1
|
Wada K, Yamaguchi T, Tanaka H, Fujisawa T. Hepatic enzyme induction and its potential effect on thyroid hormone metabolism in the metamorphosing tadpole of Xenopus laevis (African clawed frog). J Appl Toxicol 2024; 44:1773-1783. [PMID: 39039701 DOI: 10.1002/jat.4672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 07/24/2024]
Abstract
Hepatic enzyme induction, an inherent defense system against xenobiotics, is known to simultaneously affect endocrine system functions in mammals under specific conditions, particularly thyroid hormone (TH) regulation. While this phenomenon has been studied extensively, the pathway leading to this indirect thyroid effect in mammals has unclear applicability to amphibians, despite the importance of amphibian species in assessing thyroid-disruptive chemicals. Here, we investigated the effects of three well-known mammalian enzyme inducers-β-naphthoflavone (BNF), pregnenolone carbonitrile (PCN), and sodium phenobarbital (NaPB)-on the gene expression of phase-I and phase-II metabolizing enzymes in Xenopus laevis tadpoles. Waterborne exposure to BNF and PCN significantly induced the expression of both phase-I (cytochrome P450, CYP) and phase-II enzymes (UDP-glucuronosyltransferase, UGT and sulfotransferase, SULT), but in different patterns, while NaPB exposure induced CYP2B expression without affecting phase-II enzymes in tadpoles, in contrast to mammals. Furthermore, an ex vivo hepatic enzyme activity assay confirmed that BNF treatment significantly increased phase-II metabolic activity (glucuronidation and sulfation) toward TH. These results suggest the potential for certain mammalian enzyme inducers to influence TH clearance in X. laevis tadpoles. Our findings provide insights into the profiles of xenosensing activity and enzyme induction in amphibians, which can facilitate a better understanding of the mechanisms of indirect effects on the thyroid system via hepatic enzyme induction in nonmammalian species.
Collapse
Affiliation(s)
- Kohei Wada
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., Takarazuka, Japan
| | - Takafumi Yamaguchi
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., Takarazuka, Japan
| | - Hitoshi Tanaka
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., Takarazuka, Japan
| | - Takuo Fujisawa
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., Takarazuka, Japan
| |
Collapse
|
2
|
Wang RM, Mesfin JM, Hunter J, Cattaneo P, Guimarães-Camboa N, Braden RL, Luo C, Hill RC, Dzieciatkowska M, Hansen KC, Evans S, Christman KL. Myocardial matrix hydrogel acts as a reactive oxygen species scavenger and supports a proliferative microenvironment for cardiomyocytes. Acta Biomater 2022; 152:47-59. [PMID: 36041648 DOI: 10.1016/j.actbio.2022.08.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/10/2022] [Accepted: 08/23/2022] [Indexed: 11/20/2022]
Abstract
As the native regenerative potential of adult cardiac tissue is limited post-injury, stimulating endogenous repair mechanisms in the mammalian myocardium is a potential goal of regenerative medicine therapeutics. Injection of myocardial matrix hydrogels into the heart post-myocardial infarction (MI) has demonstrated increased cardiac muscle and promotion of pathways associated with cardiac development, suggesting potential promotion of cardiomyocyte turnover. In this study, the myocardial matrix hydrogel was shown to have native capability as an effective reactive oxygen species scavenger and protect against oxidative stress induced cell cycle inhibition in vitro. Encapsulation of cardiomyocytes demonstrated an enhanced turnover in in vitro studies, and in vivo assessments of myocardial matrix hydrogel treatment post-MI showed increased thymidine analog uptake in cardiomyocyte nuclei compared to saline controls. Overall, this study provides evidence that properties of the myocardial matrix material provide a microenvironment mitigating oxidative damage and supportive of cardiomyocytes undergoing DNA synthesis, toward possible DNA repair or cell cycle activation. STATEMENT OF SIGNIFICANCE: Loss of adult mammalian cardiomyocyte turnover is influenced by shifts in oxidative damage, which represents a potential mechanism for improving restoration of cardiac muscle after myocardial infarction (MI). Injection of a myocardial matrix hydrogel into the heart post-MI previously demonstrated increased cardiac muscle and promotion of pathways associated with cardiac development, suggesting potential in promoting proliferation of cardiomyocytes. In this study, the myocardial matrix hydrogel was shown to protect cells from oxidative stress and increase proliferation in vitro. In a rat MI model, greater presence of tissue free thiol content spared from oxidative damage, lesser mitochondrial superoxide content, and increased thymidine analog uptake in cardiomyocytes was found in matrix injected animals compared to saline controls. Overall, this study provides evidence that properties of the myocardial matrix material provide a microenvironment supportive of cardiomyocytes undergoing DNA synthesis, toward possible DNA repair or cell cycle activation.
Collapse
Affiliation(s)
- Raymond M Wang
- Department of Bioengineering and Sanford Consortium of Regenerative Medicine, University of California San Diego, 2880 Torrey Pines Scenic Drive, La Jolla, CA 92037, USA
| | - Joshua M Mesfin
- Department of Bioengineering and Sanford Consortium of Regenerative Medicine, University of California San Diego, 2880 Torrey Pines Scenic Drive, La Jolla, CA 92037, USA
| | - Jervaughn Hunter
- Department of Bioengineering and Sanford Consortium of Regenerative Medicine, University of California San Diego, 2880 Torrey Pines Scenic Drive, La Jolla, CA 92037, USA
| | - Paola Cattaneo
- Department of Medicine and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA; Institute of Genetics and Biomedical Research (Milan Unit), National Research Council of Italy, 20189 Rozzano, MI, Italy
| | - Nuno Guimarães-Camboa
- Department of Medicine and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA; Institute of Cardiovascular Regeneration, Goethe University, Frankfurt 60590, Germany
| | - Rebecca L Braden
- Department of Bioengineering and Sanford Consortium of Regenerative Medicine, University of California San Diego, 2880 Torrey Pines Scenic Drive, La Jolla, CA 92037, USA
| | - Colin Luo
- Department of Bioengineering and Sanford Consortium of Regenerative Medicine, University of California San Diego, 2880 Torrey Pines Scenic Drive, La Jolla, CA 92037, USA
| | - Ryan C Hill
- Department of Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado, Aurora, Colorado, USA
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado, Aurora, Colorado, USA
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado, Aurora, Colorado, USA
| | - Sylvia Evans
- Department of Medicine and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Karen L Christman
- Department of Bioengineering and Sanford Consortium of Regenerative Medicine, University of California San Diego, 2880 Torrey Pines Scenic Drive, La Jolla, CA 92037, USA..
| |
Collapse
|
3
|
Heusinkveld H, Braakhuis H, Gommans R, Botham P, Corvaro M, van der Laan JW, Lewis D, Madia F, Manou I, Schorsch F, Wolterink G, Woutersen R, Corvi R, Mehta J, Luijten M. Towards a mechanism-based approach for the prediction of nongenotoxic carcinogenic potential of agrochemicals. Crit Rev Toxicol 2020; 50:725-739. [DOI: 10.1080/10408444.2020.1841732] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Harm Heusinkveld
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Hedwig Braakhuis
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Robin Gommans
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | | | | | | | | | - Federica Madia
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Irene Manou
- European Partnership for Alternative Approaches to Animal Testing (EPAA), Brussels, Belgium
| | | | - Gerrit Wolterink
- Centre for Nutrition, Prevention and Health Services, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Ruud Woutersen
- TNO Quality of Life, Zeist, and Wageningen University & Research, Wageningen, the Netherlands
| | - Raffaella Corvi
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | | - Mirjam Luijten
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| |
Collapse
|
4
|
Use of computational toxicology (CompTox) tools to predict in vivo toxicity for risk assessment. Regul Toxicol Pharmacol 2020; 116:104724. [PMID: 32640296 DOI: 10.1016/j.yrtph.2020.104724] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 06/20/2020] [Accepted: 06/30/2020] [Indexed: 12/19/2022]
Abstract
Computational Toxicology tools were used to predict toxicity for three pesticides: propyzamide (PZ), carbaryl (CB) and chlorpyrifos (CPF). The tools used included: a) ToxCast/Tox21 assays (AC50 s μM: concentration 50% maximum activity); b) in vitro-to-in vivo extrapolation (IVIVE) using ToxCast/Tox21 AC50s to predict administered equivalent doses (AED: mg/kg/d) to compare to known in vivo Lowest-Observed-Effect-Level (LOEL)/Benchmark Dose (BMD); c) high throughput toxicokinetics population based (HTTK-Pop) using AC50s for endpoints associated with the mode of action (MOA) to predict age-adjusted AED for comparison with in vivo LOEL/BMDs. ToxCast/Tox21 active-hit-calls for each chemical were predictive of targets associated with each MOA, however, assays directly relevant to the MOAs for each chemical were limited. IVIVE AEDs were predictive of in vivo LOEL/BMD10s for all three pesticides. HTTK-Pop was predictive of in vivo LOEL/BMD10s for PZ and CPF but not for CB after human age adjustments 11-15 (PZ) and 6-10 (CB) or 6-10 and 11-20 (CPF) corresponding to treated rat ages (in vivo endpoints). The predictions of computational tools are useful for risk assessment to identify targets in chemical MOAs and to support in vivo endpoints. Data can also aid is decisions about the need for further studies.
Collapse
|
5
|
Yamaguchi T, Maeda M, Ogata K, Abe J, Utsumi T, Kimura K. The effects on the endocrine system under hepatotoxicity induction by phenobarbital and di(2-ethylhexyl)phthalate in intact juvenile male rats. J Toxicol Sci 2019; 44:459-469. [PMID: 31270302 DOI: 10.2131/jts.44.459] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Phenobarbital (PB) and Di (2-ethylhexyl) phthalate (DEHP), an anti-epileptic drug and a plasticizer used in flexible polyvinylchloride formulations, respectively, are well-known typical hepatotoxicants. This study investigated the effects of PB (100 mg/kg/day) or DEHP (500 mg/kg/day) on the endocrine system in intact juvenile/peripubertal male rats exposed for 31 days beginning on postnatal day 23. Slight hormone level changes, histopathological changes in thyroid gland or induction of UDP-glucuronosyltransferase in liver were observed in both the PB and DEHP groups. One of the assumed mechanisms inducing thyroid effects is predictable to be secondary changes based on the enhancement in thyroid hormone metabolism via the induction of hepatic microsomal enzymes. No reproductive system-related changes in organ weights, histopathology, and sexual maturation were observed in both groups. Lower testosterone level was observed in the PB group. CYP2B and CYP3A, which are involved in testosterone metabolism, were induced in liver of the PB group. There was no change of 17β-hydroxysteroid dehydrogenase activity in testis of both groups. Lower testosterone level in the PB-treated male rats was attributed to an indirect, hepatotoxicity-associated effect on the reproductive system and not to direct effects on testis such as the antiandrogenic activity and the inhibition of steroidogenesis. These results did not indicate that PB or DEHP exposure affects the endocrine system directly.
Collapse
Affiliation(s)
- Takafumi Yamaguchi
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd.,Laboratory of Animal Reproductive Physiology, Graduate School of Environmental and Life Science, Okayama University
| | - Minoru Maeda
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd
| | - Keiko Ogata
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd
| | - Jun Abe
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd
| | - Toru Utsumi
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd
| | - Koji Kimura
- Laboratory of Animal Reproductive Physiology, Graduate School of Environmental and Life Science, Okayama University
| |
Collapse
|
6
|
Marty MS, Borgert C, Coady K, Green R, Levine SL, Mihaich E, Ortego L, Wheeler JR, Yi KD, Zorrilla LM. Distinguishing between endocrine disruption and non-specific effects on endocrine systems. Regul Toxicol Pharmacol 2018; 99:142-158. [PMID: 30217484 DOI: 10.1016/j.yrtph.2018.09.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/04/2018] [Indexed: 10/28/2022]
Abstract
The endocrine system is responsible for growth, development, maintaining homeostasis and for the control of many physiological processes. Due to the integral nature of its signaling pathways, it can be difficult to distinguish endocrine-mediated adverse effects from transient fluctuations, adaptive/compensatory responses, or adverse effects on the endocrine system that are caused by mechanisms outside the endocrine system. This is particularly true in toxicological studies that require generation of effects through the use of Maximum Tolerated Doses (or Concentrations). Endocrine-mediated adverse effects are those that occur as a consequence of the interaction of a chemical with a specific molecular component of the endocrine system, for example, a hormone receptor. Non-endocrine-mediated adverse effects on the endocrine system are those that occur by other mechanisms. For example, systemic toxicity, which perturbs homeostasis and affects the general well-being of an organism, can affect endocrine signaling. Some organs/tissues can be affected by both endocrine and non-endocrine signals, which must be distinguished. This paper examines in vitro and in vivo endocrine endpoints that can be altered by non-endocrine processes. It recommends an evaluation of these issues in the assessment of effects for the determination of endocrine disrupting properties of chemicals. This underscores the importance of using a formal weight of evidence (WoE) process to evaluate potential endocrine activity.
Collapse
Affiliation(s)
- M Sue Marty
- The Dow Chemical Company, Toxicology & Environmental Research and Consulting, 1803 Building, Midland, MI, 48674, USA.
| | - Chris Borgert
- Applied Pharmacology and Toxicology, Inc., C.E.H.T. Dept. Physiological Sciences, University of FL College of Veterinary Medicine, 2250 NW 24th Avenue, Gainesville, FL, 32605, USA.
| | - Katie Coady
- The Dow Chemical Company, Toxicology & Environmental Research and Consulting, 1803 Building, Midland, MI, 48674, USA.
| | - Richard Green
- Dow AgroSciences, 3b Park Square, Milton Park, Abingdon, Oxfordshire, OX14 4RN, United Kingdom.
| | - Steven L Levine
- Monsanto Company, Global Regulatory Science, 700 Chesterfield Parkway W, Chesterfield, MO, 63017, USA.
| | - Ellen Mihaich
- Environmental and Regulatory Resources, LLC, 6807 Lipscomb Drive, Durham, NC, 27712, USA.
| | - Lisa Ortego
- Bayer CropScience, 2 TW Alexander Dr, Research Triangle Park, NC, 27709, USA.
| | - James R Wheeler
- Dow AgroSciences, 3b Park Square, Milton Park, Abingdon, Oxfordshire, OX14 4RN, United Kingdom.
| | - Kun Don Yi
- Syngenta Crop Protection, LLC, 410 S Wing Rd, Greensboro, NC, 27409, USA.
| | - Leah M Zorrilla
- Bayer CropScience, 2 TW Alexander Dr, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
7
|
Marty MS, Papineni S, Coady KK, Rasoulpour RJ, Pottenger LH, Eisenbrandt DL. Pronamide: Weight of evidence for potential estrogen, androgen or thyroid effects. Regul Toxicol Pharmacol 2015; 72:405-22. [DOI: 10.1016/j.yrtph.2015.03.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 03/16/2015] [Accepted: 03/18/2015] [Indexed: 01/25/2023]
|