1
|
Wohlleben W, Mehling A, Landsiedel R. Lessons Learned from the Grouping of Chemicals to Assess Risks to Human Health. Angew Chem Int Ed Engl 2023; 62:e202210651. [PMID: 36254879 DOI: 10.1002/anie.202210651] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022]
Abstract
In analogy to the periodic system that groups elements by their similarity in structure and chemical properties, the hazard of chemicals can be assessed in groups having similar structures and similar toxicological properties. Here we review case studies of chemical grouping strategies that supported the assessment of hazard, exposure, and risk to human health. By the EU-REACH and the US-TSCA New Chemicals Program, structural similarity is commonly used as the basis for grouping, but that criterion is not always adequate and sufficient. Based on the lessons learned, we derive ten principles for grouping, including: transparency of the purpose, criteria, and boundaries of the group; adequacy of methods used to justify the group; and inclusion or exclusion of substances in the group by toxicological properties. These principles apply to initial grouping to prioritize further actions as well as to definitive grouping to generate data for risk assessment. Both can expedite effective risk management.
Collapse
Affiliation(s)
- Wendel Wohlleben
- Department of Analytical and Material Science, BASF SE, 67056, Ludwigshafen am Rhein, Germany
- Department of Experimental Toxicology and Ecology, BASF SE, 67056, Ludwigshafen am Rhein, Germany
| | - Annette Mehling
- Dept. of Advanced Formulation and Performance Technology, BASF Personal Care and Nutrition GmbH, 40589, Duesseldorf, Germany
| | - Robert Landsiedel
- Department of Experimental Toxicology and Ecology, BASF SE, 67056, Ludwigshafen am Rhein, Germany
- Free University of Berlin, Biology, Chemistry and Pharmacy-Pharmacology and Toxicology, 14195, Berlin, Germany
| |
Collapse
|
2
|
Ahuja V, Krishnappa M. Challenges in setting Permitted Daily Exposure (PDE) Limits for pharmaceuticals: A review. INTERNATIONAL JOURNAL OF RISK & SAFETY IN MEDICINE 2021; 33:49-64. [PMID: 34924402 DOI: 10.3233/jrs-210021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND When more than one drug is manufactured at a shared facility or equipment in pharmaceutical manufacturing, the potential carry-over of the retained residue of existing drug product on product contact parts of the equipment to the next product can be a source of cross contamination. Permitted daily exposure (PDE) is derived based on the complete nonclinical and clinical data available and is a dose that is unlikely to cause adverse effects if an individual is exposed, by any route, at or below this dose every day over a lifetime. OBJECTIVE The objective was to present a comprehensive review of available scientific knowledge for derivation of PDE. METHODS PubMed and ScienceDirect databases were searched using keywords "PDE" and "pharmaceuticals" and all the relevant literature up to March 2021 was reviewed. We have also calculated PDEs for Tobramycin (CAS No. 32986-56-4) and Acetyl Salicylic Acid (ASA, CAS No. 50-78-2). RESULTS This research will be useful for scientists working in the PDE domain. The given examples emphasize the importance of use of human data in calculating PDE. CONCLUSION The duty of the risk assessor entrusted with setting PDEs is to derive a data driven, scientifically justified value that is safe for patients, while avoiding unjustified conservativeness that puts unnecessary burden on manufacturing.
Collapse
Affiliation(s)
- Varun Ahuja
- Safety Assessment, Syngene International Limited, Biocon Park, Bangalore, India
| | - Mohan Krishnappa
- Safety Assessment, Syngene International Limited, Biocon Park, Bangalore, India
| |
Collapse
|
3
|
Nelms MD, Pradeep P, Patlewicz G. Evaluating potential refinements to existing Threshold of Toxicological Concern (TTC) values for environmentally-relevant compounds. Regul Toxicol Pharmacol 2019; 109:104505. [PMID: 31639428 DOI: 10.1016/j.yrtph.2019.104505] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/12/2019] [Accepted: 10/15/2019] [Indexed: 11/29/2022]
Abstract
The Toxic Substances Control Act (TSCA) mandates the US EPA perform risk-based prioritisation of chemicals in commerce and then, for high-priority substances, develop risk evaluations that integrate toxicity data with exposure information. One approach being considered for data poor chemicals is the Threshold of Toxicological Concern (TTC). Here, TTC values derived using oral (sub)chronic No Observable (Adverse) Effect Level (NO(A)EL) data from the EPA's Toxicity Values database (ToxValDB) were compared with published TTC values from Munro et al. (1996). A total of 4554 chemicals with structures present in ToxValDB were assigned into their respective TTC categories using the Toxtree software tool, of which toxicity data was available for 1304 substances. The TTC values derived from ToxValDB were similar, but not identical to the Munro TTC values: Cramer I ((ToxValDB) 37.3 c. f. (Munro) 30 μg/kg-day), Cramer II (34.6 c. f. 9.1 μg/kg-day) and Cramer III (3.9 c. f. 1.5 μg/kg-day). Cramer III 5th percentile values were found to be statistically different. Chemical features of the two Cramer III datasets were evaluated to account for the differences. TTC values derived from this expanded dataset substantiated the original TTC values, reaffirming the utility of TTC as a promising tool in a risk-based prioritisation approach.
Collapse
Affiliation(s)
- Mark D Nelms
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, 37830, USA; Center for Computational Toxicology & Exposure (CCTE), U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC, 27709, USA
| | - Prachi Pradeep
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, 37830, USA; Center for Computational Toxicology & Exposure (CCTE), U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC, 27709, USA
| | - Grace Patlewicz
- Center for Computational Toxicology & Exposure (CCTE), U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC, 27709, USA.
| |
Collapse
|
4
|
Scialli AR, Daston G, Chen C, Coder PS, Euling SY, Foreman J, Hoberman AM, Hui J, Knudsen T, Makris SL, Morford L, Piersma AH, Stanislaus D, Thompson KE. Rethinking developmental toxicity testing: Evolution or revolution? Birth Defects Res 2018; 110:840-850. [PMID: 29436169 DOI: 10.1002/bdr2.1212] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/18/2017] [Accepted: 01/29/2018] [Indexed: 12/31/2022]
Abstract
BACKGROUND Current developmental toxicity testing adheres largely to protocols suggested in 1966 involving the administration of test compound to pregnant laboratory animals. After more than 50 years of embryo-fetal development testing, are we ready to consider a different approach to human developmental toxicity testing? METHODS A workshop was held under the auspices of the Developmental and Reproductive Toxicology Technical Committee of the ILSI Health and Environmental Sciences Institute to consider how we might design developmental toxicity testing if we started over with 21st century knowledge and techniques (revolution). We first consider what changes to the current protocols might be recommended to make them more predictive for human risk (evolution). RESULTS The evolutionary approach includes modifications of existing protocols and can include humanized models, disease models, more accurate assessment and testing of metabolites, and informed approaches to dose selection. The revolution could start with hypothesis-driven testing where we take what we know about a compound or close analog and answer specific questions using targeted experimental techniques rather than a one-protocol-fits-all approach. Central to the idea of hypothesis-driven testing is the concept that testing can be done at the level of mode of action. It might be feasible to identify a small number of key events at a molecular or cellular level that predict an adverse outcome and for which testing could be performed in vitro or in silico or, rarely, using limited in vivo models. Techniques for evaluating these key events exist today or are in development. DISCUSSION Opportunities exist for refining and then replacing current developmental toxicity testing protocols using techniques that have already been developed or are within reach.
Collapse
Affiliation(s)
- Anthony R Scialli
- Reproductive Toxicology Center and Scialli Consulting LLC, Washington, DC
| | | | - Connie Chen
- ILSI Health and Environmental Sciences Institute, Washington, DC
| | | | - Susan Y Euling
- Office of Children's Health Protection, U.S. Environmental Protection Agency, Washington, DC
| | | | | | - Julia Hui
- Celgene Corporation, Summit, New Jersey
| | - Thomas Knudsen
- National Center for Computational Toxicology, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina
| | - Susan L Makris
- National Center for Environmental Assessment, U.S. Environmental Protection Agency, Washington, DC
| | | | - Aldert H Piersma
- Center for Health Protection, National Institute for Public Health and the Environment RIVM, Bilthoven and Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
| | | | - Kary E Thompson
- Drug Safety Evaluation, Bristol-Myers Squibb, New Brunswick, New Jersey
| |
Collapse
|
5
|
Smirnova L, Kleinstreuer N, Corvi R, Levchenko A, Fitzpatrick SC, Hartung T. 3S - Systematic, systemic, and systems biology and toxicology. ALTEX 2018; 35:139-162. [PMID: 29677694 PMCID: PMC6696989 DOI: 10.14573/altex.1804051] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 04/06/2018] [Indexed: 12/11/2022]
Abstract
A biological system is more than the sum of its parts - it accomplishes many functions via synergy. Deconstructing the system down to the molecular mechanism level necessitates the complement of reconstructing functions on all levels, i.e., in our conceptualization of biology and its perturbations, our experimental models and computer modelling. Toxicology contains the somewhat arbitrary subclass "systemic toxicities"; however, there is no relevant toxic insult or general disease that is not systemic. At least inflammation and repair are involved that require coordinated signaling mechanisms across the organism. However, the more body components involved, the greater the challenge to reca-pitulate such toxicities using non-animal models. Here, the shortcomings of current systemic testing and the development of alternative approaches are summarized. We argue that we need a systematic approach to integrating existing knowledge as exemplified by systematic reviews and other evidence-based approaches. Such knowledge can guide us in modelling these systems using bioengineering and virtual computer models, i.e., via systems biology or systems toxicology approaches. Experimental multi-organ-on-chip and microphysiological systems (MPS) provide a more physiological view of the organism, facilitating more comprehensive coverage of systemic toxicities, i.e., the perturbation on organism level, without using substitute organisms (animals). The next challenge is to establish disease models, i.e., micropathophysiological systems (MPPS), to expand their utility to encompass biomedicine. Combining computational and experimental systems approaches and the chal-lenges of validating them are discussed. The suggested 3S approach promises to leverage 21st century technology and systematic thinking to achieve a paradigm change in studying systemic effects.
Collapse
Affiliation(s)
- Lena Smirnova
- Johns Hopkins University, Bloomberg School of Public Health, Center for Alternatives to Animal Testing (CAAT), Baltimore, MD, USA
| | | | - Raffaella Corvi
- European Commission, Joint Research Centre (JRC), EU Reference Laboratory for Alternatives to Animal Testing (EURL ECVAM), Ispra, (VA), Italy
| | - Andre Levchenko
- Yale Systems Biology Institute and Biomedical Engineering Department, Yale University, New Haven, CT, USA
| | - Suzanne C Fitzpatrick
- Food and Drug Administration (FDA), Center for Food Safety and Applied Nutrition, College Park, MD, USA
| | - Thomas Hartung
- Johns Hopkins University, Bloomberg School of Public Health, Center for Alternatives to Animal Testing (CAAT), Baltimore, MD, USA.
- CAAT-Europe, University of Konstanz, Konstanz, Germany
| |
Collapse
|
6
|
The Threshold of Toxicological Concern for prenatal developmental toxicity in rats and rabbits. Regul Toxicol Pharmacol 2017. [PMID: 28645885 DOI: 10.1016/j.yrtph.2017.06.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The Threshold Toxicological Concern (TTC) is based on the concept that in absence of experimental data reasonable assurance of safety can be given if exposure is sufficiently low. Using the REACH database the low 5th percentile of the NO(A)EL distribution, for prenatal developmental toxicity (OECD guideline 414) was determined. For rats, (434 NO(A)ELs values) for maternal toxicity, this value was 10 mg/kg-bw/day. For developmental toxicity (469 NO(A)ELs): 13 mg/kg-bw/day. For rabbits, (100 NO(A)ELs), the value for maternal toxicity was 4 mg/kg-bw/day, for developmental toxicity, (112 NO(A)EL values): 10 mg/kg-bw/day. The maternal organism may thus be slightly more sensitive than the fetus. Combining REACH- (industrial chemicals) and published BASF-data (mostly agrochemicals), 537 unique compounds with NO(A)EL values for developmental toxicity in rats and 150 in rabbits were evaluated. The low 5th percentile NO(A)EL for developmental toxicity in rats was 10 mg/kg-bw/day and 9.5 mg/kg-bw/day for rabbits. Using an assessment factor of 100, a TTC value for developmental toxicity of 100 μg/kg-bw/day for rats and 95 μg/kg-bw/day for rabbits is calculated. These values could serve as guidance whether or not to perform an animal experiment, if exposure is sufficiently low. In emergency situations this value may be useful for a first tier risk assessment.
Collapse
|
7
|
Faria EC, Bercu JP, Dolan DG, Morinello EJ, Pecquet AM, Seaman C, Sehner C, Weideman PA. Using default methodologies to derive an acceptable daily exposure (ADE). Regul Toxicol Pharmacol 2016; 79 Suppl 1:S28-38. [DOI: 10.1016/j.yrtph.2016.05.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 05/19/2016] [Indexed: 02/05/2023]
|
8
|
Relevance of bioaccumulating substances in the TTC concept. Regul Toxicol Pharmacol 2016; 77:42-8. [DOI: 10.1016/j.yrtph.2016.02.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/10/2016] [Accepted: 02/22/2016] [Indexed: 11/24/2022]
|
9
|
Gould J, Callis CM, Dolan DG, Stanard B, Weideman PA. Special endpoint and product specific considerations in pharmaceutical acceptable daily exposure derivation. Regul Toxicol Pharmacol 2016; 79 Suppl 1:S79-93. [PMID: 27233924 DOI: 10.1016/j.yrtph.2016.05.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 05/19/2016] [Indexed: 12/12/2022]
Abstract
Recently, a guideline has been published by the European Medicines Agency (EMA) on setting safe limits, permitted daily exposures (PDE) [also called acceptable daily exposures (ADE)], for medicines manufactured in multi-product facilities. The ADE provides a safe exposure limit for inadvertent exposure of a drug due to cross-contamination in manufacturing. The ADE determination encompasses a standard risk assessment, requiring an understanding of the toxicological and pharmacological effects, the mechanism of action, drug compound class, and the dose-response as well as the pharmacokinetic properties of the compound. While the ADE concept has broad application in pharmaceutical safety there are also nuances and specific challenges associated with some toxicological endpoints or drug product categories. In this manuscript we discuss considerations for setting ADEs when the following specific adverse health endpoints may constitute the critical effect: genotoxicity, developmental and reproductive toxicity (DART), and immune system modulation (immunostimulation or immunosuppression), and for specific drug classes, including antibody drug conjugates (ADCs), emerging medicinal therapeutic compounds, and compounds with limited datasets. These are challenging toxicological scenarios that require a careful evaluation of all of the available information in order to establish a health-based safe level.
Collapse
|
10
|
Review of the Threshold of Toxicological Concern (TTC) approach and development of new TTC decision tree. ACTA ACUST UNITED AC 2016. [DOI: 10.2903/sp.efsa.2016.en-1006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
11
|
Laabs V, Leake C, Botham P, Melching-Kollmuß S. Regulation of non-relevant metabolites of plant protection products in drinking and groundwater in the EU: Current status and way forward. Regul Toxicol Pharmacol 2015; 73:276-86. [DOI: 10.1016/j.yrtph.2015.06.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 06/22/2015] [Accepted: 06/23/2015] [Indexed: 10/23/2022]
|
12
|
Zarn JA, Hänggi E, Engeli BE. Impact of study design and database parameters on NOAEL distributions used for toxicological concern (TTC) values. Regul Toxicol Pharmacol 2015; 72:491-500. [DOI: 10.1016/j.yrtph.2015.05.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 04/17/2015] [Accepted: 05/13/2015] [Indexed: 10/23/2022]
|
13
|
Blackburn K, Daston G, Fisher J, Lester C, Naciff JM, Rufer ES, Stuard SB, Woeller K. A strategy for safety assessment of chemicals with data gaps for developmental and/or reproductive toxicity. Regul Toxicol Pharmacol 2015; 72:202-15. [DOI: 10.1016/j.yrtph.2015.04.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 04/07/2015] [Accepted: 04/08/2015] [Indexed: 11/29/2022]
|
14
|
Stanard B, Dolan DG, Hanneman W, Legare M, Bercu JP. Threshold of toxicological concern (TTC) for developmental and reproductive toxicity of anticancer compounds. Regul Toxicol Pharmacol 2015; 72:602-9. [PMID: 26025210 DOI: 10.1016/j.yrtph.2015.05.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 05/21/2015] [Accepted: 05/22/2015] [Indexed: 11/18/2022]
Abstract
Pharmaceutical companies develop specialized therapies to treat late stage cancer. In order to accelerate life-saving treatments and reduce animal testing, compounds to treat life-threatening malignancies are allowed modified requirements for preclinical toxicology testing. Limited data packages in early drug development can present product quality challenges at multi-product manufacturing facilities. The present analysis established an endpoint-specific threshold of toxicological concern (TTC) for developmental and reproductive toxicity (DART) for anticancer compounds. A comprehensive database was created consisting of over 300 no-observed adverse effect levels (NOAELs) for DART of 108 anticancer compounds. The 5th percentile NOAEL for developmental and reproductive toxicity was 0.005 mg/kg/day (300 μg/day), resulting in a human exposure threshold of 3 μg/day assuming standard uncertainty factors and a 60 kg human bodyweight. The analysis shows this threshold is protective for developmental and reproductive toxicity of highly potent groups of anticancer compounds. There were similar TTC values calculated for direct-acting and indirect-acting anticancer compounds.
Collapse
Affiliation(s)
- Brad Stanard
- MedImmune, One MedImmune Way, Gaithersburg, MD 20878, USA; Colorado State University, Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Ft. Collins, CO 80523, USA.
| | - David G Dolan
- Amgen, Inc., One Amgen Center Drive, MS 28-1A, Thousand Oaks, CA 91360, USA
| | - William Hanneman
- Colorado State University, Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Ft. Collins, CO 80523, USA
| | - Marie Legare
- Colorado State University, Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Ft. Collins, CO 80523, USA
| | - Joel P Bercu
- Amgen, Inc., One Amgen Center Drive, MS 28-1A, Thousand Oaks, CA 91360, USA
| |
Collapse
|
15
|
Leeman WR, Krul L, Houben GF. Reevaluation of the Munro dataset to derive more specific TTC thresholds. Regul Toxicol Pharmacol 2014; 69:273-8. [DOI: 10.1016/j.yrtph.2014.04.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 04/23/2014] [Accepted: 04/25/2014] [Indexed: 10/25/2022]
|
16
|
Dewhurst I, Renwick A. Evaluation of the Threshold of Toxicological Concern (TTC) – Challenges and approaches. Regul Toxicol Pharmacol 2013; 65:168-77. [DOI: 10.1016/j.yrtph.2012.03.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 03/08/2012] [Indexed: 11/24/2022]
|
17
|
Canady R, Lane R, Paoli G, Wilson M, Bialk H, Hermansky S, Kobielush B, Lee JE, Llewellyn C, Scimeca J. Determining the applicability of threshold of toxicological concern approaches to substances found in foods. Crit Rev Food Sci Nutr 2013; 53:1239-49. [PMID: 24090142 PMCID: PMC3809586 DOI: 10.1080/10408398.2012.752341] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2022]
Abstract
Threshold of Toxicological Concern (TTC) decision-support methods present a pragmatic approach to using data from well-characterized chemicals and protective estimates of exposure in a stepwise fashion to inform decisions regarding low-level exposures to chemicals for which few data exist. It is based on structural and functional categorizations of chemicals derived from decades of animal testing with a wide variety of chemicals. Expertise is required to use the TTC methods, and there are situations in which its use is clearly inappropriate or not currently supported. To facilitate proper use of the TTC, this paper describes issues to be considered by risk managers when faced with the situation of an unexpected substance in food. Case studies are provided to illustrate the implementation of these considerations, demonstrating the steps taken in deciding whether it would be appropriate to apply the TTC approach in each case. By appropriately applying the methods, employing the appropriate scientific expertise, and combining use with the conservative assumptions embedded within the derivation of the thresholds, the TTC can realize its potential to protect public health and to contribute to efficient use of resources in food safety risk management.
Collapse
Affiliation(s)
- Richard Canady
- Center for Risk Science Innovation and Application (RSIA), ILSI Research Foundation, 1156 Fifteenth Street NW, Suite 200, Washington, DC 20005-1743, USA
| | - Richard Lane
- PepsiCo Inc., 350 Columbus Avenue, Valhalla, NY 10595, USA
| | - Greg Paoli
- Risk Sciences International (RSI), 325 Dalhousie Street, 10th Floor, Ottawa, ON K1N 7G2, Canada
| | - Margaret Wilson
- Risk Sciences International (RSI), 325 Dalhousie Street, 10th Floor, Ottawa, ON K1N 7G2, Canada
| | - Heidi Bialk
- PepsiCo Inc., 350 Columbus Avenue, Valhalla, NY 10595, USA
| | - Steven Hermansky
- Scientific and Regulatory Affairs and Toxicology, ConAgra Foods Inc., Six ConAgra Drive, Mail Stop 6-460, Omaha, NE 68102-5006, USA
| | - Brent Kobielush
- General Mills Inc., One General Mills Boulevard, W01-B, Minneapolis, MN 55426, USA
| | - Ji-Eun Lee
- Kellogg Co., 2 Hamblin Avenue E, Battle Creek, MI 49017, USA
| | - Craig Llewellyn
- Scientific and Regulatory Affairs, Coca-Cola Company North America, One Coca-Cola Plaza, PO Box Drawer 1734, Atlanta, GA 30301, USA
| | - Joseph Scimeca
- Cargill Inc., 15407 McGinty Road West, MS #56, Wayzata, MN 55391, USA
| |
Collapse
|
18
|
van Ravenzwaay B, Dammann M, Buesen R, Flick B, Schneider S. The threshold of toxicological concern for prenatal developmental toxicity in rabbits and a comparison to TTC values in rats. Regul Toxicol Pharmacol 2012; 64:1-8. [DOI: 10.1016/j.yrtph.2012.06.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 06/05/2012] [Accepted: 06/05/2012] [Indexed: 11/27/2022]
|
19
|
Rietjens IMCM, Scholz G, Berg I, Schilter B, Slob W. Refined hazard characterization of 3-MCPD using benchmark dose modeling. EUR J LIPID SCI TECH 2012. [DOI: 10.1002/ejlt.201100145] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
20
|
Scientific Opinion on Exploring options for providing advice about possible human health risks based on the concept of Threshold of Toxicological Concern (TTC). EFSA J 2012. [DOI: 10.2903/j.efsa.2012.2750] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
21
|
Hennes E. An overview of values for the threshold of toxicological concern. Toxicol Lett 2012; 211:296-303. [DOI: 10.1016/j.toxlet.2012.03.795] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 03/19/2012] [Accepted: 03/21/2012] [Indexed: 11/30/2022]
|
22
|
Laufersweiler MC, Gadagbui B, Baskerville-Abraham IM, Maier A, Willis A, Scialli AR, Carr GJ, Felter SP, Blackburn K, Daston G. Correlation of chemical structure with reproductive and developmental toxicity as it relates to the use of the threshold of toxicological concern. Regul Toxicol Pharmacol 2011; 62:160-82. [PMID: 22019814 DOI: 10.1016/j.yrtph.2011.09.004] [Citation(s) in RCA: 1374] [Impact Index Per Article: 98.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 09/15/2011] [Accepted: 09/16/2011] [Indexed: 10/16/2022]
Abstract
In the absence of toxicological data on a chemical, the threshold of toxicological concern (TTC) approach provides a system to estimate a conservative exposure below which there is a low probability of risk for adverse health effects. The original toxicology dataset underlying the TTC was based on NOELs from repeat dose studies. Subsequently there have been several efforts to assess whether or not these limits are also protective for reproductive/developmental effects. This work expands the database of chemicals with reproductive and developmental data, presents these data in a comprehensive and transparent format and groups the chemicals according to the TTC "Cramer Class" rules. Distributions of NOAELs from each of these classes were used to assess whether the previously proposed TTC values based on repeat dose data are protective for reproductive/developmental toxicity endpoints as well. The present analysis indicates that, for each Cramer Class, the reproductive and developmental endpoints would be protected at the corresponding general TTC tiers derived by Munro et al. (1996).
Collapse
|
23
|
Kalkhof H, Herzler M, Stahlmann R, Gundert-Remy U. Threshold of toxicological concern values for non-genotoxic effects in industrial chemicals: re-evaluation of the Cramer classification. Arch Toxicol 2011; 86:17-25. [DOI: 10.1007/s00204-011-0732-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 06/16/2011] [Indexed: 11/25/2022]
|