1
|
Staveley JP, Freeman EL, McArdle ME, Ortego LS, Coady KK, Bone A, Lagadic L, Weltje L, Weyers A, Wheeler JR. Current testing programs for pesticides adequately capture endocrine activity and adversity for protection of vertebrate wildlife. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2023. [PMID: 36597818 DOI: 10.1002/ieam.4732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
The toxicity and ecotoxicity of pesticide active ingredients are evaluated by a number of standardized test methods using vertebrate animals. These standard test methods are required under various regulatory programs for the registration of pesticides. Over the past two decades, additional test methods have been developed with endpoints that are responsive to endocrine activity and subsequent adverse effects. This article examines the available test methods and their endpoints that are relevant to an assessment of endocrine-disrupting properties of pesticides. Furthermore, the article highlights how weight-of-evidence approaches should be applied to determine whether an adverse response in (eco)toxicity tests is caused by an endocrine mechanism of action. The large number of endpoints in the current testing paradigms for pesticides make it unlikely that endocrine activity and adversity is being overlooked. Integr Environ Assess Manag 2023;00:1-21. © 2023 Bayer CropScience and The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
| | | | | | - Lisa S Ortego
- Bayer Crop Science, Environmental Safety, Chesterfield, Missouri, USA
| | - Katherine K Coady
- Bayer Crop Science, Environmental Safety, Chesterfield, Missouri, USA
| | - Audrey Bone
- Bayer Crop Science, Environmental Safety, Chesterfield, Missouri, USA
| | - Laurent Lagadic
- Bayer AG, Crop Science, Environmental Safety, Monheim am Rhein, Germany
| | - Lennart Weltje
- BASF SE, Agricultural Solutions-Ecotoxicology, Limburgerhof, Germany
| | - Arnd Weyers
- Bayer AG, Crop Science, Environmental Safety, Monheim am Rhein, Germany
| | | |
Collapse
|
2
|
Gray LE, Furr JR, Lambright CS, Evans N, Hartig PC, Cardon MC, Wilson VS, Hotchkiss AK, Conley JM. Quantification of the Uncertainties in Extrapolating From In Vitro Androgen Receptor Antagonism to In Vivo Hershberger Assay Endpoints and Adverse Reproductive Development in Male Rats. Toxicol Sci 2021; 176:297-311. [PMID: 32421828 DOI: 10.1093/toxsci/kfaa067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Multiple molecular initiating events exist that disrupt male sexual differentiation in utero including androgen receptor (AR) antagonism and inhibition of synthesis, and metabolism of fetal testosterone. Disruption of androgen signaling by AR antagonists in utero reduces anogenital distance (AGD) and induces malformations in F1 male rat offspring. We are developing a quantitative network of adverse outcome pathways that includes multiple molecular initiating events and key events linking anti-AR activities to permanent reproductive abnormalities. Here, our objective was to determine how accurately the EC50s for AR antagonism in vitro or ED50s for reduced tissue growth in the Hershberger assay (HA) (key events in the adverse outcome pathway) predict the ED50s for reduced AGD in male rats exposed in utero to AR antagonists. This effort included in-house data and published studies from the last 60 years on AR antagonism in vitro and in vivo effects in the HA and on AGD after in utero exposure. In total, more than 250 studies were selected and included in the analysis with data from about 60 potentially antiandrogenic chemicals. The ability to predict ED50s for key events and adverse developmental effects from the in vitro EC50s displays considerable uncertainty with R2 values for HA and AGD of < 6%. In contrast, there is considerably less uncertainty in extrapolating from the ED50s in the HA to the ED50s for AGD (R2 value of about 85%). In summary, the current results suggest that the key events measured in the HA can be extrapolated with reasonable certainty to predict the ED50s for the adverse in utero effects of antiandrogenic chemicals on male rat offspring.
Collapse
Affiliation(s)
- Leon E Gray
- Reproductive and Developmental Toxicology Branch, PHITD, Office of Research and Development, U.S. Environmental Protection Agency (U.S. EPA), Research Triangle Park, North Carolina 27711
| | | | - Christy S Lambright
- Reproductive and Developmental Toxicology Branch, PHITD, Office of Research and Development, U.S. Environmental Protection Agency (U.S. EPA), Research Triangle Park, North Carolina 27711
| | - Nicola Evans
- Reproductive and Developmental Toxicology Branch, PHITD, Office of Research and Development, U.S. Environmental Protection Agency (U.S. EPA), Research Triangle Park, North Carolina 27711
| | - Phillip C Hartig
- Reproductive and Developmental Toxicology Branch, PHITD, Office of Research and Development, U.S. Environmental Protection Agency (U.S. EPA), Research Triangle Park, North Carolina 27711
| | - Mary C Cardon
- Reproductive and Developmental Toxicology Branch, PHITD, Office of Research and Development, U.S. Environmental Protection Agency (U.S. EPA), Research Triangle Park, North Carolina 27711
| | - Vickie S Wilson
- Reproductive and Developmental Toxicology Branch, PHITD, Office of Research and Development, U.S. Environmental Protection Agency (U.S. EPA), Research Triangle Park, North Carolina 27711
| | - Andrew K Hotchkiss
- HPASB, HEEAD, CPHEA, Office of Research and Development, U.S. Environmental Protection Agency (U.S. EPA), Research Triangle Park, North Carolina 27711
| | - Justin M Conley
- Reproductive and Developmental Toxicology Branch, PHITD, Office of Research and Development, U.S. Environmental Protection Agency (U.S. EPA), Research Triangle Park, North Carolina 27711
| |
Collapse
|
3
|
Heusinkveld H, Braakhuis H, Gommans R, Botham P, Corvaro M, van der Laan JW, Lewis D, Madia F, Manou I, Schorsch F, Wolterink G, Woutersen R, Corvi R, Mehta J, Luijten M. Towards a mechanism-based approach for the prediction of nongenotoxic carcinogenic potential of agrochemicals. Crit Rev Toxicol 2020; 50:725-739. [DOI: 10.1080/10408444.2020.1841732] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Harm Heusinkveld
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Hedwig Braakhuis
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Robin Gommans
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | | | | | | | | | - Federica Madia
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Irene Manou
- European Partnership for Alternative Approaches to Animal Testing (EPAA), Brussels, Belgium
| | | | - Gerrit Wolterink
- Centre for Nutrition, Prevention and Health Services, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Ruud Woutersen
- TNO Quality of Life, Zeist, and Wageningen University & Research, Wageningen, the Netherlands
| | - Raffaella Corvi
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | | - Mirjam Luijten
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| |
Collapse
|
4
|
Luijten M, Corvi R, Mehta J, Corvaro M, Delrue N, Felter S, Haas B, Hewitt NJ, Hilton G, Holmes T, Jacobs MN, Jacobs A, Lamplmair F, Lewis D, Madia F, Manou I, Melching-Kollmuss S, Schorsch F, Schütte K, Sewell F, Strupp C, van der Laan JW, Wolf DC, Wolterink G, Woutersen R, Zvonar Z, Heusinkveld H, Braakhuis H. A comprehensive view on mechanistic approaches for cancer risk assessment of non-genotoxic agrochemicals. Regul Toxicol Pharmacol 2020; 118:104789. [PMID: 33035627 DOI: 10.1016/j.yrtph.2020.104789] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/14/2020] [Accepted: 10/04/2020] [Indexed: 11/28/2022]
Abstract
Currently the only methods for non-genotoxic carcinogenic hazard assessment accepted by most regulatory authorities are lifetime carcinogenicity studies. However, these involve the use of large numbers of animals and the relevance of their predictive power and results has been scientifically challenged. With increased availability of innovative test methods and enhanced understanding of carcinogenic processes, it is believed that tumour formation can now be better predicted using mechanistic information. A workshop organised by the European Partnership on Alternative Approaches to Animal Testing brought together experts to discuss an alternative, mechanism-based approach for cancer risk assessment of agrochemicals. Data from a toolbox of test methods for detecting modes of action (MOAs) underlying non-genotoxic carcinogenicity are combined with information from subchronic toxicity studies in a weight-of-evidence approach to identify carcinogenic potential of a test substance. The workshop included interactive sessions to discuss the approach using case studies. These showed that fine-tuning is needed, to build confidence in the proposed approach, to ensure scientific correctness, and to address different regulatory needs. This novel approach was considered realistic, and its regulatory acceptance and implementation can be facilitated in the coming years through continued dialogue between all stakeholders and building confidence in alternative approaches.
Collapse
Affiliation(s)
- Mirjam Luijten
- National Institute for Public Health and the Environment (RIVM), Centre for Health Protection, Bilthoven, the Netherlands.
| | - Raffaella Corvi
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | | | | - Nathalie Delrue
- Organisation for Economic Cooperation and Development (OECD), Paris, France
| | | | - Bodo Haas
- Federal Institute for Drugs and Medical Devices, Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany
| | | | - Gina Hilton
- PETA International Science Consortium Ltd, London, UK
| | | | - Miriam N Jacobs
- Centre for Radiation, Chemical and Environmental Hazards (CRCE), Public Health England, UK
| | | | - Franz Lamplmair
- European Commission, DG Internal Market, Industry, Entrepreneurship and SMEs, Brussels, Belgium
| | | | - Federica Madia
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Irene Manou
- EPAA Industry Secretariat, Brussels, Belgium
| | | | | | | | - Fiona Sewell
- National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs), London, UK
| | | | | | - Douglas C Wolf
- Syngenta Crop Protection, LLC, Greensboro, North Carolina, USA
| | - Gerrit Wolterink
- National Institute for Public Health and the Environment (RIVM), Centre for Nutrition, Prevention and Health Services, Bilthoven, the Netherlands
| | - Ruud Woutersen
- TNO Innovation for Life, Zeist; Wageningen University and Research, Wageningen, the Netherlands
| | | | - Harm Heusinkveld
- National Institute for Public Health and the Environment (RIVM), Centre for Health Protection, Bilthoven, the Netherlands
| | - Hedwig Braakhuis
- National Institute for Public Health and the Environment (RIVM), Centre for Health Protection, Bilthoven, the Netherlands
| |
Collapse
|
5
|
Use of computational toxicology (CompTox) tools to predict in vivo toxicity for risk assessment. Regul Toxicol Pharmacol 2020; 116:104724. [PMID: 32640296 DOI: 10.1016/j.yrtph.2020.104724] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 06/20/2020] [Accepted: 06/30/2020] [Indexed: 12/19/2022]
Abstract
Computational Toxicology tools were used to predict toxicity for three pesticides: propyzamide (PZ), carbaryl (CB) and chlorpyrifos (CPF). The tools used included: a) ToxCast/Tox21 assays (AC50 s μM: concentration 50% maximum activity); b) in vitro-to-in vivo extrapolation (IVIVE) using ToxCast/Tox21 AC50s to predict administered equivalent doses (AED: mg/kg/d) to compare to known in vivo Lowest-Observed-Effect-Level (LOEL)/Benchmark Dose (BMD); c) high throughput toxicokinetics population based (HTTK-Pop) using AC50s for endpoints associated with the mode of action (MOA) to predict age-adjusted AED for comparison with in vivo LOEL/BMDs. ToxCast/Tox21 active-hit-calls for each chemical were predictive of targets associated with each MOA, however, assays directly relevant to the MOAs for each chemical were limited. IVIVE AEDs were predictive of in vivo LOEL/BMD10s for all three pesticides. HTTK-Pop was predictive of in vivo LOEL/BMD10s for PZ and CPF but not for CB after human age adjustments 11-15 (PZ) and 6-10 (CB) or 6-10 and 11-20 (CPF) corresponding to treated rat ages (in vivo endpoints). The predictions of computational tools are useful for risk assessment to identify targets in chemical MOAs and to support in vivo endpoints. Data can also aid is decisions about the need for further studies.
Collapse
|
6
|
Marty MS, Borgert C, Coady K, Green R, Levine SL, Mihaich E, Ortego L, Wheeler JR, Yi KD, Zorrilla LM. Distinguishing between endocrine disruption and non-specific effects on endocrine systems. Regul Toxicol Pharmacol 2018; 99:142-158. [PMID: 30217484 DOI: 10.1016/j.yrtph.2018.09.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/04/2018] [Indexed: 10/28/2022]
Abstract
The endocrine system is responsible for growth, development, maintaining homeostasis and for the control of many physiological processes. Due to the integral nature of its signaling pathways, it can be difficult to distinguish endocrine-mediated adverse effects from transient fluctuations, adaptive/compensatory responses, or adverse effects on the endocrine system that are caused by mechanisms outside the endocrine system. This is particularly true in toxicological studies that require generation of effects through the use of Maximum Tolerated Doses (or Concentrations). Endocrine-mediated adverse effects are those that occur as a consequence of the interaction of a chemical with a specific molecular component of the endocrine system, for example, a hormone receptor. Non-endocrine-mediated adverse effects on the endocrine system are those that occur by other mechanisms. For example, systemic toxicity, which perturbs homeostasis and affects the general well-being of an organism, can affect endocrine signaling. Some organs/tissues can be affected by both endocrine and non-endocrine signals, which must be distinguished. This paper examines in vitro and in vivo endocrine endpoints that can be altered by non-endocrine processes. It recommends an evaluation of these issues in the assessment of effects for the determination of endocrine disrupting properties of chemicals. This underscores the importance of using a formal weight of evidence (WoE) process to evaluate potential endocrine activity.
Collapse
Affiliation(s)
- M Sue Marty
- The Dow Chemical Company, Toxicology & Environmental Research and Consulting, 1803 Building, Midland, MI, 48674, USA.
| | - Chris Borgert
- Applied Pharmacology and Toxicology, Inc., C.E.H.T. Dept. Physiological Sciences, University of FL College of Veterinary Medicine, 2250 NW 24th Avenue, Gainesville, FL, 32605, USA.
| | - Katie Coady
- The Dow Chemical Company, Toxicology & Environmental Research and Consulting, 1803 Building, Midland, MI, 48674, USA.
| | - Richard Green
- Dow AgroSciences, 3b Park Square, Milton Park, Abingdon, Oxfordshire, OX14 4RN, United Kingdom.
| | - Steven L Levine
- Monsanto Company, Global Regulatory Science, 700 Chesterfield Parkway W, Chesterfield, MO, 63017, USA.
| | - Ellen Mihaich
- Environmental and Regulatory Resources, LLC, 6807 Lipscomb Drive, Durham, NC, 27712, USA.
| | - Lisa Ortego
- Bayer CropScience, 2 TW Alexander Dr, Research Triangle Park, NC, 27709, USA.
| | - James R Wheeler
- Dow AgroSciences, 3b Park Square, Milton Park, Abingdon, Oxfordshire, OX14 4RN, United Kingdom.
| | - Kun Don Yi
- Syngenta Crop Protection, LLC, 410 S Wing Rd, Greensboro, NC, 27409, USA.
| | - Leah M Zorrilla
- Bayer CropScience, 2 TW Alexander Dr, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
7
|
Gross M, Green RM, Weltje L, Wheeler JR. Weight of evidence approaches for the identification of endocrine disrupting properties of chemicals: Review and recommendations for EU regulatory application. Regul Toxicol Pharmacol 2017; 91:20-28. [DOI: 10.1016/j.yrtph.2017.10.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/21/2017] [Accepted: 10/02/2017] [Indexed: 11/15/2022]
|
8
|
Pronamide: Human relevance of liver-mediated rat leydig cell tumors. Regul Toxicol Pharmacol 2015; 72:394-404. [DOI: 10.1016/j.yrtph.2015.03.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 02/25/2015] [Accepted: 03/13/2015] [Indexed: 12/15/2022]
|