1
|
Cozzolino M, Ergun Y, Seli DA, Herraiz S. Intraovarian PRP injection improves oocyte quality and early embryo development in mouse models of chemotherapy-induced diminished ovarian reserve. Aging (Albany NY) 2024; 16:12123-12137. [PMID: 39276378 PMCID: PMC11424580 DOI: 10.18632/aging.206099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 07/03/2024] [Indexed: 09/17/2024]
Abstract
Intraovarian injection of platelet-rich plasma (PRP) has been recently proposed, with encouraging results to provide an alternative option to patients diagnosed with POR or POI. However, the broad spectrum of PRP effects on the reproductive function and the mechanisms of action in follicular activation, response to stimulation, and embryo quality have not yet been studied. In this study, we first induced poor ovarian reserve (POR) and premature ovarian insufficiency (POI) ovarian phenotypes in CD1 mice undergoing PRP or sham intraovarian injection. PRP administration reduced those alterations induced by chemotherapy in ovarian stroma and follicle morphology in both the POR and POI conditions. After ovarian stimulation, we found that PRP did not modify the MII-oocyte yield. Nevertheless, the amount of obtained 2-cell embryos and fertilization rate were increased, being especially relevant for the POI model. Further in vitro embryo culture led to improved blastocyst formation rates and higher numbers of good quality blastocysts in PRP vs. sham females in both the POR and POI conditions. These positive results of PRP injection were also validated in the C57Bl/6 stain. Altogether, our findings suggest a possible effect on oocyte and embryo quality. This effect is likely due to the increase of local paracrine signaling through the released growth factors in PRP-treated ovaries.
Collapse
Affiliation(s)
- Mauro Cozzolino
- IVIRMA Global Research Alliance, IVI Foundation-IIS la Fe, Valencia 46026, Spain
- Department of Obstetrics, Gynecology and Reproductive Sciences, New Heaven, CT 06510, USA
- IVIRMA Global Research Alliance, IVIRMA Roma, Rome 00197, Italy
| | - Yagmur Ergun
- Department of Obstetrics, Gynecology and Reproductive Sciences, New Heaven, CT 06510, USA
| | - Denis A. Seli
- IVIRMA Global Research Alliance, IVI Foundation-IIS la Fe, Valencia 46026, Spain
| | - Sonia Herraiz
- IVIRMA Global Research Alliance, IVI Foundation-IIS la Fe, Valencia 46026, Spain
- Department of Obstetrics, Gynecology and Reproductive Sciences, New Heaven, CT 06510, USA
| |
Collapse
|
2
|
Okten SB, Ozcan P, Tok OE, Devranoglu B, Cetin C, Tanoglu FB, Ficicioglu C. The Protective Effect of Adipose-Derived Stromal Vascular Fraction on Ovarian Function in Rats with Cyclophosphamide-Induced Ovarian Damage. Gynecol Obstet Invest 2024:1-9. [PMID: 39265557 DOI: 10.1159/000541049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 08/15/2024] [Indexed: 09/14/2024]
Abstract
OBJECTIVE The aim of this study was to investigate if adipose-derived stromal vascular fraction (SVF) treatment has any protective effect on ovarian function in rats with cyclophosphamide (CP) induced ovarian damage. DESIGN This was an experimental animal study. PARTICIPANTS/MATERIALS, SETTING, METHODS 25 mature cycling Wistar-Albino rats were randomized into four groups (n = 5 per group). Rats in groups 1 and 2 received single dose of intraperitoneal (i.p.) 1 mL/kg sodium chloride 0.9% (NaCl). Groups 3 and 4 received single dose of 75 mg/kg i.p. CP. On seventh day, SVF was prepared from adipose tissues of 5 additional rats and groups 1 and 3 received 0.9% NaCl i.p. injections while groups 2 and 4 received 0.2 mL i.p. injections of SVF. On day 21 all rats were euthanized, and serum anti-mullerian hormone (AMH) levels, primordial, primary, secondary, antral, and atretic follicle counts, AMH positive staining follicle counts along with AMH staining intensity of the follicles were evaluated. RESULTS Among two CP induced ovarian damaged groups, SVF treated group showed significantly higher secondary and antral follicle and lower atretic follicle counts, significantly higher mean serum AMH levels, AMH positive antral follicle count and higher intensity of AMH positive follicle scores for primary, secondary, and antral follicles when compared to untreated group. Moreover, group 1 showed no significant difference for all parameters except antral follicle count and AMH positive staining intensity scores for antral follicles when compared to group 4. LIMITATIONS This study was conducted on experimental rat model. CONCLUSION Our study demonstrated a significant protective effect of SVF against CP-induced ovarian damage which reveals the apparent need for further investigation of its precise mechanisms of action as it may provide a new treatment approach for women with premature ovarian failure.
Collapse
Affiliation(s)
- Sabri Berkem Okten
- Acibadem Health Group, Acibadem Kozyatagi Hospital, Department of Obstetrics, Gynecology and Reproductive Medicine, İstanbul, Turkey
| | - Pinar Ozcan
- Department of Obstetrics and Gynecology, Faculty of Medicine, Bezmialem University, İstanbul, Turkey
| | - Olgu Enis Tok
- Istanbul Medipol University- School of Medicine and Research Institude for Health Sciences and Technologies, Histology and Embryology, Istanbul, Turkey
| | - Belgin Devranoglu
- Zeynep Kamil Maternity and Children's Training and Research Hospital, Department of Obstetrics and Gynecology, İstanbul, Turkey
| | - Caglar Cetin
- Department of Obstetrics and Gynecology, Faculty of Medicine, Bezmialem University, İstanbul, Turkey
| | - Fatma Basak Tanoglu
- Department of Obstetrics and Gynecology, Faculty of Medicine, Bezmialem University, İstanbul, Turkey
| | - Cem Ficicioglu
- Acibadem Health Group, Acibadem Kozyatagi Hospital, Department of Obstetrics, Gynecology and Reproductive Medicine, İstanbul, Turkey
| |
Collapse
|
3
|
Pouladvand N, Azarnia M, Zeinali H, Fathi R, Tavana S. An overview of different methods to establish a murine premature ovarian failure model. Animal Model Exp Med 2024. [PMID: 39219374 DOI: 10.1002/ame2.12477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 07/14/2024] [Indexed: 09/04/2024] Open
Abstract
Premature ovarian failure (POF)is defined as the loss of normal ovarian function before the age of 40 and is characterized by increased gonadotropin levels and decreased estradiol levels and ovarian reserve, often leading to infertility. The incomplete understanding of the pathogenesis of POF is a major impediment to the development of effective treatments for this disease, so the use of animal models is a promising option for investigating and identifying the molecular mechanisms involved in POF patients and developing therapeutic agents. As mice and rats are the most commonly used models in animal research, this review article considers studies that used murine POF models. In this review based on the most recent studies, first, we introduce 10 different methods for inducing murine POF models, then we demonstrate the advantages and disadvantages of each one, and finally, we suggest the most practical method for inducing a POF model in these animals. This may help researchers find the method of creating a POF model that is most appropriate for their type of study and suits the purpose of their research.
Collapse
Affiliation(s)
- Negar Pouladvand
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Mahnaz Azarnia
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Hadis Zeinali
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Rouhollah Fathi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Somayeh Tavana
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|
4
|
Onalan E, Erbay B, Buran İK, Erol D, Tektemur A, Kuloglu T, Ozercan IH. Effects and Mechanism of AP39 on Ovarian Functions in Rats Exposed to Cisplatin and Chronic Immobilization Stress. J Menopausal Med 2024; 30:104-119. [PMID: 39315502 PMCID: PMC11439572 DOI: 10.6118/jmm.23015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/02/2024] [Accepted: 08/03/2024] [Indexed: 09/25/2024] Open
Abstract
OBJECTIVES Premature ovarian failure (POF) rat models are essential for elucidating the hormonal and ovarian molecular mechanisms of human POF diseases and developing new therapeutic agents. This study aimed to compare the applicability of chronic immobilization stress (CIS) as a POF model with that of cisplatin and to examine the impact of AP39, a mitochondrial protective agent, on ovarian function in rats treated with cisplatin and CIS. METHODS Sixty Sprague-Dawley female rats were divided equally into six groups (10 per group): Control, Cisplatin, AP39, Cisplatin + AP39, CIS, and CIS + AP39. Ovarian dysfunction was induced with cisplatin (3 mg/kg) or CIS. Forced swim test, hormone concentrations, estrous cyclicity, histopathology, follicle counts, and molecular alterations in the ovary and mitochondria were analyzed. RESULTS In the CIS and cisplatin groups, mitochondrial biogenesis, egg quality, hormonal profile, estrous cycle, and folliculogenesis significantly declined. Nonetheless, most of the parameters with undesirable results did not normalize after AP39 administration. CONCLUSIONS The cisplatin- and CIS-treated rats exhibited unshared deteriorated hormonal pathways and similarly disrupted gene expression patterns. Our current CIS model did not meet the human POF criteria, which include decreased estradiol levels, despite having advantages in terms of ease of modeling and reproducibility and demonstrating pathological changes similar to those observed in human POF. Therefore, rather than using this model as an POF model, using it as a representation of stress-induced ovarian dysfunction would be more appropriate.
Collapse
Affiliation(s)
- Ebru Onalan
- Department of Medical Biology, Faculty of Medicine, Firat University, Elazığ, Türkiye
| | - Bilgi Erbay
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - İlay Kavuran Buran
- Department of Medical Biology, Faculty of Medicine, Firat University, Elazığ, Türkiye.
| | - Deniz Erol
- Department of Medical Genetics, Faculty of Medicine, Firat University, Elazığ, Türkiye
| | - Ahmet Tektemur
- Department of Medical Biology, Faculty of Medicine, Firat University, Elazığ, Türkiye
| | - Tuncay Kuloglu
- Department of Histology and Embryology, Faculty of Medicine, Firat University, Elazığ, Türkiye
| | | |
Collapse
|
5
|
Luo C, Wei L, Qian F, Bo L, Gao S, Yang G, Mao C. LncRNA HOTAIR regulates autophagy and proliferation mechanisms in premature ovarian insufficiency through the miR-148b-3p/ATG14 axis. Cell Death Discov 2024; 10:44. [PMID: 38267415 PMCID: PMC10808186 DOI: 10.1038/s41420-024-01811-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/01/2024] [Accepted: 01/08/2024] [Indexed: 01/26/2024] Open
Abstract
Premature ovarian insufficiency (POI) is a serious disease significantly affecting the physical and mental health of women of reproductive age, not just impacting fertility outcomes. Ovarian damage due to chemotherapy remains a major cause of this condition. Recent studies have indicated the involvement of the long non-coding RNA HOTAIR in the progression of various diseases, showcasing important biological functions, yet its role in POI remains unclear. We conducted microarray dataset analysis and qRT-PCR experiments, demonstrating downregulation of HOTAIR expression in ovarian tissue and granulosa cells. Various functional experiments using plasmids overexpressing HOTAIR confirmed its promotion of cisplatin-induced granulosa cell autophagy and proliferation. Mechanistically, dual-luciferase assays showed that HOTAIR modulates ATG14 levels in POI by binding miR-148b-3p, thereby enhancing levels of autophagy and proliferation. In this study, we first explored the impact of miR-148b-3p on POI and found that overexpression of miR-148b-3p reversed the promotion of autophagy and proliferation induced by HOTAIR overexpression. The inhibitory effect of miR-148b-3p inhibitor on KGN cell autophagy and proliferation improvement could also be reversed by silencing ATG14. Overall, our findings indicate the promoting role of HOTAIR in POI and its potential as a biomarker for POI by modulating the miR-148b-3p/ATG14 axis to improve mechanisms of autophagy and proliferation in POI.
Collapse
Affiliation(s)
- Chao Luo
- Reproductive Medicine Center, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Lun Wei
- Reproductive Medicine Center, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Fei Qian
- Reproductive Medicine Center, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Le Bo
- Reproductive Medicine Center, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Shasha Gao
- Reproductive Medicine Center, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Guangzhao Yang
- Reproductive Medicine Center, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Caiping Mao
- Reproductive Medicine Center, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China.
| |
Collapse
|
6
|
Wang X, Yuan P, Zeng M, Sun M, Wang X, Zheng X, Feng W. Allantoin Derived From Dioscorea opposita Thunb Ameliorates Cyclophosphamide-Induced Premature Ovarian Failure in Female Rats by Attenuating Apoptosis, Autophagy and Pyroptosis. Cureus 2023; 15:e50351. [PMID: 38089953 PMCID: PMC10713354 DOI: 10.7759/cureus.50351] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2023] [Indexed: 08/20/2024] Open
Abstract
Background and objectives Cyclophosphamide (CP) is widely used as a chemotherapy drug for the treatment of malignant tumors and autoimmune diseases, but it has strong toxic and side effects and can cause permanent damage to the ovaries, which affects women's quality of life. This study aimed to investigate the anti-premature ovarian failure protective effect of allantoin isolated from Dioscorea opposita Thunb. Methods Firstly, 75 mg/kg CP was injected into rats to establish an in vivo model of premature ovarian failure (POF). The POF rats were divided into the normal control group (NC), premature ovarian failure group (POF), and POF group treated with allantoin (ALL I 140 mg/kg and ALL II 70 mg/kg, daily 21 days). It investigated the estrous cycles, hormone levels, apoptosis rate, mitochondrial membrane potential (MMP), reactive oxygen species (ROS), mitophagy, and protein marker (Bax, Bcl2, LC3B, L-1β, caspase-1 and NLRP3). Results The results indicated that allantoin alleviated cyclophosphamide-induced premature ovarian failure in female rats, decreased the anoestrum, increased the level of estradiol (E2), and decreased the levels of follicle-stimulating hormone (FSH) and luteinizing hormone (LH), decreased apoptosis rate, MMP, mitophagy and ROS in ovarian granulosa cells of POF rats, down-regulated L-1β, caspase-1, LC3B-II/LC3B-I in ovarian tissue, and up-regulated the Bcl2 and NLRP3. Conclusions Our study revealed the ovarian-protective effect of allantoin in CP-induced premature ovarian failure for the first time, the effect was achieved through attenuation of the apoptosis, autophagy, and pyroptosis. The study underlines the potential clinical application of allantoin as a protectant agent for premature ovarian failure.
Collapse
Affiliation(s)
- Xiaolan Wang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, CHN
| | - Peipei Yuan
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, CHN
| | - Mengnan Zeng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, CHN
| | - Mo Sun
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, CHN
| | - Xiaoyang Wang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, CHN
| | - Xiaoke Zheng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, CHN
| | - Weisheng Feng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, CHN
| |
Collapse
|
7
|
Marchante M, Ramirez-Martin N, Buigues A, Martinez J, Pellicer N, Pellicer A, Herraiz S. Deciphering reproductive aging in women using a NOD/SCID mouse model for distinct physiological ovarian phenotypes. Aging (Albany NY) 2023; 15:10856-10874. [PMID: 37847151 PMCID: PMC10637815 DOI: 10.18632/aging.205086] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 09/08/2023] [Indexed: 10/18/2023]
Abstract
Female fertility is negatively correlated with age, with noticeable declines in oocyte quantity and quality until menopause. To understand this physiological process and evaluate human approaches for treating age-related infertility, preclinical studies in appropriate animal models are needed. Thus, we aimed to characterize an immunodeficient physiological aging mouse model displaying ovarian characteristics of different stages during women's reproductive life. NOD/SCID mice of different ages (8-, 28-, and 36-40-week-old) were employed to mimic ovarian phenotypes of young, Advanced Maternal Age (AMA), and old women (~18-20-, ~36-38-, and >45-years-old, respectively). Mice were stimulated, mated, and sacrificed to recover oocytes and embryos. Then, ovarian reserve, follicular growth, ovarian stroma, mitochondrial dysfunction, and proteomic profiles were assessed. Age-matched C57BL/6 mice were employed to cross-validate the reproductive outcomes. The quantity and quality of oocytes were decreased in AMA and Old mice. These age-related effects associated spindle and chromosome abnormalities, along with decreased developmental competence to blastocyst stage. Old mice had less follicles, impaired follicle activation and growth, an ovarian stroma inconducive to growth, and increased mitochondrial dysfunctions. Proteomic analysis corroborated these histological findings. Based on that, NOD/SCID mice can be used to model different ovarian aging phenotypes and potentially test human anti-aging treatments.
Collapse
Affiliation(s)
- María Marchante
- IVIRMA Global Research Alliance, IVI Foundation, Valencia 46026, Spain
- Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, University of Valencia, Valencia 46010, Spain
| | - Noelia Ramirez-Martin
- IVIRMA Global Research Alliance, IVI Foundation, Valencia 46026, Spain
- Reproductive Medicine Research Group, Instituto Investigación Sanitaria La Fe (IIS La Fe), Valencia 46026, Spain
| | - Anna Buigues
- IVIRMA Global Research Alliance, IVI Foundation, Valencia 46026, Spain
- Reproductive Medicine Research Group, Instituto Investigación Sanitaria La Fe (IIS La Fe), Valencia 46026, Spain
| | - Jessica Martinez
- IVIRMA Global Research Alliance, IVI Foundation, Valencia 46026, Spain
- Reproductive Medicine Research Group, Instituto Investigación Sanitaria La Fe (IIS La Fe), Valencia 46026, Spain
| | - Nuria Pellicer
- IVIRMA Global Research Alliance, IVI Foundation, Valencia 46026, Spain
- IVIRMA Valencia, Valencia 46015, Spain
| | - Antonio Pellicer
- IVIRMA Global Research Alliance, IVI Foundation, Valencia 46026, Spain
- Reproductive Medicine Research Group, Instituto Investigación Sanitaria La Fe (IIS La Fe), Valencia 46026, Spain
- IVIRMA Rome, Rome 00197, Italy
| | - Sonia Herraiz
- IVIRMA Global Research Alliance, IVI Foundation, Valencia 46026, Spain
- Reproductive Medicine Research Group, Instituto Investigación Sanitaria La Fe (IIS La Fe), Valencia 46026, Spain
| |
Collapse
|
8
|
Doxorubicin-Based Hybrid Compounds as Potential Anticancer Agents: A Review. Molecules 2022; 27:molecules27144478. [PMID: 35889350 PMCID: PMC9318127 DOI: 10.3390/molecules27144478] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 02/04/2023] Open
Abstract
The scarcity of novel and effective therapeutics for the treatment of cancer is a pressing and alarming issue that needs to be prioritized. The number of cancer cases and deaths are increasing at a rapid rate worldwide. Doxorubicin, an anticancer agent, is currently used to treat several types of cancer. It disrupts myriad processes such as histone eviction, ceramide overproduction, DNA-adduct formation, reactive oxygen species generation, Ca2+, and iron hemostasis regulation. However, its use is limited by factors such as drug resistance, toxicity, and congestive heart failure reported in some patients. The combination of doxorubicin with other chemotherapeutic agents has been reported as an effective treatment option for cancer with few side effects. Thus, the hybridization of doxorubicin and other chemotherapeutic drugs is regarded as a promising approach that can lead to effective anticancer agents. This review gives an update on hybrid compounds containing the scaffolds of doxorubicin and its derivatives with potent chemotherapeutic effects.
Collapse
|
9
|
Tang X, Dong H, Fang Z, Li J, Yang Q, Yao T, Pan Z. Ubiquitin-like modifier 1 ligating enzyme 1 relieves cisplatin-induced premature ovarian failure by reducing endoplasmic reticulum stress in granulosa cells. Reprod Biol Endocrinol 2022; 20:84. [PMID: 35610622 PMCID: PMC9128268 DOI: 10.1186/s12958-022-00956-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 05/14/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Ubiquitin-like modifier 1 ligating enzyme 1 (UFL1), the ligase of the UFMylation system, has recently been reported to be involved in apoptosis and endoplasmic reticulum stress (ER stress) in a variety of diseases. Premature ovarian failure (POF) is a gynecological disease that severely reduces the fertility of women, especially in female cancer patients receiving chemotherapy drugs. Whether UFL1 is involved in protection against chemotherapy-induced POF and its mechanism remain unclear. METHODS In this study, we examined the function of UFL1 in ovarian dysfunction and granulosa cell (GC) apoptosis induced by cisplatin through histological examination and cell viability analysis. We used western blotting, quantitative real-time PCR (qPCR) and immunofluorescence (IF) to detect the expression of UFL1 and the levels of ER stress specific markers. Enzyme linked immunosorbent assays were used to detect the levels of follicle-stimulating hormone (FSH) and estrogen (E2) in ovaries and GCs. In addition, we used infection with lentiviral particle suspensions to knock down and overexpress UFL1 in ovaries and GCs, respectively. RESULTS Our data showed that the expression of UFL1 was reduced in POF model ovaries, accompanied by ER stress. In vitro, cisplatin induced a stress-related increase in UFL1 expression in GCs and enhanced ER stress, which was aggravated by UFL1 knockdown and alleviated by UFL1 overexpression. Furthermore, UFL1 knockdown resulted in a decrease in ovarian follicle number, an increase in atretic follicles, and decreased expression of AMH and FSHR. Conversely, the overexpression of UFL1 reduced cisplatin-induced damage to the ovary in vitro. CONCLUSIONS Our research indicated that UFL1 regulates cisplatin-induced ER stress and apoptosis in GCs, and participates in protection against cisplatin-induced POF, providing a potential therapeutic target for the clinical prevention of chemotherapeutic drug-induced POF.
Collapse
Affiliation(s)
- Xiangting Tang
- Basic Medical College, Nanchang University, Nanchang, 330006, China
| | - Hao Dong
- The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Zhi Fang
- The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Jingyi Li
- Basic Medical College, Nanchang University, Nanchang, 330006, China
| | - Qi Yang
- Basic Medical College, Nanchang University, Nanchang, 330006, China
| | - Ting Yao
- Basic Medical College, Nanchang University, Nanchang, 330006, China
| | - Zezheng Pan
- Basic Medical College, Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
10
|
Guo L, Liu X, Chen H, Wang W, Gu C, Li B. Decrease in ovarian reserve through the inhibition of SIRT1-mediated oxidative phosphorylation. Aging (Albany NY) 2022; 14:2335-2347. [PMID: 35275845 PMCID: PMC8954953 DOI: 10.18632/aging.203942] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/24/2022] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To establish an oxidative stress-induced model of premature ovarian insufficiency (POI) and to explore the effect of SIRT1 and mitochondrial oxidative phosphorylation on the ovarian reserve. METHODS Mice were treated with intraperitoneal injections of 3-nitropropionic acid (3-NPA) at different doses and for different time periods to induce a model of POI. Subsequently, the efficiency of each regimen was evaluated. The expression of SIRT1 in ovarian tissue was examined. Then, SIRT1 was knocked down in human luteinized granulosa cells (GCs), and its function and related receptor and gene expression were examined. Finally, a SIRT1 antagonist and agonist were used to explore the effects of SIRT1 on ovarian function in vivo and on the change in mitochondrial oxidative phosphorylation complexes (OXPHOS). RESULTS Decreases in ovarian reserve were successfully induced through the intraperitoneal injection of 40 mg/kg 3-NPA for 3 weeks, and SIRT1 was down-regulated in the model group. The knockdown of SIRT1 impaired the estrogen synthesis capacity of human GCs and decreased the expression of related genes. 3-NPA and SIRT1 antagonist Ex-527 decreased ovarian function and inhibited OXPHOS. In contrast, the SIRT1 agonist resveratrol promoted the recovery of ovarian function in the model group and improved OXPHOS. Additionally, P53, CASPASE 3, and BAX were down-regulated and BCL2 was up-regulated in the 3-NPA and Ex-527 groups; opposite trends were observed after resveratrol treatment. CONCLUSIONS The intraperitoneal injection of 40 mg/kg 3-NPA for 3 weeks could effectively induce POI. The increase in oxidative stress inhibited SRIT1 and mitochondrial oxidative phosphorylation, inducing follicular apoptosis.
Collapse
Affiliation(s)
- Lu Guo
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200090, China
| | - Xiaocheng Liu
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200090, China
| | - Hua Chen
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200090, China
| | - Weigui Wang
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200090, China
| | - Chao Gu
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200090, China
| | - Bin Li
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200090, China
| |
Collapse
|
11
|
Santos ALDC, Ferreira ACA, Figueiredo JRD. Potential use of bacterial pigments as anticancer drugs and female reproductive toxicity: a review. CIÊNCIA ANIMAL BRASILEIRA 2022. [DOI: 10.1590/1809-6891v23e-72911e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Abstract Natural bioactive compounds obtained from microorganisms, have awakened particular interest in the industry nowadays. This attention comes when natural resources depletion is pronounced, and the acquisition of both new plant origin resources and bioactive products, represents a challenge for the next generations. In this sense, prospecting for large-scale production and use of bacterial pigments is a necessary strategy for the development of novel products. A wide variety of properties have been attributed to these substances and, among them, their therapeutic potential against important diseases, such as cancer. There is consensus that available chemotherapy protocols are known to detrimentally affect cancer patients fertility. Hence, considerable part of the deleterious effects of chemotherapy is related to the drugs cytotoxicity, which, in addition to cancer cells, also affect normal cells. Therefore, the intrinsic properties of bacterial pigments associated with low cytotoxicity and relevant cell selectivity, certified them as potential anticancer drugs. However, little information is available about reproductive toxicity of these new and promising compounds. Thus, the present review aims to address the main bacterial pigments, their potential uses as anticancer drugs and their possible toxic effects, especially on the female gonad.
Collapse
|
12
|
Santos ALDC, Ferreira ACA, Figueiredo JRD. Uso potencial de pigmentos bacterianos como drogas anticâncer e toxicidade reprodutiva feminina: uma revisão. CIÊNCIA ANIMAL BRASILEIRA 2022. [DOI: 10.1590/1809-6891v23e-72911p] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Resumo Os compostos bioativos naturais obtidos de microrganismos têm despertado especial interesse da indústria nos últimos anos. Esta atenção ocorre em um momento em que o esgotamento de recursos naturais é pronunciado, e a aquisição de novos insumos e produtos bioativos de origem vegetal representa um desafio para as próximas gerações. Neste sentido, a prospecção para a produção e uso em larga escala dos pigmentos bacterianos tem representado uma importante estratégia para o desenvolvimento de novos produtos. Uma grande variedade de propriedades foi atribuída a estas substâncias, entre elas, o potencial terapêutico contra doenças importantes, como o câncer. Existe um consenso de que os protocolos quimioterápicos disponíveis são conhecidos por afetarem negativamente a fertilidade de pacientes com câncer. Grande parte dos efeitos deletérios da quimioterapia está relacionado à citotoxicidade das drogas usadas para este fim, que além das células cancerosas, afetam as células normais. Nesse sentido, as propriedades naturais atribuídas aos pigmentos bacterianos associadas à baixa citotoxicidade e relevante seletividade, os qualificaram como potenciais drogas anticâncer. No entanto, pouco se tem de informação a respeito da toxicidade reprodutiva destes novos e promissores compostos. Dessa forma, a presente revisão tem o objetivo de abordar os principais pigmentos bacterianos, suas utilizações potenciais como drogas anticâncer, bem como os seus possíveis efeitos tóxicos, sobretudo, sobre a gônada feminina.
Collapse
|
13
|
Chen Q, Xu Z, Li X, Du D, Wu T, Zhou S, Yan W, Wu M, Jin Y, Zhang J, Wang S. Epigallocatechin gallate and theaflavins independently alleviate cyclophosphamide-induced ovarian damage by inhibiting the overactivation of primordial follicles and follicular atresia. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 92:153752. [PMID: 34601223 DOI: 10.1016/j.phymed.2021.153752] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 09/08/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Cyclophosphamide (CTX), which has been used to treat common female cancers for several years, often causes ovarian damage, early menopause and infertility. However, strategies for the effective prevention and treatment of CTX-induced ovarian damage are still lacking. Epigallocatechin gallate (EGCG) and theaflavins (TFs), key molecules derived from green tea or black tea, have been shown to exert preventive effects on many ageing-related diseases. PURPOSE We aimed to explore the potential preventive and protective effects of EGCG and TFs on CTX-induced ovarian damage and compare the two compounds. STUDY DESIGN Six-week-old female mice were administered a low or high dose of EGCG or TFs. The low dose was equivalent to the average daily amount of tea consumed by a drinker. METHODS We determined the oestrous cycle and serum hormone levels to evaluate ovarian endocrine function, and we performed mating tests for reproductivity. We also assessed the follicle count and AMH level to evaluate ovarian reserve, and we performed Masson's trichrome and Sirius red staining to evaluate ovarian fibrosis. We conducted γ-H2AX and TUNEL analyses to evaluate DNA damage, and we also measured the relevant indicators of oxidative stress and follicular activation, including NRF2, HO-1, SOD2, AKT, mTOR and RPS6. RESULTS EGCG and TFs treatment independently improved the ovarian endocrine function and reproductivity of mice that were administered CTX. EGCG and TFs also increased the ovarian reserve of these animals. Furthermore, EGCG and TFs alleviated oxidation-induced damage to ovarian DNA in mice by activating the NRF2/HO-1 and SOD2 pathways and reducing the apoptosis of growing follicles. At the same time, EGCG and TFs reduced the overactivation of primordial follicles by inhibiting the AKT/mTOR/RPS6 pathway. CONCLUSION The present study showed that EGCG and TFs independently improved ovarian function in mice with CTX-induced ovarian damage, thereby providing useful information for designing a potential clinical strategy that will protect against chemotherapy-induced ovarian damage.
Collapse
Affiliation(s)
- Qian Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China
| | - Zheyuan Xu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China; Department of Pediatrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiang Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China; Department of pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Dingfu Du
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China; Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Tong Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China
| | - Su Zhou
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China
| | - Wei Yan
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China
| | - Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China
| | - Yan Jin
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China
| | - Jinjin Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China.
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China.
| |
Collapse
|
14
|
Salvatore G, De Felici M, Dolci S, Tudisco C, Cicconi R, Campagnolo L, Camaioni A, Klinger FG. Human adipose-derived stromal cells transplantation prolongs reproductive lifespan on mouse models of mild and severe premature ovarian insufficiency. Stem Cell Res Ther 2021; 12:537. [PMID: 34629095 PMCID: PMC8504050 DOI: 10.1186/s13287-021-02590-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/11/2021] [Indexed: 01/27/2023] Open
Abstract
Background Although recent studies have investigated the ability of Mesenchymal Stromal Cells (MSCs) to alleviate short-term ovarian damage in animal models of chemotherapy-induced Premature Ovarian Insufficiency (POI), no data are available on reproductive lifespan recovery, especially in a severe POI condition. For this reason, we investigated the potential of MSCs isolated from human adipose tissue (hASCs), since they are easy to harvest and abundant, in ameliorating the length and performance of reproductive life in both mild and severe chemotherapy-induced murine POI models.
Methods Mild and severe POI models were established by intraperitoneally administering a light (12 mg/kg busulfan + 120 mg/kg cyclophosphamide) or heavy (30 mg/kg busulfan + 120 mg/kg cyclophosphamide) dose of chemotherapy, respectively, in CD1 mice. In both cases, a week later, 1 × 106 hASCs were transplanted systemically through the tail vein. After four additional weeks, some females were sacrificed to collect ovaries for morphological evaluation. H&E staining was performed to assess stroma alteration and to count follicle numbers; immunofluorescence staining for αSMA was used to analyse vascularization. Of the remaining females, some were mated after superovulation to collect 2-cell embryos in order to evaluate their pre-implantation developmental capacity in vitro, while others were naturally mated to monitor litters and reproductive lifespan length. F1 litters’ weight, ovaries and reproductive lifespan were also analysed. Results hASC transplantation alleviated ovarian weight loss and size decrease and reduced alterations on ovarian stroma and vasculature, concurrently preventing the progressive follicle stockpile depletion caused by chemotherapy. These effects were associated with the preservation of the oocyte competence to develop into blastocyst in vitro and, more interestingly, with a significant decrease of chemotherapy-induced POI features, like shortness of reproductive lifespan, reduced number of litters and longer time to plug (the latter only presented in the severe POI model). Conclusion Human ASC transplantation was able to significantly reduce all the alterations induced by the chemotherapeutic treatment, while improving oocyte quality and prolonging reproductive functions, thus counteracting infertility. These results, strengthened by the use of an outbred model, support the potential applications of hASCs in women with POI, nowadays mainly induced by anticancer therapies. Graphic abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02590-5.
Collapse
Affiliation(s)
- Giulia Salvatore
- Department of Biomedicine and Prevention, Section of Histology and Embryology, University of Rome Tor Vergata, Rome, Italy.,Fondazione Santa Lucia, IRCCS, Rome, Italy
| | - Massimo De Felici
- Department of Biomedicine and Prevention, Section of Histology and Embryology, University of Rome Tor Vergata, Rome, Italy
| | - Susanna Dolci
- Department of Biomedicine and Prevention, Section of Human Anatomy, University of Rome Tor Vergata, Rome, Italy
| | - Cosimo Tudisco
- Department of Clinical Surgery and Translational Medicine, Sports Traumatology Unit, University Hospital of Rome Tor Vergata, Rome, Italy
| | | | - Luisa Campagnolo
- Department of Biomedicine and Prevention, Section of Histology and Embryology, University of Rome Tor Vergata, Rome, Italy
| | - Antonella Camaioni
- Department of Biomedicine and Prevention, Section of Histology and Embryology, University of Rome Tor Vergata, Rome, Italy.
| | - Francesca Gioia Klinger
- Department of Biomedicine and Prevention, Section of Histology and Embryology, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
15
|
Jin X, Cheng J, Shen J, Lv X, Li Q, Mu Y, Bai H, Liu Y, Xia Y. Moxibustion improves ovarian function based on the regulation of the androgen balance. Exp Ther Med 2021; 22:1230. [PMID: 34539826 PMCID: PMC8438671 DOI: 10.3892/etm.2021.10664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 06/18/2021] [Indexed: 12/26/2022] Open
Abstract
The effect of androgens on follicular development and female reproduction has become an active research topic. Moxibustion is a Traditional Chinese Medicine therapy that has been reported to be able to prevent and treat numerous ovary-related problems. However, studies on the effect of moxibustion for diminished ovarian reserve (DOR) on androgen balance are still lacking. The present study aimed to assess the efficacy of moxibustion intervention prior to disease onset and at the early stage of disease in a rat model of DOR and explore the mechanisms of its effect on ovarian function. A total of 32 rats were randomly divided into four groups: Blank group, Model group (a drug-induced model of DOR), Moxibustion group 1 and Moxibustion group 2. Moxibustion was performed on the BL23 and RN4 acupoints of female rats daily for a total of 20 days (once a day, five times a week for a total of 4 weeks). The two moxibustion groups were established with different intervention times: One group was subjected to pre-disease intervention and the other group to early-disease intervention. The ovarian function was evaluated by detecting anti-Mullerian hormone (AMH), follicle-stimulating hormone (FSH), estradiol (E2), testosterone (T), dehydroepiandrosterone (DHEA), dihydrotestosterone (DHT) and androgen receptor (AR) levels in the serum or the ovary samples. To further investigate the downstream regulatory factors for AR after moxibustion treatment for pre-disease or early-disease intervention, FSH receptor (FSHR) and microRNA (miR)-125b expression in ovaries were also analyzed. The results indicated that AMH and DHT levels were reduced in the model group compared with those in the blank group, while FSH, T and DHEA levels were increased. AMH and DHT levels were increased in Moxibustion group 1 compared with those in the model group, while FSH, T and DHEA levels were reduced. There was no difference in E2 levels between Moxibustion group 1 and the model group. Compared with that in the model group, the AR content in the ovary was increased in Moxibustion group 1. There was no difference in FSHR mRNA in the ovaries between Moxibustion group 1 and the model group. miR-125b levels were significantly increased in Moxibustion group 1 as compared with those in the model group. Furthermore, AMH and DHT levels were increased in Moxibustion group 2 compared with those in the model group, while FSH, T and DHEA levels were reduced. E2 levels were significantly decreased in Moxibustion group 2 compared with those in the model group. The relative mRNA expression of AR, FSHR and miR-125b was decreased following establishment of the model. Compared with that in the model group, the AR content in the ovary was increased in Moxibustion group 2. In comparison with the blank and model groups, the FSHR content in the ovary of Moxibustion group 2 was significantly increased. miR-125b levels were not obviously altered in Moxibustion group 2 as compared with those in the model group. In addition, there was no significant difference in AMH, FSH, T and DHEA levels between the two moxibustion groups. E2 and DHT levels were higher in Moxibustion group 1 than in Moxibustion group 2. There was no difference in AR mRNA expression between the two moxibustion groups. FSHR mRNA levels were lower in Moxibustion group 1 than in Moxibustion group 2, while miR-125b mRNA levels were higher in Moxibustion group 1 than in Moxibustion group 2. In conclusion, the present study suggested that moxibustion intervention prior to disease onset and at the early disease stage was able to improve ovarian function via modulation of the AR-mediated stable equilibrium of androgens. However, the effects and mechanisms of moxibustion intervention for pre-disease and early-disease intervention of DOR appear to be different. The appropriate duration of treatment and the time-effect relationship require to be further studied.
Collapse
Affiliation(s)
- Xun Jin
- College of Acupuncture and Massage, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Jie Cheng
- College of Acupuncture and Massage, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Jie Shen
- College of Acupuncture and Massage, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Xing Lv
- Central Research Institute of Shanghai Pharmaceuticals Holding Co., Ltd., Shanghai 200020, P.R. China
| | - Qian Li
- College of Acupuncture and Massage, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Yanyun Mu
- College of Acupuncture and Massage, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Hua Bai
- College of Acupuncture and Massage, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Yan Liu
- College of Acupuncture and Massage, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Youbing Xia
- Traditional Chinese Medicine Department, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu 221006, P.R. China
| |
Collapse
|
16
|
Chen H, Xia K, Huang W, Li H, Wang C, Ma Y, Chen J, Luo P, Zheng S, Wang J, Wang Y, Dong L, Tan Z, Lai X, Mao FF, Li W, Liang X, Wang T, Xiang AP, Ke Q. Autologous transplantation of thecal stem cells restores ovarian function in nonhuman primates. Cell Discov 2021; 7:75. [PMID: 34462432 PMCID: PMC8405815 DOI: 10.1038/s41421-021-00291-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 05/21/2021] [Indexed: 02/07/2023] Open
Abstract
Premature ovarian insufficiency (POI) is defined as the loss of ovarian activity under the age of 40. Theca cells (TCs) play a vital role during folliculogenesis and TCs dysfunction participate in the pathogenesis of POI. Therefore, transplantation of thecal stem cells (TSCs), which are capable of self-renewal and differentiation into mature TCs, may provide a new strategy for treating POI. To investigate the feasibility, safety, and efficacy of TSCs transplantation in clinically relevant non-human primate (NHP) models, we isolate TSCs from cynomolgus monkeys, and these cells are confirmed to expand continuously and show potential to differentiate into mature TCs. In addition, engraftment of autologous TSCs into POI monkeys significantly improves hormone levels, rescues the follicle development, promotes the quality of oocytes and boosts oocyte maturation/fertilization rate. Taken together, these results for the first time suggest that autologous TSCs can ameliorate POI symptoms in primate models and shed new light on developing stem cell therapy for POI.
Collapse
Affiliation(s)
- Hong Chen
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Kai Xia
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Weijun Huang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Genetics and Cell Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Huijian Li
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Chao Wang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yuanchen Ma
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jianhui Chen
- Center for Reproductive Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Peng Luo
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shuwei Zheng
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jiancheng Wang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yi Wang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lin Dong
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhipeng Tan
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xingqiang Lai
- Cardiovascular Department, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Frank Fuxiang Mao
- State Key Laboratory of Ophthalmology, Zhong Shan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Weiqiang Li
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaoyan Liang
- Center for Reproductive Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Tao Wang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qiong Ke
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China.
- Department of Genetics and Cell Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
17
|
Del Castillo LM, Buigues A, Rossi V, Soriano MJ, Martinez J, De Felici M, Lamsira HK, Di Rella F, Klinger FG, Pellicer A, Herraiz S. The cyto-protective effects of LH on ovarian reserve and female fertility during exposure to gonadotoxic alkylating agents in an adult mouse model. Hum Reprod 2021; 36:2514-2528. [PMID: 34333622 PMCID: PMC8373474 DOI: 10.1093/humrep/deab165] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/07/2021] [Indexed: 12/15/2022] Open
Abstract
STUDY QUESTION Does LH protect mouse oocytes and female fertility from alkylating chemotherapy? SUMMARY ANSWER LH treatment before and during chemotherapy prevents detrimental effects on follicles and reproductive lifespan. WHAT IS KNOWN ALREADY Chemotherapies can damage the ovary, resulting in premature ovarian failure and reduced fertility in cancer survivors. LH was recently suggested to protect prepubertal mouse follicles from chemotoxic effects of cisplatin treatment. STUDY DESIGN, SIZE, DURATION This experimental study investigated LH effects on primordial follicles exposed to chemotherapy. Seven-week-old CD-1 female mice were randomly allocated to four experimental groups: Control (n = 13), chemotherapy (ChT, n = 15), ChT+LH-1x (n = 15), and ChT+LH-5x (n = 8). To induce primary ovarian insufficiency (POI), animals in the ChT and ChT+LH groups were intraperitoneally injected with 120 mg/kg of cyclophosphamide and 12 mg/kg of busulfan, while control mice received vehicle. For LH treatment, the ChT+LH-1x and ChT+LH-5x animals received a 1 or 5 IU LH dose, respectively, before chemotherapy, then a second LH injection administered with chemotherapy 24 h later. Then, two animals/group were euthanized at 12 and 24 h to investigate the early ovarian response to LH, while remaining mice were housed for 30 days to evaluate short- and long-term reproductive outcomes. The effects of LH and chemotherapy on growing-stage follicles were analyzed in a parallel experiment. Seven-week-old NOD-SCID female mice were allocated to control (n = 5), ChT (n = 5), and ChT+LH-1x (n = 6) groups. Animals were treated as described above, but maintained for 7 days before reproductive assessment. PARTICIPANTS/MATERIALS, SETTING, METHODS In the first experiment, follicular damage (phosphorylated H2AX histone (γH2AX) staining and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay), apoptotic biomarkers (western blot), and DNA repair pathways (western blot and RT-qPCR) were assessed in ovaries collected at 12 and 24 h to determine early ovarian responses to LH. Thirty days after treatments, remaining mice were stimulated (10 IU of pregnant mare serum gonadotropin (PMSG) and 10 IU of hCG) and mated to collect ovaries, oocytes, and embryos. Histological analysis was performed on ovarian samples to investigate follicular populations and stromal status, and meiotic spindle and chromosome alignment was measured in oocytes by confocal microscopy. Long-term effects were monitored by assessing pregnancy rate and litter size during six consecutive breeding attempts. In the second experiment, mice were stimulated and mated 7 days after treatments and ovaries, oocytes, and embryos were collected. Follicular numbers, follicular protection (DNA damage and apoptosis by H2AX staining and TUNEL assay, respectively), and ovarian stroma were assessed. Oocyte quality was determined by confocal analysis. MAIN RESULTS AND THE ROLE OF CHANCE LH treatment was sufficient to preserve ovarian reserve and follicular development, avoid atresia, and restore ovulation and meiotic spindle configuration in mature oocytes exposed at the primordial stage. LH improved the cumulative pregnancy rate and litter size in six consecutive breeding rounds, confirming the potential of LH treatment to preserve fertility. This protective effect appeared to be mediated by an enhanced early DNA repair response, via homologous recombination, and generation of anti-apoptotic signals in the ovary a few hours after injury with chemotherapy. This response ameliorated the chemotherapy-induced increase in DNA-damaged oocytes and apoptotic granulosa cells. LH treatment also protected growing follicles from chemotherapy. LH reversed the chemotherapy-induced depletion of primordial and primary follicular subpopulations, reduced oocyte DNA damage and granulosa cell apoptosis, restored mature oocyte cohort size, and improved meiotic spindle properties. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION This was a preliminary study performed with mouse ovarian samples. Therefore, preclinical research with human samples is required for validation. WIDER IMPLICATIONS OF THE FINDINGS The current study tested if LH could protect the adult mouse ovarian reserve and reproductive lifespan from alkylating chemotherapy. These findings highlight the therapeutic potential of LH as a complementary non-surgical strategy for preserving fertility in female cancer patients. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by grants from the Regional Valencian Ministry of Education (PROMETEO/2018/137), the Spanish Ministry of Science and Innovation (CP19/00141), and the Spanish Ministry of Education, Culture and Sports (FPU16/05264). The authors declare no conflict of interest.
Collapse
Affiliation(s)
- L M Del Castillo
- IVI Foundation—IIS La Fe, Reproductive Medicine Research Group, Valencia, Spain
- Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, University of Valencia, Valencia, Spain
| | - A Buigues
- IVI Foundation—IIS La Fe, Reproductive Medicine Research Group, Valencia, Spain
| | - V Rossi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - M J Soriano
- IVI Foundation—IIS La Fe, Reproductive Medicine Research Group, Valencia, Spain
| | - J Martinez
- IVI Foundation—IIS La Fe, Reproductive Medicine Research Group, Valencia, Spain
- Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, University of Valencia, Valencia, Spain
| | - M De Felici
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - H K Lamsira
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - F Di Rella
- Clinical and Experimental Senology, Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Naples, Italy
| | - F G Klinger
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - A Pellicer
- IVI Foundation—IIS La Fe, Reproductive Medicine Research Group, Valencia, Spain
- IVI-RMA Rome, Rome, Italy
| | - S Herraiz
- Correspondence address. IVI Foundation—IIS La Fe, Reproductive Medicine Research Group, Av. Fernando Abril Martorell, 106-Torre A-Planta1, 46026 Valencia, Spain. Tel: +34-96-390-33-05; E-mail: https://orcid.org/0000-0003-0703-6922
| |
Collapse
|
18
|
Koebele SV, Hiroi R, Plumley ZMT, Melikian R, Prakapenka AV, Patel S, Carson C, Kirby D, Mennenga SE, Mayer LP, Dyer CA, Bimonte-Nelson HA. Clinically Used Hormone Formulations Differentially Impact Memory, Anxiety-Like, and Depressive-Like Behaviors in a Rat Model of Transitional Menopause. Front Behav Neurosci 2021; 15:696838. [PMID: 34366807 PMCID: PMC8335488 DOI: 10.3389/fnbeh.2021.696838] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/04/2021] [Indexed: 01/29/2023] Open
Abstract
A variety of U.S. Food and Drug Administration-approved hormone therapy options are currently used to successfully alleviate unwanted symptoms associated with the changing endogenous hormonal milieu that occurs in midlife with menopause. Depending on the primary indication for treatment, different hormone therapy formulations are utilized, including estrogen-only, progestogen-only, or combined estrogen plus progestogen options. There is little known about how these formulations, or their unique pharmacodynamics, impact neurobiological processes. Seemingly disparate pre-clinical and clinical findings regarding the cognitive effects of hormone therapies, such as the negative effects associated with conjugated equine estrogens and medroxyprogesterone acetate vs. naturally circulating 17β-estradiol (E2) and progesterone, signal a critical need to further investigate the neuro-cognitive impact of hormone therapy formulations. Here, utilizing a rat model of transitional menopause, we administered either E2, progesterone, levonorgestrel, or combinations of E2 with progesterone or with levonorgestrel daily to follicle-depleted, middle-aged rats. A battery of assessments, including spatial memory, anxiety-like behaviors, and depressive-like behaviors, as well as endocrine status and ovarian follicle complement, were evaluated. Results indicate divergent outcomes for memory, anxiety, and depression, as well as unique physiological profiles, that were dependent upon the hormone regimen administered. Overall, the combination hormone treatments had the most consistently favorable profile for the domains evaluated in rats that had undergone experimentally induced transitional menopause and remained ovary-intact. The collective results underscore the importance of investigating variations in hormone therapy formulation as well as the menopause background upon which these formulations are delivered.
Collapse
Affiliation(s)
- Stephanie V. Koebele
- Department of Psychology, Arizona State University, Tempe, AZ, United States
- Arizona Alzheimer’s Consortium, Phoenix, AZ, United States
| | - Ryoko Hiroi
- Department of Psychology, Arizona State University, Tempe, AZ, United States
- Arizona Alzheimer’s Consortium, Phoenix, AZ, United States
| | - Zachary M. T. Plumley
- Department of Psychology, Arizona State University, Tempe, AZ, United States
- Arizona Alzheimer’s Consortium, Phoenix, AZ, United States
| | - Ryan Melikian
- Department of Psychology, Arizona State University, Tempe, AZ, United States
- Arizona Alzheimer’s Consortium, Phoenix, AZ, United States
| | - Alesia V. Prakapenka
- Department of Psychology, Arizona State University, Tempe, AZ, United States
- Arizona Alzheimer’s Consortium, Phoenix, AZ, United States
| | - Shruti Patel
- Department of Psychology, Arizona State University, Tempe, AZ, United States
- Arizona Alzheimer’s Consortium, Phoenix, AZ, United States
| | - Catherine Carson
- Department of Psychology, Arizona State University, Tempe, AZ, United States
- Arizona Alzheimer’s Consortium, Phoenix, AZ, United States
| | - Destiney Kirby
- Department of Psychology, Arizona State University, Tempe, AZ, United States
- Arizona Alzheimer’s Consortium, Phoenix, AZ, United States
| | - Sarah E. Mennenga
- Department of Psychology, Arizona State University, Tempe, AZ, United States
- Arizona Alzheimer’s Consortium, Phoenix, AZ, United States
| | | | | | - Heather A. Bimonte-Nelson
- Department of Psychology, Arizona State University, Tempe, AZ, United States
- Arizona Alzheimer’s Consortium, Phoenix, AZ, United States
| |
Collapse
|
19
|
Premature Ovarian Insufficiency (POI) Induced by Dynamic Intensity Modulated Radiation Therapy via P13K-AKT-FOXO3a in Rat Models. BIOMED RESEARCH INTERNATIONAL 2021; 2021:7273846. [PMID: 34258281 PMCID: PMC8260315 DOI: 10.1155/2021/7273846] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/30/2020] [Accepted: 06/16/2021] [Indexed: 12/14/2022]
Abstract
This study is aimed to investigate the mechanisms of radiation-induced mouse models of premature ovarian insufficiency (POI). Wistar female rats were grouped into the control, 3.2 Gy, 4.0 Gy, and 4.8 Gy groups. Overall ovarian functions were assessed with the H&E staining and ELISA. Proinflammatory cytokine secretion was analyzed ELISA, and the reactive oxygen species (ROS) levels were analyzed with immunohistochemistry. Protein expressions were analyzed by Western blot analysis. The 4.0 Gy and 4.8 Gy groups had significantly lower ovarian weight coefficients than the control and 3.2 Gy groups (after only one irradiation therapy). The 3.2 Gy radiation group induced periodic disturbance and hormone change at 4 weeks after radiation. In the 4.0 Gy and 4.8 Gy groups, the preantral follicles and antral follicles were decreased, while Atresia follicles were increased. E2 was decreased, while FSH and LH secretions were increased. The ovaries in the 4.0 Gy group were not completely atrophied, and some preantral follicles remained. Ovarian atrophy and follicular Atresia were found in the 4.8 Gy group. Inflammatory and oxidative markers were upregulated. PI3K and AKT were downregulated in the 4.0 Gy and 4.8 Gy groups, while FOXO3a was upregulated. Ovarian injuries may lead to oxidative damages and inflammatory injuries, downregulate the expression of P13k and Akt, upregulate the expression of FOXO3a, and lead to follicular atresia in the ovary.
Collapse
|
20
|
Renu K, Pureti LP, Vellingiri B, Valsala Gopalakrishnan A. Toxic effects and molecular mechanism of doxorubicin on different organs – an update. TOXIN REV 2021. [DOI: 10.1080/15569543.2021.1912099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Kaviyarasi Renu
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, India
| | - Lakshmi Prasanna Pureti
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, India
| | - Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, India
| |
Collapse
|
21
|
Mohan UP, P B TP, Iqbal STA, Arunachalam S. Mechanisms of doxorubicin-mediated reproductive toxicity - A review. Reprod Toxicol 2021; 102:80-89. [PMID: 33878324 DOI: 10.1016/j.reprotox.2021.04.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 04/05/2021] [Accepted: 04/12/2021] [Indexed: 12/23/2022]
Abstract
The anticancer drug doxorubicin has been associated with several adverse side-effects including reproductive toxicity in both genders. The current review has complied the mechanisms of doxorubicin induced reproductive toxicity. The articles cited in the review were searched using Google Scholar, PubMed, Scopus, Science Direct. Doxorubicin treatment has been found to cause a decrease in testicular mass along with histopathological deformities, oligospermia and abnormalities in sperm morphology. Apart from severely affecting the normal physiological role of both Leydig cells and Sertoli cells, doxorubicin also causes chromosome abnormalities and affects DNA methylase enzyme. Testicular lipid metabolism has been found to be negatively affected by doxorubicin treatment resulting in altered profile of sphingolipids glycerophospholipids and neutral lipids. Dysregulation of 3β-hydroxysteroid dehydrogenase (3β-HSD) and 17β- hydroxysteroid dehydrogenase (17β-HSD) are strongly linked to testicular exposure to doxorubicin. Further, oxidative stress along with endoplasmic reticulum stress are also found to aggravate the male reproductive functioning in doxorubicin treated conditions. Several antioxidant enzymes such as superoxide dismutase, catalase, glutathione peroxidase (GPx) are downregulated by doxorubicin. It also disturbs the hormones of the hypothalamic-pituitary-gonadal (HPG)-axis including testosterone, luteinizing hormone, follicle stimulating hormone etc. In females, the drug disturbs folliculogenesis and oogenesis leading to failure of ovulation and uterine cycle. In rodent model the drug shortens pro-estrous and estrous phases. It was also found that doxorubicin causes mitochondrial dysfunction in oocytes with impaired calcium signaling along with ER stress. The goal of the present review is to comprehends various pathways due to which doxorubicin treatment promotes toxicity in male and female reproductive system.
Collapse
Affiliation(s)
- Uma Priya Mohan
- Centre for Cardiovascular and Adverse Drug Reactions, Department of Biotechnology, School of Bio and Chemical Engineering, Kalasalingam Academy of Research and Education, Krishnankoil, Tamil Nadu, PIN 626126, India
| | | | | | - Sankarganesh Arunachalam
- Centre for Cardiovascular and Adverse Drug Reactions, Department of Biotechnology, School of Bio and Chemical Engineering, Kalasalingam Academy of Research and Education, Krishnankoil, Tamil Nadu, PIN 626126, India.
| |
Collapse
|
22
|
Luo J, Yang Y, Ji X, He W, Fan J, Huang Y, Wang Y. NGF Rescues Spermatogenesis in Azoospermic Mice. Reprod Sci 2021; 28:2780-2788. [PMID: 33725311 DOI: 10.1007/s43032-021-00511-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/21/2021] [Indexed: 11/26/2022]
Abstract
Nerve growth factor (NGF) plays an important role in regulating the hypothalamus-pituitary-gonadal (HPG) axis. However, the effects of NGF on spermatogenesis remain unclear. This study aimed to assess the potential application of NGF with nasal delivery on spermatogenesis in azoospermic mice. We established a model with azoospermia induced by a single intraperitoneal (i.p.) injection of busulfan. NGF pre-encapsulated with liposomes (25, 50, and 100 μg/kg) was delivered via internasal administration. Three weeks after busulfan injection, NGF treatments were performed twice a week for 8 weeks; the change of sperm quality, testis and epididymis histopathology, and androgenic hormone were analyzed to evaluate sperm regeneration. Furthermore, 30 mg/kg busulfan injection caused severe testicular atrophy of the seminiferous tubules, characterized by a loss of spermatogenic elements and sperms. NGF with nasal administration could significantly upregulate the markers expressing meiotic spermatogonia (Stra8) and spermatocytes (SYCP3), restore spermatogenesis, and improve sperm quality in busulfan-treated mice by increasing the secretion of sexual hormones. The convenient and noninvasive nasal delivery of NGF may be a new potential therapy for spermatogenesis via activating the HPG axis and elevating androgenic hormones. This study opened a new horizon for NGF application in reproductive endocrine.
Collapse
Affiliation(s)
- Jiao Luo
- Department of Rehabilitation Medicine, Dapeng New District Nan'ao People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, China
- Department of Neurology, The First Affiliated Hospital of Shenzhen University, Institute for Translational Medicine, Shenzhen Second People's Hospital, Shenzhen, China
- Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences, Shenzhen, China
| | - Yan Yang
- Department of Cell Biology, Jinan University, Guangzhou, China
| | - Xunmin Ji
- Guangdong Provincial Institute of Biological Products and Materia, Guangzhou, China
| | - Weiyi He
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen, China
| | - Jing Fan
- Department of Reproductive Medicine Center, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, Guangdong Province, China
| | - Yadong Huang
- Department of Cell Biology, Jinan University, Guangzhou, China
- Department of Pharmacology, Jinan University, Guangzhou, China
| | - Yulong Wang
- Department of Rehabilitation, Shenzhen Second People's Hospital, The First Affiliated Hospital, Shenzhen University School of Medicine, Shenzhen, China.
| |
Collapse
|
23
|
Tang D, Feng X, Ling L, Zhang W, Luo Y, Wang Y, Xiong Z. Experimental study for the establishment of a chemotherapy-induced ovarian insufficiency model in rats by using cyclophosphamide combined with busulfan. Regul Toxicol Pharmacol 2021; 122:104915. [PMID: 33705838 DOI: 10.1016/j.yrtph.2021.104915] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 02/28/2021] [Accepted: 03/03/2021] [Indexed: 11/19/2022]
Abstract
With an improvement in the survival rate of cancer patients, chemotherapy-induced premature ovarian insufficiency (POI) is increasingly affecting the quality of life of female patients. Currently, there are many relevant studies using mice as an animal model. However, a large coefficient of variation for weight in mice is not appropriate for endocrine-related studies, compared with rats; therefore, it is necessary to identify an appropriate experimental model in rats. In this study, cyclophosphamide combined with busulfan was used to establish an animal model. We compared several common modeling methods using chemotherapeutic drugs, cisplatin, cyclophosphamide, and 4-vinylcyclohexene diepoxide (VCD), and we found that the combination of cyclophosphamide and busulfan was more effective in establishing a POI model in rats with few side effects by analyzing general physical conditions, pathological tissue sections of heart, liver, lung, spleen, kidney, uterus, and ovary, serum hormone levels, and follicle counts; thus, providing a more reliable model basis for subsequent studies.
Collapse
Affiliation(s)
- Dongyuan Tang
- Department of Gynecology and Obstetics, The Second Affiliated Hospital, Chongqing MedicalUniversity, Chongqing, 400010, People's Republic of China
| | - Xiushan Feng
- Department of Gynecology and Obstetics, The Second Affiliated Hospital, Chongqing MedicalUniversity, Chongqing, 400010, People's Republic of China
| | - Li Ling
- Department of Gynecology and Obstetics, The Second Affiliated Hospital, Chongqing MedicalUniversity, Chongqing, 400010, People's Republic of China
| | - Wenqian Zhang
- Department of Gynecology and Obstetics, The Second Affiliated Hospital, Chongqing MedicalUniversity, Chongqing, 400010, People's Republic of China
| | - Yanjing Luo
- Department of Gynecology and Obstetics, The Second Affiliated Hospital, Chongqing MedicalUniversity, Chongqing, 400010, People's Republic of China
| | - Yaping Wang
- Department of Gynecology and Obstetics, The Second Affiliated Hospital, Chongqing MedicalUniversity, Chongqing, 400010, People's Republic of China
| | - Zhengai Xiong
- Department of Gynecology and Obstetics, The Second Affiliated Hospital, Chongqing MedicalUniversity, Chongqing, 400010, People's Republic of China.
| |
Collapse
|
24
|
Diminished Ovarian Reserve Chemotherapy-Induced Mouse Model: A Tool for the Preclinical Assessment of New Therapies for Ovarian Damage. Reprod Sci 2020; 27:1609-1619. [PMID: 32430713 DOI: 10.1007/s43032-020-00191-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Diminished ovarian reserve (DOR) and primary ovarian insufficiency (POI) are primary factors leading to infertility. However, there is a lack of appropriate animal models of DOR usable for assessing new therapeutic strategies. In this study, we aimed to evaluate whether chemotherapy treatment in mice could reproduce features similar of that observed in women with DOR. Twenty-one Nonobese diabetic/severe combined immunodeficiency (NOD/SCID) female mice were allocated to 3 groups (n = 7/group): control, single dose of vehicle (Dimethyl Sulfoxide [DMSO]); DOR, single reduced chemotherapy dose; and POI, single standard chemotherapy dose. After 21 days, mice underwent ovarian hyperstimulation and mating. Part of the animals were harvested to analyze ovarian reserve, ovulation and fertilization rates, and morphology, apoptosis, and vascularization of the ovarian stroma. The remaining mice underwent multiple matings to assess pregnancy rates and litter sizes. The DOR and POI mice showed an impaired estrous cyclicity and a decrease in ovarian mass, number of follicles, Metaphase II (MII) oocytes, and embryos as well as in ovarian stroma vascularization. Mice in both models showed also an increase in the percentage of morphologically abnormal follicles, stromal degeneration, and apoptosis. Similar to that observed in DOR and POI patients, these impairments were less severe in DOR than in POI mice. None of the POI females were able to achieve a pregnancy. Meanwhile, DOR females achieved several consecutive pregnancies, although litter size was decreased when compared to controls. In conclusion, a mouse model which displayed most of the ovarian characteristics and fertility outcomes of women with DOR has been established using a single dose of chemotherapy.
Collapse
|
25
|
Koebele SV, Mennenga SE, Poisson ML, Hewitt LT, Patel S, Mayer LP, Dyer CA, Bimonte-Nelson HA. Characterizing the effects of tonic 17β-estradiol administration on spatial learning and memory in the follicle-deplete middle-aged female rat. Horm Behav 2020; 126:104854. [PMID: 32949557 PMCID: PMC8032560 DOI: 10.1016/j.yhbeh.2020.104854] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 01/19/2023]
Abstract
17β-estradiol (E2)-containing hormone therapy is a safe, effective way to alleviate unwanted menopause symptoms. Preclinical research has focused upon the role of E2 in learning and memory using a surgically menopausal rodent model whereby the ovaries are removed. Given that most women retain their reproductive tract and undergo a natural menopause transition, it is necessary to understand how exogenous E2 impacts a structurally intact, but follicle-deplete, system. In the current study, 8 month old female rats were administered the ovatoxin 4-vinylcyclohexene diepoxide (VCD), which accelerates ovarian follicular depletion, to model the human menopause transition. After follicular depletion, at 11 months old, rats were administered Vehicle or tonic E2 treatment for 12 days prior to behavioral evaluation on spatial working and reference memory tasks. Results demonstrated that E2 had both enhancing and impairing effects on taxed working memory depending upon the learning or retention phases of the water radial-arm maze, with no impact on reference memory. Relationships between memory scores and circulating estrogen levels were specific to follicle-depleted rats without E2 treatment. Collectively, findings demonstrate the complexity of E2 administration in a follicle-depleted background, with cognitive effects specific to working memory; furthermore, E2 administration altered circulating hormonal milieu and relationships between hormone profiles and memory. In sum, menopausal etiology impacts the parameters of E2 effects on cognition, complementing prior work with other estrogen compounds. Deciphering estrogenic actions in a system wherein the reproductive tract remains intact with follicle-depleted ovaries, thus modeling the majority or menopausal women, is critical for translational perspectives.
Collapse
Affiliation(s)
- Stephanie V Koebele
- Department of Psychology, Arizona State University, Tempe, AZ 85287, United States of America; Arizona Alzheimer's Consortium, Phoenix, AZ 85006, United States of America
| | - Sarah E Mennenga
- Department of Psychology, Arizona State University, Tempe, AZ 85287, United States of America; Arizona Alzheimer's Consortium, Phoenix, AZ 85006, United States of America
| | - Mallori L Poisson
- Department of Psychology, Arizona State University, Tempe, AZ 85287, United States of America; Arizona Alzheimer's Consortium, Phoenix, AZ 85006, United States of America
| | - Lauren T Hewitt
- Department of Psychology, Arizona State University, Tempe, AZ 85287, United States of America; Arizona Alzheimer's Consortium, Phoenix, AZ 85006, United States of America
| | - Shruti Patel
- Department of Psychology, Arizona State University, Tempe, AZ 85287, United States of America; Arizona Alzheimer's Consortium, Phoenix, AZ 85006, United States of America
| | | | - Cheryl A Dyer
- FYXX Foundation, Flagstaff, AZ, United States of America
| | - Heather A Bimonte-Nelson
- Department of Psychology, Arizona State University, Tempe, AZ 85287, United States of America; Arizona Alzheimer's Consortium, Phoenix, AZ 85006, United States of America.
| |
Collapse
|
26
|
Impact of Ovarian Aging in Reproduction: From Telomeres and Mice Models to Ovarian Rejuvenation. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2020; 93:561-569. [PMID: 33005120 PMCID: PMC7513441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The trend in our society to delay procreation increases the difficulty to conceive spontaneously. Thus, there is a growing need to use assisted reproduction technologies (ART) to form a family. With advanced maternal age, ovaries not only produce a lower number of oocytes after ovarian stimulation but also a lower quality-mainly aneuploidies-requiring further complex analysis to avoid complications during implantation and pregnancy. Although there are different options to have a child at advanced maternal age (like donor eggs), this is not the preferred choice for most patients. Unless women had cryopreserved their eggs at a younger age, reproductive medicine should try to optimize their opportunities to become pregnant with their own oocytes, when chances of success are reasonable. Aging has many causes, but telomere attrition is ultimately one of the main pathways involved in this process. Several reports link telomere biology and reproduction, but the molecular reasons for the rapid loss of ovarian function at middle age are still elusive. This review will focus on the knowledge acquired during the last years about ovarian aging and disease, both in mouse models of reproductive senescence and in humans with ovarian failure, and the implication of telomeres in this process. In addition, the review will discuss recent results on ovarian rejuvenation, achieved with stem cell therapies that are currently under study, or ovarian reactivation by tissue fragmentation and the attempts to generate oocytes in vitro.
Collapse
|
27
|
El Bakly W, Medhat M, Shafei M, Tash R, Elrefai M, Shoukry Y, Omar NN. Optimized platelet rich plasma releasate (O-rPRP) repairs galactosemia-induced ovarian follicular loss in rats by activating mTOR signaling and inhibiting apoptosis. Heliyon 2020; 6:e05006. [PMID: 33005806 PMCID: PMC7509792 DOI: 10.1016/j.heliyon.2020.e05006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/25/2020] [Accepted: 09/17/2020] [Indexed: 11/30/2022] Open
Abstract
Platelet rich plasma contains a collection of growth factors, and an optimal formulation, named O-rPRP, contains the highest possible concentration of growth factors. Purpose Challenging the healing power of O-rPRP in a high-galactose diet-induced premature ovarian insufficiency (POI) experimental rat model. Methods Rats were divided into four groups of ten rats each and treated for four week as follows; 1) the control group, fed with normal diet and received intraperitoneal (i.p.) injection of PBS once/week; 2) the POI group, fed with galactose diet (50%) and received PBS (i.p.) once/week; 3) the POI/O-rPRP group, fed a 50% galactose diet and received O-rPRP (i.p.) once/week; 4) the O-rPRP group (negative control), fed with a normal diet and received O-rPRP (i.p.) once/week. The levels of galactose, follicle stimulating hormone, 17 β-estradiol, anti-mullerian hormone and inhibin B were measured in serum samples. Western blotting and quantitative real-time PCR assays were employed to investigate the levels of miR-223, β1 integrin, p70S6k and MCL-1 in ovarian tissues. Results After O-rPRP treatment, β1 integrin expression was enhanced, and miR-223 expression was decreased. Unlike the untreated galactose group, in the group treated with O-rPRP, p70S6k and MCL-1 expression levels were increased, indicating that the mTOR growth signaling pathway was active and that apoptosis was inactive. After the introduction of O-rPRP, the number of follicles and the follicular maturation improved, which was consistent with the improvement of inhibin B levels and subsequent inhibition of FSH. Conclusion O-rPRP inhibited galactose-induced excessive atresia and provided an overall protective effect on the ovarian follicles.
Collapse
Affiliation(s)
- Wesam El Bakly
- Department of Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Marwa Medhat
- Department of Pharmacology, National Center for Social & Criminological Research, Egypt
| | - Mohamed Shafei
- Obstetrician and Gynecologist at Sidnawy Health Insurance Hospital, Cairo, Egypt.,Dar Alshifa Hospital, Kuwait
| | - Reham Tash
- Department of Anatomy and Embryology, Faculty of Medicine, Ain Shams University, Cairo, Egypt.,Department of Anatomy and Embryology, Faculty of Medicine in Rabigh, King Abdulaziz University, Saudi Arabia
| | - Mohamed Elrefai
- Department of Anatomy and Embryology, Faculty of Medicine, Ain Shams University, Cairo, Egypt.,Basic Medical Science Department, Faculty of Medicine, Hashemite University, Alzarqa, Jordan
| | - Yousef Shoukry
- Department of Anatomy and Embryology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Nesreen Nabil Omar
- Department of Biochemistry, Faculty of Pharmacy, Modern University for Technology and Information, 11 Saudia Buildings, Nozha Street, 11371, Cairo, Egypt
| |
Collapse
|
28
|
Bahrehbar K, Rezazadeh Valojerdi M, Esfandiari F, Fathi R, Hassani SN, Baharvand H. Human embryonic stem cell-derived mesenchymal stem cells improved premature ovarian failure. World J Stem Cells 2020; 12:857-878. [PMID: 32952863 PMCID: PMC7477659 DOI: 10.4252/wjsc.v12.i8.857] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 06/01/2020] [Accepted: 07/18/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Premature ovarian failure (POF) affects many adult women less than 40 years of age and leads to infertility. According to previous reports, various tissue-specific stem cells can restore ovarian function and folliculogenesis in mice with chemotherapy-induced POF. Human embryonic stem cells (ES) provide an alternative source for mesenchymal stem cells (MSCs) because of their similarities in phenotype and immunomodulatory and anti-inflammatory characteristics. Embryonic stem cell-derived mesenchymal stem cells (ES-MSCs) are attractive candidates for regenerative medicine because of their high proliferation and lack of barriers for harvesting tissue-specific MSCs. However, possible therapeutic effects and underlying mechanisms of transplanted ES-MSCs on cyclophosphamide and busulfan-induced mouse ovarian damage have not been evaluated. AIM To evaluate ES-MSCs vs bone marrow-derived mesenchymal stem cells (BM-MSCs) in restoring ovarian function in a mouse model of chemotherapy-induced premature ovarian failure. METHODS Female mice received intraperitoneal injections of different doses of cyclophosphamide and busulfan to induce POF. Either human ES-MSCs or BM-MSCs were transplanted into these mice. Ten days after the mice were injected with cyclophosphamide and busulfan and 4 wk after transplantation of the ES-MSCs and/or BM-MSCs, we evaluated body weight, estrous cyclicity, follicle-stimulating hormone and estradiol hormone concentrations and follicle count were used to evaluate the POF model and cell transplantation. Moreover, terminal deoxynucleotidyl transferase mediated 2-deoxyuridine 5-triphosphate nick end labeling, real-time PCR, Western blot analysis and immunohistochemistry and mating was used to evaluate cell transplantation. Enzyme-linked immunosorbent assay was used to analyze vascular endothelial growth factor, insulin-like growth factor 2 and hepatocyte growth factor levels in ES-MSC condition medium in order to investigate the mechanisms that underlie their function. RESULTS The human ES-MSCs significantly restored hormone secretion, survival rate and reproductive function in POF mice, which was similar to the results obtained with BM-MSCs. Gene expression analysis and the terminal deoxynucleotidyl transferase mediated 2-deoxyuridine 5-triphosphate nick end labeling assay results indicated that the ES-MSCs and/or BM-MSCs reduced apoptosis in the follicles. Notably, the transplanted mice generated new offspring. The results of different analyses showed increases in antiapoptotic and trophic proteins and genes. CONCLUSION These results suggested that transplantation of human ES-MSCs were similar to BM-MSCs in that they could restore the structure of the injured ovarian tissue and its function in chemotherapy-induced damaged POF mice and rescue fertility. The possible mechanisms of human ES-MSC were related to promotion of follicular development, ovarian secretion, fertility via a paracrine effect and ovarian cell survival.
Collapse
Affiliation(s)
- Khadijeh Bahrehbar
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Tehran 1665659911, Iran
- Department of Developmental Biology, University of Science and Culture, Tehran 1665659911, Iran
| | - Mojtaba Rezazadeh Valojerdi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, Tehran 1665659911, Iran
- Department of Anatomy, Faculty of Medical Science, Tarbiat Modares University, Tehran 1665659911, Iran
| | - Fereshteh Esfandiari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Tehran 1665659911, Iran
| | - Rouhollah Fathi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, Tehran 1665659911, Iran
| | - Seyedeh-Nafiseh Hassani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Tehran 1665659911, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Tehran 1665659911, Iran
- Department of Developmental Biology, University of Science and Culture, Tehran 1665659911, Iran.
| |
Collapse
|
29
|
Ghahremani-Nasab M, Ghanbari E, Jahanbani Y, Mehdizadeh A, Yousefi M. Premature ovarian failure and tissue engineering. J Cell Physiol 2019; 235:4217-4226. [PMID: 31663142 DOI: 10.1002/jcp.29376] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/30/2019] [Indexed: 12/30/2022]
Abstract
Premature ovarian failure (POF) usually happens former to the age of 40 and affects the female physiological state premenopausal period. In this condition, ovaries stop working long before the expected menopausal time. Of diagnostic symptoms of the disease, one can mention amenorrhea and hypoestrogenism. The cause of POF in most cases is idiopathic; however, cancer therapy may also cause POF. Commonly utilized therapies such as hormone therapy, in-vitro activation, and regenerative medicine are the most well-known treatments for POF. Hence, these therapies may be associated with some complications. The aim of the present study is to discuss the beneficial effects of tissue engineering for fertility rehabilitation in patients with POF as a newly emerging therapy.
Collapse
Affiliation(s)
- Maryam Ghahremani-Nasab
- Department of Tissue Engineering, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Ghanbari
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Yalda Jahanbani
- School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Mehdizadeh
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Comprehensive Health Lab, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
30
|
Rostami Dovom M, Noroozzadeh M, Mosaffa N, Zadeh-Vakili A, Piryaei A, Ramezani Tehrani F. Induced premature ovarian insufficiency by using D galactose and its effects on reproductive profiles in small laboratory animals: a systematic review. J Ovarian Res 2019; 12:96. [PMID: 31619267 PMCID: PMC6796372 DOI: 10.1186/s13048-019-0565-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 09/10/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Development of a hyper-gonadotropic hypoestrogenism condition in women < 40 years, defined as premature ovarian insufficiency (POI), is the most common long-term complication in female survivors of galactosemia. In this systematic review, summarize the galactose (GAL) induced POI in rat and mice models. METHODS For this systematic review, we conducted a search of case control studies published from 1990 until August 2018 in PubMed/Medline, and Web of science, using the descriptors in the title/abstract field. A 'pearl growing' strategy was employed whereby, after obtaining the full text articles, reference lists of all included studies (n = 14) were reviewed for additional publications that could be used. RESULTS We selected and categorized 14 studies according to the time of exposure to GAL into two groups of prenatal (n = 4) and postnatal (n = 10). Findings of these studies showed that the different stages of follicular development are targeted differently by galactose exposure during the prenatal and postnatal periods: The small follicles (primordial and primary follicles) are targeted by galactose toxicity during prenatal exposure and the pre-antral and antral follicles are targeted by galactose toxicity during postnatal exposure. CONCLUSIONS This systematic review shows that galactose has an ovotoxicity effect that can be used to induce appropriate POI animal models only if sufficient doses, proper onset time, and duration of prenatal exposure are taken into account. An optimized model of POI induction should manifest all the required ovarian morphological, hormonal, and estrus cycle changes.
Collapse
Affiliation(s)
- Marzieh Rostami Dovom
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, N.24 Shahid Arabi st. Yaman Ave. Velenjak, Tehran, IR, Iran
| | - Mahsa Noroozzadeh
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, N.24 Shahid Arabi st. Yaman Ave. Velenjak, Tehran, IR, Iran
| | - Nariman Mosaffa
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azita Zadeh-Vakili
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Piryaei
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fahimeh Ramezani Tehrani
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, N.24 Shahid Arabi st. Yaman Ave. Velenjak, Tehran, IR, Iran.
| |
Collapse
|
31
|
Tan R, He Y, Zhang S, Pu D, Wu J. Effect of transcutaneous electrical acupoint stimulation on protecting against radiotherapy- induced ovarian damage in mice. J Ovarian Res 2019; 12:65. [PMID: 31324205 PMCID: PMC6642573 DOI: 10.1186/s13048-019-0541-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 07/09/2019] [Indexed: 02/06/2023] Open
Abstract
Background Premature ovarian insufficiency (POI) is characterized by early loss of ovarian function that affects women before the age of 40. We aim to explore the protective effects of transcutaneous electrical acupoint stimulation (TEAS) against irradiation-induced ovarian damage in mice. Methods C57BL6 mice were randomly divided into control and irradiation (IR) groups. Then, control group was divided into two treatment subgroups: mock TEAS treatment (control-) and TEAS treatment (control+). IR group was divided into four subgroups according to the time of treatment started: mock TEAS treatment initiated at 2 days after irradiation (IR 2D-), TEAS treatment initiated at 2 days after irradiation (IR 2D+), mock TEAS treatment initiated at 1 week after irradiation (IR 1 W-), and TEAS treatment initiated at 1 week after irradiation (IR 1 W+). The radiation model mice were exposed to single whole body X-ray irradiation (4 Gy), and the control mice received 0 Gy. TEAS stimulation (2 Hz, 1 mA, 30 min/day) was given once a day for six consecutive days per week for 2 weeks. Estrous cycle, ovarian weight, serum AMH level and follicle counts were evaluated. Then, proliferation markers, apoptotic markers and oxidative stress markers were examined. Results Compared with the control group, the estrous cycle was disordered, and the ovarian weight, serum AMH, and primordial, primary and secondary follicles counts decreased (all P < 0.01) in the IR 2D- and IR 1 W- groups. In the irradiation with early TEAS treatment group (IR 2D+), the estrous cycle improved, the AMH level and primordial follicular significantly increased compared to the irradiation with mock group (IR 2D-). However, there were no significant differences in the estrous cycle, AMH level and follicle counts between IR 1 W- and IR 1 W+ groups. Moreover, IR 2D+ mice reduced the expression of Bax protein and increased the levels of Bcl-2 and PCNA compared to the IR 2D- group. Furthermore, the early TEAS treated mice showed significantly lower levels of oxidative stress and number of TUNEL (+) granulosa cells than that in the IR 2D- group. Conclusion This study is first to evaluate TEAS as a potential therapy to attenuate irradiation-induced ovarian failure through inhibiting primordial follicles loss, increasing serum AMH secretion, inducing antioxidant, and anti-apoptotic systems.
Collapse
Affiliation(s)
- Rongrong Tan
- State Key Laboratory of Reproductive Medicine, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Yuheng He
- State Key Laboratory of Reproductive Medicine, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Suyun Zhang
- State Key Laboratory of Reproductive Medicine, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Danhua Pu
- State Key Laboratory of Reproductive Medicine, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Jie Wu
- State Key Laboratory of Reproductive Medicine, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, 210029, People's Republic of China.
| |
Collapse
|
32
|
Besikcioglu HE, Sarıbas GS, Ozogul C, Tiryaki M, Kilic S, Pınarlı FA, Gulbahar O. Determination of the effects of bone marrow derived mesenchymal stem cells and ovarian stromal stem cells on follicular maturation in cyclophosphamide induced ovarian failure in rats. Taiwan J Obstet Gynecol 2019; 58:53-59. [PMID: 30638481 DOI: 10.1016/j.tjog.2018.11.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2018] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVE Chemotherapy causes depletion of primordial follicles that leads to premature ovarian failure in female cancer survivals. We investigated the effect of bone marrow derived mesenchymal (BMMSCs) and ovarian stromal stem cells (OSSCs) on follicle maturation in chemotherapy induced ovarian failure. MATERIAL AND METHODS Thirty six Wistar Albino female rats were divided into three groups. Cyclophosphamide at a dose of 200 mg/kg was intraperitoneally (IP) given to the rats in all groups two times. 4 × 106 BMMSCs (IP) was injected to the group-2 and 4 × 106 OSSCs (IP) was injected to the group-3. Serum Anti-Müllerian Hormone (AMH) levels was determined with ELISA and primordial follicles were counted for investigation of primordial follicle reserve. The ovarian structure were evaluated histomorphologically. Localization of BrdU labeled stem cells, the expression of the cell cycle regulator p34Cdc2, gap junction protein p-connexin43 and intraovarian regulators of folliculogenesis Bone Morphogenic Protein 6 and 15 (BMP-6 and BMP-15) were investigated by immunohistochemistry. RESULTS The immunstaining of BMP-6 was higher in oocytes of group-3 more than group-1 and group-2. The immunpositivity of p34cdc2 and BMP-15 were also higher in follicular cells of group-3 than the other groups. The presence of p-connexin43 in group-3 was determined more than group-1 and group-2. The ovarian follicles with normal histological structure were observed just in group-3. Although, The AMH levels were decreased in rats from all groups at the end of experimental procedure the primordial follicle counts in group-3 was significantly higher than group-1. CONCLUSION Our findings suggest that OSSCs have more protective effect on follicle maturation than BMMSCs in cyclophosphamide induced ovarian damage.
Collapse
Affiliation(s)
| | - Gulistan Sanem Sarıbas
- Department of Histology and Embryology, Faculty of Medicine, Kırşehir Ahi Evran University, Kırşehir, Turkey
| | - Candan Ozogul
- Department of Histology and Embryology, Faculty of Medicine Gazi University, Ankara, Turkey.
| | - Meral Tiryaki
- Department of Pathology, Yıldırım Beyazıt Training and Research Hospital, Ankara, Turkey
| | - Sevtap Kilic
- Department of Obstetrics and Gynecology, Faculty of Medicine, Bahçeşehir University, Istanbul, Turkey
| | - Ferda Alpaslan Pınarlı
- Genetic Diagnostic Center, Yıldırım Beyazıt Training and Research Hospital, Ankara, Turkey
| | - Ozlem Gulbahar
- Department of Medical Biochemistry, Faculty of Medicine, Gazi University, Ankara, Turkey
| |
Collapse
|
33
|
Buigues A, Marchante M, Herraiz S, Pellicer A. Diminished Ovarian Reserve Chemotherapy-Induced Mouse Model: A Tool for the Preclinical Assessment of New Therapies for Ovarian Damage. Reprod Sci 2019:1933719119831784. [PMID: 30791852 DOI: 10.1177/1933719119831784] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Diminished ovarian reserve (DOR) and primary ovarian insufficiency (POI) are primary factors leading to infertility. However, there is a lack of appropriate animal models of DOR usable for assessing new therapeutic strategies. In this study, we aimed to evaluate whether chemotherapy treatment in mice could reproduce features similar of that observed in women with DOR. Twenty-one Nonobese diabetic/severe combined immunodeficiency (NOD/SCID) female mice were allocated to 3 groups (n = 7/group): control, single dose of vehicle (Dimethyl Sulfoxide [DMSO]); DOR, single reduced chemotherapy dose; and POI, single standard chemotherapy dose. After 21 days, mice underwent ovarian hyperstimulation and mating. Part of the animals were harvested to analyze ovarian reserve, ovulation and fertilization rates, and morphology, apoptosis, and vascularization of the ovarian stroma. The remaining mice underwent multiple matings to assess pregnancy rates and litter sizes. The DOR and POI mice showed an impaired estrous cyclicity and a decrease in ovarian mass, number of follicles, Metaphase II (MII) oocytes, and embryos as well as in ovarian stroma vascularization. Mice in both models showed also an increase in the percentage of morphologically abnormal follicles, stromal degeneration, and apoptosis. Similar to that observed in DOR and POI patients, these impairments were less severe in DOR than in POI mice. None of the POI females were able to achieve a pregnancy. Meanwhile, DOR females achieved several consecutive pregnancies, although litter size was decreased when compared to controls. In conclusion, a mouse model which displayed most of the ovarian characteristics and fertility outcomes of women with DOR has been established using a single dose of chemotherapy.
Collapse
Affiliation(s)
- Anna Buigues
- 1 IVI Foundation, Valencia Spain
- 2 Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, Valencia University, Valencia, Spain
| | - Maria Marchante
- 1 IVI Foundation, Valencia Spain
- 2 Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, Valencia University, Valencia, Spain
| | - Sonia Herraiz
- 1 IVI Foundation, Valencia Spain
- 3 Reproductive Medicine Research Group, IIS La Fe, Valencia, Spain
- 4 IVI-RMA Valencia, Valencia, Spain
| | - Antonio Pellicer
- 1 IVI Foundation, Valencia Spain
- 3 Reproductive Medicine Research Group, IIS La Fe, Valencia, Spain
- 5 IVI-RMA Rome, Rome, Italy
| |
Collapse
|
34
|
Lee EH, Han SE, Park MJ, Kim HJ, Kim HG, Kim CW, Joo BS, Lee KS. Establishment of Effective Mouse Model of Premature Ovarian Failure Considering Treatment Duration of Anticancer Drugs and Natural Recovery Time. J Menopausal Med 2018; 24:196-203. [PMID: 30671413 PMCID: PMC6336561 DOI: 10.6118/jmm.2018.24.3.196] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/11/2018] [Accepted: 09/23/2018] [Indexed: 11/30/2022] Open
Abstract
Objectives This study was aimed to establish the most effective premature ovarian failure (POF) mouse model using Cyclophosphamide (CTX), busulfan (Bu), and cisplatin considering treatment duration of anticancer drugs and natural recovery time. Methods POF was induced by intraperitoneally injecting CTX (120 mg/kg)/Bu (12 mg/kg) for 1 to 4 weeks or cisplatin (2 mg/kg) for 3 to 14 days to C57BL/6 female mice aged 6 to 8 weeks. Controls were injected with equal volume of saline for the same periods. Body weight was measured every week, and ovarian and uterine weights were measured after the last injection of anticancer drug. To assess ovarian function, POF-induced mice were superovulated with pregnant mare serum gonadotropin and human chorionic gonadotropin, and then mated with male. After 18 hours, zygotes were retrieved and cultured for 4 days. Finally, the mice were left untreated for a period of times after the final injection of anticancer drug, and the time for natural recovery of ovarian function was evaluated. Results After 2 weeks of CTX/Bu injection, ovarian and uterine weights, and ovarian function were decreased sharply. Cisplatin treatment for 10 days resulted in a significant decrease in ovarian and uterine weight, and ovarian function. When POF was induced for at least 2 weeks for CTX/Bu and for at least 10 days for cisplatin, ovarian function did not recover naturally for 2 weeks and 1 week, respectively. Conclusions These results suggest that CTX/Bu should be treated for at least 2 weeks and cisplatin for at least 10 days to establish the most effective primary ovarian insufficiency mouse model.
Collapse
Affiliation(s)
- Eun Hee Lee
- Department of Obstetrics and Gynecology, Medical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Korea
| | - Si Eun Han
- Department of Obstetrics and Gynecology, Medical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Korea
| | - Min Jung Park
- The Korea Institute for Public Sperm Bank, Busan, Korea
| | | | - Hwi Gon Kim
- Department of Obstetrics and Gynecology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan, Korea
| | - Chang Woon Kim
- Department of Obstetrics and Gynecology, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| | - Bo Sun Joo
- The Korea Institute for Public Sperm Bank, Busan, Korea.,Infertility Institute, Pohang Women's Hospital, Pohang, Korea
| | - Kyu Sup Lee
- Department of Obstetrics and Gynecology, Medical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Korea
| |
Collapse
|
35
|
Aziz AUR, Geng C, Li W, Yu X, Qin KR, Wang H, Liu B. Doxorubicin Induces ER Calcium Release via Src in Rat Ovarian Follicles. Toxicol Sci 2018; 168:171-178. [DOI: 10.1093/toxsci/kfy284] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Aziz Ur Rehman Aziz
- Liaoning IC Technology Key Laboratory, School of Biomedical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, P. R. China
| | - Chunyang Geng
- Liaoning IC Technology Key Laboratory, School of Biomedical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, P. R. China
| | - Wang Li
- Liaoning IC Technology Key Laboratory, School of Biomedical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, P. R. China
| | - Xiaohui Yu
- Department of gynecology, Dalian Institute of Maternal and Child Health Care, Dalian 116024, P. R. China
| | - Kai-Rong Qin
- Liaoning IC Technology Key Laboratory, School of Biomedical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, P. R. China
| | - Hanqin Wang
- Center for Translational Medicine, Suizhou Hospital, Hubei University of Medicine, Suizhou, Hubei 441300, P. R. China
| | - Bo Liu
- Liaoning IC Technology Key Laboratory, School of Biomedical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, P. R. China
| |
Collapse
|
36
|
Research on Establishment of Abnormal Phlegmatic Syndrome with Premature Ovarian Failure Rat Model and Effects of Balgham Munziq Treatment. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:3858209. [PMID: 29770151 PMCID: PMC5892281 DOI: 10.1155/2018/3858209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 02/15/2018] [Indexed: 11/17/2022]
Abstract
This study aimed to establish and explore the biological basis of abnormal phlegmatic syndrome with premature ovarian failure (POF) model in rats based on the Uighur medicine (UM) in the first place and investigate the effects of unique herbal medicine, Balgham Munziq (BMq). Mature female Wistar rats were fed with spinach and coriander in cold and humid condition for approximately 20 weeks until abnormal phlegmatic syndrome (APS) model was established. When APS model was confirmed by Uighur medical experts, APS with POF disease rats were subdivided into APS with POF disease model group and APS with POF disease treated with BMq group; the rest of them were subdivided into APS model group and APS treated with BMq group. The results show that biological characteristics of animals in the course of modeling period were in accordance with clinical features of abnormal phlegmatic syndrome (APS) in Uighur medicine. Herbal medicine BMq not only reverted reproductive hormone levels disorders but also improved the function of hypothalamic-pituitary-ovarian axis and regulated secretion of monoamine neurotransmitters. APS is most likely to cause pathological changes of hypothalamic-pituitary-ovarian axis and lead to the occurrence of POF and BMq is effective in the treatment of APS with POF disease.
Collapse
|
37
|
The potentiality of two-dimensional preantral follicle culture as an in vitro model in predicting premature ovarian failure. ACTA ACUST UNITED AC 2017; 69:477-484. [DOI: 10.1016/j.etp.2017.04.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 03/19/2017] [Accepted: 04/25/2017] [Indexed: 11/17/2022]
|
38
|
Zhang T, He WH, Feng LL, Huang HG. Effect of doxorubicin-induced ovarian toxicity on mouse ovarian granulosa cells. Regul Toxicol Pharmacol 2017; 86:1-10. [DOI: 10.1016/j.yrtph.2017.02.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 02/11/2017] [Accepted: 02/13/2017] [Indexed: 12/30/2022]
|