1
|
Li A, Er JC, Khor WC, Liu MH, Sin V, Chan SH, Aung KT. Integration of National Chemical Hazards Monitoring, Total Diet Study, and Human Biomonitoring Programmes for Food Safety Exposure Assessment in Singapore. J Food Prot 2025; 88:100414. [PMID: 39577808 DOI: 10.1016/j.jfp.2024.100414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/11/2024] [Accepted: 11/16/2024] [Indexed: 11/24/2024]
Abstract
Food safety and food security can impact the quality of human life, and these two aspects are interrelated alongside many influencing external factors. Global stressors such as climate change, recent pandemic, and geopolitical tensions have demonstrated tangible impacts on food security and safety. Food and food system innovation is a key strategy towards feeding the world in a more sustainable and climate-resilient manner. This paper highlights the use of a science-based risk assessment and management in Singapore's food safety system, specifically in the integration of exposure assessment approaches to support evidence-based food safety risk analysis and decision-making. The use of complementary top-down and bottom-up exposure assessment approaches through the market monitoring programme, total diet study and human biomonitoring forms a comprehensive integrated exposure assessment strategy which can ultimately inform policy and measures in ensuring and securing a supply of safe food. The discussion on such application for chemical food safety in Singapore offers additional insights into the synergistic inter-relationships contributing to the exposure assessment associated with chemicals in food.
Collapse
Affiliation(s)
- Angela Li
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore; Department of Food Science & Technology, National University of Singapore, 2 Science Drive 2, Faculty of Science, Singapore 117543, Singapore
| | - Jun Cheng Er
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore
| | - Wei Ching Khor
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore
| | - Mei Hui Liu
- Department of Food Science & Technology, National University of Singapore, 2 Science Drive 2, Faculty of Science, Singapore 117543, Singapore
| | - Valerie Sin
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore
| | - Sheot Harn Chan
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore; Department of Food Science & Technology, National University of Singapore, 2 Science Drive 2, Faculty of Science, Singapore 117543, Singapore
| | - Kyaw Thu Aung
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore; Department of Food Science & Technology, National University of Singapore, 2 Science Drive 2, Faculty of Science, Singapore 117543, Singapore; School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| |
Collapse
|
2
|
Cao X, Qin R, Zhang S, Luo W, Qin J, Yan X, Cai F, Liao Q, Yu Y, Zheng J. Bisphenol pollutants bind with human hair keratin: Combining evidence from fluorescence spectroscopy and molecular docking. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177533. [PMID: 39542267 DOI: 10.1016/j.scitotenv.2024.177533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/06/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Bisphenols, including bisphenol A (BPA) and its analogs such as bisphenol F (BPF), bisphenol S (BPS), tetrabromobisphenol A (TBBPA), tetrachlorobisphenol A (TCBPA) and tetrabromobisphenol S (TBBPS), are typical endocrine disruptors widely used in plastic production. However, until now, the occurrence mechanisms of these bisphenols in hair, a non-invasive material for human biomonitoring, have been inadequately explored. This study employed fluorescence spectroscopy and molecular docking to investigate the interactions between these 6 bisphenols and hair keratin. The findings revealed that these bisphenols quenched keratin's intrinsic fluorescence in a concentration-dependent manner and exhibited a mixed quenching mechanism. Their binding constants to keratin at 308 K range from 6.98 × 102 to 7.24 × 106 M-1, with a spontaneous binding mode observed. Halogenated bisphenols demonstrated a higher binding affinity to keratin compared to non-halogenated bisphenols, with bromobisphenols showing a greater affinity than chlorinated bisphenols. The combined results from fluorescence and molecular docking suggest that hydrogen bonding and hydrophobic interactions are the predominant forces driving the binding of bisphenols to hair keratin. These insights first provide a novel perspective on understanding the mechanisms of small molecular pollutants deposition in hair, marking an important step toward utilizing hair as a biomonitoring tool.
Collapse
Affiliation(s)
- Xue Cao
- The Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China; Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, PR China
| | - Ruixin Qin
- The Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Shiyi Zhang
- The Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China.
| | - Weikeng Luo
- The Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Jiaxiang Qin
- Kingfa Sci. & Tech. Co., LTD., Guangzhou 510663, PR China
| | - Xiao Yan
- The Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Fengshan Cai
- The Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Qilong Liao
- The Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Yunjiang Yu
- The Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Jing Zheng
- The Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China.
| |
Collapse
|
3
|
Reale E, Zare Jeddi M, Paini A, Connolly A, Duca R, Cubadda F, Benfenati E, Bessems J, S Galea K, Dirven H, Santonen T, M Koch H, Jones K, Sams C, Viegas S, Kyriaki M, Campisi L, David A, Antignac JP, B Hopf N. Human biomonitoring and toxicokinetics as key building blocks for next generation risk assessment. ENVIRONMENT INTERNATIONAL 2024; 184:108474. [PMID: 38350256 DOI: 10.1016/j.envint.2024.108474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/15/2023] [Accepted: 02/01/2024] [Indexed: 02/15/2024]
Abstract
Human health risk assessment is historically built upon animal testing, often following Organisation for Economic Co-operation and Development (OECD) test guidelines and exposure assessments. Using combinations of human relevant in vitro models, chemical analysis and computational (in silico) approaches bring advantages compared to animal studies. These include a greater focus on the human species and on molecular mechanisms and kinetics, identification of Adverse Outcome Pathways and downstream Key Events as well as the possibility of addressing susceptible populations and additional endpoints. Much of the advancement and progress made in the Next Generation Risk Assessment (NGRA) have been primarily focused on new approach methodologies (NAMs) and physiologically based kinetic (PBK) modelling without incorporating human biomonitoring (HBM). The integration of toxicokinetics (TK) and PBK modelling is an essential component of NGRA. PBK models are essential for describing in quantitative terms the TK processes with a focus on the effective dose at the expected target site. Furthermore, the need for PBK models is amplified by the increasing scientific and regulatory interest in aggregate and cumulative exposure as well as interactions of chemicals in mixtures. Since incorporating HBM data strengthens approaches and reduces uncertainties in risk assessment, here we elaborate on the integrated use of TK, PBK modelling and HBM in chemical risk assessment highlighting opportunities as well as challenges and limitations. Examples are provided where HBM and TK/PBK modelling can be used in both exposure assessment and hazard characterization shifting from external exposure and animal dose/response assays to animal-free, internal exposure-based NGRA.
Collapse
Affiliation(s)
- Elena Reale
- Centre for Primary Care and Public Health (Unisanté), University of Lausanne, Switzerland
| | - Maryam Zare Jeddi
- National Institute for Public Health and the Environment (RIVM), the Netherlands
| | | | - Alison Connolly
- UCD Centre for Safety & Health at Work, School of Public Health, Physiotherapy, and Sports Science, University College Dublin, D04 V1W8, Dublin, Ireland for Climate and Air Pollution Studies, Physics, School of Natural Science and the Ryan Institute, National University of Ireland, University Road, Galway H91 CF50, Ireland
| | - Radu Duca
- Unit Environmental Hygiene and Human Biological Monitoring, Department of Health Protection, Laboratoire national de santé (LNS), 1, Rue Louis Rech, 3555 Dudelange, Luxembourg; Environment and Health, Department of Public Health and Primary Care, KU Leuven, Kapucijnenvoer 35, 3000 Leuven, Belgium
| | - Francesco Cubadda
- Istituto Superiore di Sanità - National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy
| | - Emilio Benfenati
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy
| | - Jos Bessems
- VITO HEALTH, Flemish Institute for Technological Research, 2400 Mol, Belgium
| | - Karen S Galea
- Institute of Occupational Medicine (IOM), Research Avenue North, Riccarton, Edinburgh EH14 4AP, UK
| | - Hubert Dirven
- Department of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Tiina Santonen
- Finnish Institute of Occupational Health (FIOH), P.O. Box 40, FI-00032 Työterveyslaitos, Finland
| | - Holger M Koch
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Kate Jones
- HSE - Health and Safety Executive, Harpur Hill, Buxton SK17 9JN, UK
| | - Craig Sams
- HSE - Health and Safety Executive, Harpur Hill, Buxton SK17 9JN, UK
| | - Susana Viegas
- NOVA National School of Public Health, Public Health Research Centre, Comprehensive Health Research Center, CHRC, NOVA University Lisbon, Lisbon, Portugal
| | - Machera Kyriaki
- Benaki Phytopathological Institute, 8, Stephanou Delta Street, 14561 Kifissia, Athens, Greece
| | - Luca Campisi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; Flashpoint srl, Via Norvegia 56, 56021 Cascina (PI), Italy
| | - Arthur David
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)-UMR_S 1085, F-35000 Rennes, France
| | | | - Nancy B Hopf
- Centre for Primary Care and Public Health (Unisanté), University of Lausanne, Switzerland.
| |
Collapse
|
4
|
Li Y, Zheng N, Sun S, Wang S, Li X, Pan J, Li M, Lang L, Yue Z, Zhou B. Exposure estimates of parabens from personal care products compared with biomonitoring data in human hair from Northeast China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115635. [PMID: 37897980 DOI: 10.1016/j.ecoenv.2023.115635] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 10/30/2023]
Abstract
Parabens (PBs), a class of endocrine-disrupting chemicals (EDCs), are extensively used as additives in personal care products (PCPs); however, distinguishing between endogenous and exogenous contamination from PCPs in hair remains a challenge. We conducted a comprehensive analysis of the levels, distribution patterns, impact factors, and sources of PBs in 119 human hair samples collected from Changchun, northeast China. The detection rates of methylparaben (MeP), propylparaben (PrP), and ethylparaben (EtP) in hair samples were found to be 100%. The concentration of PBs in hair followed the order of MeP (57.48 ng/g) > PrP (46.40 ng/g) > EtP (6.80 ng/g). The concentration of PrP in female hair was significantly higher (65.38 ng/g) than that observed in male hair (7.82 ng/g) (p < 0.05). The levels of excretion rates of MeP (ERMeP) and excretion rates of PrP (ERPrP) in the hair-dying samples (ERMeP: 17.89 ng/day; ERPrP: 14.15 ng/day) were found to be 2.52 and 2.40 times higher, respectively, compared to the non-hair-dying samples (ERMeP: 7.09 ng/day; ERPrP: 6.05 ng/day). However, the system exposure dosage (SED) results revealed that although hair dyes exhibited higher PBs, human exposure was found to be lower than certain PCPs. The results of the correlation analysis revealed that toner, face cream, body lotion, and hair conditioner were identified as the primary sources of PBs in male hair. Furthermore, the human exposure resulting from the utilization of female hair dye and serum exhibited a positive correlation with hair ERMeP and ERPrP levels, indicating in the screening of samples, excluding hair samples using hair dye and haircare essential oil can effectively avoid the interference caused by exogenous contamination from PCPs.
Collapse
Affiliation(s)
- Yunyang Li
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, China; Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin, China; University of Chinese Academy of Sciences, Beijing, China
| | - Na Zheng
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, China; Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin, China.
| | - Siyu Sun
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, China
| | - Sujing Wang
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, China
| | - Xiaoqian Li
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, China
| | - Jiamin Pan
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, China; Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin, China; University of Chinese Academy of Sciences, Beijing, China
| | - Muyang Li
- Jilin Province Product Quality Supervision and Inspection Institute, Changchun, China
| | - Le Lang
- Jilin Province Product Quality Supervision and Inspection Institute, Changchun, China
| | - Zelin Yue
- Jilin Province Product Quality Supervision and Inspection Institute, Changchun, China
| | - Binbin Zhou
- Changchun Sci-Tech University, Shuangyang District, Changchun, China
| |
Collapse
|
5
|
Santonen T, Mahiout S, Alvito P, Apel P, Bessems J, Bil W, Borges T, Bose-O'Reilly S, Buekers J, Cañas Portilla AI, Calvo AC, de Alba González M, Domínguez-Morueco N, López ME, Falnoga I, Gerofke A, Caballero MDCG, Horvat M, Huuskonen P, Kadikis N, Kolossa-Gehring M, Lange R, Louro H, Martins C, Meslin M, Niemann L, Díaz SP, Plichta V, Porras SP, Rousselle C, Scholten B, Silva MJ, Šlejkovec Z, Tratnik JS, Joksić AŠ, Tarazona JV, Uhl M, Van Nieuwenhuyse A, Viegas S, Vinggaard AM, Woutersen M, Schoeters G. How to use human biomonitoring in chemical risk assessment: Methodological aspects, recommendations, and lessons learned from HBM4EU. Int J Hyg Environ Health 2023; 249:114139. [PMID: 36870229 DOI: 10.1016/j.ijheh.2023.114139] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 03/06/2023]
Abstract
One of the aims of the European Human Biomonitoring Initiative, HBM4EU, was to provide examples of and good practices for the effective use of human biomonitoring (HBM) data in human health risk assessment (RA). The need for such information is pressing, as previous research has indicated that regulatory risk assessors generally lack knowledge and experience of the use of HBM data in RA. By recognising this gap in expertise, as well as the added value of incorporating HBM data into RA, this paper aims to support the integration of HBM into regulatory RA. Based on the work of the HBM4EU, we provide examples of different approaches to including HBM in RA and in estimations of the environmental burden of disease (EBoD), the benefits and pitfalls involved, information on the important methodological aspects to consider, and recommendations on how to overcome obstacles. The examples are derived from RAs or EBoD estimations made under the HBM4EU for the following HBM4EU priority substances: acrylamide, o-toluidine of the aniline family, aprotic solvents, arsenic, bisphenols, cadmium, diisocyanates, flame retardants, hexavalent chromium [Cr(VI)], lead, mercury, mixture of per-/poly-fluorinated compounds, mixture of pesticides, mixture of phthalates, mycotoxins, polycyclic aromatic hydrocarbons (PAHs), and the UV-filter benzophenone-3. Although the RA and EBoD work presented here is not intended to have direct regulatory implications, the results can be useful for raising awareness of possibly needed policy actions, as newly generated HBM data from HBM4EU on the current exposure of the EU population has been used in many RAs and EBoD estimations.
Collapse
Affiliation(s)
| | | | - Paula Alvito
- National Institute of Health Dr. Ricardo Jorge, 1649-016, Lisbon, Portugal; Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Petra Apel
- German Environment Agency (UBA), Corrensplatz 1, 14195, Berlin, Germany
| | - Jos Bessems
- VITO-Flemish Institute for Technological Research, Mol, Belgium
| | - Wieneke Bil
- National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Teresa Borges
- General-Directorate of Health, Ministry of Health, 1049-005, Lisbon, Portugal
| | - Stephan Bose-O'Reilly
- Department of Public Health, Health Services Research and Health Technology Assessment, UMIT - Private University for Health Sciences, Medical Informations und Technology, Hall i.T., Austria
| | - Jurgen Buekers
- VITO-Flemish Institute for Technological Research, Mol, Belgium
| | | | - Argelia Castaño Calvo
- National Centre for Environmental Health, Instituto de Salud Carlos III, Madrid, Spain
| | | | | | - Marta Esteban López
- National Centre for Environmental Health, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Antje Gerofke
- German Environment Agency (UBA), Corrensplatz 1, 14195, Berlin, Germany
| | | | | | | | | | | | - Rosa Lange
- German Environment Agency (UBA), Corrensplatz 1, 14195, Berlin, Germany
| | - Henriqueta Louro
- National Institute of Health Dr. Ricardo Jorge, 1649-016, Lisbon, Portugal; ToxOmics-Centre for Toxicogenomics and Human Health, NOVA Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal
| | - Carla Martins
- NOVA National School of Public Health, Public Health Research Centre, NOVA University Lisbon, 1600-560, Lisbon, Portugal; Comprehensive Health Research Center (CHRC), NOVA University Lisbon, 1600-560, Lisbon, Portugal
| | - Matthieu Meslin
- French Agency for Food, Environmental and Occupational Health & Safety, Anses, 14 rue Pierre et Marie Curie, 94701, Maisons-Alfort, France
| | - Lars Niemann
- German Federal Institute for Risk Assessment, Berlin, Germany
| | - Susana Pedraza Díaz
- National Centre for Environmental Health, Instituto de Salud Carlos III, Madrid, Spain
| | - Veronika Plichta
- Austrian Agency for Health and Food Safety, Department Risk Assessment, Spargelfeldstraße 191, 1220, Vienna, Austria
| | | | - Christophe Rousselle
- French Agency for Food, Environmental and Occupational Health & Safety, Anses, 14 rue Pierre et Marie Curie, 94701, Maisons-Alfort, France
| | - Bernice Scholten
- Research Group Risk Analysis for Products in Development, The Netherlands Organisation for Applied Scientific research (TNO), Utrecht, the Netherlands
| | - Maria João Silva
- National Institute of Health Dr. Ricardo Jorge, 1649-016, Lisbon, Portugal; ToxOmics-Centre for Toxicogenomics and Human Health, NOVA Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal
| | | | | | | | - Jose V Tarazona
- National Centre for Environmental Health, Instituto de Salud Carlos III, Madrid, Spain; European Food Safety Authority (EFSA), Parma, Italy
| | - Maria Uhl
- Environment Agency Austria, Spittelauer Lände 5, 1090, Vienna, Austria
| | | | - Susana Viegas
- NOVA National School of Public Health, Public Health Research Centre, NOVA University Lisbon, 1600-560, Lisbon, Portugal; Comprehensive Health Research Center (CHRC), NOVA University Lisbon, 1600-560, Lisbon, Portugal
| | | | - Marjolijn Woutersen
- National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Greet Schoeters
- VITO-Flemish Institute for Technological Research, Mol, Belgium; University of Antwerp, Dept of Biomedical Sciences, Antwerp, Belgium
| |
Collapse
|
6
|
Abstract
Historically, benzene has been widely used in a large variety of applications. Occupational exposure limits (OELs) were set for benzene as it was found to be acutely toxic, causing central nervous system depression at high exposures. OELs were lowered when it was discovered that chronic exposure to benzene could cause haematotoxicity. After confirmation that benzene is a human carcinogen causing acute myeloid leukaemia and possibly other blood malignancies, OEL were further lowered. The industrial application of benzene as solvent is almost completely discontinued but it is still used as feedstock for the production of other materials, such as styrene. Occupational exposure to benzene may also occur since it is present in crude oil, natural gas condensate and a variety of petroleum products and because benzene can be formed in combustion of organic material. In the past few years, lower OELs for benzene in the range of 0.05-0.25 ppm have been proposed or were already established to protect workers from benzene-induced cancer. The skin is an important potential route of exposure and relatively more important at lower OELs. Consequently, human biomonitoring - which integrates all exposure routes - is routinely applied to control overall exposure to benzene. Several potential biomarkers have been proposed and investigated. For compliance check of the current low OELs, urinary S-phenylmercapturic acid (S-PMA), urinary benzene and blood benzene are feasible biomarkers. S-PMA appears to be the most promising biomarker but proper validation of biomarker levels corresponding to airborne benzene concentrations below 0.25 ppm are needed.
Collapse
Affiliation(s)
- Peter J Boogaard
- AFSG - Division of Toxicology, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
7
|
McNally K, Sams C, Loizou G. Development, testing, parameterisation, and calibration of a human PBK model for the plasticiser, di (2-ethylhexyl) adipate (DEHA) using in silico, in vitro and human biomonitoring data. Front Pharmacol 2023; 14:1165770. [PMID: 37033641 PMCID: PMC10076754 DOI: 10.3389/fphar.2023.1165770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/15/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction: A physiologically based biokinetic model for di (2-ethylhexyl) adipate (DEHA) based on a refined model for di-(2-propylheptyl) phthalate (DPHP) was developed to interpret the metabolism and biokinetics of DEHA following a single oral dosage of 50 mg to two male and two female volunteers. Methods: The model was parameterized using in vitro and in silico methods such as, measured intrinsic hepatic clearance scaled from in vitro to in vivo and algorithmically predicted parameters such as plasma unbound fraction and tissue:blood partition coefficients (PCs). Calibration of the DEHA model was achieved using concentrations of specific downstream metabolites of DEHA excreted in urine. The total fractions of ingested DEHA eliminated as specific metabolites were estimated and were sufficient for interpreting the human biomonitoring data. Results: The specific metabolites of DEHA, mono-2-ethyl-5-hydroxyhexyl adipate (5OH-MEHA), mono-2-ethyl-5-oxohexyl adipate (5oxo-MEHA), mono-5-carboxy-2-ethylpentyl adipate (5cx-MEPA) only accounted for ∼0.45% of the ingested DEHA. Importantly, the measurements of adipic acid, a non-specific metabolite of DEHA, proved to be important in model calibration. Discussion: The very prominent trends in the urinary excretion of the metabolites, 5cx-MEPA and 5OH-MEHA allowed the important absorption mechanisms of DEHA to be modelled. The model should be useful for the study of exposure to DEHA of the general human population.
Collapse
|
8
|
McNally K, Sams C, Hogg A, Loizou G. Development, testing, parameterisation, and calibration of a human PBPK model for the plasticiser, di-(2-ethylhexyl) terephthalate (DEHTP) using in silico, in vitro and human biomonitoring data. Front Pharmacol 2023; 14:1140852. [PMID: 36891271 PMCID: PMC9986446 DOI: 10.3389/fphar.2023.1140852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/06/2023] [Indexed: 02/22/2023] Open
Abstract
A physiologically based pharmacokinetic model for di-(2-ethylhexyl) terephthalate (DEHTP) based on a refined model for di-(2-propylheptyl) phthalate (DPHP) was developed to interpret the metabolism and biokinetics of DEHTP following a single oral dose of 50 mg to three male volunteers. In vitro and in silico methods were used to generate parameters for the model. For example, measured intrinsic hepatic clearance scaled from in vitro to in vivo and plasma unbound fraction and tissue:blood partition coefficients (PCs) were predicted algorithmically. Whereas the development and calibration of the DPHP model was based upon two data streams, blood concentrations of parent chemical and first metabolite and the urinary excretion of metabolites, the model for DEHTP was calibrated against a single data stream, the urinary excretion of metabolites. Despite the model form and structure being identical significant quantitative differences in lymphatic uptake between the models were observed. In contrast to DPHP the fraction of ingested DEHTP entering lymphatic circulation was much greater and of a similar magnitude to that entering the liver with evidence for the dual uptake mechanisms discernible in the urinary excretion data. Further, the absolute amounts absorbed by the study participants, were much higher for DEHTP relative to DPHP. The in silico algorithm for predicting protein binding performed poorly with an error of more than two orders of magnitude. The extent of plasma protein binding has important implications for the persistence of parent chemical in venous blood-inferences on the behaviour of this class of highly lipophilic chemicals, based on calculations of chemical properties, should be made with extreme caution. Attempting read across for this class of highly lipophilic chemicals should be undertaken with caution since basic adjustments to PCs and metabolism parameters would be insufficient, even when the structure of the model itself is appropriate. Therefore, validation of a model parameterized entirely with in vitro and in silico derived parameters would need to be calibrated against several human biomonitoring data streams to constitute a data rich source chemical to afford confidence for future evaluations of other similar chemicals using the read-across approach.
Collapse
|
9
|
McNally K, Sams C, Hogg A, Lumen A, Loizou G. Development, Testing, Parameterisation and Calibration of a Human PBPK Model for the Plasticiser, Di-(2-propylheptyl) Phthalate (DPHP) Using in Silico, in vitro and Human Biomonitoring Data. Front Pharmacol 2021; 12:692442. [PMID: 34539393 PMCID: PMC8443793 DOI: 10.3389/fphar.2021.692442] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 08/13/2021] [Indexed: 11/13/2022] Open
Abstract
A physiologically based pharmacokinetic model for Di-(2-propylheptyl) phthalate (DPHP) was developed to interpret the biokinetics in humans after single oral doses. The model was parameterized with in vitro and in silico derived parameters and uncertainty and sensitivity analysis was used during the model development process to assess structure, biological plausibility and behaviour prior to simulation and analysis of human biological monitoring data. To provide possible explanations for some of the counter-intuitive behaviour of the biological monitoring data the model included a simple lymphatic uptake process for DPHP and enterohepatic recirculation (EHR) for DPHP and the mono ester metabolite mono-(2-propylheptyl) phthalate (MPHP). The model was used to simultaneously simulate the concentration-time profiles of blood DPHP, MPHP and the urinary excretion of two metabolites, mono-(2-propyl-6-hydroxyheptyl) phthalate (OH-MPHP) and mono-(2-propyl-6-carboxyhexyl) phthalate (cx-MPHP). The availability of blood and urine measurements permitted a more robust qualitative and quantitative investigation of the importance of EHR and lymphatic uptake. Satisfactory prediction of blood DPHP and urinary metabolites was obtained whereas blood MPHP was less satisfactory. However, the delayed peak of DPHP concentration relative to MPHP in blood and second order metabolites in urine could be explained as a result of three processes: 1) DPHP entering the systemic circulation from the lymph, 2) rapid and very high protein binding and 3) the efficiency of the liver in removing DPHP absorbed via the hepatic route. The use of sensitivity analysis is considered important in the evaluation of uncertainty around in vitro and in silico derived parameters. By quantifying their impact on model output sufficient confidence in the use of a model should be afforded. This approach could expand the use of PBPK models since parameterization with in silico techniques allows for rapid model development. This in turn could assist in reducing the use of animals in toxicological evaluations by enhancing the utility of “read across” techniques.
Collapse
Affiliation(s)
| | - Craig Sams
- Health and Safety Executive, Buxton, United Kingdom
| | - Alex Hogg
- Health and Safety Executive, Buxton, United Kingdom
| | - Annie Lumen
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, United States
| | | |
Collapse
|
10
|
Watts MJ, Menya D, Humphrey OS, Middleton DS, Hamilton E, Marriott A, McCormack V, Osano O. Human urinary biomonitoring in Western Kenya for micronutrients and potentially harmful elements. Int J Hyg Environ Health 2021; 238:113854. [PMID: 34624595 DOI: 10.1016/j.ijheh.2021.113854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/20/2021] [Accepted: 09/30/2021] [Indexed: 11/15/2022]
Abstract
Spot urinary elemental concentrations are presented for 357 adults from Western Kenya collected between 2016 and 2019 as part of a wider environmental geochemical survey. The aim of this study was to establish population level urinary elemental concentrations in Western Kenya for micronutrients and potentially harmful elements for inference of health status against established thresholds. For elements where thresholds inferring health status were not established in the literature using urine as a non-invasive matrix, this study generated reference values with a 95% confidence interval (RV95s) to contextualise urinary elemental data for this population group. Data are presented with outliers removed based upon creatinine measurements leaving 322 individuals, for sub-categories (e.g. age, gender) and by county public health administrative area. For Western Kenya, reference values with a 95% confidence interval (RV95s) were calculated as follows (μg/L): 717 (I), 89 (Se), 1753 (Zn), 336 (Mo), 24 (Cu), 15.6 (Ni), 22.1 (As), 0.34 (Cd), 0.47 (Sn), 0.46 (Sb), 7.0 (Cs), 13.4 (Ba and 1.9 (Pb). Urinary concentrations at the 25th/75th percentiles were as follows (μg/L): 149/368 (I), 15/42 (Se), 281/845 (Zn), 30/128 (Mo), 6/13 (Cu), 1.7/6.1 (Ni), 2.0/8.2 (As). 0.1/0.3 (Cd), 0.05/0.22 (Sn), 0.04/0.18 (Sb), 1.2/3.6 (Cs), 0.8/4.0 (Ba) and 0.2/0.9 (Pb). Urinary concentrations at a population level inferred excess intake of micronutrients I, Se, Zn and Mo in 38, 6, 57 and 14% of individuals, respectively, versus a bioequivalent (BE) upper threshold limit, whilst rates of deficiency were relatively low at 15, 15, 9 and 18%, respectively. Each of the administrative counties showed a broadly similar range of urinary elemental concentrations, with some exceptions for counties bordering Lake Victoria where food consumption habits may differ significantly to other counties e.g. I, Se, Zn. Corrections for urinary dilution using creatinine, specific gravity and osmolality provided a general reduction in RV95s for I, Mo, Se, As and Sn compared to uncorrected data, with consistency between the three correction methods.
Collapse
Affiliation(s)
- Michael J Watts
- Inorganic Geochemistry, Centre for Environmental Geochemistry, British Geological Survey, Nottingham, UK.
| | - Diana Menya
- School of Public Health, Moi University, Eldoret, Kenya.
| | - Olivier S Humphrey
- Inorganic Geochemistry, Centre for Environmental Geochemistry, British Geological Survey, Nottingham, UK
| | - DanielR S Middleton
- Environment and Lifestyle Epidemiology Branch, International Agency for Research on Cancer, Lyon, France
| | - Elliott Hamilton
- Inorganic Geochemistry, Centre for Environmental Geochemistry, British Geological Survey, Nottingham, UK
| | - Andrew Marriott
- Inorganic Geochemistry, Centre for Environmental Geochemistry, British Geological Survey, Nottingham, UK
| | - Valerie McCormack
- Environment and Lifestyle Epidemiology Branch, International Agency for Research on Cancer, Lyon, France
| | - Odipo Osano
- School of Environmental Sciences, University of Eldoret, Eldoret, Kenya
| |
Collapse
|
11
|
Crézé C, François M, Hopf NB, Dorribo V, Sauvain JJ, Bergamaschi E, Garzaro G, Domat M, Friesl J, Penssler E, Progiou A, Guseva Canu I. Producers of Engineered Nanomaterials-What Motivates Company and Worker Participation in Biomonitoring Programs? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18083851. [PMID: 33916897 PMCID: PMC8067629 DOI: 10.3390/ijerph18083851] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 11/23/2022]
Abstract
Production and handling of engineered nanomaterials (ENMs) can yield worker exposure to these materials with the potential for unforeseen negative health effects. Biomonitoring enables regular exposure and health assessment and an effective risk management. We aimed to identify factors influencing biomonitoring acceptance according to hierarchical positions of ENM producers. Managers and workers were invited to complete an online questionnaire. Forty-three companies producing or handling ENMs such as titanium dioxide (61%) and multi-walled carbon nanotubes (44%) participated. The majority of managers (72%) and all workers responded positively to participating in biomonitoring studies. The main reasons for refusing participation included concerns about data confidentiality and sufficient knowledge about ENM health and safety. Acquisitions of individual study results, improvement of workers’ safety, and help to the development of ENM-specific health and safety practice were among the most valuable reasons for positively considering participation. All workers indicated feeling comfortable with biomonitoring procedures of exhaled air sampling—about half were similarly comfortable with exhaled breath condensate, urine, and buccal cell sampling. The majority of both workers and managers stated that participation in a biomonitoring program should take place during working hours. Although our survey only had limited participation, our results are useful in designing appropriate biomonitoring programs for workers exposed to ENMs.
Collapse
Affiliation(s)
- Camille Crézé
- Department of Occupational and Environmental Health, Center for Primary Care and Public Health (Unisanté), University of Lausanne, 1066 Epalinges, Lausanne, Switzerland; (M.F.); (N.B.H.); (V.D.); (J.-J.S.); (I.G.C.)
- Correspondence: ; Tel.: +41-(0)21-314-63-86
| | - Marjorie François
- Department of Occupational and Environmental Health, Center for Primary Care and Public Health (Unisanté), University of Lausanne, 1066 Epalinges, Lausanne, Switzerland; (M.F.); (N.B.H.); (V.D.); (J.-J.S.); (I.G.C.)
| | - Nancy B. Hopf
- Department of Occupational and Environmental Health, Center for Primary Care and Public Health (Unisanté), University of Lausanne, 1066 Epalinges, Lausanne, Switzerland; (M.F.); (N.B.H.); (V.D.); (J.-J.S.); (I.G.C.)
| | - Victor Dorribo
- Department of Occupational and Environmental Health, Center for Primary Care and Public Health (Unisanté), University of Lausanne, 1066 Epalinges, Lausanne, Switzerland; (M.F.); (N.B.H.); (V.D.); (J.-J.S.); (I.G.C.)
| | - Jean-Jacques Sauvain
- Department of Occupational and Environmental Health, Center for Primary Care and Public Health (Unisanté), University of Lausanne, 1066 Epalinges, Lausanne, Switzerland; (M.F.); (N.B.H.); (V.D.); (J.-J.S.); (I.G.C.)
| | - Enrico Bergamaschi
- Laboratory of Toxicology and Industrial Epidemiology, Department of Public Health and Pediatrics, University of Torino, 10126 Torino, Italy; (E.B.); (G.G.)
| | - Giacomo Garzaro
- Laboratory of Toxicology and Industrial Epidemiology, Department of Public Health and Pediatrics, University of Torino, 10126 Torino, Italy; (E.B.); (G.G.)
| | - Maida Domat
- Instituto Tecnológico del Embalaje, Transporte y Logística (ITENE), 46980 Paterna, Valencia, Spain;
| | - Judith Friesl
- Yordas GmbH, 91301 Forchheim, Germany; (J.F.); (E.P.)
| | - Eva Penssler
- Yordas GmbH, 91301 Forchheim, Germany; (J.F.); (E.P.)
| | | | - Irina Guseva Canu
- Department of Occupational and Environmental Health, Center for Primary Care and Public Health (Unisanté), University of Lausanne, 1066 Epalinges, Lausanne, Switzerland; (M.F.); (N.B.H.); (V.D.); (J.-J.S.); (I.G.C.)
| |
Collapse
|
12
|
Galea KS, Porras SP, Viegas S, Bocca B, Bousoumah R, Duca RC, Godderis L, Iavicoli I, Janasik B, Jones K, Knudsen LE, Leese E, Leso V, Louro H, Ndaw S, Ruggieri F, Sepai O, Scheepers PTJ, Silva MJ, Wasowicz W, Santonen T. HBM4EU chromates study - Reflection and lessons learnt from designing and undertaking a collaborative European biomonitoring study on occupational exposure to hexavalent chromium. Int J Hyg Environ Health 2021; 234:113725. [PMID: 33714856 DOI: 10.1016/j.ijheh.2021.113725] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 01/21/2023]
Abstract
The EU human biomonitoring initiative, HBM4EU, aims to co-ordinate and advance human biomonitoring (HBM) across Europe. As part of HBM4EU, we presented a protocol for a multicentre study to characterize occupational exposure to hexavalent chromium (Cr(VI)) in nine European countries (HBM4EU chromates study). This study intended to collect data on current occupational exposure and to test new indicators for chromium (Cr) biomonitoring (Cr(VI) in exhaled breath condensate and Cr in red blood cells), in addition to traditional urinary total Cr analyses. Also, data from occupational hygiene samples and biomarkers of early biological effects, including genetic and epigenetic effects, was obtained, complementing the biomonitoring information. Data collection and analysis was completed, with the project findings being made separately available. As HBM4EU prepares to embark on further European wide biomonitoring studies, we considered it important to reflect on the experiences gained through our harmonised approach. Several practical aspects are highlighted for improvement in future studies, e.g., more thorough/earlier training on the implementation of standard operating procedures for field researchers, training on the use of the data entry template, as well as improved company communications. The HBM4EU chromates study team considered that the study had successfully demonstrated the feasibility of conducting a harmonised multicentre investigation able to achieve the research aims and objectives. This was largely attributable to the engaged multidisciplinary network, committed to deliver clearly understood goals. Such networks take time and investment to develop, but are priceless in terms of their ability to deliver and facilitate knowledge sharing and collaboration.
Collapse
Affiliation(s)
- Karen S Galea
- Institute of Occupational Medicine (IOM), Research Avenue North, Riccarton, Edinburgh, EH14 4AP, United Kingdom.
| | - Simo P Porras
- Finnish Institute of Occupational Health, P.O. Box 40, FI-00032, Työterveyslaitos, Finland
| | - Susana Viegas
- NOVA National School of Public Health, Public Health Research Centre, Universidade NOVA de Lisboa, 1600-560, Lisbon, Portugal; Comprehensive Health Research Center (CHRC), 1169-056, Lisbon, Portugal; H&TRC-Health & Technology Research Center, ESTeSL-Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1500-310, Lisboa, Portugal
| | | | - Radia Bousoumah
- French National Research and Safety Institute (INRS), France
| | - Radu Corneliu Duca
- National Health Laboratory (LNS), Department of Health Protection, Unit Environmental Hygiene and Human Biological Monitoring, 1 Rue Louis Rech, 3555, Dudelange, Luxembourg; KU Leuven, Centre for Environment and Health, Leuven, Belgium
| | - Lode Godderis
- KU Leuven, Centre for Environment and Health, Leuven, Belgium; IDEWE, External Service for Prevention and Protection at Work, 3001, Heverlee, Belgium
| | - Ivo Iavicoli
- Department of Public Health, University of Naples Federico II, Italy
| | | | - Kate Jones
- Health & Safety Executive, Buxton, SK17 9JN, United Kingdom
| | | | | | - Veruscka Leso
- Department of Public Health, University of Naples Federico II, Italy
| | - Henriqueta Louro
- National Institute of Health Dr. Ricardo Jorge, Department of Human Genetics, Lisbon and ToxOmics - Centre for Toxicogenomics and Human Health, NOVA Medical School, Universidade Nova de Lisboa, Portugal
| | - Sophie Ndaw
- French National Research and Safety Institute (INRS), France
| | | | | | - Paul T J Scheepers
- Radboud Institute for Health Sciences, Radboudumc, Nijmegen, the Netherlands
| | - Maria J Silva
- National Institute of Health Dr. Ricardo Jorge, Department of Human Genetics, Lisbon and ToxOmics - Centre for Toxicogenomics and Human Health, NOVA Medical School, Universidade Nova de Lisboa, Portugal
| | | | - Tiina Santonen
- Finnish Institute of Occupational Health, P.O. Box 40, FI-00032, Työterveyslaitos, Finland
| |
Collapse
|
13
|
Hemmendinger M, Wild P, Shoman Y, Graille M, Bergamaschi E, Hopf N, Guseva Canu I. Reference ranges of oxidative stress biomarkers selected for non-invasive biological surveillance of nanotechnology workers: Study protocol and meta-analysis results for 8-OHdG in exhaled breath condensate. Toxicol Lett 2020; 327:41-47. [PMID: 32234358 DOI: 10.1016/j.toxlet.2020.03.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/24/2020] [Indexed: 01/01/2023]
Abstract
In the field of engineered nanomaterials (ENMs) and other airborne particulate exposure biomonitoring, circulating oxidative stress biomarkers appear promising. These biomarkers could be monitored in different biological matrices. Exhaled breath condensate (EBC) enables their measurements in the respiratory tract, without affecting airway function or creating inflammation. The 8-hydroxy-2-deoxyguanosine (8-OHdG) was found increased in the EBC of ENM-exposed workers. Our objectives were to assess the reference range of 8-OHdG in the EBC and to identify determinants of its inter- and intra-individual variability. The meta-analysis was stratified by analytical method (chemical versus immunochemical analysis) and resulted in a between-study variability over 99 % of the total variability. The between-study variability completely dominated the within-studies variability. By using a mixed model with study ID as a random effect rather than a meta-regression, only smoking was evidenced as a potential determinant of 8-OHdG inter-individual variability, and only when immunochemical analysis was used. To our knowledge, this is the first meta-analysis aimed at estimating reference values for 8-OHdG in the EBC. The estimated values should be considered preliminary, as they are based on a limited number of studies, mostly of moderate to low quality of evidence. Further research is necessary to standardize EBC sampling, storage and analytical methods. Such a standardization would enable a more accurate estimation of the reference ranges of the 8-OHdG and potentially other biomarkers measurable in the EBC, which are essential for a meaningful interpretation of the biomonitoring results.
Collapse
Affiliation(s)
- M Hemmendinger
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Switzerland.
| | - P Wild
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Switzerland; Institut National de Recherche et de Sécurité (INRS), Vandœuvre-lès-Nancy, France
| | - Y Shoman
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Switzerland
| | - M Graille
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Switzerland
| | - E Bergamaschi
- Laboratory of Toxicology and Industrial Epidemiology, Department of Public Health and Pediatrics, University of Turin, Italy
| | - N Hopf
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Switzerland
| | - I Guseva Canu
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Switzerland
| |
Collapse
|
14
|
McNally K, Sams C, Loizou G. Development, Testing, Parameterization, and Calibration of a Human Physiologically Based Pharmacokinetic Model for the Plasticizer, Hexamoll ® Diisononyl-Cyclohexane-1, 2-Dicarboxylate Using In Silico, In Vitro, and Human Biomonitoring Data. Front Pharmacol 2019; 10:1394. [PMID: 31849656 PMCID: PMC6897292 DOI: 10.3389/fphar.2019.01394] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 10/31/2019] [Indexed: 11/13/2022] Open
Abstract
A physiologically based pharmacokinetic model for Hexamoll® diisononyl-cyclohexane-1, 2-dicarboxylate was developed to interpret the biokinetics in humans after single oral doses. The model was parameterized with in vitro and in silico derived parameters and uncertainty and sensitivity analysis was used during the model development process to assess structure, biological plausibility and behavior prior to simulation and analysis of human biological monitoring data. The model provided good simulations of the urinary excretion (Curine) of two metabolites; cyclohexane-1,2-dicarboxylic acid mono hydroxyisononyl ester (OH-MINCH) and cyclohexane-1, 2-dicarboxylic acid mono carboxyisononyl ester (cx-MINCH) from the biotransformation of mono-isononyl-cyclohexane-1, 2-dicarboxylate (MINCH), the monoester metabolite of di-isononyl-cyclohexane-1,2-dicarboxylate. However, good simulations could be obtained, with and without, a lymphatic compartment. Selection of an appropriate model structure was informed by sensitivity analysis which could identify and quantify the contribution to variability in Curine by parameters, such as, the fraction of oral dose that directly entered the lymphatic compartment and therefore by-passed the liver and the fraction of MINCH bio-transformed to cx-MINCH and OH-MINCH. By constraining these parameters within biologically plausible limits the presence of a lymphatic compartment was deemed an important component of model structure. Furthermore, the use of sensitivity analysis is important in the evaluation of uncertainty around in silico derived parameters. By quantifying their impact on model output sufficient confidence in the use of a model should be afforded. This type of approach could expand the use of physiologically based pharmacokinetic models since parameterization with in silico techniques allows for rapid model development. This in turn could assist in reducing the use of animals in toxicological evaluations by enhancing the utility of “read across” techniques.
Collapse
Affiliation(s)
- Kevin McNally
- Exposure and Health Consequences, Health and Safety Executive, Buxton, United Kingdom
| | - Craig Sams
- Exposure and Health Consequences, Health and Safety Executive, Buxton, United Kingdom
| | - George Loizou
- Exposure and Health Consequences, Health and Safety Executive, Buxton, United Kingdom
| |
Collapse
|
15
|
Santonen T, Alimonti A, Bocca B, Duca RC, Galea KS, Godderis L, Göen T, Gomes B, Hanser O, Iavicoli I, Janasik B, Jones K, Kiilunen M, Koch HM, Leese E, Leso V, Louro H, Ndaw S, Porras SP, Robert A, Ruggieri F, Scheepers PTJ, Silva MJ, Viegas S, Wasowicz W, Castano A, Sepai O. Setting up a collaborative European human biological monitoring study on occupational exposure to hexavalent chromium. ENVIRONMENTAL RESEARCH 2019; 177:108583. [PMID: 31330491 DOI: 10.1016/j.envres.2019.108583] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 06/10/2023]
Abstract
The EU human biomonitoring initiative, HBM4EU, aims to co-ordinate and advance human biomonitoring (HBM) across Europe. Within its remit, the project is gathering new, policy relevant, EU-wide data on occupational exposure to relevant priority chemicals and developing new approaches for occupational biomonitoring. In this manuscript, the hexavalent chromium [Cr(VI)] study design is presented as the first example of this HBM4EU approach. This study involves eight European countries and plans to recruit 400 workers performing Cr(VI) surface treatment e.g. electroplating or stainless steel welding activities. The aim is to collect new data on current occupational exposure to Cr(VI) in Europe and to test new methods for Cr biomonitoring, specifically the analysis of Cr(VI) in exhaled breath condensate (EBC) and Cr in red blood cells (RBC) in addition to traditional urinary total Cr analyses. Furthermore, exposure data will be complemented with early biological effects data, including genetic and epigenetic effects. Personal air samples and wipe samples are collected in parallel to help informing the biomonitoring results. We present standard operational procedures (SOPs) to support the harmonized methodologies for the collection of occupational hygiene and HBM samples in different countries.
Collapse
Affiliation(s)
| | | | | | - Radu Corneliu Duca
- Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven (University of Leuven), Kapucijnenvoer 35, 3000 Leuven, Belgium
| | - Karen S Galea
- Centre for Human Exposure Science, Institute of Occupational Medicine, Edinburgh, EH14 4AP, UK
| | - Lode Godderis
- Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven (University of Leuven), Kapucijnenvoer 35, 3000 Leuven, Belgium; IDEWE, External Service for Prevention and Protection at Work, Heverlee, Belgium
| | - Thomas Göen
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Bruno Gomes
- National Institute of Health Dr. Ricardo Jorge, Department of Human Genetics, Lisbon and ToxOmics - Centre for Toxicogenomics and Human Health, NOVA Medical School S, Universidade Nova de Lisboa, Portugal
| | - Ogier Hanser
- French National Research and Safety Institute, France
| | | | | | - Kate Jones
- Health & Safety Executive, Buxton, SK17 9JN, United Kingdom
| | | | - Holger M Koch
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance - Institute of the Ruhr-Universität Bochum, Germany
| | | | | | - Henriqueta Louro
- National Institute of Health Dr. Ricardo Jorge, Department of Human Genetics, Lisbon and ToxOmics - Centre for Toxicogenomics and Human Health, NOVA Medical School S, Universidade Nova de Lisboa, Portugal
| | - Sophie Ndaw
- French National Research and Safety Institute, France
| | | | - Alain Robert
- French National Research and Safety Institute, France
| | | | - Paul T J Scheepers
- Radboud Institute for Health Sciences, Radboudumc, Nijmegen, the Netherlands
| | - Maria J Silva
- National Institute of Health Dr. Ricardo Jorge, Department of Human Genetics, Lisbon and ToxOmics - Centre for Toxicogenomics and Human Health, NOVA Medical School S, Universidade Nova de Lisboa, Portugal
| | - Susana Viegas
- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa and CISP - Centro de Investigação m Saúde Pública, Escola Nacional de Saúde Pública, Universidade NOVA de Lisboa, 1600-560 Lisbon, Portugal
| | | | | | | |
Collapse
|
16
|
Louro H, Heinälä M, Bessems J, Buekers J, Vermeire T, Woutersen M, van Engelen J, Borges T, Rousselle C, Ougier E, Alvito P, Martins C, Assunção R, Silva MJ, Pronk A, Schaddelee-Scholten B, Del Carmen Gonzalez M, de Alba M, Castaño A, Viegas S, Humar-Juric T, Kononenko L, Lampen A, Vinggaard AM, Schoeters G, Kolossa-Gehring M, Santonen T. Human biomonitoring in health risk assessment in Europe: Current practices and recommendations for the future. Int J Hyg Environ Health 2019; 222:727-737. [DOI: 10.1016/j.ijheh.2019.05.009] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 11/16/2022]
|
17
|
Steckling N, Gotti A, Bose-O'Reilly S, Chapizanis D, Costopoulou D, De Vocht F, Garí M, Grimalt JO, Heath E, Hiscock R, Jagodic M, Karakitsios SP, Kedikoglou K, Kosjek T, Leondiadis L, Maggos T, Mazej D, Polańska K, Povey A, Rovira J, Schoierer J, Schuhmacher M, Špirić Z, Stajnko A, Stierum R, Tratnik JS, Vassiliadou I, Annesi-Maesano I, Horvat M, Sarigiannis DA. Biomarkers of exposure in environment-wide association studies - Opportunities to decode the exposome using human biomonitoring data. ENVIRONMENTAL RESEARCH 2018; 164:597-624. [PMID: 29626821 DOI: 10.1016/j.envres.2018.02.041] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 02/09/2018] [Accepted: 02/28/2018] [Indexed: 05/20/2023]
Abstract
BACKGROUND The European Union's 7th Framework Programme (EU's FP7) project HEALS - Health and Environment-wide Associations based on Large Population Surveys - aims a refinement of the methodology to elucidate the human exposome. Human biomonitoring (HBM) provides a valuable tool for understanding the magnitude of human exposure from all pathways and sources. However, availability of specific biomarkers of exposure (BoE) is limited. OBJECTIVES The objective was to summarize the availability of BoEs for a broad range of environmental stressors and exposure determinants and corresponding reference and exposure limit values and biomonitoring equivalents useful for unraveling the exposome using the framework of environment-wide association studies (EWAS). METHODS In a face-to-face group discussion, scope, content, and structure of the HEALS deliverable "Guidelines for appropriate BoE selection for EWAS studies" were determined. An expert-driven, distributed, narrative review process involving around 30 individuals of the HEALS consortium made it possible to include extensive information targeted towards the specific characteristics of various environmental stressors and exposure determinants. From the resulting 265 page report, targeted information about BoE, corresponding reference values (e.g., 95th percentile or measures of central tendency), exposure limit values (e.g., the German HBM I and II values) and biomonitoring equivalents (BEs) were summarized and updated. RESULTS 64 individual biological, chemical, physical, psychological and social environmental stressors or exposure determinants were included to fulfil the requirements of EWAS. The list of available BoEs is extensive with a number of 135; however, 12 of the stressors and exposure determinants considered do not leave any measurable specific substance in accessible body specimens. Opportunities to estimate the internal exposure stressors not (yet) detectable in human specimens were discussed. CONCLUSIONS Data about internal exposures are useful to decode the exposome. The paper provides extensive information for EWAS. Information included serves as a guideline - snapshot in time without any claim to comprehensiveness - to interpret HBM data and offers opportunities to collect information about the internal exposure of stressors if no specific BoE is available.
Collapse
Affiliation(s)
- Nadine Steckling
- University Hospital Munich, WHO Collaborating Centre for Occupational Health, Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, Unit Global Environmental Health, Ziemssenstr. 1, D-80336 Munich, Germany; Department of Public Health and Health Technology Assessment, Universityfor Health Sciences, Medical Computer Science and Technology, Eduard-Wallnöfer-Zentrum 1, A-6060 Hall in Tirol, Austria.
| | - Alberto Gotti
- Aristotle University of Thessaloniki, School of Engineering, Building D, University Campus, GR-54124, Greece
| | - Stephan Bose-O'Reilly
- University Hospital Munich, WHO Collaborating Centre for Occupational Health, Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, Unit Global Environmental Health, Ziemssenstr. 1, D-80336 Munich, Germany; Department of Public Health and Health Technology Assessment, Universityfor Health Sciences, Medical Computer Science and Technology, Eduard-Wallnöfer-Zentrum 1, A-6060 Hall in Tirol, Austria
| | - Dimitris Chapizanis
- Aristotle University of Thessaloniki, School of Engineering, Building D, University Campus, GR-54124, Greece
| | - Danae Costopoulou
- National Centre for Scientific Research "Demokritos", Neapoleos 27, 15310 Athens, Greece
| | - Frank De Vocht
- Centre for Occupational and Environmental Health, Centre for Epidemiology, Division of Population Health, Health Services Research and Primary Care, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9BL, United Kingdom
| | - Mercè Garí
- University Hospital Munich, WHO Collaborating Centre for Occupational Health, Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, Unit Global Environmental Health, Ziemssenstr. 1, D-80336 Munich, Germany; Institute of Environmental Assessment and Water Research - Spanish Council for Scientific Research, Barcelona, Spain
| | - Joan O Grimalt
- Institute of Environmental Assessment and Water Research - Spanish Council for Scientific Research, Barcelona, Spain
| | - Ester Heath
- Jožef Stefan Institute, Department of Environmental Sciences, Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Rosemary Hiscock
- University of Bath, UK Centre for Tobacco and Alcohol Studies, Department for Health Bath BA2 7AY, United Kingdom
| | - Marta Jagodic
- Jožef Stefan Institute, Department of Environmental Sciences, Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Spyros P Karakitsios
- Aristotle University of Thessaloniki, School of Engineering, Building D, University Campus, GR-54124, Greece
| | - Kleopatra Kedikoglou
- National Centre for Scientific Research "Demokritos", Neapoleos 27, 15310 Athens, Greece
| | - Tina Kosjek
- Jožef Stefan Institute, Department of Environmental Sciences, Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Leondios Leondiadis
- National Centre for Scientific Research "Demokritos", Neapoleos 27, 15310 Athens, Greece
| | - Thomas Maggos
- National Centre for Scientific Research "Demokritos", Neapoleos 27, 15310 Athens, Greece
| | - Darja Mazej
- Jožef Stefan Institute, Department of Environmental Sciences, Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Kinga Polańska
- Nofer Institute of Occupational Medicine, Department of Environmental Epidemiology, 8 Teresy Street, 91-348 Lodz, Poland
| | - Andrew Povey
- Centre for Occupational and Environmental Health, Centre for Epidemiology, Division of Population Health, Health Services Research and Primary Care, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9BL, United Kingdom
| | | | - Julia Schoierer
- University Hospital Munich, WHO Collaborating Centre for Occupational Health, Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, Unit Global Environmental Health, Ziemssenstr. 1, D-80336 Munich, Germany
| | | | - Zdravko Špirić
- Green Infrastructure Ltd., Fallerovo setaliste 22, HR-10000 Zagreb, Croatia
| | - Anja Stajnko
- Jožef Stefan Institute, Department of Environmental Sciences, Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Rob Stierum
- Nederlandse Organisatie voor Toegepast Natuurwetenschappelijk Onderzoek, Zeist, The Netherlands
| | - Janja Snoj Tratnik
- Jožef Stefan Institute, Department of Environmental Sciences, Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Irene Vassiliadou
- National Centre for Scientific Research "Demokritos", Neapoleos 27, 15310 Athens, Greece
| | | | - Milena Horvat
- Jožef Stefan Institute, Department of Environmental Sciences, Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Dimosthenis A Sarigiannis
- Aristotle University of Thessaloniki, School of Engineering, Building D, University Campus, GR-54124, Greece
| |
Collapse
|
18
|
Bevan R, Brown T, Matthies F, Sams C, Jones K, Hanlon J, La Vedrine M. Human biomonitoring data collection from occupational exposure to pesticides. ACTA ACUST UNITED AC 2017. [DOI: 10.2903/sp.efsa.2017.en-1185] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
19
|
Choi J, Aarøe Mørck T, Polcher A, Knudsen LE, Joas A. Review of the state of the art of human biomonitoring for chemical substances and its application to human exposure assessment for food safety. ACTA ACUST UNITED AC 2015. [DOI: 10.2903/sp.efsa.2015.en-724] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Judy Choi
- Judy Choi Alexandra Polcher Anke Joas
| | | | | | | | - Anke Joas
- Judy Choi Alexandra Polcher Anke Joas
| |
Collapse
|
20
|
Frazzoli C, Bocca B, Mantovani A. The One Health Perspective in Trace Elements Biomonitoring. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2015; 18:344-370. [PMID: 26691900 DOI: 10.1080/10937404.2015.1085473] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Health risks in both animals and humans are associated with chronic exposures to levels of trace elements (TE) eliciting toxic and/or antinutritional effects, including excess exposures to some essential elements. Interferences with essential TE may also lead to secondary nutritional deficiencies and/or imbalances. Although research is still required, biomarkers of exposure, including bioavailability, for TE are established tools for human biomonitoring that can also be applied to animal surveillance. Biomarkers of effect as well as, where available, of susceptibility and bioavailability are necessary to understand whether an ongoing exposure may pose a current or future health concern. In the field of animal health the use of biomarkers is less developed and less widespread than in human health; however, under a One Health perspective, animal biomonitoring can provide important information on the interfaces among humans, animals, and the environment, supporting the prevention and management of health risks. Therefore, a transfer of knowledge from human biomonitoring to farm or free-ranging animals is critical in a risk assessment framework from farm to humans. Advantages and critical aspects in designing and conducting integrative biomonitoring activities in humans and animals were critically reviewed focusing on biomarkers of exposure, effect, susceptibility, and bioavailability for toxic and essential TE. Highlighted aspects include TE metabolism, bioaccessibility, and interactions. Farm or free-ranging animals may provide noninvasive matrices suitable for evaluating animal welfare, environmental stressors, food safety, and potential risks for human health, as proposed by the interdisciplinary concept of One Health.
Collapse
Affiliation(s)
- Chiara Frazzoli
- a External Relations Office , Istituto Superiore di Sanità , Rome , Italy
| | - Beatrice Bocca
- b Bioelements and Health Unit, Department of Environment and Primary Prevention , Istituto Superiore di Sanità , Rome , Italy
| | - Alberto Mantovani
- c Food and Veterinary Toxicology Unit, Department of Veterinary Public Health and Food Safety , Istituto Superiore di Sanità , Rome , Italy
| |
Collapse
|
21
|
DeBord DG, Burgoon L, Edwards SW, Haber LT, Kanitz MH, Kuempel E, Thomas RS, Yucesoy B. Systems Biology and Biomarkers of Early Effects for Occupational Exposure Limit Setting. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2015; 12 Suppl 1:S41-54. [PMID: 26132979 PMCID: PMC4654673 DOI: 10.1080/15459624.2015.1060324] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In a recent National Research Council document, new strategies for risk assessment were described to enable more accurate and quicker assessments. This report suggested that evaluating individual responses through increased use of bio-monitoring could improve dose-response estimations. Identification of specific biomarkers may be useful for diagnostics or risk prediction as they have the potential to improve exposure assessments. This paper discusses systems biology, biomarkers of effect, and computational toxicology approaches and their relevance to the occupational exposure limit setting process. The systems biology approach evaluates the integration of biological processes and how disruption of these processes by chemicals or other hazards affects disease outcomes. This type of approach could provide information used in delineating the mode of action of the response or toxicity, and may be useful to define the low adverse and no adverse effect levels. Biomarkers of effect are changes measured in biological systems and are considered to be preclinical in nature. Advances in computational methods and experimental -omics methods that allow the simultaneous measurement of families of macromolecules such as DNA, RNA, and proteins in a single analysis have made these systems approaches feasible for broad application. The utility of the information for risk assessments from -omics approaches has shown promise and can provide information on mode of action and dose-response relationships. As these techniques evolve, estimation of internal dose and response biomarkers will be a critical test of these new technologies for application in risk assessment strategies. While proof of concept studies have been conducted that provide evidence of their value, challenges with standardization and harmonization still need to be overcome before these methods are used routinely.
Collapse
Affiliation(s)
- D. Gayle DeBord
- National Institute for Occupational Safety and Health, Division of Applied Research and Technology, Cincinnati, Ohio
| | - Lyle Burgoon
- U.S. Environmental Protection Agency, Office of Research and Development, Research Triangle Park, North Carolina
| | - Stephen W. Edwards
- U.S. Environmental Protection Agency, Office of Research and Development, Research Triangle Park, North Carolina
| | - Lynne T. Haber
- Toxicology Excellence for Risk Assessment (TERA), Cincinnati, Ohio
| | - M. Helen Kanitz
- National Institute for Occupational Safety and Health, Division of Applied Research and Technology, Cincinnati, Ohio
| | - Eileen Kuempel
- National Institute for Occupational Safety and Health, Education and Information Division, Cincinnati, Ohio
| | - Russell S. Thomas
- U.S. Environmental Protection Agency, Office of Research and Development, Research Triangle Park, North Carolina
- The Hamner Institute for Health Sciences, Research Triangle Park, North Carolina
| | - Berran Yucesoy
- National Institute for Occupational Safety and Health, Heath Effects Laboratory Division, Morgantown, West Virginia
| |
Collapse
|
22
|
Todt O, Luján JL. Analyzing precautionary regulation: do precaution, science, and innovation go together? RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2014; 34:2163-2173. [PMID: 24975619 DOI: 10.1111/risa.12246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In this article we argue that the precautionary principle, as applied to the regulation of science and technology, cannot be considered in any general manner inconsistent with the norms and methods of scientific knowledge generation and justification. Moreover, it does not necessarily curtail scientific-technological innovation. Our argument flows from a differentiated view of what precaution in regulation means. We first characterize several of the most relevant interpretations given to the precautionary principle in academic debate and regulatory practice. We then use examples of actual precaution-based regulation to show that, even though science can have varying functions in different circumstances and frames, all of those interpretations recur to scientific method and knowledge, and tend to imply innovation in methods, products, and processes. In fact, the interplay of regulation and innovation in precautionary policy, at least in the case of the interpretations of precaution that our analysis takes into account, could be understood as a way of reconciling the two fundamental science and technology policy functions of promotion and control.
Collapse
Affiliation(s)
- Oliver Todt
- Department of Philosophy, University of the Balearic Islands, Crta. de Valldemossa, km 7.5, E-07122, Palma de Mallorca, Spain
| | | |
Collapse
|
23
|
Ruiz P, Aylward LL, Mumtaz M. Application of pharmacokinetic modelling for 2,3,7,8-tetrachlorodibenzo-p-dioxin exposure assessment. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2014; 25:873-90. [PMID: 25397879 PMCID: PMC8204318 DOI: 10.1080/1062936x.2014.962083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans, and mono- and non-ortho polychlorinated biphenyls (dioxin-like PCBs) are identified as a family or group of organic compounds known as 'dioxins' or dioxin-like chemicals (DLCs). The most toxic member of this group is 2,3,7,8-tetrachlorodibenzo-(p)-dioxin (TCDD). Historically, DLCs have caused a variety of negative human health effects, but a disfiguring skin condition known as chloracne is the only health effect reported consistently. As part of translational research to make computerized models accessible to health risk assessors, the Concentration- and Age-Dependent Model (CADM) for TCDD was recoded in the Berkeley Madonna simulation language. The US Agency for Toxic Substances and Disease Registry's computational toxicology laboratory used the recoded model to predict TCDD tissue concentrations at different exposure levels. The model simulations successfully reproduced the National Health and Nutrition Examination Survey (NHANES) 2001-2002 TCDD data in age groups from 6 to 60 years and older, as well as in other human datasets. The model also enabled the estimation of lipid-normalized serum TCDD concentrations in breastfed infants. The model performed best for low background exposures over time compared with a high acute poisoning case that could due to the large dose and associated liver toxicity. Hence, this model may be useful for interpreting human biomonitoring data as a part of an overall DLC risk assessment.
Collapse
Affiliation(s)
- P. Ruiz
- Computational Toxicology and Methods Development Laboratory, Division of Toxicology and Human Health Sciences, Agency for Toxic Substances and Disease Registry, Atlanta, GA, USA
| | | | - M. Mumtaz
- Computational Toxicology and Methods Development Laboratory, Division of Toxicology and Human Health Sciences, Agency for Toxic Substances and Disease Registry, Atlanta, GA, USA
| |
Collapse
|
24
|
Huizer D, Huijbregts MA, van Rooij JG, Ragas AM. Testing the coherence between occupational exposure limits for inhalation and their biological limit values with a generalized PBPK-model: The case of 2-propanol and acetone. Regul Toxicol Pharmacol 2014; 69:408-15. [DOI: 10.1016/j.yrtph.2014.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 05/10/2014] [Accepted: 05/12/2014] [Indexed: 10/25/2022]
|
25
|
Lee J, Pedersen AB, Thomsen M. Framework for combining REACH and national regulations to obtain equal protection levels of human health and the environment in different countries - comparative study of Denmark and Korea. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2013; 125:105-116. [PMID: 23651917 DOI: 10.1016/j.jenvman.2013.02.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 02/11/2013] [Accepted: 02/17/2013] [Indexed: 06/02/2023]
Abstract
The aim of this paper is to present a conceptual framework for a systems approach to protect the environment and human health by taking into account differences in the cumulative risks of total human exposure in a territorial context. To this end the measures that are available and that can be included in REACH exposure scenarios in order to obtain territorially relevant chemical safety assessments (CSAs) were explored. The advantage of linking the REACH exposure scenarios with background environmental quality data reported under other national regulations is discussed. The main question is how REACH may be improved to protect the environment and human health inside and outside the EU. This question is exemplified in a comparative case study of two countries, Denmark and Korea, each with its own set of different environmental qualities and national regulations. As a member of the EU Denmark is obliged to adopt REACH, while Korea implemented REACH to improve the competitiveness of Korean industry within the EU market. It is presented how differences in national regulations and environmental qualities in these two countries affect background human exposure concentrations. Choosing lead as a model compound, the territorial differences in background exposure to endocrine and neurological interfering stressors were modelled. It is concluded that the different territorial soil and air lead pollution levels contribute differently to the total childhood lead exposure in the two countries. As such, the probability of the total exposure from air and soil exceeding 10% of the provisional Total Daily Intake (PTDI) is estimated to be 55.3% in Denmark and 8.2% in Korea. The relative contribution from air inhalation and soil ingestion to childhood lead exposure is estimated to be 1-99% in Denmark while it is 83-17% in Korea.
Collapse
Affiliation(s)
- Jihyun Lee
- Department of Environmental Science, Faculty of Science and Technology, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark.
| | | | | |
Collapse
|
26
|
Egorov AI, Dalbokova D, Krzyzanowski M. Biomonitoring-based environmental public health indicators. Methods Mol Biol 2013; 930:275-93. [PMID: 23086846 DOI: 10.1007/978-1-62703-059-5_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
This chapter discusses the use ofbiomonitoring-based indicators of exposure to environmental pollutants in environmental health information systems. Matrices for biomonitoring, organization and standardization of surveillance programs, the use of intake and body burden data, and the interpretation of surveillance data are discussed. The concept of environmental public health indicators is demonstrated using the "Persistent organic pollutants in human milk" indicator implemented in the Environment and Health Information System (ENHIS) of the WHO Regional Office for Europe. This indicator is based on the data from the WHO-coordinated surveillance of persistent organic pollutants in human milk as well as data from selected national studies. The WHO survey data demonstrate a steady decline in breast milk concentrations of dioxins across Europe. The data from biomonitoring surveys in Sweden also show a steady decline of breast milk concentrations of most persistent organic pollutants since 1970s with the exception of polybrominated diphenyl ethers (PBDEs) which increased rapidly until the late 1990s and then started to decline after the implementation of policy measures aiming at reducing exposures. The application of human biomonitoring data in support of environmental public health policy actions requires carefully designed standardized and sustainable surveillance, comprehensive interpretation of the data, and an effective communication strategy based on credible information presented in the form of indicator factsheets.
Collapse
Affiliation(s)
- Andrey I Egorov
- World Health Organization (WHO), Regional Office for Europe, European Centre for Environment and Health (ECEH), Bonn, Germany.
| | | | | |
Collapse
|
27
|
Decker JA, DeBord DG, Bernard B, Dotson GS, Halpin J, Hines CJ, Kiefer M, Myers K, Page E, Schulte P, Snawder J. Recommendations for biomonitoring of emergency responders: focus on occupational health investigations and occupational health research. Mil Med 2013; 178:68-75. [PMID: 23356122 DOI: 10.7205/milmed-d-12-00173] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The disaster environment frequently presents rapidly evolving and unpredictable hazardous exposures to emergency responders. Improved estimates of exposure and effect from biomonitoring can be used to assess exposure-response relationships, potential health consequences, and effectiveness of control measures. Disaster settings, however, pose significant challenges for biomonitoring. A decision process for determining when to conduct biomonitoring during and following disasters was developed. Separate but overlapping decision processes were developed for biomonitoring performed as part of occupational health investigations that directly benefit emergency responders in the short term and for biomonitoring intended to support research studies. Two categories of factors critical to the decision process for biomonitoring were identified: Is biomonitoring appropriate for the intended purpose and is biomonitoring feasible under the circumstances of the emergency response? Factors within these categories include information needs, relevance, interpretability, ethics, methodology, and logistics. Biomonitoring of emergency responders can be a valuable tool for exposure and risk assessment. Information needs, relevance, and interpretability will largely determine if biomonitoring is appropriate; logistical factors will largely determine if biomonitoring is feasible. The decision process should be formalized and may benefit from advance planning.
Collapse
Affiliation(s)
- John A Decker
- National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, 1600 Clifton Road, Mail Stop E-20, Atlanta, GA 30333, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Gagné S. A reliable method by ultra-performance liquid chromatography coupled with tandem mass spectrometry to quantify and confirm simultaneously the presence of solvent metabolites in workers' urine. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2012; 26:845-852. [PMID: 22368065 DOI: 10.1002/rcm.6163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Ultra-performance liquid chromatography coupled with tandem mass spectrometry was used for the biological monitoring of workers occupationally exposed to solvents. The method was developed using a triple quadrupole to investigate the relevant urinary metabolites of styrene, namely mandelic acid and phenylglyoxylic acid. The method provides quantitative and qualitative data to give additional assurance about the nature of the contaminant analyzed in workers' urine. A full scan and a product ion scan were acquired within the chromatographic peak acquired in MRM. For the two metabolites, the repeatability was 96%, the precision ≥97%, and the accuracy ≥93 ± 3%. The quantitative performances were not influenced by the inclusion of simultaneous full scan acquisition as compared to a usual quantitative approach. Footprints of each substance of interest were obtained at each injection, and full scan data can be interrogated for the presence of interferences and other contaminants. The method developed has been submitted to random real samples from both non-occupationally and occupationally exposed workers. The urines of non-occupationally exposed workers were all free of mandelic acid, phenylglyoxylic acid and putative interferences showing the high selectivity of the method. However, the urines of occupationally exposed workers were robustly quantified. The levels of mandelic acid and phenylglyoxylic acid ranged between 0.2 and 9 mM, and the footprints of each metabolite and structural information were acquired in parallel with the quantitative results, thus providing unquestionable data about the nature of the contaminant and the levels reported. The combination of qualitative information acquired simultaneously with quantitative results provides the structural information needed in case of questions, without any harmful effect on the robustness and throughput of the quantitative analysis.
Collapse
Affiliation(s)
- Sébastien Gagné
- Institut de recherché Robert-Sauvé en santé et en sécurité du travail, Montréal, Québec, Canada.
| |
Collapse
|
29
|
Reconstruction of Exposure to m-Xylene from Human Biomonitoring Data Using PBPK Modelling, Bayesian Inference, and Markov Chain Monte Carlo Simulation. J Toxicol 2012; 2012:760281. [PMID: 22719759 PMCID: PMC3376947 DOI: 10.1155/2012/760281] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 12/08/2011] [Accepted: 12/14/2011] [Indexed: 11/18/2022] Open
Abstract
There are numerous biomonitoring programs, both recent and ongoing, to evaluate environmental exposure of humans to chemicals. Due to the lack of exposure and kinetic data, the correlation of biomarker levels with exposure concentrations leads to difficulty in utilizing biomonitoring data for biological guidance values. Exposure reconstruction or reverse dosimetry is the retrospective interpretation of external exposure consistent with biomonitoring data. We investigated the integration of physiologically based pharmacokinetic modelling, global sensitivity analysis, Bayesian inference, and Markov chain Monte Carlo simulation to obtain a population estimate of inhalation exposure to m-xylene. We used exhaled breath and venous blood m-xylene and urinary 3-methylhippuric acid measurements from a controlled human volunteer study in order to evaluate the ability of our computational framework to predict known inhalation exposures. We also investigated the importance of model structure and dimensionality with respect to its ability to reconstruct exposure.
Collapse
|
30
|
Boogaard PJ, Aylward LL, Hays SM. Application of human biomonitoring (HBM) of chemical exposure in the characterisation of health risks under REACH. Int J Hyg Environ Health 2012; 215:238-41. [DOI: 10.1016/j.ijheh.2011.09.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 04/29/2011] [Accepted: 09/05/2011] [Indexed: 12/01/2022]
|
31
|
Pandelova M, Schramm KW. Human and environmental biomonitoring of polychlorinated biphenyls and hexachlorobenzene in Saxony, Germany based on the German Environmental Specimen Bank. Int J Hyg Environ Health 2011; 215:220-3. [PMID: 22153877 DOI: 10.1016/j.ijheh.2011.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 10/10/2011] [Accepted: 10/24/2011] [Indexed: 11/28/2022]
Abstract
The objective of the present study was to investigate the principle relationships between concentrations in human and environmental matrices of polychlorinated biphenyls (PCBs) and hexachlorobenzene (HCB) in short distance comparable areas within Saxony, Germany by employing the data of the German Environmental Specimen Banking (ESB). Examples supporting this idea were presented by selecting data on blood plasma collected from students in University of Halle and pine shoots, egg matter of city pigeons, earthworm, and roe deer liver. Similar pattern for PCB 138 and PCB 180 was found for the human plasma and pine shoots samples during investigated years and the human data followed the corresponding environmental levels with some delay of approximately two years. However, PCB 153 that was the prevailing congener did not manifest this relationship. In addition, the correlation of the ratios of concentrations (human/environmental concentration) to some physicochemical constants such as molecular weight (MW), octanol-water partition coefficient (logK(ow)), Henry's law constant (K(H)), and sorption partition coefficient (logK(oc)) of HCB, PCB 138, PCB 153, and PCB 180 were studied. The resulted negative slopes with all constants in case of blood plasma/city pigeons egg matter pairs suggested that the accumulation of lipophilic compounds is more pronounced in pigeon eggs than in human blood.
Collapse
Affiliation(s)
- Marchela Pandelova
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Ecological Chemistry, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany.
| | | |
Collapse
|
32
|
Pino A, Amato A, Alimonti A, Mattei D, Bocca B. Human biomonitoring for metals in Italian urban adolescents: data from Latium Region. Int J Hyg Environ Health 2011; 215:185-90. [PMID: 21964309 DOI: 10.1016/j.ijheh.2011.07.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 06/27/2011] [Accepted: 07/15/2011] [Indexed: 11/26/2022]
Abstract
As a part of the activities of the first Italian human biomonitoring survey (PROBE - PROgramme for Biomonitoring general population Exposure), a reference population of adolescents, aged 13-15 years, was examined for their exposure to metals. The study included 252 adolescents living in urban areas, representative of Latium Region (Italy) and blood specimens were analyzed for metals (As, Be, Cd, Co, Cr, Hg, Ir, Mn, Mo, Ni, Pb, Pd, Pt, Rh, Sb, Sn, Tl, U, V and W) by sector field inductively coupled plasma mass spectrometry. The results obtained will improve the knowledge about the body burden in adolescents and are tentative reference values for Italian young people as a basis for risk evaluation deriving from urban/environmental exposure to metals.
Collapse
Affiliation(s)
- Anna Pino
- Department of Environment and Primary Prevention, Italian National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy
| | | | | | | | | |
Collapse
|
33
|
Angerer J, Aylward LL, Hays SM, Heinzow B, Wilhelm M. Human biomonitoring assessment values: Approaches and data requirements. Int J Hyg Environ Health 2011; 214:348-60. [DOI: 10.1016/j.ijheh.2011.06.002] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 06/06/2011] [Accepted: 06/08/2011] [Indexed: 01/29/2023]
|