1
|
Rajasekar M, Suresh K, Theerthu A, Pugazhendhi R, Sivakumar K. Diosmin induces mitochondrial-mediated apoptosis and anti-inflammatory effects in Hep-2 cells: an integrated in vitro and in silico analysis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-024-03690-8. [PMID: 39747464 DOI: 10.1007/s00210-024-03690-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 11/27/2024] [Indexed: 01/04/2025]
Abstract
The present study aims to explore the anticancer efficacy of Diosmin by inducing mitochondrial-mediated apoptosis in human epidermoid carcinoma cells (Hep-2). This is done by cell line assays and studying crucial inflammatory and apoptotic signaling molecules. The cytotoxicity property of Diosmin was evaluated by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. Marker expression study was done by western blotting for studying apoptotic markers like Bax, Bcl-2, p53, Bak, and Bcl-xl, proinflammatory cytokine (TNF-α), interleukins (IL-1, IL-6, IL-8), and signal transduction (STAT-3). The docking study confirms the affinity of Diosmin with apoptotic and important markers. Through the MTT assay, a dose-dependent cytotoxic effect of Diosmin was unveiled, with an IC50 value of effective inhibition of cell proliferation. Diosmin treatment resulted in noteworthy downregulation of Bcl-xl, Bak, Bcl-2, IL-1, 6, 8, TNF-α, and STAT-3 while upregulating the p53 and Bax expression levels, highlighting its inhibitory role in inducing apoptosis. Docking studies further exposed robust binding affinities between Diosmin and target apoptotic proteins, suggesting its efficacy in disrupting cellular functions and inflammatory signaling pathways in Hep-2 cells. The cytotoxic effects on Hep-2 cells and suggested activation of Bax, p53, and inhibition of Bcl-xl, Bak, Bcl-2, IL-1, 6, 8, TNF-α, as well as STAT-3 lead to the activation of mitochondrial-mediated apoptosis in Diosmin-treated Hep-2 cells. Further, its anti-inflammatory properties locate Diosmin as a conclusive compound for further studies for effective oral and other related squamous carcinoma treatments.
Collapse
Affiliation(s)
- Muthusamy Rajasekar
- Central Research Laboratory, Vinayaka Mission's Kirupananda Variyar Medical College and Hospitals, Vinayaka Mission's Research Foundation (Deemed to Be University), Salem, 636305, Tamil Nadu, India
| | - Kathiresan Suresh
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalai Nagar, Chidambaram, 608002, Tamil Nadu, India.
| | - Azhamuthu Theerthu
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalai Nagar, Chidambaram, 608002, Tamil Nadu, India
| | - Ravichandran Pugazhendhi
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalai Nagar, Chidambaram, 608002, Tamil Nadu, India
| | - Kathiresan Sivakumar
- Department of Plant Science, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India
| |
Collapse
|
2
|
Gedik D, Eraslan G. Evaluation of the efficacy of diosmin and chrysin against tau-fluvalinate exposure in rats. Food Chem Toxicol 2025; 195:115097. [PMID: 39522795 DOI: 10.1016/j.fct.2024.115097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Tau-fluvalinate is a type 2 pyrethroid insecticide. Diosmin and chrysin are flavonoids with antioxidant and anti-apoptotic effects. Role of diosmin and chrysin against infavorable toxic effects caused by tau-fluvalinate and the underlying mechanisms of these effects were investigated. Six groups were formed and diosmin, chrysin, tau-fluvalinate, tau-fluvalinate + diosmin and tau-fluvalinate + chrysin were administered orally to rats at a dose of 20 mg/kg.bw except for the control group, once a day for 21 days, respectively. Tau-fluvalinate elevated MDA and NO levels while diminishing the activities of antioxidant enzymes (SOD, CAT, GSH-Px, GR, GST, G6PD) and GSH levels in the majority of the analyzed blood and tissues, statistically significant. Serum triglyceride, cholesterol, total protein and albumin levels as well as LDH and PChE activities decreased. Conversely, serum creatinine, AST, ALT and ALP levels/activities increased. Elevated protein levels of caspase 3, caspase 9, p53 and Bax and decreased protein levels of Bcl-2 were observed in the liver. There were negative changes in body/some organ weights. Diosmin and chrysin administration resulted in a marked recovery in tau-fluvalinate-induced toxic effects, but this improvement was not complete. These flavonoids may be considered as promising potential therapeutic options to alleviate the adverse effects associated with tau-fluvalinate intoxication.
Collapse
Affiliation(s)
- Didem Gedik
- Department of Veterinary Pharmacology and Toxicology, Institute of Health Science, Erciyes University, Kayseri, Turkey
| | - Gökhan Eraslan
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey.
| |
Collapse
|
3
|
Monadi T, Mohajer Z, Soltani A, Khazeei Tabari MA, Manayi A, Azadbakht M. The influence of apigenin on cellular responses to radiation: From protection to sensitization. Biofactors 2025; 51:e2113. [PMID: 39134426 DOI: 10.1002/biof.2113] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 07/24/2024] [Indexed: 12/29/2024]
Abstract
Apigenin, a dietary flavonoid, has gained increasing attention for its potential therapeutic applications in radiation protection and radiosensitization. Ionizing radiation (IR) can harm healthy cells, but as radiotherapy remains crucial in cancer treatment. Owing to the remarkable application of radiotherapy in the treatment of cancers, it is vital to protect healthy cells from radiation hazards while increasing the sensitivity of cancer cells to radiation. This article reviews the current understanding of apigenin's radioprotective and radiosensitive properties with a focuses on the involved signaling pathways and key molecular targets. When exposed to irradiation, apigenin reduces inflammation via cyclooxygenase-2 inhibition and modulates proapoptotic and antiapoptotic biomarkers. Apigenin's radical scavenging abilities and antioxidant enhancement mitigate oxidative DNA damage. It inhibits radiation-induced mammalian target of rapamycin activation, vascular endothelial growth factor (VEGF), matrix metalloproteinase-2 (MMP), and STAT3 expression, while promoting AMPK, autophagy, and apoptosis, suggesting potential in cancer prevention. As a radiosensitizer, apigenin inhibits tumor growth by inducing apoptosis, suppressing VEGF-C, tumor necrosis factor alpha, and STAT3, reducing MMP-2/9 activity, and inhibiting cancer cell glucose uptake. Cellular and animal studies support apigenin's radioprotective and anticancer potential, making it a potential candidate for further research. Investigation into apigenin's therapeutic efficacy in diverse cancer types and radiation damage is essential.
Collapse
Affiliation(s)
- Taha Monadi
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Pharmacognosy and Biotechnology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zahra Mohajer
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- USERN Office, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afsaneh Soltani
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- USERN Office, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Khazeei Tabari
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
- USERN Office, Mazandaran University of Medical Sciences, Sari, Iran
| | - Azadeh Manayi
- Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Azadbakht
- Department of Pharmacognosy and Biotechnology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Medicinal Plants Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
4
|
Saif-Elnasr M, Samy EM, Abdel-Khalek AF. Cerium oxide nanoparticles display antioxidant and antiapoptotic effects on gamma irradiation-induced hepatotoxicity. Cell Biochem Funct 2024; 42:e4092. [PMID: 38978266 DOI: 10.1002/cbf.4092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/03/2024] [Accepted: 06/30/2024] [Indexed: 07/10/2024]
Abstract
Throughout radiotherapy, radiation of the hepatic tissue leads to damage of the hepatocytes. We designed the current study to examine how cerium oxide nanoparticles (CONPs) modulate gamma irradiation-induced hepatotoxicity in rats. Animals received CONPs (15 mg/kg body weight [BW], ip) single daily dose for 14 days, and they were exposed on the seventh day to a single dose of gamma radiation (6 Gy). Results showed that irradiation increased serum aspartate aminotransferase, alanine aminotransferase, and alkaline phosphatase activities. Furthermore, it elevated oxidative stress biomarker; malondialdehyde (MDA) and inhibited the activities of antioxidant enzymes (superoxide dismutase and glutathione peroxidase) in hepatic tissues homogenate. Additionally, hepatic apoptotic markers; caspase-3 (Casp-3) and Casp-9 were elevated and the B-cell lymphoma-2 (Bcl-2) gene level was decreased in rats exposed to radiation dose. We observed that CONPs can modulate these changes, where CONPs reduced liver enzyme activities, MDA, and apoptotic markers levels, in addition, it elevated antioxidant enzyme activities and Bcl-2 gene levels, as well as improved histopathological changes in the irradiated animals. So our results concluded that CONPs had the ability to act as radioprotector defense against hepatotoxicity resulted during radiotherapy.
Collapse
Affiliation(s)
- Mostafa Saif-Elnasr
- Health Radiation Research Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Esraa M Samy
- Department of Drug Radiation Research, National Center for Radiation Research & Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Assmaa Fathi Abdel-Khalek
- Internal Medicine Unit, Health Radiation Research Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
5
|
Abohashem RS, Ahmed HH, Sayed AH, Effat H. Primary Protection of Diosmin Against Doxorubicin Cardiotoxicity via Inhibiting Oxido-Inflammatory Stress and Apoptosis in Rats. Cell Biochem Biophys 2024; 82:1353-1366. [PMID: 38743136 DOI: 10.1007/s12013-024-01289-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2024] [Indexed: 05/16/2024]
Abstract
Doxorubicin (DOX) is the cornerstone of chemotherapy. However, it has dose-dependent cardiotoxic events that limit its clinical use. This study was intended to investigate the efficiency of DOX as an anti-cancer against the MCF-7 cell line in the presence of diosmin (DIO) and to appraise the protective impact of DIO against DOX cardiotoxicity in vivo. In vitro study was carried out to establish the conservation of DOX cytotoxicity in the presence of DIO. In vivo study was conducted on 42 adult female Wistar rats that were equally allocated into 6 groups; control, DIO (100 mg/kg), DIO (200 mg/kg), DOX (20 mg/kg, single dose i.p.), DIO (100 mg/kg) + DOX, received DIO orally (100 mg/kg) for 30 days, then administrated with a single dose of DOX and DIO (200 mg/kg) + DOX, received DIO orally (200 mg/kg) for 30 days, then administrated with DOX. In vitro study showed preservation of cytotoxic activity of DOX on MCF-7 in the presence of DIO. In vivo study indicated that DOX altered electrocardiograph (ECG) parameters. Also, it yielded a significant rise in CK-MB, cTnT and LDH serum levels and cardiac contents of MDA, IL-1β; paralleled by a significant drop in cardiac IL-10 and SOD. Moreover, significant upregulation of Bax, TNF-α, and HIF-1α, in concomitant with significant downregulation of Bcl-2 mRNA in cardiac tissue have been recorded in the DOX group. Furthermore, histopathological description of cardiac tissues showed that DOX alters normal cardiac histoarchitecture. On the opposite side, DIO pretreatment could ameliorate ECG parameters, suppress IL-1β and enhanceIL-10, promote activity of SOD and repress MDA. Additionally, downregulation of Bax, TNF-α, HIF-1α and upregulation of Bcl-2 have been demonstrated in DIO-pretreated rats. Furthermore, the histopathological examination of cardiac tissues illustrated that DIO had a favorable impact on the protection of heart histoarchitecture. DIO is suggested for protection against acute cardiotoxicity caused by DOX without affecting antitumor activity.
Collapse
Affiliation(s)
- Rehab S Abohashem
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt.
- Stem Cell Laboratory, Centre of Excellence for Advanced Sciences, National Research Centre, Giza, Egypt.
| | - Hanaa H Ahmed
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
- Stem Cell Laboratory, Centre of Excellence for Advanced Sciences, National Research Centre, Giza, Egypt
| | - Alaa H Sayed
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Heba Effat
- Medical Biochemistry and Molecular Biology Unit, Department of Cancer Biology, National Cancer Institute, Cairo University, Cairo, Egypt
| |
Collapse
|
6
|
Khateeb S, Taha EFS. Comparative study of the anti-inflammatory activity of etoricoxib and Matcha green tea against acute kidney injury induced by gamma radiation in rats. Int J Radiat Biol 2024; 100:940-964. [PMID: 38647648 DOI: 10.1080/09553002.2024.2338515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/25/2024] [Indexed: 04/25/2024]
Abstract
PURPOSE The primary objective of this study was to conduct a comparative analysis of the anti-inflammatory activity between Etoricoxib (ETO) and Matcha green tea (MG) in the context of acute kidney injury (AKI) induced by ionizing gamma radiation (IR) in female rats. Furthermore, the potential impact of whole body IR exposure on the intestinal system and serum estradiol levels was investigated. Additionally, it was acknowledged that the ETO and MG treatments might have exerted favorable effects on the intestinal and hormonal responses. MATERIALS AND METHODS Six groups of rats were assigned to different treatments: control, ETO, MG, irradiation (IRR), ETO + IRR, and MG + IRR. The evaluation included measuring the total phenolic and flavonoid contents of ETO and MG, as well as assessing their antioxidant activity, radical scavenging capacity, reducing power, and total antioxidant capacity. Kidney function was assessed through serum creatinine and urea levels. Oxidative stress markers, including superoxide dismutase, glutathione, malondialdehyde, and catalase, were measured to evaluate the antioxidant effects of ETO and MG. The anti-inflammatory potential of the treatments was evaluated by measuring STAT-3 and interleukins (IL-6, IL-23, and IL-17) using an ELISA assay. Prostaglandin E2 receptor (PGE-2) mRNA expression, histopathological examination, and immunohistochemistry for NF-κB inhibitors were performed to investigate the underlying mechanisms in kidney tissue homogenates. Histopathological changes and DNA fragmentation in the intestinal tissues were determined, and the characterization of Matcha green tea was performed using liquid chromatography-mass spectrometry (LC-MS). This allowed for the identification and quantification of various compounds present in Matcha green tea. Furthermore, the study assessed the effect of IR and treatments on estrogen levels in female rats. RESULTS Data showed that both ETO and MG had the potential to mitigate the adverse effects of AKI induced by IR. Notably, MG exhibited greater efficacy in attenuating oxidative stress and inflammation associated with renal injury. These findings revealed and compared the effects of ETO and MG in alleviating AKI caused by IR. MG demonstrated greater anti-inflammatory and antioxidant properties, highlighting its potential as a natural therapeutic agent. CONCLUSIONS These results contribute to the growing evidence supporting the use of MG in managing IR-induced renal complications. Future studies should focus on elucidating the molecular mechanisms and optimizing the application of MG in clinical settings.
Collapse
Affiliation(s)
- Sahar Khateeb
- Biochemistry Division, Department of Chemistry, Faculty of Science, Fayoum University, Fayoum, Egypt
- Department of Biochemistry, Faculty of Science, University of Tabuk, Saudi Arabia
| | - Eman F S Taha
- Health Radiation Research Department, National Centre for Radiation Research and Technology, Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| |
Collapse
|
7
|
Nadolnik LI, Niatsetskaya ZV, Basinsky VA, Vinogradov VV. Morphological and functional changes in rat thyroid gland after a year following chronic exposure to low and intermediate doses of γ-radiation. Int J Radiat Biol 2023; 100:343-352. [PMID: 37934053 DOI: 10.1080/09553002.2023.2280012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/13/2023] [Indexed: 11/08/2023]
Abstract
INTRODUCTION Thyroid function depends on iodine uptake by the body as well as on exposure to various harmful environmental hazards (stress, ionizing radiation). AIM The aim of the work was to assess the effect of exposure to low and intermediate doses of external γ-radiation on the thyroid structure and function in young female rats at remote periods after radiation. MATERIALS AND METHODS Forty female rats were used to study remote effects of external γ-radiation exposure during 20 d (at daily doses of 0.1, 0.25 and 0.5 Gy) on the functional activity (levels of thyroid hormones, iodine metabolism) and the morphological structure of the rat thyroid) after 12 months following the radiation exposure. RESULTS An increase in thyroid mass and a decrease in total thyroid protein concentration along with a reduction of blood T3 and T4 was shown only in rat groups exposed to 0.25 and 0.5 Gy. Both the concentration of total iodine and its protein-bound fraction (1.2-1.4 fold, p < .01) and the protein-bound to total iodine ratio were decreased in the thyroids of all irradiated animals. The 0.1-Gy group showed elevated thyroperoxidase (TPO) activity along with increased catalase activity, which may indicate the activation of iodine oxidation by thyrocytes. Only the 0.5-Gy group demonstrated reduced urinary excretion of iodine (2.1 fold, p < .01).The reduction of thyroid function at radiation doses of 0.25 and 0.5 Gy was characterized by a microfollicular structure and the development of atrophic changes in the parenchyma, desquamation of thyroid epithelium and an increase in epithelium proliferation. The diameter of the thyrocyte nuclei was increased in rats exposed to 0.25 and 0.5 Gy, which indicates functional tension of thyrocytes. CONCLUSION Our research shows that after a year, the exposure to external γ-radiation of 0.1, 0.25 and 0.5-Gy caused changes in the structure and function of the rat thyroid which are manifested by the development of hypothyroiditis (0.5 Gy), 'subclinical' hypothyroiditis (0.25 Gy) and functional tension of thyrocytes. The mechanisms of thyroid dysfunction - impaired- uptake of iodine and its organification against the background of activation of free radical processes - suggest disturbances in the function of the sodium/iodide symporter (NIS), TPO and thyroglobulin synthesis. In contrast to the intermediate doses, the effects of the 0.1-Gy dose were mostly found at the remote periods compared to the earlier periods (180 days).
Collapse
Affiliation(s)
- Liliya I Nadolnik
- Institute of Biochemistry of Biologically Active Compounds of the National Academy of Sciences of Belarus, Grodno, Belarus
| | - Zoya V Niatsetskaya
- Institute of Biochemistry of Biologically Active Compounds of the National Academy of Sciences of Belarus, Grodno, Belarus
- Department of Pediatrics, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | | | - Vladimir V Vinogradov
- Institute of Biochemistry of Biologically Active Compounds of the National Academy of Sciences of Belarus, Grodno, Belarus
| |
Collapse
|
8
|
Tang JY, Chuang YT, Shiau JP, Yen CY, Chang FR, Tsai YH, Farooqi AA, Chang HW. Connection between Radiation-Regulating Functions of Natural Products and miRNAs Targeting Radiomodulation and Exosome Biogenesis. Int J Mol Sci 2023; 24:12449. [PMID: 37569824 PMCID: PMC10419287 DOI: 10.3390/ijms241512449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/29/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Exosomes are cell-derived membranous structures primarily involved in the delivery of the payload to the recipient cells, and they play central roles in carcinogenesis and metastasis. Radiotherapy is a common cancer treatment that occasionally generates exosomal miRNA-associated modulation to regulate the therapeutic anticancer function and side effects. Combining radiotherapy and natural products may modulate the radioprotective and radiosensitizing responses of non-cancer and cancer cells, but there is a knowledge gap regarding the connection of this combined treatment with exosomal miRNAs and their downstream targets for radiation and exosome biogenesis. This review focuses on radioprotective natural products in terms of their impacts on exosomal miRNAs to target radiation-modulating and exosome biogenesis (secretion and assembly) genes. Several natural products have individually demonstrated radioprotective and miRNA-modulating effects. However, the impact of natural-product-modulated miRNAs on radiation response and exosome biogenesis remains unclear. In this review, by searching through PubMed/Google Scholar, available reports on potential functions that show radioprotection for non-cancer tissues and radiosensitization for cancer among these natural-product-modulated miRNAs were assessed. Next, by accessing the miRNA database (miRDB), the predicted targets of the radiation- and exosome biogenesis-modulating genes from the Gene Ontology database (MGI) were retrieved bioinformatically based on these miRNAs. Moreover, the target-centric analysis showed that several natural products share the same miRNAs and targets to regulate radiation response and exosome biogenesis. As a result, the miRNA-radiomodulation (radioprotection and radiosensitization)-exosome biogenesis axis in regard to natural-product-mediated radiotherapeutic effects is well organized. This review focuses on natural products and their regulating effects on miRNAs to assess the potential impacts of radiomodulation and exosome biogenesis for both the radiosensitization of cancer cells and the radioprotection of non-cancer cells.
Collapse
Affiliation(s)
- Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ya-Ting Chuang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jun-Ping Shiau
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Ching-Yu Yen
- School of Dentistry, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Tainan 71004, Taiwan
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (F.-R.C.); (Y.-H.T.)
| | - Yi-Hong Tsai
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (F.-R.C.); (Y.-H.T.)
| | - Ammad Ahmad Farooqi
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad 54000, Pakistan
| | - Hsueh-Wei Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| |
Collapse
|
9
|
Gwozdzinski L, Bernasinska-Slomczewska J, Hikisz P, Wiktorowska-Owczarek A, Kowalczyk E, Pieniazek A. The Effect of Diosmin, Escin, and Bromelain on Human Endothelial Cells Derived from the Umbilical Vein and the Varicose Vein-A Preliminary Study. Biomedicines 2023; 11:1702. [PMID: 37371797 DOI: 10.3390/biomedicines11061702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/29/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
In this study, we investigated the properties of human varicose vein (VV) endothelial cells (HVVEC) in comparison to the human umbilical vein endothelial cells (HUVEC). The cells were treated with three bioactive compounds with proven beneficial effects in the therapy of patients with VV, diosmin, escin, and bromelain. Two concentrations of tested drugs were used (1, 10 mg/mL), which did not affect the viability of either cell type. Escin led to a slight generation of reactive oxygen species in HUVEC cells. We observed a slight release of superoxide in HVVEC cells upon treatment with diosmin and escin. Diosmin and bromelain showed a tendency to release nitric oxide in HUVEC. Using membrane fluorescent probes, we demonstrated a reduced fluidity of HVVEC, which may lead to their increased adhesion, and, consequently, a much more frequent occurrence of venous thrombosis. For the first time, we show the mechanism of action of drugs used in VV therapy on endothelial cells derived from a VV. Studies with HVVEC have shown that tested drugs may lead to a reduction in the adhesive properties of these cells, and thus to a lower risk of thrombosis.
Collapse
Affiliation(s)
- Lukasz Gwozdzinski
- Department of Pharmacology and Toxicology, Medical University of Lodz, 90-752 Lodz, Poland
| | - Joanna Bernasinska-Slomczewska
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
| | - Pawel Hikisz
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
| | | | - Edward Kowalczyk
- Department of Pharmacology and Toxicology, Medical University of Lodz, 90-752 Lodz, Poland
| | - Anna Pieniazek
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
| |
Collapse
|
10
|
Ismail AFM, Salem AA, Eassawy MMT. Rutin protects against gamma-irradiation and malathion-induced oxidative stress and inflammation through regulation of mir-129-3p, mir-200C-3p, and mir-210 gene expressions in rats' kidney. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27166-z. [PMID: 37184799 DOI: 10.1007/s11356-023-27166-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/18/2023] [Indexed: 05/16/2023]
Abstract
Kidney injury represents a global concern, leading to chronic kidney disease. The organophosphate insecticide malathion (MT) demonstrates environmental disturbance and impairment of different mammalian organs, including kidneys. Likewise, gamma-irradiation (IRR) provokes destructive effects in the kidneys. Rutin is a flavonoid glycoside that exhibits nephro-protective and radio-protective properties. This manuscript focused on investigating the protective response of rutin on MT- and IRR-triggered kidney injury in rats. Rats were randomly divided into eight groups of twelve: G1 (C), control; G2 (Rutin), rutin-treated rats; G3 (IRR), gamma-irradiated rats; G4 (MT), malathion-treated rats; G5 (IRR/MT), gamma-irradiated rats treated with malathion; G6 (IRR/Rutin), gamma-irradiated rats treated with rutin; G7 (MT/Rutin), rats treated with malathion and rutin; and G8 (IRR/MT/Rutin), gamma-irradiated rats treated with malathion and rutin, every day for 30 days. The results demonstrated that rutin treatment regulated the biochemical parameters, the oxidative stress, the antioxidant status, and the inflammatory responses due to the down-regulation of the renal NF-κB p65 protein expression. Moreover, it amended the activity of acetylcholinesterase (AchE), angiotensin ACE I, and ACE II-converting enzymes. Besides, it regulated the iNOS, eNOS, miR-129-3p, miR-200c, and miR-210 gene expressions and bradykinin receptor (B1R and B2R) protein expressions. Histopathological examinations of the kidney tissue confirmed these investigated results. It could be concluded that rutin demonstrated nephro/radioprotection and counteracted the toxicological effects triggered in the kidney tissues of IRR, MT, and IRR/MT intoxicated rats, via regulating miR-129-3p, miR-200c-3p, and miR-210-3p gene expressions, which consequently regulated B2R protein expressions, ACE II activity, and HIF-1α production, respectively.
Collapse
Affiliation(s)
- Amel F M Ismail
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| | - Asmaa A Salem
- Regional Center for Food and Feed (RCFF), Agricultural Research Center, Giza, Egypt
| | - Mamdouh M T Eassawy
- Regional Center for Food and Feed (RCFF), Agricultural Research Center, Giza, Egypt
| |
Collapse
|
11
|
Yalcin B, Yay AH, Tan FC, Özdamar S, Yildiz OG. Investigation of the anti-oxidative and anti-inflammatory effects of melatonin on experimental liver damage by radiation. Pathol Res Pract 2023; 246:154477. [PMID: 37148837 DOI: 10.1016/j.prp.2023.154477] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/19/2023] [Accepted: 04/20/2023] [Indexed: 05/08/2023]
Abstract
Radiotherapy is one of the inevitable treatment approaches for several types of cancer. We aimed to show the protective and therapeutic effects of daily use of melatonin on liver tissues subjected to a single dose of 10 Gy (gamma-ray) total body radiation. Rats were divided into 6 groups, of which 10 were in each: control, sham, melatonin, radiation, radiation+melatonin, and melatonin+radiation. The rats received 10 Gy of external radiation throughout their entire bodies. The rats were given 10 mg/kg/day of melatonin intraperitoneally before or after radiation treatment, depending on the group. Histological methods, immunohistochemical analysis (Caspase-3, Sirtuin-1, α-SMA, NFΚB-p65), biochemical analysis by ELİSA (SOD, CAT, GSH-PX, MDA, TNF-α, TGF-β, PDGF, PGC-1α) and the Comet assay as a marker of DNA damage were applied to the liver tissues. Histopathological examinations showed structural changes in the liver tissue of the radiation group. Radiation treatment increased the immunoreactivity of Caspase-3, Sirtuin-1 and α-SMA, but these effects were relatively attenuated in the melatonin-treated groups. The melatonin+radiation group had statistically significant results close to those of the control group, in terms of Caspase-3, NFΚB-p65 and Sirtuin-1 immunoreactivity. In melatonin treated groups, hepatic biochemical markers, MDA, SOD, TNF-α, TGF-β levels, and DNA damage parameters were decreased. Administration of melatonin before and after radiation has beneficial effects, but using it before radiation may be more efficient. Accordingly, daily melatonin usage could mitigate ionizing radiation induced damage.
Collapse
Affiliation(s)
- Betul Yalcin
- Adıyaman University, Faculty of Medicine, Department of Histology and Embryology, Adıyaman, Turkey.
| | - Arzu Hanım Yay
- Erciyes University, Faculty of Medicine, Department of Histology and Embryology, Kayseri, Turkey; Erciyes University, Genome and Stem Cell Center (GENKOK), Kayseri, Turkey
| | - Fazile Cantürk Tan
- Erciyes University, Faculty of Medicine, Department of Biophysics, Kayseri, Turkey
| | - Saim Özdamar
- Pamukkale University, Faculty of Medicine, Department of Histology and Embryology, Kayseri, Turkey
| | - Oğuz Galip Yildiz
- Erciyes University, Faculty of Medicine, Department of Radiation Oncology, Kayseri, Turkey
| |
Collapse
|
12
|
Bahar O, Eraslan G. Investigation of the efficacy of diosmin against organ damage caused by bendiocarb in male Wistar albino rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:55826-55845. [PMID: 36905537 DOI: 10.1007/s11356-023-26105-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Bendiocarb is a carbamate insecticide, which is used more in indoor areas, especially against scorpions, spiders, flies, mosquitoes and cockroaches. Diosmin is an antioxidant flavonoid found mostly in citrus fruits. In this study, the efficacy of diosmin against the adverse effects of bendiocarb was investigated in rats. For this purpose, 60, 2-3 month-old male Wistar albino rats, weighing 150-200 g, were used. The animals were assigned to six groups, one of which was maintained for control purposes and five of which were trial groups. The control rats received only corn oil, which was used as a vehicle for diosmin administration in the trial groups. Groups 2, 3, 4, 5 and 6 were administered with 10 mg/kg.bw bendiocarb, 10 mg/kg.bw diosmin, 20 mg/kg.bw diosmin, 2 mg/kg.bw bendiocarb plus 10 mg/kg.bw diosmin, and 2 mg/kg.bw bendiocarb plus 20 mg/kg.bw diosmin, respectively, using an oral catheter, for 28 days. At the end of the study period, blood and organ (liver, kidneys, brain, testes, heart and lungs) samples were collected. Body weight and organ weights were determined. Compared to the control group, in the group given bendiocarb alone, firstly, body weight and liver, lung and testicular weights decreased. Secondly, tissue/plasma malondialdehyde (MDA) and nitric oxide (NO) levels increased, and glutathione (GSH) levels and superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) (except for lung tissue), glutathione reductase (GR), and glucose-6-phosphate dehydrogenase (G6PD) activities decreased in all tissues and erythrocytes. Thirdly, catalase (CAT) activity decreased in erythrocytes and the kidney, brain, heart and lung tissues and increased in the liver and testes. Fourthly, while GST activity decreased in the kidneys, testes, lung and erythrocytes, an increase was observed in the liver and heart tissues. Fifthly, while serum triglyceride levels and lactate dehydrogenase (LDH), alkaline phosphatase (ALP) and pseudo-cholinesterase (PchE) activities decreased, aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities and blood urea nitrogen (BUN), creatinine and uric acid levels increased. Lastly, liver caspase 3, caspase 9 and p53 expression levels significantly increased. When compared to the control group, the groups treated with diosmin alone showed no significant difference for the parameters investigated. On the other hand, it was observed that the values of the groups treated with a combination of bendiocarb and diosmin were closer to the values of the control group. In conclusion, while exposure to bendiocarb at a dose of 2 mg/kg.bw for 28 days caused oxidative stress/organ damage, diosmin administration at doses of 10 and 20 mg/kg.bw reduced this damage. This demonstrated that diosmin has pharmaceutical benefits, when used for supportive treatment as well as radical treatment, against the potential adverse effects of bendiocarb.
Collapse
Affiliation(s)
- Orhan Bahar
- Department of Veterinary Pharmacology and Toxicology, Institute of Health Science, Erciyes University, Kayseri, Turkey
| | - Gökhan Eraslan
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey.
| |
Collapse
|
13
|
Raghu SV, Rao S, Kini V, Kudva AK, George T, Baliga MS. Fruits and their phytochemicals in mitigating the ill effects of ionizing radiation: review on the existing scientific evidence and way forward. Food Funct 2023; 14:1290-1319. [PMID: 36688345 DOI: 10.1039/d2fo01911f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Although helpful in treating cancer, exposure to ionizing radiation can sometimes cause severe side effects, negating its benefit. In addition to its use in clinics, a nontoxic radioprotective agent can also be beneficial in occupational settings where humans are occupationally exposed for prolonged periods to low doses of radiation. Scientific studies using laboratory animals have shown that the fruits Aegle marmelos, Capsicum annuum, Citrus aurantium, Citrullus lanatus, Crataegus microphylla, Eugenia jambolana, Emblica officinalis, Garcinia kola, Grewia asiatica, Hippophae rhamnoides, Malus baccata, Malpighia glabra or Malpighia emarginata, Mangifera indica, Prunus domestica, Prunus avium, Prunus armeniaca, Psoralea corylifolia, Punica granatum, Solanum lycopersicum, Terminalia chebula, Vaccinium macrocarpon, Vitis vinifera and Xylopia aethiopica, and the phytochemicals gallic acid, ellagic acid, quercetin, geraniin, corilagin, ascorbic acid, hesperetin, ursolic acid, lycopene, naringin, hesperidin, rutin, resveratrol, β-sitosterol, apigenin, luteolin, chlorogenic acid, caffeic acid, mangiferin, diosmin, ferulic acid, and kaempferol are effective in preventing radiation-induced ill effects. Clinical studies with Emblica officinalis and Punica granatum have also shown that fruits help mitigate radiation-induced mucositis, dermatitis, and cystitis. For the first time, the current review summarizes the beneficial effects of fruits and phytochemicals in mitigating radiation-induced damage, the underlying mechanisms and the existing lacunae for future studies to be undertaken for the benefit of humans and the nutraceutical and agri-based industries.
Collapse
Affiliation(s)
- Shamprasad Varija Raghu
- Neurogenetics Laboratory, Department of Applied Zoology, Mangalore University, Mangalagangotri, 574199, Karnataka, India
| | - Suresh Rao
- Mangalore Institute of Oncology, Pumpwell, Mangalore-575002, Karnataka, India.
| | - Venkataramana Kini
- Mangalore Institute of Oncology, Pumpwell, Mangalore-575002, Karnataka, India.
| | - Avinash Kundadka Kudva
- Department of Biochemistry, Mangalore University, Mangalagangotri, 574199, Karnataka, India
| | - Thomas George
- Internal Medicine, Coney Island Hospital, 2601 Ocean Pkwy, Brooklyn, New York, 11235, USA
| | | |
Collapse
|
14
|
Nadeem RI, Aboutaleb AS, Younis NS, Ahmed HI. Diosmin Mitigates Gentamicin-Induced Nephrotoxicity in Rats: Insights on miR-21 and -155 Expression, Nrf2/HO-1 and p38-MAPK/NF-κB Pathways. TOXICS 2023; 11:48. [PMID: 36668774 PMCID: PMC9865818 DOI: 10.3390/toxics11010048] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/26/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Gentamicin (GNT) is the most frequently used aminoglycoside. However, its therapeutic efficacy is limited due to nephrotoxicity. Thus, the potential anticipatory effect of Diosmin (DIOS) against GNT-prompted kidney damage in rats together with the putative nephroprotective pathways were scrutinized. Four groups of rats were used: (1) control; (2) GNT only; (3) GNT plus DIOS; and (4) DIOS only. Nephrotoxicity was elucidated, and the microRNA-21 (miR-21) and microRNA-155 (miR-155) expression and Nrf2/HO-1 and p38-MAPK/NF-κB pathways were assessed. GNT provoked an upsurge in the relative kidney weight and serum level of urea, creatinine, and KIM-1. The MDA level was markedly boosted, with a decline in the level of TAC, SOD, HO-1, and Nrf2 expression in the renal tissue. Additionally, GNT exhibited a notable amplification in TNF-α, IL-1β, NF-κB p65, and p38-MAPK kidney levels. Moreover, caspase-3 and BAX expression were elevated, whereas the Bcl-2 level was reduced. Furthermore, GNT resulted in the down-regulation of miR-21 expression along with an up-regulation of the miR-155 expression. Histological examination revealed inflammation, degradation, and necrosis. GNT-provoked pathological abnormalities were reversed by DIOS treatment, which restored normal kidney architecture. Hence, regulating miR-21 and -155 expression and modulating Nrf2/HO-1 and p38-MAPK/NF-κB pathways could take a vital part in mediating the reno-protective effect of DIOS.
Collapse
Affiliation(s)
- Rania I. Nadeem
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Amany S. Aboutaleb
- Pharmacology and Toxicology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11754, Egypt
| | - Nancy S. Younis
- Pharmaceutical Sciences Department, Faculty of Clinical Pharmacy, King Faisal University, Al-Ahsa, Al-Hofuf 31982, Saudi Arabia
| | - Hebatalla I. Ahmed
- Pharmacology and Toxicology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11754, Egypt
| |
Collapse
|
15
|
Shaaban HH, Hozayen WG, Khaliefa AK, El-Kenawy AE, Ali TM, Ahmed OM. Diosmin and Trolox Have Anti-Arthritic, Anti-Inflammatory and Antioxidant Potencies in Complete Freund’s Adjuvant-Induced Arthritic Male Wistar Rats: Roles of NF-κB, iNOS, Nrf2 and MMPs. Antioxidants (Basel) 2022; 11:antiox11091721. [PMID: 36139795 PMCID: PMC9495550 DOI: 10.3390/antiox11091721] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, progressive, autoimmune disease caused by a malfunction of the immune system. The aim of this study was to examine the anti-arthritic effects and suggest the mechanisms of actions of diosmin and trolox in male Wistar rats. Complete Freund’s adjuvant (CFA) was used to establish RA in the animals by subcutaneous injection of 100 µL CFA/rat into plantar region of right hind leg in two consecutive days. Diosmin and/or trolox were administered orally at a dosage of 20 mg/kg/day to CFA-induced arthritic rats for 2 weeks. The normal and arthritic control groups were orally given the same equivalent volume of a vehicle (1% carboxymethyl cellulose) in which treatment agents were dissolved. At the end of the experiment, blood samples were collected from the jugular vein for the detection of the total leukocyte count (TLC) and differential leukocyte count (DLC) in blood and the detection of rheumatoid factor (RF), anti-citrullinated protein antibodies (ACPA), tumor necrosis factor-α (TNF-α), interleukin-13 (IL-13), and interleukin-17 (IL-17) levels by enzyme-linked immunosorbent assay (ELISA), as well as markers of oxidative stress and the antioxidant defense system in serum. The right hind ankle regions of three rats from each group were dissected out and fixed in 10% neutral-buffered formalin for histological examination and the other three were kept at −30 °C for Western blot analysis of nuclear factor-kappa B (NF-κB) protein 50 (NF-κB p50), NF-κB p65, inducible nitric oxide synthase (iNOS), nuclear factor erythroid-2-related factor 2 (Nrf2), and matrix metalloproteinase (MMP)-1 (MMP-1), MMP-3, and MMP-9. The CFA injection was deleterious to the ankle joint’s histological architecture, manifesting as infiltration of inflammatory cells into the articular cartilage, hyperplasia of the synovium, and erosion of the cartilage. All these effects were ameliorated by diosmin and/or trolox, with the combined dose being the most effective. The two compounds significantly lowered the elevated serum levels of RF, ACPA, TNF-α, and IL-17, as well as other pro-inflammatory mediators, such as NF-κB p50, NF-κB p65, iNOS, MMP-1, MMP-3 and MMP-9. They also increased the levels of the anti-inflammatory cytokine, IL-13, and the cytoprotective transcription factor Nrf2. The compounds stimulated higher activities of antioxidants, such as glutathione, glutathione-S-transferase, catalase, and superoxide dismutase, and reduced lipid peroxidation in the serum of arthritic rats. In conclusion, diosmin, trolox, and their combination, which was the most potent, exerted anti-arthritic, anti-inflammatory and antioxidant effects by suppressing NF-κB signaling, inhibiting matrix metalloproteinases, and activating Nrf2.
Collapse
Affiliation(s)
- Huda H. Shaaban
- Department of Biochemistry, Faculty of Science, Beni-Suef University, Beni-Suef P.O. Box 62521, Egypt
| | - Walaa G. Hozayen
- Department of Biochemistry, Faculty of Science, Beni-Suef University, Beni-Suef P.O. Box 62521, Egypt
| | - Amal K. Khaliefa
- Department of Biochemistry, Faculty of Science, Beni-Suef University, Beni-Suef P.O. Box 62521, Egypt
| | - Ayman E. El-Kenawy
- Department of Pathology, College of Medicine, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Tarek M. Ali
- Department of Physiology, College of Medicine, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Osama M. Ahmed
- Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, Beni-Suef P.O. Box 62521, Egypt
- Correspondence: or
| |
Collapse
|
16
|
Koosha F, Sheikhzadeh P. Investigating Radioprotective Effect of Hesperidin/Diosmin Compound Against 99mTc-MIBI-Induced Cardiotoxicity: Animal Study. Cardiovasc Toxicol 2022; 22:646-654. [PMID: 35522359 DOI: 10.1007/s12012-022-09744-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/19/2022] [Indexed: 11/30/2022]
Abstract
This study was designed to indicate the cardiotoxicity due to 99mTc-MIBI injection in myocardial perfusion imaging in wistar Rats. In addition, protective effect of hesperidin/diosmin compound (HDC) against the cardiotoxicity was evaluated. Twenty five male rats were randomly divided into five groups. The rats in Group 1 (control) only received PBS. For Group 2 (HDC only) the rats treated with only HDC. The rats in Group 3 (radiation) received PBS before injection and exposure to 1 mCi 99mTc-MIBI. The rats in Group 4 (HDC + radiation) treated with HDC before exposure. For Group 5 (radiation + HDC) the rats were exposed and thereafter administered HDC. The Animals of this study were orally administered 100 mg/kg/day of the HDC for 7 days. Then, the rats were sacrificed and afterwards their heart tissues were carefully extracted for biochemical and histopathological evaluations. According to our results in the radiation group, the rate of rupture of cardiomyocyte fibers was higher than other groups, and in some fibers, the presence of lymphocytes was observed. Relative improvement was observed in radiation + HDC group compared to the radiation group and also a small number of cardiomyocyte fibers were torn and in some fibers, the presence of lymphocytes was observed, which was less than the model group. Collagen deposition significantly increased in radiation group compared to control group (P < 0.05). It can be seen that the percentage of collagen deposition decreased substantially in the group treated with HDC before or after radiation compared to radiation group (P < 0.05). The MDA activities significantly reduced (P < 0.05) in both (HDC + radiation) and (radiation + HDC) groups. SOD activity significantly increased in both (radiation + HDC) and (HDC + radiation) groups compared to that of radiation group (P < 0.05). It could be concluded that the HDC is safe and promising useful therapeutic agent in radiation induced cardiotoxicity for patients undergoing nuclear medicine procedures.
Collapse
Affiliation(s)
- Fereshteh Koosha
- Department of Radiology Technology, Faculty of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Peyman Sheikhzadeh
- Department of Nuclear Medicine, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Alcaraz M, Olivares A, Achel DG, García-Gamuz JA, Castillo J, Alcaraz-Saura M. Genoprotective Effect of Some Flavonoids against Genotoxic Damage Induced by X-rays In Vivo: Relationship between Structure and Activity. Antioxidants (Basel) 2021; 11:antiox11010094. [PMID: 35052599 PMCID: PMC8773379 DOI: 10.3390/antiox11010094] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/28/2021] [Accepted: 12/28/2021] [Indexed: 11/17/2022] Open
Abstract
Flavonoids constitute a group of polyphenolic compounds characterized by a common gamma-benzo- pyrone structure considered in numerous biological systems to possess antioxidant capacity. Among the different applications of flavonoids, its genoprotective capacity against damage induced by ionizing radiation stands out, which has been related to antioxidant activity and its chemical structure. In this study, we determined the frequency of appearance of micronucleus in vivo by means of the micronucleus assay. This was conducted in mice treated with different flavonoids before and after exposure to 470 mGy X-rays; thereafter, their bone marrow polychromatophilic erythrocytes were evaluated to establish the structural factors enhancing the observed genoprotective effect. Our results in vivo show that the presence of a monomeric flavan-3-ol type structure, with absence of carbonyl group in position C4 of ring C, absence of conjugation between the carbons bearing the C2 = C3 double bond and the said ring, presence of a catechol group in ring B and characteristic hydroxylation in positions 5 and 7 of ring A are the structural characteristics that determine the highest degree of genoprotection. Additionally, a certain degree of polymerization of this flavonoid monomer, but maintaining significant levels of monomers and dimers, contributes to increasing the degree of genoprotection in the animals studied at both times of their administration (before and after exposure to X-rays).
Collapse
Affiliation(s)
- Miguel Alcaraz
- Radiology and Physical Medicine Department, School of Medicine, University of Murcia, 30100 Murcia, Spain; (A.O.); (J.A.G.-G.); (M.A.-S.)
- Correspondence: ; Tel.: +34-868-883-601
| | - Amparo Olivares
- Radiology and Physical Medicine Department, School of Medicine, University of Murcia, 30100 Murcia, Spain; (A.O.); (J.A.G.-G.); (M.A.-S.)
| | - Daniel Gyingiri Achel
- Applied Radiation Biology Centre, Radiological and Medical Sciences Research Institute, Ghana Atomic Energy Commission, Legon, Accra GE-257-0465, Ghana;
| | - José Antonio García-Gamuz
- Radiology and Physical Medicine Department, School of Medicine, University of Murcia, 30100 Murcia, Spain; (A.O.); (J.A.G.-G.); (M.A.-S.)
| | - Julián Castillo
- R&D Department, Iff Murcia Natural Ingredients, Site Plant: Nutrafur, Camino Viejo de Pliego, Km. 2, Box 182, 30820 Alcantarilla, Spain;
| | - Miguel Alcaraz-Saura
- Radiology and Physical Medicine Department, School of Medicine, University of Murcia, 30100 Murcia, Spain; (A.O.); (J.A.G.-G.); (M.A.-S.)
| |
Collapse
|
18
|
Li X, Yi J, Zhu J, Zhao C, Cui Y, Shi Y, Hao L, Lu J. Protective effect of coix seed seedling extract on 60 Co-γ radiation-induced oxidative stress in mice. J Food Sci 2021; 87:438-449. [PMID: 34919269 DOI: 10.1111/1750-3841.15991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/25/2021] [Accepted: 11/03/2021] [Indexed: 11/26/2022]
Abstract
Exposure to ionizing radiation (IR) can cause oxidative damage to human body, leading to various diseases and even death. In this study, the potential radioprotective effect of coix seed seedling extract (CSS-E) was studied through a model of 60 Co-γ radiation-induced oxidative stress in mice. Overall radioprotective effect of CSS-E against radiation-induced damage was evaluated by biochemical analysis and histopathological analysis. The results showed that CSS-E could significantly reduce the IR-induced damage to the hematopoietic system. CSS-E-M (200 mg/kg BW) pretreatment could increase the activities of superoxide dismutase in serum, liver, and spleen increased by 31.68%, 45.10%, and 56.67%, respectively, and the glutathione peroxidase levels in serum, liver, and spleen of mice were improved by 19.17%, 41.97%, and 130.56%, respectively. Meanwhile, the glutathione levels of serum, liver, and spleen in CSS-E-M group were increased by 17.10%, 35.06%, and 40.71%, respectively. The contents of MDA in different tissues and serum could be reduced by CSS-E-M treatment to the normal level. Moreover, CSS-E could markedly reduce the activities of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in radiation mice, among which CSS-E-M group showed maximum restoration with decreased AST and ALT levels by 20.13% and 32.76% as compared against IR group. In conclusion, these results indicated that CSS-E could be used as a potential natural radioprotectant against IR-induced damage.
Collapse
Affiliation(s)
- Xue Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Juanjuan Yi
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Jiaqing Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Changcheng Zhao
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Yan Cui
- Institute of Quartermaster Engineering and Technology, Academy of Military Sciences PLA China, Beijing, China
| | - Yanling Shi
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Limin Hao
- Institute of Quartermaster Engineering and Technology, Academy of Military Sciences PLA China, Beijing, China
| | - Jike Lu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
19
|
Ali N, AlAsmari AF, Imam F, Ahmed MZ, Alqahtani F, Alharbi M, AlSwayyed M, AlAsmari F, Alasmari M, Alshammari A, Fantoukh OI, Alanazi MM. Protective effect of diosmin against doxorubicin-induced nephrotoxicity. Saudi J Biol Sci 2021; 28:4375-4383. [PMID: 34354422 PMCID: PMC8324953 DOI: 10.1016/j.sjbs.2021.04.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/27/2021] [Accepted: 04/08/2021] [Indexed: 12/12/2022] Open
Abstract
Dox induces kidney damage. Dox leads to a decrease in antioxidant defense mechanism. Diosmin administration restores antioxidant properties.
Doxorubicin (Dox) is an anthracycline antibiotic that is primarily used for treating various solid tumors including that of pulmonary, ovary, breast, uterine, cervix, and several blood cancers. However, nephrotoxicity associated with Dox treatment limits its clinical use. Administration of Dox in combination with compounds exhibiting antioxidant properties are being used to minimize the side effects of Dox. Diosmin is a flavonoid glycoside with numerous beneficial properties that is found in the pericarp of many citrus fruits. Diosmin has demonstrated antioxidant, anti-inflammatory, and anti-apoptotic effects in response to various insults, although the exact mechanism remains unknown. Therefore, this study was designed to evaluate the effect of diosmin in preventing kidney damage in response to Dox treatment. Male Wistar rats were randomly divided into four groups: control group, Dox group (20 mg/kg, i.p.), Dox plus low-dose diosmin group (100 mg/kg orally), and Dox plus high-dose diosmin group (200 mg/kg orally). A single intraperitoneal injection of Dox resulted in kidney damage as evidenced by significant alterations in kidney markers, histological abnormalities, and the attenuation of antioxidant defense mechanisms (GSH, SOD, and CAT). Moreover, Dox treatment significantly altered the expression of oxidative stress, inflammatory, and anti-apoptotic protein markers. Diosmin pretreatment alleviated Dox-induced nephrotoxicity by ameliorating the antioxidant mechanism, decreasing inflammation and apoptosis, and restoring kidney architecture. In conclusion, our results indicate that diosmin is a promising therapeutic agent for the prevention of nephrotoxicity associated with DOX.
Collapse
Affiliation(s)
- Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Corresponding author at: Dept. of Pharmacology & Toxicology, College of Pharmacy, Building 23, second floor, P.O. Box 2457, Riyadh 11451, Saudi Arabia.
| | - Abdullah F. AlAsmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Faisal Imam
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Z. Ahmed
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed AlSwayyed
- Department of Pathology, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fawaz AlAsmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Omer I. Fantoukh
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed M. Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
20
|
Tekeli MY, Eraslan G, Çakır Bayram L, Soyer Sarıca Z. Effect of diosmin on lipid peoxidation and organ damage against subacute deltamethrin exposure in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:15890-15908. [PMID: 33242198 DOI: 10.1007/s11356-020-11277-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
The aim of this study was to investigate the protective efficacy of diosmin against subacute deltamethrin exposure. For this purpose, 40 male Wistar albino rats were used. The animals were assigned to the following 4 groups: control group (received corn oil vehicle alone), diosmin-treated group (50 mg/kg bw/day orally), deltamethrin-exposed group (5 mg/kg bw/day, orally) and coadministered group (5 mg/kg bw/day deltamethrin and 50 mg/kg bw/day diosmin, orally) for 28 days. Some lipid peroxidation/antioxidant status/biochemical markers were evaluated in blood/tissue (liver, kidney, brain, heart and testis) samples and the histopathological architecture was assessed. Compared with the control group, no alteration was detected in the parameters and histological findings of the diosmin-treated group. Deltamethrin toxicity was associated with significantly increased plasma, cardiac, hepatic, renal, cerebral and testicular levels of MDA and NO, and significantly decreased GSH levels (p < 0.05). Antioxidant enzyme status (SOD, CAT and GSH-Px activities) displayed either decrease or increase (p < 0.05). Significant increase was detected in AST and ALT activities and urea and creatinine levels (p < 0.05). The values of the group coadministered with deltamethrin and diosmin were similar to the values of the control group. Diosmin ameliorated deltamethrin-induced lymphocytic and histiocytic infiltration and subendocardial oedema in the heart. Combined administration also minimized hepatic, renal, testicular and cerebral histopathological findings. The alterations detected in various toxicological parameters correlated well with the histopathological changes observed in various organs. In conclusion, it is suggested that diosmin could provide protection against deltamethrin-induced toxicity and organ damage in rats.
Collapse
Affiliation(s)
- Muhammet Yasin Tekeli
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - Gökhan Eraslan
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey.
| | - Latife Çakır Bayram
- Department of Pathology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - Zeynep Soyer Sarıca
- Hakan Çetinsaya Experimental and Clinical Research Center, Erciyes University, Kayseri, Turkey
| |
Collapse
|
21
|
Begum N, Rajendra Prasad N, Kanimozhi G, Agilan B. Apigenin prevents gamma radiation-induced gastrointestinal damages by modulating inflammatory and apoptotic signalling mediators. Nat Prod Res 2021; 36:1631-1635. [PMID: 33673794 DOI: 10.1080/14786419.2021.1893316] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The objective of this study was to evaluate the protective effect of apigenin against radiation-induced gastrointestinal (GI) damages in whole-body irradiated (WBI) Swiss albino mice. Swiss albino mice were pre-treated with apigenin (15 mg/kg body wt.) intraperitoneally for six consecutive days, and on the seventh day, the mice were exposed to 7 Gy WBI. Histological findings revealed a deterioration of the crypt-villus architecture in the 7 Gy irradiated mice intestine. Conversely, apigenin pre-treatment ameliorated radiation-induced intestinal damages and restored intestinal crypt-villus architecture. Besides, apigenin modulates 7 Gy radiation-induced apoptotic markers (p53, p21, Bax, caspase-3, -9) expression in the GI tissue of WBI mice. Furthermore, apigenin prevented radiation-induced activation of NF-kB expression in the GI tissue. Therefore, the present results indicate apigenin's radioprotective effect through modulating NF-kB mediated apoptotic signalling in the WBI intestinal tissue.
Collapse
Affiliation(s)
- Naziya Begum
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Tamil Nadu, India.,Department of Chemistry, College of Natural and Computational Sciences, Debre Berhan University, Debre Berhan, Ethiopia
| | - N Rajendra Prasad
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Tamil Nadu, India
| | - G Kanimozhi
- Department of Biochemistry, Dharumapuram Gnanambikai Government Arts College for Women, Mayiladuthurai, Tamil Nadu, India
| | - B Agilan
- Department of Biotechnology, Thiruvalluvar University, Vellore, Tamil Nadu, India
| |
Collapse
|
22
|
Verma S, Gupta ML, Kumar K. A combined prophylactic modality of podophyllotoxin and rutin alleviates radiation induced injuries to the lymphohematopoietic system of mice by modulating cytokines, cell cycle progression, and apoptosis. Free Radic Res 2020; 54:497-516. [PMID: 32746646 DOI: 10.1080/10715762.2020.1805447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The present study was conceptualized to delineate radioprotective efficacy of a formulation G-003M (a combination of podophyllotoxin and rutin) against radiation-induced damage to the lymphohematopoietic system of mice. C57BL/6J mice, treated with G-003M 1 h prior to 9 Gy lethal dose, were assessed for reactive oxygen species (ROS)/nitric oxide (NO) generation, antioxidant alterations, Annexin V/PI and TUNEL staining for apoptosis, modulation of apoptotic proteins, cell proliferation, histological alterations in thymus and cell cycle arrest in bone marrow cells. Induction of granulocyte colony-stimulating factor (G-CSF), granulocytes macrophage colony-stimulating factor (GM-CSF), interleukin-IL-6, IL-10, IL-1α, and IL-1β in response to G-003M was also evaluated in different groups of mice. Haematopoietic reconstitution with G-003M was explored by examining endogenous spleen colony-forming units (CFU-S) in irradiated animals. G-003M significantly inhibited ROS/NO, malondialdehyde (MDA) and restored cellular antioxidant glutathione in the thymus of irradiated animals. G-003M pre-treatment significantly (p < 0.001) restrained apoptosis in thymocytes via upregulation of Bcl2 and down-regulation of Bax, p53 and caspase-3. Stimulation of cell proliferation and inhibition of apoptosis by G-003M, restored architecture of thymus in irradiated animals within 30 days as evaluated by histological analysis. G-003M arrested cells at the G2/M phase by inducing reversible cell cycle arrest. Peak expression of G-CSF (45-fold) and IL-6 (60-fold) as well as moderate induction of GM-CSF, IL-10, IL-1α by G-003M helped in haematopoietic recovery of irradiated mice. A higher number of endogenous CFU-S in G-003M pre-treated irradiated mice suggested haematopoietic recovery. Data obtained from the current study affirms that G-003M can be proved as a potential radioprotective agent against radiation damage.
Collapse
Affiliation(s)
- Savita Verma
- Division of Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, Delhi, India
| | - Manju Lata Gupta
- Division of Radioprotective Drug Development Research, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, Delhi, India
| | - Kamal Kumar
- Division of Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, Delhi, India
| |
Collapse
|
23
|
Proshkina E, Shaposhnikov M, Moskalev A. Genome-Protecting Compounds as Potential Geroprotectors. Int J Mol Sci 2020; 21:E4484. [PMID: 32599754 PMCID: PMC7350017 DOI: 10.3390/ijms21124484] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023] Open
Abstract
Throughout life, organisms are exposed to various exogenous and endogenous factors that cause DNA damages and somatic mutations provoking genomic instability. At a young age, compensatory mechanisms of genome protection are activated to prevent phenotypic and functional changes. However, the increasing stress and age-related deterioration in the functioning of these mechanisms result in damage accumulation, overcoming the functional threshold. This leads to aging and the development of age-related diseases. There are several ways to counteract these changes: 1) prevention of DNA damage through stimulation of antioxidant and detoxification systems, as well as transition metal chelation; 2) regulation of DNA methylation, chromatin structure, non-coding RNA activity and prevention of nuclear architecture alterations; 3) improving DNA damage response and repair; 4) selective removal of damaged non-functional and senescent cells. In the article, we have reviewed data about the effects of various trace elements, vitamins, polyphenols, terpenes, and other phytochemicals, as well as a number of synthetic pharmacological substances in these ways. Most of the compounds demonstrate the geroprotective potential and increase the lifespan in model organisms. However, their genome-protecting effects are non-selective and often are conditioned by hormesis. Consequently, the development of selective drugs targeting genome protection is an advanced direction.
Collapse
Affiliation(s)
- Ekaterina Proshkina
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
| | - Mikhail Shaposhnikov
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
| | - Alexey Moskalev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
- Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky prosp., 167001 Syktyvkar, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
24
|
Zheng Y, Zhang R, Shi W, Li L, Liu H, Chen Z, Wu L. Metabolism and pharmacological activities of the natural health-benefiting compound diosmin. Food Funct 2020; 11:8472-8492. [DOI: 10.1039/d0fo01598a] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Diosmin is a famous natural flavonoid for treating chronic venous insufficiency and varicose veins.
Collapse
Affiliation(s)
- Yizhou Zheng
- College of Pharmacy
- Gannan Medical University
- Ganzhou
- China
| | - Rui Zhang
- College of Pharmacy
- Gannan Medical University
- Ganzhou
- China
| | - Weimei Shi
- College of Pharmacy
- Gannan Medical University
- Ganzhou
- China
| | - Linfu Li
- College of Pharmacy
- Gannan Medical University
- Ganzhou
- China
| | - Hai Liu
- College of Pharmacy
- Gannan Medical University
- Ganzhou
- China
| | - Zhixi Chen
- College of Pharmacy
- Gannan Medical University
- Ganzhou
- China
| | - Longhuo Wu
- College of Pharmacy
- Gannan Medical University
- Ganzhou
- China
| |
Collapse
|