] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Moxibustion is a complementary therapy that has been used for thousands of years. Burning moxa produces smoke and inhalable particulates. Recent research has indicated that smoke inhalation is associated with negative lung effects. This study aimed to evaluate the lung function of rats after moxa smoke exposure at different concentrations. METHODS Using a randomised block experiment design, 28 male Wistar rats were randomly divided into three moxa smoke groups (opacity) (n=7): low concentration (27.45 mg/m3), medium concentration (168.76 mg/m3), and high concentration (384.67 mg/m3) with a control group. Rats in the moxa smoke groups were exposed in an automatic dynamic exposure device separately with different concentrations for 20 min/d, 6d/week, for 24 weeks. Rats in the control group were exposed in the same space without moxa smoke. Lung function was evaluated by the AniRes 2005 animal pulmonary function analysing system. Statistical Product and Service Solutions 18.0 software was used for data analysis. RESULTS In the study, no deaths were found in any group. There was no difference of forced expiratory volume in one second/forced vital capacity percentage (FEV1/FVC%), inspiratory resistance (Ri), and expiratory resistance (Re) among each group after 24 weeks of moxa smoke exposure (P>0.05). Compared with the control group (0.33 ml/cmH20), dynamic compliance (Cdyn) was reduced in the medium (0.29 ml/cmH20) and high (0.25 ml/cmH20) concentration groups (P<0.05); however, Cdyn in the low concentration group (0.29 ml/cmH20) was not significantly affected. CONCLUSION Moxa smoke exposure at low concentrations did not affect the rat's lung function. Moxa smoke of medium and high concentrations destroyed the lung function represented by decreased Cdyn. However, moxa smoke of low concentrations (27.45 mg/m3) is much higher than the concentration in a regular moxibustion clinic (3.54 mg/m3). Moxa smoke at higher concentrations might destroy the lung function. The safety evaluation of moxa smoke requires further research.
Collapse
Affiliation(s)
- Rui He
- Beijing University of Chinese Medicine, Beijing, China
| | - Li Han
- Beijing University of Chinese Medicine, Beijing, China
| | - Ping Liu
- Beijing Electric Power Hospital, Beijing, China
| | - Hai Hu
- Beijing Hospital of Acupuncture and Moxibustion, Beijing, China
| | - Jia Yang
- Beijing University of Chinese Medicine, Beijing, China
| | - Hong Cai
- Chongqing Yubei District Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Chang Huang
- Beijing University of Chinese Medicine, Beijing, China
| | - Lei Wang
- Beijing University of Chinese Medicine, Beijing, China
| | - Juntian Liu
- Beijing Hospital of Acupuncture and Moxibustion, Beijing, China
| | - Jian Huang
- Beijing University of Chinese Medicine, Beijing, China
| | - Lue Ha
- Beijing University of Chinese Medicine, Beijing, China
| | - Yaomeng Liu
- Beijing University of Chinese Medicine, Beijing, China
| | - Jihong Wu
- Beijing University of Chinese Medicine, Beijing, China
| | - Maoxiang Zhu
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Baixiao Zhao
- Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
12
|
Dautzenberg B, Dautzenberg MD. [Systematic analysis of the scientific literature on heated tobacco]. Rev Mal Respir 2019; 36:82-103. [PMID: 30429092 DOI: 10.1016/j.rmr.2018.10.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/26/2018] [Indexed: 10/27/2022]
Abstract
INTRODUCTION The tobacco industry (TI) reports that heated tobacco reduces risk of tobacco use and will replace cigarettes. An analysis of the scientific literature was conducted in order to enlighten professionals and decision-makers. METHOD After a Medline query in February 2018, a systematic analysis was conducted. RESULTS Of the 100 papers published in 2008-2018, 75 have authors affiliated or linked to TI. Emissions contain gases, droplets and solid particles, so are smokes. The main products are: THS2.2 (Iqos®) which heats mini-cigarettes at 340°C, the THP1.0 (Glo®) which heats at 240°C sticks delivering about half as much nicotine, Ploom® which uses reconstituted tobacco microcapsules heated at 180°C. Under the experimental conditions, there is a reduction of toxic emissions and biological effects, but the expected risk reduction is not demonstrated. Symptoms related to passive smoking are described. The 4 epidemiological articles report that heated tobacco is used in 10 to 45% of cases by non-smokers and demonstrate the effectiveness of TI promotion campaigns. Thus, the THS2.2 is more a gateway to smoking (20%) than an exit door (11%); moreover, it is not expected risk reduction among the 69% who are mixed users. CONCLUSIONS While reducing emissions is documented, reducing the risk to the smoker who switches to heated-tobacco remains to be demonstrated. On the other hand, the worsening of the global tobacco risk related to the promotion of the products by the TI is anticipated, justifying that the authorities take the appropriate measures to control the promotion of heated tobacco.
Collapse
Affiliation(s)
- B Dautzenberg
- Service de pharmacologie, Pitié-Salpêtrière, AP-HP, 75013 Paris, France; Consultation de médecine, hôpital Marmottan, 75017 Paris, France; Consultation de tabacologie, institut Arthur-Vernes, 75006 Paris, France; Paris sans tabac, 14, avenue Bosquet, 75007 Paris, France.
| | | |
Collapse
|
13
|
Aokage T, Tsukahara K, Fukuda Y, Tokioka F, Taniguchi A, Naito H, Nakao A. Heat-not-burn cigarettes induce fulminant acute eosinophilic pneumonia requiring extracorporeal membrane oxygenation. Respir Med Case Rep 2018; 26:87-90. [PMID: 30560050 PMCID: PMC6288977 DOI: 10.1016/j.rmcr.2018.12.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/30/2018] [Accepted: 12/02/2018] [Indexed: 12/12/2022] Open
Abstract
Background Although the cause of acute eosinophilic pneumonia (AEP) has not yet been fully clarified, cigarette smoking is reported to be a risk factor for developing AEP. The heat-not-burn cigarette (HNBC) was developed to reduce the adverse effects of smoke on the user's surroundings. However, the health risks associated with HNBCs have not yet been clarified. We report a successfully treated case of fatal AEP presumably induced by HNBC use. Presentation of case A 16-year-old man commenced HNBC smoking two weeks before admission and subsequently suffered from shortness of breath that gradually worsened. The patient was transferred to emergency department and immediately intubated because of respiratory failure. Computed tomography showed mosaic ground-glass shadows on the distal side of both lungs with a PaO2/FIO2 ratio of 76. The patient required veno-venous extracorporeal membrane oxygenation (ECMO) for severe respiratory failure. He was diagnosed with AEP by clinical course and detection of eosinophils in sputum; thus, methylprednisolone was administrated. The patient was weaned off ECMO four days after initiation and extubated the day after. He fully recovered without sequelae. Conclusion As far as we know, our patient is the first case of AEP induced by HNBC use successfully treated with ECMO. Emergency physicians must be aware that HNBCs can induce fatal AEP. The use of heat-not-burn cigarettes has been increasing in recent years. The effects of heat-not-burn cigarettes on health have not yet been clarified. Heat-not-burn cigarettes possibly induce acute eosinophilic pneumonia. Extracorporeal membrane oxygenation was effective in a patient with a severe case of acute eosinophilic pneumonia.
Collapse
Key Words
- AEP, acute eosinophilic pneumonia
- Acute eosinophilic pneumonia
- BAL, bronchoalveolar lavage
- CT, computed tomography
- Cigarettes
- ECMO
- ECMO, extracorporeal membrane oxygenation
- Extracorporeal membrane oxygenation
- FIO2, fraction of inspiratory oxygen
- HNBC, heat-not-burn cigarette
- Heat-not-burn cigarettes
- IV, intravenous administration
- PEEP, positive end-expiratory pressure
- PSL, prednisolone
- PaO2, partial pressure of arterial oxygen
- Pplat, plateau pressure
- SpO2, oxygen saturation of pulse oximetry
- Tobacco
- VV, veno-venous
- mPSL, methylprednisolone
Collapse
Affiliation(s)
- Toshiyuki Aokage
- Department of Geriatric Emergency Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Corresponding author. Department of Geriatric Emergency Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| | - Kohei Tsukahara
- Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yasushi Fukuda
- Department of Respiratory Medicine, Kurashiki Central Hospital, Kurashiki, Japan
| | - Fumiaki Tokioka
- Department of Respiratory Medicine, Kurashiki Central Hospital, Kurashiki, Japan
| | - Akihiko Taniguchi
- Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiromichi Naito
- Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Atsunori Nakao
- Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
14
|
Poussin C, Laurent A, Kondylis A, Marescotti D, van der Toorn M, Guedj E, Goedertier D, Acali S, Pak C, Dulize R, Baumer K, Peric D, Maluenda E, Bornand D, Suarez IG, Schlage WK, Ivanov NV, Peitsch MC, Hoeng J. In vitro systems toxicology-based assessment of the potential modified risk tobacco product CHTP 1.2 for vascular inflammation- and cytotoxicity-associated mechanisms promoting adhesion of monocytic cells to human coronary arterial endothelial cells. Food Chem Toxicol 2018; 120:390-406. [PMID: 30026091 DOI: 10.1016/j.fct.2018.07.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/29/2018] [Accepted: 07/13/2018] [Indexed: 12/24/2022]
Abstract
Cigarette smoking causes cardiovascular diseases. Heating tobacco instead of burning it reduces the amount of toxic compounds in the aerosol and may exert a reduced impact on health compared with cigarette smoke. Aqueous extract from the aerosol of a potential modified risk tobacco product, the Carbon Heated Tobacco Product (CHTP) 1.2, was compared in vitro with aqueous extract from the smoke of a 3R4F reference cigarette for its impact on the adhesion of monocytic cells to artery endothelial cells. Human coronary artery endothelial cells (HCAEC) were treated for 4 h with conditioned media from human monocytic Mono Mac 6 (MM6) cells exposed to CHTP1.2 or 3R4F extracts for 2 h or directly with those extracts freshly generated. In vitro monocyte-endothelial cell adhesion was measured concomitantly with inflammatory, oxidative stress, cytotoxicity, and death markers. Furthermore, transcriptomics analyses enabled to quantify the level of perturbation in HCAECs, and provide biological interpretation for the underlying molecular changes following exposure to 3R4F or CHTP1.2 extract. Our systems toxicology study demonstrated that approximately 10-15-fold higher concentrations of the CHTP 1.2 aerosol extract were needed to elicit similar effects as the 3R4F smoke extract on cardiovascular disease-relevant inflammation and cytotoxicity-related mechanisms and markers investigated in vitro.
Collapse
Affiliation(s)
- Carine Poussin
- PMI R&D, Philip Morris Products S.A., Part of Philip Morris International Group of Companies, Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland.
| | - Alexandra Laurent
- PMI R&D, Philip Morris Products S.A., Part of Philip Morris International Group of Companies, Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Athanasios Kondylis
- PMI R&D, Philip Morris Products S.A., Part of Philip Morris International Group of Companies, Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Diego Marescotti
- PMI R&D, Philip Morris Products S.A., Part of Philip Morris International Group of Companies, Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Marco van der Toorn
- PMI R&D, Philip Morris Products S.A., Part of Philip Morris International Group of Companies, Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Emmanuel Guedj
- PMI R&D, Philip Morris Products S.A., Part of Philip Morris International Group of Companies, Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Didier Goedertier
- PMI R&D, Philip Morris Products S.A., Part of Philip Morris International Group of Companies, Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Stefano Acali
- PMI R&D, Philip Morris Products S.A., Part of Philip Morris International Group of Companies, Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Claudius Pak
- PMI R&D, Philip Morris Products S.A., Part of Philip Morris International Group of Companies, Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Rémi Dulize
- PMI R&D, Philip Morris Products S.A., Part of Philip Morris International Group of Companies, Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Karine Baumer
- PMI R&D, Philip Morris Products S.A., Part of Philip Morris International Group of Companies, Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Dariusz Peric
- PMI R&D, Philip Morris Products S.A., Part of Philip Morris International Group of Companies, Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Elodie Maluenda
- PMI R&D, Philip Morris Products S.A., Part of Philip Morris International Group of Companies, Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - David Bornand
- PMI R&D, Philip Morris Products S.A., Part of Philip Morris International Group of Companies, Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Ignacio Gonzalez Suarez
- PMI R&D, Philip Morris Products S.A., Part of Philip Morris International Group of Companies, Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Walter K Schlage
- Biology Consultant, Max-Baermann-Str. 21, 51429 Bergisch Gladbach, Germany
| | - Nikolai V Ivanov
- PMI R&D, Philip Morris Products S.A., Part of Philip Morris International Group of Companies, Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Manuel C Peitsch
- PMI R&D, Philip Morris Products S.A., Part of Philip Morris International Group of Companies, Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Julia Hoeng
- PMI R&D, Philip Morris Products S.A., Part of Philip Morris International Group of Companies, Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| |
Collapse
|
15
|
Cigarette smoke condensate may disturb immune function with apoptotic cell death by impairing function of organelles in alveolar macrophages. Toxicol In Vitro 2018; 52:351-364. [DOI: 10.1016/j.tiv.2018.07.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 07/16/2018] [Accepted: 07/17/2018] [Indexed: 01/24/2023]
|
16
|
Crooks I, Neilson L, Scott K, Reynolds L, Oke T, Forster M, Meredith C, McAdam K, Proctor C. Evaluation of flavourings potentially used in a heated tobacco product: Chemical analysis, in vitro mutagenicity, genotoxicity, cytotoxicity and in vitro tumour promoting activity. Food Chem Toxicol 2018; 118:940-952. [PMID: 29879435 DOI: 10.1016/j.fct.2018.05.058] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 05/22/2018] [Accepted: 05/25/2018] [Indexed: 10/14/2022]
Abstract
We designed a novel tobacco-heating product (THP) that heats tobacco to release nicotine and aerosolised components, such as glycerol and tobacco volatiles from a tobacco rod (Neostik). Heating tobacco significantly reduces levels of combustion-derived toxicants in the aerosol compared to cigarette smoke. This study was conducted to determine whether the inclusion of potential flavourings in the THP would add to the levels of toxicants in the emissions or alter in vitro responses. Levels of measured toxicants were similar in the flavoured and unflavoured Neostik emissions and significantly less than emissions from the reference cigarette, 3R4F. No mutagenicity was observed with the Neostiks in the Ames test or in the mouse lymphoma assay. There was evidence of a weak genotoxic response in the in vitro micronucleus test using V79 cells from both Neostiks and these responses were less than 3R4F. They did not show tumour-promoting potential in the Bhas 42 cell transformation assay and were not cytotoxic in the Neutral Red uptake assay. 3R4F elicited toxic responses in all assays at significantly lower concentrations. The addition of flavourings to the Neostik tested did not alter the chemical profile of THP emissions or change in vitro responses relative to the unflavoured Neostik.
Collapse
Affiliation(s)
- Ian Crooks
- Research and Development, British American Tobacco Investments Ltd., Regents Park Road, Southampton, Hampshire, SO15 8TL, UK.
| | - Louise Neilson
- Research and Development, British American Tobacco Investments Ltd., Regents Park Road, Southampton, Hampshire, SO15 8TL, UK
| | - Ken Scott
- Research and Development, British American Tobacco Investments Ltd., Regents Park Road, Southampton, Hampshire, SO15 8TL, UK
| | - Lorna Reynolds
- Research and Development, British American Tobacco Investments Ltd., Regents Park Road, Southampton, Hampshire, SO15 8TL, UK
| | - Tobi Oke
- Research and Development, British American Tobacco Investments Ltd., Regents Park Road, Southampton, Hampshire, SO15 8TL, UK
| | - Mark Forster
- Research and Development, British American Tobacco Investments Ltd., Regents Park Road, Southampton, Hampshire, SO15 8TL, UK
| | - Clive Meredith
- Research and Development, British American Tobacco Investments Ltd., Regents Park Road, Southampton, Hampshire, SO15 8TL, UK
| | - Kevin McAdam
- Research and Development, British American Tobacco Investments Ltd., Regents Park Road, Southampton, Hampshire, SO15 8TL, UK
| | - Chris Proctor
- Research and Development, British American Tobacco Investments Ltd., Regents Park Road, Southampton, Hampshire, SO15 8TL, UK
| |
Collapse
|
17
|
Phillips BW, Schlage WK, Titz B, Kogel U, Sciuscio D, Martin F, Leroy P, Vuillaume G, Krishnan S, Lee T, Veljkovic E, Elamin A, Merg C, Ivanov NV, Peitsch MC, Hoeng J, Vanscheeuwijck P. A 90-day OECD TG 413 rat inhalation study with systems toxicology endpoints demonstrates reduced exposure effects of the aerosol from the carbon heated tobacco product version 1.2 (CHTP1.2) compared with cigarette smoke. I. Inhalation exposure, clinical pathology and histopathology. Food Chem Toxicol 2018; 116:388-413. [PMID: 29654848 DOI: 10.1016/j.fct.2018.04.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 03/28/2018] [Accepted: 04/07/2018] [Indexed: 01/25/2023]
Abstract
Within the framework of a systems toxicology approach, the inhalation toxicity of aerosol from a novel tobacco-heating potentially modified risk tobacco product (MRTP), the carbon-heated tobacco product (CHTP) 1.2, was characterized and compared with that of mainstream smoke (CS) from the 3R4F reference cigarette in a 90-day nose-only rat inhalation study in general accordance with OECD TG 413. CHTP1.2 is a heat-not-burn product using a carbon heat source to produce an aerosol that contains nicotine and tobacco flavor. At equal or twice the nicotine concentration in the test atmospheres, inhalation of CHTP1.2 aerosol led to a significantly lower exposure to harmful constituents and induced less respiratory tract irritation, systemic, and pathological effects compared with CS. Nasal epithelial changes were less pronounced in the CHTP1.2- than in the CS-exposed groups and reverted in the nicotine concentration-matched group after a recovery period. Lung inflammation was minimal in the CHTP1.2-treated groups compared with the moderate extent seen in the 3R4F groups. Many other toxicological endpoints evaluated did not show CHTP1.2 aerosol exposure-related effects, and no effects not seen for 3R4F were observed. These observations were consistent with findings from previous studies in which rats were exposed to MRTP aerosols containing similar nicotine concentrations.
Collapse
Affiliation(s)
- Blaine W Phillips
- PMI R&D, Philip Morris International Research Laboratories Pte. Ltd., Science Park II, Singapore
| | - Walter K Schlage
- Biology Consultant, Max-Baermann-Str. 21, 51429, Bergisch Gladbach, Germany
| | - Bjoern Titz
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchatel, Switzerland
| | - Ulrike Kogel
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchatel, Switzerland
| | - Davide Sciuscio
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchatel, Switzerland
| | - Florian Martin
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchatel, Switzerland
| | - Patrice Leroy
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchatel, Switzerland
| | - Gregory Vuillaume
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchatel, Switzerland
| | - Subash Krishnan
- PMI R&D, Philip Morris International Research Laboratories Pte. Ltd., Science Park II, Singapore
| | - Tom Lee
- PMI R&D, Philip Morris International Research Laboratories Pte. Ltd., Science Park II, Singapore
| | - Emilija Veljkovic
- PMI R&D, Philip Morris International Research Laboratories Pte. Ltd., Science Park II, Singapore
| | - Ashraf Elamin
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchatel, Switzerland
| | - Celine Merg
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchatel, Switzerland
| | - Nikolai V Ivanov
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchatel, Switzerland
| | - Manuel C Peitsch
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchatel, Switzerland
| | - Julia Hoeng
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchatel, Switzerland
| | - Patrick Vanscheeuwijck
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchatel, Switzerland.
| |
Collapse
|
18
|
Pack EC, Jang DY, Kim HS, Lee SH, Kim HY, Song SH, Cho HS, Kwon KH, Park KH, Lim KM, Choi DW. Mixture risk assessment of selected mainstream cigarette smoke constituents generated from low-yield cigarettes in South Korean smokers. Regul Toxicol Pharmacol 2018; 94:152-162. [PMID: 29408505 DOI: 10.1016/j.yrtph.2018.01.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/28/2017] [Accepted: 01/27/2018] [Indexed: 10/18/2022]
Abstract
A total of 38 hazardous constituents in mainstream cigarette smoke of low-yield cigarettes sold in Korea were selected and analyzed using established methods. Risk calculations were performed using risk algorithms employed in previous studies and Korean population-based exposure parameters. The median cumulative incremental lifetime cancer risk of male smokers could vary from 828 × 10-6 to 2510 × 10-6, and that of female smokers could range from 440 × 10-6 to 1300 × 10-6, depending on the smoking regimens. The median hazard index as the sum of hazard quotients of male smokers varied from 367 to 1,225, and that of female smokers varied from 289 to 970, depending on the smoking regimens. The sensitivity analysis for this risk assessment indicated that the constituent yields in mainstream cigarette smoke, average number of cigarettes smoked per day or year, and mouth-spill rate are the main risk factors. Statistical positive correlations between the average daily dose calculated by the exposure algorithm used in this study for individual smokers and biomarkers verified the reliability of this assessment. It could be concluded that inhalation of the constituents present in the mainstream of low-yield cigarettes has significant cancer and non-cancer health risks, although its effect on risk reduction is still unknown under the fixed machine-smoking conditions.
Collapse
Affiliation(s)
- Eun Chul Pack
- Department of Public Health Sciences, Graduate School, Korea University, Seoul, Republic of Korea
| | - Dae Yong Jang
- Department of Public Health Sciences, Graduate School, Korea University, Seoul, Republic of Korea
| | - Hyung Soo Kim
- Department of Public Health Sciences, Graduate School, Korea University, Seoul, Republic of Korea
| | - Seung Ha Lee
- Department of Public Health Sciences, Graduate School, Korea University, Seoul, Republic of Korea
| | - Hae Young Kim
- Department of Public Health Sciences, Graduate School, Korea University, Seoul, Republic of Korea
| | - Seok Ho Song
- Korea Conformity Laboratories, Seoul, Republic of Korea
| | - Hoon Sik Cho
- Korea Conformity Laboratories, Seoul, Republic of Korea.
| | - Kyeng Hee Kwon
- College of Pharmacy, Dongguk University, Goyang-city, Gyeonggi-do, Republic of Korea
| | - Kun Ho Park
- Korea Chemical Management Association, Seoul, Republic of Korea
| | - Kyung Min Lim
- College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
| | - Dal Woong Choi
- Department of Public Health Sciences, Graduate School, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
19
|
Poussin C, Belcastro V, Martin F, Boué S, Peitsch MC, Hoeng J. Crowd-Sourced Verification of Computational Methods and Data in Systems Toxicology: A Case Study with a Heat-Not-Burn Candidate Modified Risk Tobacco Product. Chem Res Toxicol 2017; 30:934-945. [PMID: 28085253 DOI: 10.1021/acs.chemrestox.6b00345] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Systems toxicology intends to quantify the effect of toxic molecules in biological systems and unravel their mechanisms of toxicity. The development of advanced computational methods is required for analyzing and integrating high throughput data generated for this purpose as well as for extrapolating predictive toxicological outcomes and risk estimates. To ensure the performance and reliability of the methods and verify conclusions from systems toxicology data analysis, it is important to conduct unbiased evaluations by independent third parties. As a case study, we report here the results of an independent verification of methods and data in systems toxicology by crowdsourcing. The sbv IMPROVER systems toxicology computational challenge aimed to evaluate computational methods for the development of blood-based gene expression signature classification models with the ability to predict smoking exposure status. Participants created/trained models on blood gene expression data sets including smokers/mice exposed to 3R4F (a reference cigarette) or noncurrent smokers/Sham (mice exposed to air). Participants applied their models on unseen data to predict whether subjects classify closer to smoke-exposed or nonsmoke exposed groups. The data sets also included data from subjects that had been exposed to potential modified risk tobacco products (MRTPs) or that had switched to a MRTP after exposure to conventional cigarette smoke. The scoring of anonymized participants' predictions was done using predefined metrics. The top 3 performers' methods predicted class labels with area under the precision recall scores above 0.9. Furthermore, although various computational approaches were used, the crowd's results confirmed our own data analysis outcomes with regards to the classification of MRTP-related samples. Mice exposed directly to a MRTP were classified closer to the Sham group. After switching to a MRTP, the confidence that subjects belonged to the smoke-exposed group decreased significantly. Smoking exposure gene signatures that contributed to the group separation included a core set of genes highly consistent across teams such as AHRR, LRRN3, SASH1, and P2RY6. In conclusion, crowdsourcing constitutes a pertinent approach, in complement to the classical peer review process, to independently and unbiasedly verify computational methods and data for risk assessment using systems toxicology.
Collapse
Affiliation(s)
- Carine Poussin
- PMI R&D, Philip Morris Products S.A. , Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland (Part of Philip Morris International group of companies)
| | - Vincenzo Belcastro
- PMI R&D, Philip Morris Products S.A. , Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland (Part of Philip Morris International group of companies)
| | - Florian Martin
- PMI R&D, Philip Morris Products S.A. , Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland (Part of Philip Morris International group of companies)
| | - Stéphanie Boué
- PMI R&D, Philip Morris Products S.A. , Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland (Part of Philip Morris International group of companies)
| | - Manuel C Peitsch
- PMI R&D, Philip Morris Products S.A. , Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland (Part of Philip Morris International group of companies)
| | - Julia Hoeng
- PMI R&D, Philip Morris Products S.A. , Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland (Part of Philip Morris International group of companies)
| |
Collapse
|
20
|
De Giacomi F, Decker PA, Vassallo R, Ryu JH. Acute Eosinophilic Pneumonia: Correlation of Clinical Characteristics With Underlying Cause. Chest 2017; 152:379-385. [PMID: 28286263 DOI: 10.1016/j.chest.2017.03.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 02/13/2017] [Accepted: 03/01/2017] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Acute eosinophilic pneumonia (AEP) is an uncommon disease, often indistinguishable from ARDS or community-acquired pneumonia at initial presentation. AEP can be idiopathic, but identifiable causes include medications and inhalational exposures, including cigarette smoke. METHODS Using a computer-assisted search, we retrospectively identified and reviewed the medical records of all patients diagnosed with AEP between January 1, 1998, and June 30, 2016, at our institution. Demographic and clinical data were extracted, including exposures (occupational, environmental, recreational, pharmacologic, and smoking), laboratory and radiologic findings, treatments, hospitalization (including ICU stay), and subsequent clinical course. RESULTS Among 36 consecutive patients with AEP, 11 were smoking-related cases, six were medication-related cases and 19 were idiopathic. Smoking-related AEP included six first-time smokers and five ex-smokers who had resumed smoking after a period of abstinence. Patients with smoking-related AEP were younger compared with both medication-related and idiopathic AEP cases (median age: 22 vs 47.5 vs 55 years, respectively; P = .004). Patients with smoking-related AEP were less likely to be associated with peripheral eosinophilia at presentation (36% vs 50% vs 58%; P = .52) but more likely to be hospitalized (100% vs 50% vs 63%; P = .039), including a longer ICU stay, compared with medication-related and idiopathic cases. CONCLUSIONS AEP is associated with a good prognosis when recognized and treated promptly. Compared with medication-related and idiopathic AEP, smoking-related AEP was less likely to be associated with peripheral eosinophilia at presentation but was characterized by more severe disease manifestations.
Collapse
Affiliation(s)
- Federica De Giacomi
- Dipartimento Cardio-Toraco-Vascolare, University of Milan-Bicocca, Respiratory Unit, San Gerardo Hospital, Monza, Italy; Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN
| | - Paul A Decker
- Health Sciences Research, Mayo Clinic, Rochester, MN
| | - Robert Vassallo
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN
| | - Jay H Ryu
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN.
| |
Collapse
|
21
|
Oviedo A, Lebrun S, Kogel U, Ho J, Tan WT, Titz B, Leroy P, Vuillaume G, Bera M, Martin F, Rodrigo G, Esposito M, Dempsey R, Ivanov NV, Hoeng J, Peitsch MC, Vanscheeuwijck P. Evaluation of the Tobacco Heating System 2.2. Part 6: 90-day OECD 413 rat inhalation study with systems toxicology endpoints demonstrates reduced exposure effects of a mentholated version compared with mentholated and non-mentholated cigarette smoke. Regul Toxicol Pharmacol 2016; 81 Suppl 2:S93-S122. [DOI: 10.1016/j.yrtph.2016.11.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/28/2016] [Accepted: 11/01/2016] [Indexed: 10/20/2022]
|
22
|
Wong ET, Kogel U, Veljkovic E, Martin F, Xiang Y, Boue S, Vuillaume G, Leroy P, Guedj E, Rodrigo G, Ivanov NV, Hoeng J, Peitsch MC, Vanscheeuwijck P. Evaluation of the Tobacco Heating System 2.2. Part 4: 90-day OECD 413 rat inhalation study with systems toxicology endpoints demonstrates reduced exposure effects compared with cigarette smoke. Regul Toxicol Pharmacol 2016; 81 Suppl 2:S59-S81. [DOI: 10.1016/j.yrtph.2016.10.015] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 10/04/2016] [Accepted: 10/24/2016] [Indexed: 10/20/2022]
|
23
|
Schaller JP, Keller D, Poget L, Pratte P, Kaelin E, McHugh D, Cudazzo G, Smart D, Tricker AR, Gautier L, Yerly M, Reis Pires R, Le Bouhellec S, Ghosh D, Hofer I, Garcia E, Vanscheeuwijck P, Maeder S. Evaluation of the Tobacco Heating System 2.2. Part 2: Chemical composition, genotoxicity, cytotoxicity, and physical properties of the aerosol. Regul Toxicol Pharmacol 2016; 81 Suppl 2:S27-S47. [DOI: 10.1016/j.yrtph.2016.10.001] [Citation(s) in RCA: 212] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 10/04/2016] [Accepted: 10/05/2016] [Indexed: 12/27/2022]
|
24
|
Kamada T, Yamashita Y, Tomioka H. Acute eosinophilic pneumonia following heat-not-burn cigarette smoking. Respirol Case Rep 2016; 4:e00190. [PMID: 28031826 PMCID: PMC5167280 DOI: 10.1002/rcr2.190] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 08/19/2016] [Accepted: 08/22/2016] [Indexed: 11/25/2022] Open
Abstract
A 20‐year‐old man was admitted with acute respiratory failure. He had started smoking 20 heat‐not‐burn cigarettes (HC) per day 6 months previously, then purchased a second device for smoking HC to increase smoking to 40 cigarettes per day 2 weeks before hospitalization. Acute eosinophilic pneumonia (AEP) was diagnosed based on medical history, chest high‐resolution computed tomographic findings, and bronchoalveolar lavage fluid eosinophilia. On starting treatment with prednisolone, the patient exhibited complete recovery. A relationship between cigarette smoking and AEP has been suggested. HC were released in September 2015 in Japan, Italy, and Switzerland. HC attract attention as a cigarette generating less harmful substances than a conventional cigarette. We herein report the first case of AEP caused by smoking HC. HC are expected to spread around the world. In the same way as a conventional cigarette, HC should be recognized as a potential cause of AEP.
Collapse
Affiliation(s)
- Takahiro Kamada
- Department of Respiratory Medicine Kobe City Medical Center West Hospital Kobe Japan
| | - Yosuke Yamashita
- Department of Respiratory Medicine Kobe City Medical Center West Hospital Kobe Japan
| | - Hiromi Tomioka
- Department of Respiratory Medicine Kobe City Medical Center West Hospital Kobe Japan
| |
Collapse
|
25
|
Lo Sasso G, Titz B, Nury C, Boué S, Phillips B, Belcastro V, Schneider T, Dijon S, Baumer K, Peric D, Dulize R, Elamin A, Guedj E, Buettner A, Leroy P, Kleinhans S, Vuillaume G, Veljkovic E, Ivanov NV, Martin F, Vanscheeuwijck P, Peitsch MC, Hoeng J. Effects of cigarette smoke, cessation and switching to a candidate modified risk tobacco product on the liver in Apoe -/- mice--a systems toxicology analysis. Inhal Toxicol 2016; 28:226-40. [PMID: 27027324 DOI: 10.3109/08958378.2016.1150368] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 01/14/2016] [Accepted: 02/01/2016] [Indexed: 12/11/2022]
Abstract
The liver is one of the most important organs involved in elimination of xenobiotic and potentially toxic substances. Cigarette smoke (CS) contains more than 7000 chemicals, including those that exert biological effects and cause smoking-related diseases. Though CS is not directly hepatotoxic, a growing body of evidence suggests that it may exacerbate pre-existing chronic liver disease. In this study, we integrated toxicological endpoints with molecular measurements and computational analyses to investigate effects of exposures on the livers of Apoe(-/- )mice. Mice were exposed to 3R4F reference CS, to an aerosol from the Tobacco Heating System (THS) 2.2, a candidate modified risk tobacco product (MRTP) or to filtered air (Sham) for up to 8 months. THS2.2 takes advantage of a "heat-not-burn" technology that, by heating tobacco, avoids pyrogenesis and pyrosynthesis. After CS exposure for 2 months, some groups were either switched to the MRTP or filtered air. While no group showed clear signs of hepatotoxicity, integrative analysis of proteomics and transcriptomics data showed a CS-dependent impairment of specific biological networks. These networks included lipid and xenobiotic metabolism and iron homeostasis that likely contributed synergistically to exacerbating oxidative stress. In contrast, most proteomic and transcriptomic changes were lower in mice exposed to THS2.2 and in the cessation and switching groups compared to the CS group. Our findings elucidate the complex biological responses of the liver to CS exposure. Furthermore, they provide evidence that THS2.2 aerosol has reduced biological effects, as compared with CS, on the livers of Apoe(-/- )mice.
Collapse
Affiliation(s)
- Giuseppe Lo Sasso
- a Philip Morris International Research and Development , Neuchatel , Switzerland
| | - Bjoern Titz
- a Philip Morris International Research and Development , Neuchatel , Switzerland
| | - Catherine Nury
- a Philip Morris International Research and Development , Neuchatel , Switzerland
| | - Stéphanie Boué
- a Philip Morris International Research and Development , Neuchatel , Switzerland
| | - Blaine Phillips
- b Philip Morris International Research Laboratories , Singapore , Singapore , and
| | - Vincenzo Belcastro
- a Philip Morris International Research and Development , Neuchatel , Switzerland
| | - Thomas Schneider
- a Philip Morris International Research and Development , Neuchatel , Switzerland
| | - Sophie Dijon
- a Philip Morris International Research and Development , Neuchatel , Switzerland
| | - Karine Baumer
- a Philip Morris International Research and Development , Neuchatel , Switzerland
| | - Daruisz Peric
- a Philip Morris International Research and Development , Neuchatel , Switzerland
| | - Remi Dulize
- a Philip Morris International Research and Development , Neuchatel , Switzerland
| | - Ashraf Elamin
- a Philip Morris International Research and Development , Neuchatel , Switzerland
| | - Emmanuel Guedj
- a Philip Morris International Research and Development , Neuchatel , Switzerland
| | | | - Patrice Leroy
- a Philip Morris International Research and Development , Neuchatel , Switzerland
| | - Samuel Kleinhans
- a Philip Morris International Research and Development , Neuchatel , Switzerland
| | - Gregory Vuillaume
- a Philip Morris International Research and Development , Neuchatel , Switzerland
| | - Emilija Veljkovic
- a Philip Morris International Research and Development , Neuchatel , Switzerland
| | - Nikolai V Ivanov
- a Philip Morris International Research and Development , Neuchatel , Switzerland
| | - Florian Martin
- a Philip Morris International Research and Development , Neuchatel , Switzerland
| | | | - Manuel C Peitsch
- a Philip Morris International Research and Development , Neuchatel , Switzerland
| | - Julia Hoeng
- a Philip Morris International Research and Development , Neuchatel , Switzerland
| |
Collapse
|
26
|
Phillips B, Veljkovic E, Boué S, Schlage WK, Vuillaume G, Martin F, Titz B, Leroy P, Buettner A, Elamin A, Oviedo A, Cabanski M, De León H, Guedj E, Schneider T, Talikka M, Ivanov NV, Vanscheeuwijck P, Peitsch MC, Hoeng J. An 8-Month Systems Toxicology Inhalation/Cessation Study in Apoe-/- Mice to Investigate Cardiovascular and Respiratory Exposure Effects of a Candidate Modified Risk Tobacco Product, THS 2.2, Compared With Conventional Cigarettes. Toxicol Sci 2016; 149:411-32. [PMID: 26609137 PMCID: PMC4725610 DOI: 10.1093/toxsci/kfv243] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Smoking cigarettes is a major risk factor in the development and progression of cardiovascular disease (CVD) and chronic obstructive pulmonary disease (COPD). Modified risk tobacco products (MRTPs) are being developed to reduce smoking-related health risks. The goal of this study was to investigate hallmarks of COPD and CVD over an 8-month period in apolipoprotein E-deficient mice exposed to conventional cigarette smoke (CS) or to the aerosol of a candidate MRTP, tobacco heating system (THS) 2.2. In addition to chronic exposure, cessation or switching to THS2.2 after 2 months of CS exposure was assessed. Engaging a systems toxicology approach, exposure effects were investigated using physiology and histology combined with transcriptomics, lipidomics, and proteomics. CS induced nasal epithelial hyperplasia and metaplasia, lung inflammation, and emphysematous changes (impaired pulmonary function and alveolar damage). Atherogenic effects of CS exposure included altered lipid profiles and aortic plaque formation. Exposure to THS2.2 aerosol (nicotine concentration matched to CS, 29.9 mg/m(3)) neither induced lung inflammation or emphysema nor did it consistently change the lipid profile or enhance the plaque area. Cessation or switching to THS2.2 reversed the inflammatory responses and halted progression of initial emphysematous changes and the aortic plaque area. Biological processes, including senescence, inflammation, and proliferation, were significantly impacted by CS but not by THS2.2 aerosol. Both, cessation and switching to THS2.2 reduced these perturbations to almost sham exposure levels. In conclusion, in this mouse model cessation or switching to THS2.2 retarded the progression of CS-induced atherosclerotic and emphysematous changes, while THS2.2 aerosol alone had minimal adverse effects.
Collapse
Affiliation(s)
- Blaine Phillips
- *Philip Morris International Research Laboratories Pte Ltd, The Kendall #02-07, Science Park II, Singapore 117406
| | - Emilija Veljkovic
- Philip Morris International R&D, Philip Morris Products S.A., 2000 Neuchâtel, Switzerland
| | - Stéphanie Boué
- Philip Morris International R&D, Philip Morris Products S.A., 2000 Neuchâtel, Switzerland
| | - Walter K Schlage
- WK Schlage Biology Consulting, 51429 Bergisch Gladbach, Germany; and
| | - Gregory Vuillaume
- Philip Morris International R&D, Philip Morris Products S.A., 2000 Neuchâtel, Switzerland
| | - Florian Martin
- Philip Morris International R&D, Philip Morris Products S.A., 2000 Neuchâtel, Switzerland
| | - Bjoern Titz
- Philip Morris International R&D, Philip Morris Products S.A., 2000 Neuchâtel, Switzerland
| | - Patrice Leroy
- Philip Morris International R&D, Philip Morris Products S.A., 2000 Neuchâtel, Switzerland
| | | | - Ashraf Elamin
- Philip Morris International R&D, Philip Morris Products S.A., 2000 Neuchâtel, Switzerland
| | - Alberto Oviedo
- *Philip Morris International Research Laboratories Pte Ltd, The Kendall #02-07, Science Park II, Singapore 117406
| | - Maciej Cabanski
- Philip Morris International R&D, Philip Morris Products S.A., 2000 Neuchâtel, Switzerland
| | - Héctor De León
- Philip Morris International R&D, Philip Morris Products S.A., 2000 Neuchâtel, Switzerland
| | - Emmanuel Guedj
- Philip Morris International R&D, Philip Morris Products S.A., 2000 Neuchâtel, Switzerland
| | - Thomas Schneider
- Philip Morris International R&D, Philip Morris Products S.A., 2000 Neuchâtel, Switzerland
| | - Marja Talikka
- Philip Morris International R&D, Philip Morris Products S.A., 2000 Neuchâtel, Switzerland
| | - Nikolai V Ivanov
- Philip Morris International R&D, Philip Morris Products S.A., 2000 Neuchâtel, Switzerland
| | - Patrick Vanscheeuwijck
- Philip Morris International R&D, Philip Morris Products S.A., 2000 Neuchâtel, Switzerland
| | - Manuel C Peitsch
- Philip Morris International R&D, Philip Morris Products S.A., 2000 Neuchâtel, Switzerland
| | - Julia Hoeng
- Philip Morris International R&D, Philip Morris Products S.A., 2000 Neuchâtel, Switzerland;
| |
Collapse
|
27
|
Poussin C, Laurent A, Peitsch MC, Hoeng J, De Leon H. Systems toxicology-based assessment of the candidate modified risk tobacco product THS2.2 for the adhesion of monocytic cells to human coronary arterial endothelial cells. Toxicology 2016; 339:73-86. [PMID: 26655683 DOI: 10.1016/j.tox.2015.11.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 11/26/2015] [Accepted: 11/30/2015] [Indexed: 12/20/2022]
Abstract
Alterations of endothelial adhesive properties by cigarette smoke (CS) can progressively favor the development of atherosclerosis which may cause cardiovascular disorders. Modified risk tobacco products (MRTPs) are tobacco products developed to reduce smoking-related risks. A systems biology/toxicology approach combined with a functional in vitro adhesion assay was used to assess the impact of a candidate heat-not-burn technology-based MRTP, Tobacco Heating System (THS) 2.2, on the adhesion of monocytic cells to human coronary arterial endothelial cells (HCAECs) compared with a reference cigarette (3R4F). HCAECs were treated for 4h with conditioned media of human monocytic Mono Mac 6 (MM6) cells preincubated with low or high concentrations of aqueous extracts from THS2.2 aerosol or 3R4F smoke for 2h (indirect treatment), unconditioned media (direct treatment), or fresh aqueous aerosol/smoke extracts (fresh direct treatment). Functional and molecular investigations revealed that aqueous 3R4F smoke extract promoted the adhesion of MM6 cells to HCAECs via distinct direct and indirect concentration-dependent mechanisms. Using the same approach, we identified significantly reduced effects of aqueous THS2.2 aerosol extract on MM6 cell-HCAEC adhesion, and reduced molecular changes in endothelial and monocytic cells. Ten- and 20-fold increased concentrations of aqueous THS2.2 aerosol extract were necessary to elicit similar effects to those measured with 3R4F in both fresh direct and indirect exposure modalities, respectively. Our systems toxicology study demonstrated reduced effects of an aqueous aerosol extract from the candidate MRTP, THS2.2, using the adhesion of monocytic cells to human coronary endothelial cells as a surrogate pathophysiologically relevant event in atherogenesis.
Collapse
Affiliation(s)
- Carine Poussin
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland.
| | - Alexandra Laurent
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Manuel C Peitsch
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Julia Hoeng
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Hector De Leon
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| |
Collapse
|
28
|
Gonzalez-Suarez I, Martin F, Marescotti D, Guedj E, Acali S, Johne S, Dulize R, Baumer K, Peric D, Goedertier D, Frentzel S, Ivanov NV, Mathis C, Hoeng J, Peitsch MC. In Vitro Systems Toxicology Assessment of a Candidate Modified Risk Tobacco Product Shows Reduced Toxicity Compared to That of a Conventional Cigarette. Chem Res Toxicol 2015; 29:3-18. [DOI: 10.1021/acs.chemrestox.5b00321] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ignacio Gonzalez-Suarez
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Florian Martin
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Diego Marescotti
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Emmanuel Guedj
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Stefano Acali
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Stephanie Johne
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Remi Dulize
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Karine Baumer
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Dariusz Peric
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Didier Goedertier
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Stefan Frentzel
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Nikolai V. Ivanov
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Carole Mathis
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Julia Hoeng
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Manuel C. Peitsch
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| |
Collapse
|
29
|
Kogel U, Gonzalez Suarez I, Xiang Y, Dossin E, Guy PA, Mathis C, Marescotti D, Goedertier D, Martin F, Peitsch MC, Hoeng J. Biological impact of cigarette smoke compared to an aerosol produced from a prototypic modified risk tobacco product on normal human bronchial epithelial cells. Toxicol In Vitro 2015; 29:2102-15. [PMID: 26277032 DOI: 10.1016/j.tiv.2015.08.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 07/10/2015] [Accepted: 08/10/2015] [Indexed: 01/09/2023]
Abstract
Cigarette smoking causes serious and fatal diseases. The best way for smokers to avoid health risks is to quit smoking. Using modified risk tobacco products (MRTPs) may be an alternative to reduce the harm caused for those who are unwilling to quit smoking, but little is known about the toxic effects of MRTPs, nor were the molecular mechanisms of toxicity investigated in detail. The toxicity of an MRTP and the potential molecular mechanisms involved were investigated in high-content screening tests and whole genome transcriptomics analyses using human bronchial epithelial cells. The prototypic (p)MRTP that was tested had less impact than reference cigarette 3R4F on the cellular oxidative stress response and cell death pathways. Higher pMRTP aerosol extract concentrations had impact on pathways associated with the detoxification of xenobiotics and the reduction of oxidative damage. A pMRTP aerosol concentration up to 18 times higher than the 3R4F caused similar perturbation effects in biological networks and led to the perturbation of networks related to cell stress, and proliferation biology. These results may further facilitate the development of a systems toxicology-based impact assessment for use in future risk assessments in line with the 21st century toxicology paradigm, as shown here for an MRTP.
Collapse
Affiliation(s)
- U Kogel
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland.
| | - I Gonzalez Suarez
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland.
| | - Y Xiang
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland.
| | - E Dossin
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland.
| | - P A Guy
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland.
| | - C Mathis
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland.
| | - D Marescotti
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland.
| | - D Goedertier
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland.
| | - F Martin
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland.
| | - M C Peitsch
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland.
| | - J Hoeng
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland.
| |
Collapse
|
30
|
Lewis JM, Bürgler CD, Fraser JA, Liao H, Golubets K, Kucher CL, Zhao PY, Filler RB, Tigelaar RE, Girardi M. Mechanisms of chemical cooperative carcinogenesis by epidermal Langerhans cells. J Invest Dermatol 2015; 135:1405-1414. [PMID: 25233073 PMCID: PMC4364923 DOI: 10.1038/jid.2014.411] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 08/13/2014] [Accepted: 08/22/2014] [Indexed: 01/14/2023]
Abstract
Cutaneous squamous cell carcinoma (SCC) is the most prevalent invasive malignancy with metastatic potential. The epidermis is exposed to a variety of environmental DNA-damaging chemicals, principal among which are polyaromatic hydrocarbons (PAHs) ubiquitous in the environment, tobacco smoke, and broiled meats. Langerhans cells (LCs) comprise a network of dendritic cells situated adjacent to basal, suprabasal, and follicular infundibular keratinocytes that when mutated can give rise to SCC, and LC-intact mice are markedly more susceptible than LC-deficient mice to chemical carcinogenesis provoked by initiation with the model PAH, 7,12-dimethylbenz[a]anthracene (DMBA). LCs rapidly internalize and accumulate DMBA as numerous membrane-independent cytoplasmic foci. Repopulation of LC-deficient mice using fetal liver LC-precursors restores DMBA-induced tumor susceptibility. LC expression of p450 enzyme CYP1B1 is required for maximal rapid induction of DNA-damage within adjacent keratinocytes and their efficient neoplastic transformation; however, effects of tumor progression also attributable to the presence of LC were revealed as CYP1B1 independent. Thus, LCs make multifaceted contributions to cutaneous carcinogenesis, including via the handling and metabolism of chemical mutagens. Such findings suggest a cooperative carcinogenesis role for myeloid-derived cells resident within cancer susceptible epithelial tissues principally by influencing early events in malignant transformation.
Collapse
MESH Headings
- 9,10-Dimethyl-1,2-benzanthracene/adverse effects
- 9,10-Dimethyl-1,2-benzanthracene/metabolism
- Animals
- Carcinogenesis/metabolism
- Carcinoma, Squamous Cell/chemically induced
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Cell Line
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Cells, Cultured
- Cytochrome P-450 CYP1B1/deficiency
- Cytochrome P-450 CYP1B1/genetics
- Cytochrome P-450 CYP1B1/metabolism
- Disease Models, Animal
- Keratinocytes/metabolism
- Keratinocytes/pathology
- Langerhans Cells/metabolism
- Langerhans Cells/pathology
- Mice
- Mice, Knockout
- Mutagens/adverse effects
- Mutagens/metabolism
- Skin Neoplasms/chemically induced
- Skin Neoplasms/metabolism
- Skin Neoplasms/pathology
Collapse
Affiliation(s)
- Julia M Lewis
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Christina D Bürgler
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Juliet A Fraser
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Haihui Liao
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Kseniya Golubets
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
| | | | - Peter Y Zhao
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Renata B Filler
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Robert E Tigelaar
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Michael Girardi
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA.
| |
Collapse
|
31
|
A 7-month cigarette smoke inhalation study in C57BL/6 mice demonstrates reduced lung inflammation and emphysema following smoking cessation or aerosol exposure from a prototypic modified risk tobacco product. Food Chem Toxicol 2015; 80:328-345. [PMID: 25843363 DOI: 10.1016/j.fct.2015.03.009] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 03/04/2015] [Accepted: 03/10/2015] [Indexed: 01/13/2023]
Abstract
Modified risk tobacco products (MRTP) are designed to reduce smoking-related health risks. A murine model of chronic obstructive pulmonary disease (COPD) was applied to investigate classical toxicology end points plus systems toxicology (transcriptomics and proteomics). C57BL/6 mice were exposed to conventional cigarette smoke (3R4F), fresh air (sham), or a prototypic MRTP (pMRTP) aerosol for up to 7 months, including a cessation group and a switching-to-pMRTP group (2 months of 3R4F exposure followed by fresh air or pMRTP for up to 5 months respectively). 3R4F smoke induced the typical adaptive changes in the airways, as well as inflammation in the lung, associated with emphysematous changes (impaired pulmonary function and alveolar damage). At nicotine-matched exposure concentrations of pMRTP aerosol, no signs of lung inflammation and emphysema were observed. Both the cessation and switching groups showed a similar reversal of inflammatory responses and no progression of initial emphysematous changes. A significant impact on biological processes, including COPD-related inflammation, apoptosis, and proliferation, was identified in 3R4F-exposed, but not in pMRTP-exposed lungs. Smoking cessation or switching reduced these perturbations to near sham-exposed levels. In conclusion, the mouse model indicated retarded disease progression upon cessation or switching to pMRTP which alone had no adverse effects.
Collapse
|
32
|
Fujimoto H, Tsuji H, Okubo C, Fukuda I, Nishino T, Lee KM, Renne R, Yoshimura H. Biological responses in rats exposed to mainstream smoke from a heated cigarette compared to a conventional reference cigarette. Inhal Toxicol 2015; 27:224-36. [PMID: 25969858 DOI: 10.3109/08958378.2015.1027799] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The heated cigarette (HC) generates mainstream smoke by vaporizing the components of the tobacco rod using a carbon heat source at the cigarette tip. Mainstream smoke of HC contains markedly less chemical constituents compared to combusted cigarettes. Mainstream smoke from HC was generated under Health Canada Intense regimen and its biological effects were compared to those of Reference (3R4F) cigarettes, using nose-only 5-week and 13-week inhalation studies. In the 13-week study, SD rats were necropsied following exposure to mainstream smoke from each cigarette at 200, 600 or 1000 µg wet total particulate matter/L for 1 h/day, 7 days/week or following a 13-week recovery period. Histopathological changes in the respiratory tract were significantly lesser in HC groups; e.g. respiratory epithelial hyperplasia in the nasal cavity and accumulation of pigmented macrophages in alveoli. After a 13-week recovery, the lesions were completely or partially regressed, except for accumulation of pigmented macrophages in alveoli, in both HC and 3R4F groups. In the 5-week study, SD rats were necropsied following exposure to mainstream smoke of either cigarette at 600 or 1000 µg/L for 1 h, two times/day (with 30 min interval), 7 days/week or following a 4-week recovery period. Bronchoalveolar lavage fluid (BALF) analysis of neutrophil percentages and enzyme levels like γ-GT, ALP and LDH indicated that pulmonary inflammation was significantly less in HC groups compared to 3R4F groups. In conclusion, HC demonstrated significantly lower biological effects compared to 3R4F, based on the BALF parameters and histopathology.
Collapse
Affiliation(s)
- Hitoshi Fujimoto
- Product and Science Division, R&D Group, Japan Tobacco Inc. , Kanagawa , Japan
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Pisinger C, Døssing M. A systematic review of health effects of electronic cigarettes. Prev Med 2014; 69:248-60. [PMID: 25456810 DOI: 10.1016/j.ypmed.2014.10.009] [Citation(s) in RCA: 322] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 09/19/2014] [Accepted: 10/09/2014] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To provide a systematic review of the existing literature on health consequences of vaporing of electronic cigarettes (ECs). METHODS Search in: PubMed, EMBASE and CINAHL. INCLUSION CRITERIA Original publications describing a health-related topic, published before 14 August 2014. PRISMA recommendations were followed. We identified 1101 studies; 271 relevant after screening; 94 eligible. RESULTS We included 76 studies investigating content of fluid/vapor of ECs, reports on adverse events and human and animal experimental studies. Serious methodological problems were identified. In 34% of the articles the authors had a conflict of interest. Studies found fine/ultrafine particles, harmful metals, carcinogenic tobacco-specific nitrosamines, volatile organic compounds, carcinogenic carbonyls (some in high but most in low/trace concentrations), cytotoxicity and changed gene expression. Of special concern are compounds not found in conventional cigarettes, e.g. propylene glycol. Experimental studies found increased airway resistance after short-term exposure. Reports on short-term adverse events were often flawed by selection bias. CONCLUSIONS Due to many methodological problems, severe conflicts of interest, the relatively few and often small studies, the inconsistencies and contradictions in results, and the lack of long-term follow-up no firm conclusions can be drawn on the safety of ECs. However, they can hardly be considered harmless.
Collapse
Affiliation(s)
- Charlotta Pisinger
- Research Centre for Prevention and Health, Glostrup Hospital, DK-2600 Glostrup, Denmark.
| | - Martin Døssing
- Medicinsk Afdeling, Frederikssund Hospital, DK-3600 Frederikssund, Denmark
| |
Collapse
|
34
|
Toxicological assessment of kretek cigarettes. Regul Toxicol Pharmacol 2014; 70 Suppl 1:S2-14. [DOI: 10.1016/j.yrtph.2014.11.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 11/27/2014] [Accepted: 11/29/2014] [Indexed: 11/23/2022]
|
35
|
Talikka M, Kostadinova R, Xiang Y, Mathis C, Sewer A, Majeed S, Kuehn D, Frentzel S, Merg C, Geertz M, Martin F, Ivanov NV, Peitsch MC, Hoeng J. The response of human nasal and bronchial organotypic tissue cultures to repeated whole cigarette smoke exposure. Int J Toxicol 2014; 33:506-17. [PMID: 25297719 DOI: 10.1177/1091581814551647] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Exposure to cigarette smoke (CS) is linked to the development of respiratory diseases, and there is a need to understand the mechanisms whereby CS causes damage. Although animal models have provided valuable insights into smoking-related respiratory tract damage, modern toxicity testing calls for reliable in vitro models as alternatives for animal experimentation. We report on a repeated whole mainstream CS exposure of nasal and bronchial organotypic tissue cultures that mimic the morphological, physiological, and molecular attributes of the human respiratory tract. Despite the similar cellular staining and cytokine secretion in both tissue types, the transcriptomic analyses in the context of biological network models identified similar and diverse biological processes that were impacted by CS-exposed nasal and bronchial cultures. Our results demonstrate that nasal and bronchial tissue cultures are appropriate in vitro models for the assessment of CS-induced adverse effects in the respiratory system and promising alternative to animal experimentation.
Collapse
Affiliation(s)
- Marja Talikka
- Philip Morris International R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Radina Kostadinova
- Philip Morris International R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Yang Xiang
- Philip Morris International R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Carole Mathis
- Philip Morris International R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Alain Sewer
- Philip Morris International R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Shoaib Majeed
- Philip Morris International R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Diana Kuehn
- Philip Morris International R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Stefan Frentzel
- Philip Morris International R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Celine Merg
- Philip Morris International R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Marcel Geertz
- Philip Morris International R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Florian Martin
- Philip Morris International R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Nikolai V Ivanov
- Philip Morris International R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Manuel C Peitsch
- Philip Morris International R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Julia Hoeng
- Philip Morris International R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| |
Collapse
|
36
|
Toxicological assessment of kretek cigarettes Part 3: kretek and American-blended cigarettes, inhalation toxicity. Regul Toxicol Pharmacol 2014; 70 Suppl 1:S26-40. [PMID: 25455226 DOI: 10.1016/j.yrtph.2014.09.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 09/29/2014] [Indexed: 11/20/2022]
Abstract
A typical Indonesian kretek cigarette brand and an experimental kretek reference cigarette were compared to the reference cigarette 2R4F in two 90-day inhalation studies. Male and female rats were exposed nose-only to mainstream smoke for 6 hours daily, for 90 consecutive days. Biological endpoints were assessed according to OECD guideline 413, with special emphasis on respiratory tract histopathology and on lung inflammation (broncho-alveolar lavage fluid levels of neutrophils, macrophages and lymphocytes). Histopathological alterations included: in the nose, hyperplasia and squamous metaplasia of the respiratory epithelium and squamous metaplasia and atrophy of the olfactory epithelium; in the larynx, epithelial squamous metaplasia and hyperplasia; in the lungs, accumulation of macrophages in alveoli and goblet cell hyperplasia in bronchial epithelium. The findings were qualitatively consistent with observations from previous similar studies on conventional cigarettes. Compared to 2R4F cigarette, however, kretek smoke exposure was associated with a pronounced attenuation of pulmonary inflammation and less severe histopathological changes in the respiratory tract. Neutrophilic inflammation was also significantly lower (>70%). These results are consistent with the observations made on smoke chemistry and in vitro toxicology. They do not support any increased toxicity of the smoke of kretek cigarettes compared to conventional American-blended cigarettes.
Collapse
|
37
|
Tsuji H, Okubo C, Fujimoto H, Fukuda I, Nishino T, Monica Lee K, Yoshimura H. Comparison of dermal tumor promotion activity of cigarette smoke condensate from prototype (heated) cigarette and reference (combusted) cigarette in SENCAR mice. Food Chem Toxicol 2014; 72:187-94. [DOI: 10.1016/j.fct.2014.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 06/17/2014] [Accepted: 07/03/2014] [Indexed: 10/25/2022]
|
38
|
LoPachin RM, Gavin T. Molecular mechanisms of aldehyde toxicity: a chemical perspective. Chem Res Toxicol 2014; 27:1081-91. [PMID: 24911545 PMCID: PMC4106693 DOI: 10.1021/tx5001046] [Citation(s) in RCA: 282] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Indexed: 01/19/2023]
Abstract
Aldehydes are electrophilic compounds to which humans are pervasively exposed. Despite a significant health risk due to exposure, the mechanisms of aldehyde toxicity are poorly understood. This ambiguity is likely due to the structural diversity of aldehyde derivatives and corresponding differences in chemical reactions and biological targets. To gain mechanistic insight, we have used parameters based on the hard and soft, acids and bases (HSAB) theory to profile the different aldehyde subclasses with respect to electronic character (softness, hardness), electrophilic reactivity (electrophilic index), and biological nucleophilic targets. Our analyses indicate that short chain aldehydes and longer chain saturated alkanals are hard electrophiles that cause toxicity by forming adducts with hard biological nucleophiles, e.g., primary nitrogen groups on lysine residues. In contrast, α,β-unsaturated carbonyl derivatives, alkenals, and the α-oxoaldehydes are soft electrophiles that preferentially react with soft nucleophilic thiolate groups on cysteine residues. The aldehydes can therefore be grouped into subclasses according to common electronic characteristics (softness/hardness) and molecular mechanisms of toxicity. As we will discuss, the toxic potencies of these subgroups are generally related to corresponding electrophilicities. For some aldehydes, however, predictions of toxicity based on electrophilicity are less accurate due to inherent physicochemical variables that limit target accessibility, e.g., steric hindrance and solubility. The unsaturated aldehydes are also members of the conjugated type-2 alkene chemical class that includes α,β-unsaturated amide, ketone, and ester derivatives. Type-2 alkenes are electrophiles of varying softness and electrophilicity that share a common mechanism of toxicity. Therefore, exposure to an environmental mixture of unsaturated carbonyl derivatives could cause "type-2 alkene toxicity" through additive interactions. Finally, we propose that environmentally derived aldehydes can accelerate diseases by interacting with endogenous aldehydes generated during oxidative stress. This review provides a basis for understanding aldehyde mechanisms and environmental toxicity through the context of electronic structure, electrophilicity, and nucleophile target selectivity.
Collapse
Affiliation(s)
- Richard M. LoPachin
- Department
of Anesthesiology, Montefiore Medical Center, Albert Einstein College of Medicine, 111 E. 210th Street, Bronx, New York 10467, United
States
| | - Terrence Gavin
- Department
of Chemistry, Iona College, New Rochelle, New York 10804, United States
| |
Collapse
|
39
|
Younesi E, Ansari S, Guendel M, Ahmadi S, Coggins C, Hoeng J, Hofmann-Apitius M, Peitsch MC. CSEO - the Cigarette Smoke Exposure Ontology. J Biomed Semantics 2014; 5:31. [PMID: 25093069 PMCID: PMC4120729 DOI: 10.1186/2041-1480-5-31] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Accepted: 07/03/2014] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND In the past years, significant progress has been made to develop and use experimental settings for extensive data collection on tobacco smoke exposure and tobacco smoke exposure-associated diseases. Due to the growing number of such data, there is a need for domain-specific standard ontologies to facilitate the integration of tobacco exposure data. RESULTS The CSEO (version 1.0) is composed of 20091 concepts. The ontology in its current form is able to capture a wide range of cigarette smoke exposure concepts within the knowledge domain of exposure science with a reasonable sensitivity and specificity. Moreover, it showed a promising performance when used to answer domain expert questions. The CSEO complies with standard upper-level ontologies and is freely accessible to the scientific community through a dedicated wiki at https://publicwiki-01.fraunhofer.de/CSEO-Wiki/index.php/Main_Page. CONCLUSIONS The CSEO has potential to become a widely used standard within the academic and industrial community. Mainly because of the emerging need of systems toxicology to controlled vocabularies and also the lack of suitable ontologies for this domain, the CSEO prepares the ground for integrative systems-based research in the exposure science.
Collapse
Affiliation(s)
- Erfan Younesi
- Fraunhofer Institute for Algorithms and Scientific Computing SCAI, Schloss Birlinghoven, 53754 Sankt Augustin, Germany
| | - Sam Ansari
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Michaela Guendel
- Fraunhofer Institute for Algorithms and Scientific Computing SCAI, Schloss Birlinghoven, 53754 Sankt Augustin, Germany
| | - Shiva Ahmadi
- Fraunhofer Institute for Algorithms and Scientific Computing SCAI, Schloss Birlinghoven, 53754 Sankt Augustin, Germany
| | - Chris Coggins
- Carson Watts Consulting, 1266 Carson Watts Rd, King, NC 27021-7453, USA
| | - Julia Hoeng
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Martin Hofmann-Apitius
- Fraunhofer Institute for Algorithms and Scientific Computing SCAI, Schloss Birlinghoven, 53754 Sankt Augustin, Germany
| | - Manuel C Peitsch
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| |
Collapse
|
40
|
Kogel U, Schlage WK, Martin F, Xiang Y, Ansari S, Leroy P, Vanscheeuwijck P, Gebel S, Buettner A, Wyss C, Esposito M, Hoeng J, Peitsch MC. A 28-day rat inhalation study with an integrated molecular toxicology endpoint demonstrates reduced exposure effects for a prototypic modified risk tobacco product compared with conventional cigarettes. Food Chem Toxicol 2014; 68:204-17. [PMID: 24632068 DOI: 10.1016/j.fct.2014.02.034] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 02/21/2014] [Accepted: 02/24/2014] [Indexed: 11/26/2022]
Abstract
Towards a systems toxicology-based risk assessment, we investigated molecular perturbations accompanying histopathological changes in a 28-day rat inhalation study combining transcriptomics with classical histopathology. We demonstrated reduced biological activity of a prototypic modified risk tobacco product (pMRTP) compared with the reference research cigarette 3R4F. Rats were exposed to filtered air or to three concentrations of mainstream smoke (MS) from 3R4F, or to a high concentration of MS from a pMRTP. Histopathology revealed concentration-dependent changes in response to 3R4F that were irritative stress-related in nasal and bronchial epithelium, and inflammation-related in the lung parenchyma. For pMRTP, significant changes were seen in the nasal epithelium only. Transcriptomics data were obtained from nasal and bronchial epithelium and lung parenchyma. Concentration-dependent gene expression changes were observed following 3R4F exposure, with much smaller changes for pMRTP. A computational-modeling approach based on causal models of tissue-specific biological networks identified cell stress, inflammation, proliferation, and senescence as the most perturbed molecular mechanisms. These perturbations correlated with histopathological observations. Only weak perturbations were observed for pMRTP. In conclusion, a correlative evaluation of classical histopathology together with gene expression-based computational network models may facilitate a systems toxicology-based risk assessment, as shown for a pMRTP.
Collapse
Affiliation(s)
- Ulrike Kogel
- Philip Morris International R&D, Philip Morris Research Laboratories GmbH, Fuggerstrasse 3, 51149 Cologne, Germany; Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland.
| | - Walter K Schlage
- Philip Morris International R&D, Philip Morris Research Laboratories GmbH, Fuggerstrasse 3, 51149 Cologne, Germany; Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland.
| | - Florian Martin
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland.
| | - Yang Xiang
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland.
| | - Sam Ansari
- Philip Morris International R&D, Philip Morris Research Laboratories GmbH, Fuggerstrasse 3, 51149 Cologne, Germany; Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland.
| | - Patrice Leroy
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland.
| | - Patrick Vanscheeuwijck
- Philip Morris International R&D, Philip Morris Research Laboratories GmbH, Fuggerstrasse 3, 51149 Cologne, Germany; Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland; Philip Morris International R&D, Philip Morris Research Laboratories bvba, Grauwmeer 14, Researchpark Haasrode, 3001 Leuven, Belgium.
| | - Stephan Gebel
- Philip Morris International R&D, Philip Morris Research Laboratories GmbH, Fuggerstrasse 3, 51149 Cologne, Germany.
| | - Ansgar Buettner
- Philip Morris International R&D, Philip Morris Research Laboratories GmbH, Fuggerstrasse 3, 51149 Cologne, Germany.
| | - Christoph Wyss
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland.
| | - Marco Esposito
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland.
| | - Julia Hoeng
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland.
| | - Manuel C Peitsch
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland.
| |
Collapse
|
41
|
Scott K, Saul J, Crooks I, Camacho OM, Dillon D, Meredith C. The resolving power of in vitro genotoxicity assays for cigarette smoke particulate matter. Toxicol In Vitro 2013; 27:1312-9. [PMID: 23499632 DOI: 10.1016/j.tiv.2013.02.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Revised: 02/11/2013] [Accepted: 02/25/2013] [Indexed: 11/29/2022]
Abstract
In vitro genotoxicity assays are often used to compare tobacco smoke particulate matter (PM) from different cigarettes. The quantitative aspect of the comparisons requires appropriate statistical methods and replication levels, to support the interpretation in terms of power and significance. This paper recommends a uniform statistical analysis for the Ames test, mouse lymphoma mammalian cell mutation assay (MLA) and the in vitro micronucleus test (IVMNT); involving a hierarchical decision process with respect to slope, fixed effect and single dose comparisons. With these methods, replication levels of 5 (Ames test TA98), 4 (Ames test TA100), 10 (Ames test TA1537), 6 (MLA) and 4 (IVMNT) resolved a 30% difference in PM genotoxicity.
Collapse
Affiliation(s)
- K Scott
- British American Tobacco, Group Research and Development, Regents Park Road, Southampton SO15 8TL, UK.
| | | | | | | | | | | |
Collapse
|
42
|
Weisensee D, Poth A, Roemer E, Conroy LL, Schlage WK. Cigarette smoke-induced morphological transformation of Bhas 42 cells in vitro. Altern Lab Anim 2013; 41:181-9. [PMID: 23781935 DOI: 10.1177/026119291304100207] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In vitro cell transformation assays detect transformed cells that have acquired the distinct characteristics of malignant cells and thus model one stage of in vivo carcinogenesis. These assays have been proposed as surrogate models for predicting the non-genotoxic carcinogenic potential of chemicals. The Bhas 42 cell transformation assay, a short-term assay that uses v-Ha-ras-transfected Balb/c 3T3 cells, can detect the tumour promoter-like activities of chemicals, but has not previously been used with cigarette smoke. The particulate phase of cigarette smoke (total particulate matter [TPM]) is known to induce tumours in vivo in the mouse skin painting assay. Therefore, we investigated the ability of this Bhas cell assay to form morphologically transformed foci in vitro when repeatedly challenged with TPM from a standard research cigarette. TPM induced a dose-dependent increase in Type III foci, and a significant increase (up to 20-fold) in focus formation at moderately toxic concentrations between 5 and 60µg TPM/ml, with a peak at 20µg/ml. Three batches of TPM were tested in three independent experiments. Precision (repeatability and reproducibility) was calculated by using 0, 5, 10, and 20µg TPM/ml. Repeatability and reproducibility, expressed as the relative standard deviation obtained from the normalised slopes of the dose-response curves, were 17.2% and 19.6%, respectively; the slopes were 0.7402 ± 0.1247, 0.9347 ± 0.1316, and 0.8772 ± 0.1767 (increase factor∗ml/mg TPM; mean ± SD) ; and the goodness of fit (r2) of the mean slopes, each derived from n = 6 repeats, was 0.9449, 0.8198, and 0.8344, respectively. This in vitro assay with Bhas 42 cells, which are regarded as already initiated in the two-stage paradigm of carcinogenesis (initiation and promotion), is able to detect cell transformation induced by cigarette smoke in a dose-dependent manner with a high sensitivity and good precision. Because this assay is fast and yields reliable results, it may be useful in product assessment, as well as for further investigation of the non-genotoxic carcinogenic activity of tobacco smoke-related test substances.
Collapse
Affiliation(s)
- Dirk Weisensee
- Philip Morris International R&D, Philip Morris Research Laboratories GmbH, Cologne, Germany
| | | | | | | | | |
Collapse
|
43
|
LoPachin RM, Gavin T. Molecular mechanism of acrylamide neurotoxicity: lessons learned from organic chemistry. ENVIRONMENTAL HEALTH PERSPECTIVES 2012; 120:1650-7. [PMID: 23060388 PMCID: PMC3548275 DOI: 10.1289/ehp.1205432] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 09/24/2012] [Indexed: 05/21/2023]
Abstract
BACKGROUND Acrylamide (ACR) produces cumulative neurotoxicity in exposed humans and laboratory animals through a direct inhibitory effect on presynaptic function. OBJECTIVES In this review, we delineate how knowledge of chemistry provided an unprecedented understanding of the ACR neurotoxic mechanism. We also show how application of the hard and soft, acids and bases (HSAB) theory led to the recognition that the α,β-unsaturated carbonyl structure of ACR is a soft electrophile that preferentially forms covalent bonds with soft nucleophiles. METHODS In vivo proteomic and in chemico studies demonstrated that ACR formed covalent adducts with highly nucleophilic cysteine thiolate groups located within active sites of presynaptic proteins. Additional research showed that resulting protein inactivation disrupted nerve terminal processes and impaired neurotransmission. DISCUSSION ACR is a type-2 alkene, a chemical class that includes structurally related electrophilic environmental pollutants (e.g., acrolein) and endogenous mediators of cellular oxidative stress (e.g., 4-hydroxy-2-nonenal). Members of this chemical family produce toxicity via a common molecular mechanism. Although individual environmental concentrations might not be toxicologically relevant, exposure to an ambient mixture of type-2 alkene pollutants could pose a significant risk to human health. Furthermore, environmentally derived type-2 alkenes might act synergistically with endogenously generated unsaturated aldehydes to amplify cellular damage and thereby accelerate human disease/injury processes that involve oxidative stress. CONCLUSIONS These possibilities have substantial implications for environmental risk assessment and were realized through an understanding of ACR adduct chemistry. The approach delineated here can be broadly applied because many toxicants of different chemical classes are electrophiles that produce toxicity by interacting with cellular proteins.
Collapse
Affiliation(s)
- Richard M LoPachin
- Department of Anesthesiology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York 10467 , USA.
| | | |
Collapse
|
44
|
Fearon IM, Acheampong DO, Bishop E. Modification of smoke toxicant yields alters the effects of cigarette smoke extracts on endothelial migration: an in vitro study using a cardiovascular disease model. Int J Toxicol 2012; 31:572-83. [PMID: 23129839 DOI: 10.1177/1091581812461810] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Endothelial damage plays a key role in atherosclerosis and this is impacted upon by numerous risk factors including cigarette smoking. A potential measure to reduce the cardiovascular burden associated with smoking is to reduce smoke toxicant exposure. In an in vitro endothelial damage repair assay, endothelial cell migration was inhibited by cigarette smoke particulate matter (PM) generated from several cigarette types. This inhibition was reduced when cells were exposed to PM from an experimental cigarette with reduced smoke toxicant levels. As a number of toxicants induce oxidative stress and since oxidative stress may link cigarette smoke and endothelial damage, we hypothesized that PM effects were dependent on elevated cellular oxidants. However, although PM-induced cellular oxidant production could be inhibited by ascorbic acid or n-acetylcysteine, both these antioxidants were without effect on migration responses to PM. Furthermore, reactive oxygen species production, as indicated by dihydroethidium fluorescence, was not different in cells exposed to smoke from cigarettes with different toxicant levels. In summary, our data demonstrate that a cardiovascular disease-related biological response may be modified when cells are exposed to smoke containing different levels of toxicants. This appeared independent of the induction of oxidative stress.
Collapse
Affiliation(s)
- Ian M Fearon
- British American Tobacco, Group Research and Development, Regents Park Road, Southampton SO15 8TL, UK.
| | | | | |
Collapse
|
45
|
Tricker AR, Jang IJ, Martin Leroy C, Lindner D, Dempsey R. Reduced exposure evaluation of an Electrically Heated Cigarette Smoking System. Part 4: Eight-day randomized clinical trial in Korea. Regul Toxicol Pharmacol 2012; 64:S45-53. [PMID: 22951346 DOI: 10.1016/j.yrtph.2012.08.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 08/08/2012] [Accepted: 08/10/2012] [Indexed: 11/25/2022]
Abstract
A randomized, controlled, open-label parallel-group, single-center study to determine biomarkers of exposure to 12 selected harmful and potentially harmful constituents (HPHC) in cigarette smoke and urinary excretion of mutagenic material in 72 male and female Korean subjects smoking Lark One cigarettes (1.0mg tar, 0.1mg nicotine, and 1.5mg CO) at baseline. Subjects were randomized to continue smoking Lark One cigarettes, or switch to an Electrically Heated Cigarette Smoking System (EHCSS) and EHCSS-K3 cigarette (3mg tar, 0.2mg nicotine, and 0.6 mg CO), or to no-smoking. The mean decreases from baseline to Day 8 were statistically significant (all p<0.05) for 10 of 12 HPHC in mainstream cigarette smoke including CO (the primary objective) in the EHCSS-K3 group (range: -1.5% to -74.2%). Exposure to the other determined HPHC was not significantly different. In the Lark One group, the mean exposure to 6 of 12 HPHC in cigarette smoke was significantly (all p<0.05) decreased; however, exposure to CO was significantly increased. The largest mean reductions in biomarkers of exposure to HPHC occurred in smokers who switched to no-smoking (-3.4% to -98.9%). The mean excretion of mutagenic material was significantly decreased (p<0.05) in the EHCSS-K3 and no-smoking groups (-31.8% and -45.3%, respectively), and increased in the Lark One group (+31.5%).
Collapse
Affiliation(s)
- Anthony R Tricker
- Philip Morris International R&D, Philip Morris Products SA, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland.
| | | | | | | | | |
Collapse
|
46
|
Martin Leroy C, Jarus-Dziedzic K, Ancerewicz J, Lindner D, Kulesza A, Magnette J. Reduced exposure evaluation of an Electrically Heated Cigarette Smoking System. Part 7: A one-month, randomized, ambulatory, controlled clinical study in Poland. Regul Toxicol Pharmacol 2012; 64:S74-84. [PMID: 22951349 DOI: 10.1016/j.yrtph.2012.08.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 08/08/2012] [Accepted: 08/10/2012] [Indexed: 01/01/2023]
Abstract
This randomized, open-label, ambulatory, controlled clinical study investigated biomarkers associated with cardiovascular risk and biomarkers of exposure to 10 selected harmful and potentially harmful constituents (HPHC) in cigarette smoke in 316 male and female Polish smokers. Subjects were randomized to continue smoking conventional cigarettes (CC; N=79) or switch to smoking the Electrically Heated Cigarette Smoking System series-K cigarette (EHCSS-K6; N=237). Biomarker assessments were performed at several time points during the study at baseline and during the 1-month investigational period. The primary biomarkers were high-sensitivity C-reactive protein and white blood cell counts. No statistically significant differences in the two primary biomarkers were found between the study groups at the end of the study. End-of-study comparisons of secondary biomarkers between study groups indicated an increase in high-density lipoprotein cholesterol, and reductions in red blood cell count, hemoglobin, and hematocrit levels in the EHCSS-K6 group. All biomarkers of exposure to cigarette smoke HPHC were decreased in the EHCSS-K6 group, despite an increase in cigarette consumption, compared to the CC group. There were no apparent differences in any of the safety assessment parameters between the groups, and the overall incidence of study-related adverse events was low.
Collapse
Affiliation(s)
- Claire Martin Leroy
- Philip Morris International R&D, Philip Morris Products SA, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | | | | | | | | | | |
Collapse
|
47
|
Tricker AR, Kanada S, Takada K, Martin Leroy C, Lindner D, Schorp MK, Dempsey R. Reduced exposure evaluation of an Electrically Heated Cigarette Smoking System. Part 6: 6-Day randomized clinical trial of a menthol cigarette in Japan. Regul Toxicol Pharmacol 2012; 64:S64-73. [PMID: 22951347 DOI: 10.1016/j.yrtph.2012.08.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 08/08/2012] [Accepted: 08/10/2012] [Indexed: 11/29/2022]
Abstract
A randomized, controlled, open-label, parallel-group, single-center study to determine biomarkers of exposure to 12 selected harmful and potentially harmful constituents (HPHC) in cigarette smoke, excretion of mutagenic material in urine, and serum Clara cell 16-kDa protein (CC16) in 102 male and female Japanese subjects who smoked Marlboro Ultra Lights Menthol cigarettes (M4J(M); 4 mg tar and 0.3mg nicotine) at baseline. Subjects were randomized to continue smoking M4J(M), or switch to smoking either the Electrically Heated Cigarette Smoking System menthol cigarette (EHCSS-K6(M); 5mg tar and 0.3mg nicotine) or the Lark One menthol cigarette (Lark1(M); 1mg tar and 0.1mg nicotine), or to no-smoking. The mean decreases from baseline to Day 5/6 were statistically significant (p ≤ 0.05) for exposure to 10 of 12 cigarette smoke HPHC including the primary endpoint (carbon monoxide) and urinary excretion of mutagenic material in the EHCSS-K6(M) group (-12.3% to -83.4%). Smaller, but statistically significant reductions (p ≤ 0.05) occurred in the Lark1(M) group (-3.3% to -35.2%), with the exception of urinary mutagens. The largest mean reductions (all p ≤ 0.05) in exposure to cigarette smoke HPHC and excretion of mutagenic material occurred in the no-smoking group (-1.4% to -93.6%). Serum CC16, an indicator of lung epithelial injury, was not significantly different between groups.
Collapse
Affiliation(s)
- Anthony R Tricker
- Philip Morris International R&D, Philip Morris Products SA, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
48
|
Zenzen V, Diekmann J, Gerstenberg B, Weber S, Wittke S, Schorp MK. Reduced exposure evaluation of an Electrically Heated Cigarette Smoking System. Part 2: Smoke chemistry and in vitro toxicological evaluation using smoking regimens reflecting human puffing behavior. Regul Toxicol Pharmacol 2012; 64:S11-34. [PMID: 22922180 DOI: 10.1016/j.yrtph.2012.08.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 08/08/2012] [Accepted: 08/10/2012] [Indexed: 11/28/2022]
Abstract
Chemical analysis of up to 49 harmful and potentially harmful constituents (HPHC) in mainstream smoke, in vitro cytotoxicity of the particulate and gas/vapor phase of mainstream smoke determined in the Neutral Red Uptake assay, and in vitro bacterial mutagenicity of the particulate phase determined in the Salmonella typhimurium Reverse Mutation (Ames) assay are reported for three Electrically Heated Cigarette Smoking System (EHCSS) series-K cigarettes, the University of Kentucky Reference Cigarette 2R4F, and a number of comparator commercial conventional lit-end cigarettes (CC) under ISO machine-smoking conditions and a total of 25 additional smoking regimens reflecting 'human puffing behavior' (HPB). The smoking machines were set to deliver nicotine yields for the EHCSS and comparator CC derived from the 10th percentile to the 90th percentile of nicotine uptake distributions in smokers determined in two clinical studies. Duplication of the smoking intensity 'per cigarette' on a smoking machine may provide an insight into product performance that is directly relevant to obtaining scientific evidence for reduced exposure substantiation based on mainstream cigarette smoke HPHC-to-nicotine regressions. The reported data support an overall evaluation of reduced exposure to HPHC and biological activity.
Collapse
Affiliation(s)
- Volker Zenzen
- Philip Morris International R&D, Philip Morris Research Laboratories GmbH, Fuggerstrasse 3, 51149 Cologne, Germany
| | | | | | | | | | | |
Collapse
|
49
|
Tricker AR, Stewart AJ, Leroy CM, Lindner D, Schorp MK, Dempsey R. Reduced exposure evaluation of an Electrically Heated Cigarette Smoking System. Part 3: Eight-day randomized clinical trial in the UK. Regul Toxicol Pharmacol 2012; 64:S35-44. [PMID: 22940436 DOI: 10.1016/j.yrtph.2012.08.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 08/08/2012] [Accepted: 08/10/2012] [Indexed: 01/26/2023]
Abstract
A randomized, controlled, open-label, parallel-group, single-center study to determine biomarkers of exposure to nine selected harmful and potentially harmful constituents (HPHC) in cigarette smoke and urinary excretion of mutagenic material in 160 male and female subjects smoking Marlboro cigarettes (6 mg tar, 0.5mg nicotine, and 7.0mg CO) at baseline. Subjects were randomized to continue smoking Marlboro cigarettes, or switch to using an Electrically Heated Cigarette Smoking System (EHCSS) smoking one of two EHCSS series-K cigarettes, the EHCSS-K6 cigarette (5mg tar, 0.3mg nicotine, and 0.6 mg CO) or the EHCSS-K3 cigarette (3mg tar, 0.2mg nicotine, and 0.6 mg CO), or switch to smoking Philip Morris One cigarettes (1mg tar, 0.1mg nicotine, and 2.0mg CO), or to no-smoking. The mean decreases from baseline to Day 8 were statistically significant (p ≤ 0.05) for all determined HPHC including benzene and CO (the primary objectives), and urinary excretion of mutagenic material in the EHCSS-K6 (range -35.5 ± 29.2% to -79.4 ± 14.6% [mean ± standard deviation]), EHCSS-K3 (range -41.2 ± 26.6% to -83.1 ± 9.2%), and PM1 (range -14.6 ± 24.1% to -39.4 ± 17.5%) groups. The largest reductions in exposure occurred in the no-smoking group (range -55.4 ± 45.0% to -100.0 ± 0.0%).
Collapse
Affiliation(s)
- Anthony R Tricker
- Philip Morris International R&D, Philip Morris Products SA, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland.
| | | | | | | | | | | |
Collapse
|
50
|
Schorp MK, Tricker AR, Dempsey R. Reduced exposure evaluation of an Electrically Heated Cigarette Smoking System. Part 1: Non-clinical and clinical insights. Regul Toxicol Pharmacol 2012; 64:S1-10. [PMID: 22940435 DOI: 10.1016/j.yrtph.2012.08.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 08/08/2012] [Accepted: 08/10/2012] [Indexed: 01/16/2023]
Abstract
The following series of papers presents an extensive assessment of the Electrically Heated Cigarette Smoking System EHCSS series-K cigarette vs. conventional lit-end cigarettes (CC) as an example for an extended testing strategy for evaluation of reduced exposure. The EHCSS produces smoke through electrical heating of tobacco. The EHCSS series-K heater was designed for exclusive use with EHCSS cigarettes, and cannot be used to smoke (CC). Compared to the University of Kentucky Reference Research cigarette 2R4F and a series of commercial CC, mainstream cigarette smoke of both the non-menthol and menthol-flavored EHCSS cigarettes showed a reduced delivery of a series of selected harmful and potentially harmful constituents (HPHC), mutagenic activity determined using the Salmonella typhimurium Reverse Mutation (Ames) assay, and cytotoxicity in the Neutral Red Uptake Assay. Clinical evaluations confirmed reduced exposure to HPHC and excretion of mutagenic material under controlled clinical conditions. Reductions in HPHC exposure were confirmed in a real-world ambulatory clinical study. Potential biomarkers of cardiovascular risk were also reduced under real-world ambulatory conditions. A modeling approach, 'nicotine bridging', was developed based on the determination of nicotine exposure in clinical evaluations which indicated that exposure to HPHC for which biomarkers of exposure do not exist would also be reduced.
Collapse
Affiliation(s)
- Matthias K Schorp
- Philip Morris International R&D, Philip Morris Products SA, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland.
| | | | | |
Collapse
|