1
|
Wang H, Huang Z, Lou S, Li W, Liu G, Tang Y. In Silico Prediction of Skin Sensitization for Compounds via Flexible Evidence Combination Based on Machine Learning and Dempster-Shafer Theory. Chem Res Toxicol 2024; 37:894-909. [PMID: 38753056 DOI: 10.1021/acs.chemrestox.3c00396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Skin sensitization is increasingly becoming a significant concern in the development of drugs and cosmetics due to consumer safety and occupational health problems. In silico methods have emerged as alternatives to traditional in vivo animal testing due to ethical and economic considerations. In this study, machine learning methods were used to build quantitative structure-activity relationship (QSAR) models on five skin sensitization data sets (GPMT, LLNA, DPRA, KeratinoSens, and h-CLAT), achieving effective predictive accuracies (correct classification rates of 0.688-0.764 on test sets). To address the complex mechanisms of human skin sensitization, the Dempster-Shafer theory was applied to merge multiple QSAR models, resulting in an evidence-based integrated decision model. Various evidence combinations and combination rules were explored, with the self-defined Q3 rule showing superior balance. The combination of evidence such as GPMT and KeratinoSens and h-CLAT achieved a correct classification rate (CCR) of 0.880 and coverage of 0.893 while maintaining the competitiveness of other combinations. Additionally, the Shapley additive explanations (SHAP) method was used to interpret important features and substructures related to skin sensitization. A comparative analysis of an external human test set demonstrated the superior performance of the proposed method. Finally, to enhance accessibility, the workflow was implemented into a user-friendly software named HSkinSensDS.
Collapse
Affiliation(s)
- Haoqiang Wang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zejun Huang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Shang Lou
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Weihua Li
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Guixia Liu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yun Tang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
2
|
Dusemund B, Aquilina G, Bastos MDL, Marcon F, Pizzo F, Woutersen R, Manini P. Risk assessment of feed components of botanical origin - Approaches taken in the European Union. Food Chem Toxicol 2024; 188:114654. [PMID: 38608926 DOI: 10.1016/j.fct.2024.114654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/29/2024] [Accepted: 04/07/2024] [Indexed: 04/14/2024]
Abstract
In view of a continuous trend in replacing synthetic feed additives and especially flavouring compounds by botanical preparations, different aspects of the safety evaluations of plants and plant-derived preparations and components in feed are discussed. This includes risk assessment approaches developed by the European Food Safety Authority (EFSA) for phytotoxins regarding unintentional exposure of target animals and of consumers to animal derived food via carry-over from feed. Relevant regulatory frameworks for feed additives and feed contaminants in the European Union are summarised and the essentials of existing guidelines used in the safety evaluation of botanicals and their preparations and components in feed are outlined. The examples presented illustrate how the safety of the botanicals, their preparations and components present in feed is assessed. An outlook on possible future developments in risk assessment by applying new in vitro and in silico methodologies is given.
Collapse
Affiliation(s)
- Birgit Dusemund
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 10, 10589, Berlin, Germany
| | - Gabriele Aquilina
- National Center for Chemical Substances, Italian Institute of Health, Viale Regina Elena 299, 00161, Rome, Italy
| | - Maria de Lourdes Bastos
- UCIBIO/REQUIMTE Unit - Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Francesca Marcon
- Dept. Environment and Health, Italian Institute of Health, Viale Regina Elena 299, 00161, Rome, Italy.
| | - Fabiola Pizzo
- Feed and Contaminants Unit, European Food Safety Authority, via Carlo Mango 1A, 43126, Parma, Italy
| | - Ruud Woutersen
- TNO Quality of Life, Utrecht and Wageningen University & Research, Wageningen, the Netherlands
| | - Paola Manini
- Feed and Contaminants Unit, European Food Safety Authority, via Carlo Mango 1A, 43126, Parma, Italy
| |
Collapse
|
3
|
Henriquez JE, Badwaik VD, Bianchi E, Chen W, Corvaro M, LaRocca J, Lunsman TD, Zu C, Johnson KJ. From Pipeline to Plant Protection Products: Using New Approach Methodologies (NAMs) in Agrochemical Safety Assessment. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10710-10724. [PMID: 38688008 DOI: 10.1021/acs.jafc.4c00958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The human population will be approximately 9.7 billion by 2050, and food security has been identified as one of the key issues facing the global population. Agrochemicals are an important tool available to farmers that enable high crop yields and continued access to healthy foods, but the average new agrochemical active ingredient takes more than ten years, 350 million dollars, and 20,000 animals to develop and register. The time, monetary, and animal costs incentivize the use of New Approach Methodologies (NAMs) in early-stage screening to prioritize chemical candidates. This review outlines NAMs that are currently available or can be adapted for use in early-stage screening agrochemical programs. It covers new in vitro screens that are on the horizon in key areas of regulatory concern. Overall, early-stage screening with NAMs enables the prioritization of development for agrochemicals without human and environmental health concerns through a more directed, agile, and iterative development program before animal-based regulatory testing is even considered.
Collapse
Affiliation(s)
| | - Vivek D Badwaik
- Corteva Agriscience, Indianapolis, Indiana 46268, United States
| | - Enrica Bianchi
- Corteva Agriscience, Indianapolis, Indiana 46268, United States
| | - Wei Chen
- Corteva Agriscience, Indianapolis, Indiana 46268, United States
| | | | - Jessica LaRocca
- Corteva Agriscience, Indianapolis, Indiana 46268, United States
| | | | - Chengli Zu
- Corteva Agriscience, Indianapolis, Indiana 46268, United States
| | - Kamin J Johnson
- Corteva Agriscience, Indianapolis, Indiana 46268, United States
| |
Collapse
|
4
|
Sajad M, Shabir S, Singh SK, Bhardwaj R, Alsanie WF, Alamri AS, Alhomrani M, Alsharif A, Vamanu E, Singh MP. Role of nutraceutical against exposure to pesticide residues: power of bioactive compounds. Front Nutr 2024; 11:1342881. [PMID: 38694227 PMCID: PMC11061536 DOI: 10.3389/fnut.2024.1342881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/25/2024] [Indexed: 05/04/2024] Open
Abstract
Pesticides play a crucial role in modern agriculture, aiding in the protection of crops from pests and diseases. However, their indiscriminate use has raised concerns about their potential adverse effects on human health and the environment. Pesticide residues in food and water supplies are a serious health hazards to the general public since long-term exposure can cause cancer, endocrine disruption, and neurotoxicity, among other health problems. In response to these concerns, researchers and health professionals have been exploring alternative approaches to mitigate the toxic effects of pesticide residues. Bioactive substances called nutraceuticals that come from whole foods including fruits, vegetables, herbs, and spices have drawn interest because of their ability to mitigate the negative effects of pesticide residues. These substances, which include minerals, vitamins, antioxidants, and polyphenols, have a variety of biological actions that may assist in the body's detoxification and healing of harm from pesticide exposure. In this context, this review aims to explore the potential of nutraceutical interventions as a promising strategy to mitigate the toxic effects of pesticide residues.
Collapse
Affiliation(s)
- Mabil Sajad
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India
| | - Shabnam Shabir
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India
| | | | - Rima Bhardwaj
- Department of Chemistry, Poona College, Savitribai Phule Pune University, Pune, India
| | - Walaa F. Alsanie
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
- Research Center for Health Sciences, Deanship of Graduate Studies and Scientific Research, Taif University, Taif, Saudi Arabia
| | - Abdulhakeem S. Alamri
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
- Research Center for Health Sciences, Deanship of Graduate Studies and Scientific Research, Taif University, Taif, Saudi Arabia
| | - Majid Alhomrani
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
- Research Center for Health Sciences, Deanship of Graduate Studies and Scientific Research, Taif University, Taif, Saudi Arabia
| | - Abdulaziz Alsharif
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
- Research Center for Health Sciences, Deanship of Graduate Studies and Scientific Research, Taif University, Taif, Saudi Arabia
| | - Emanuel Vamanu
- Faculty of Biotechnology, University of Agricultural Sciences and Veterinary Medicine, Bucharest, Romania
| | - Mahendra P. Singh
- Department of Zoology, Deen Dayal Upadhyay Gorakhpur University, Gorakhpur, India
- Centre of Genomics and Bioinformatics, Deen Dayal Upadhyay Gorakhpur University, Gorakhpur, India
| |
Collapse
|
5
|
Fischer BC, Musengi Y, König J, Sachse B, Hessel-Pras S, Schäfer B, Kneuer C, Herrmann K. Matrine and Oxymatrine: evaluating the gene mutation potential using in silico tools and the bacterial reverse mutation assay (Ames test). Mutagenesis 2024; 39:32-42. [PMID: 37877816 PMCID: PMC10851102 DOI: 10.1093/mutage/gead032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 10/17/2023] [Indexed: 10/26/2023] Open
Abstract
The quinolizidine alkaloids matrine and its N-oxide oxymatrine occur in plants of the genus Sophora. Recently, matrine was sporadically detected in liquorice products. Morphological similarity of the liquorice plant Glycyrrhiza glabra with Sophora species and resulting confusion during harvesting may explain this contamination, but use of matrine as pesticide has also been reported. The detection of matrine in liquorice products raised concern as some studies suggested a genotoxic activity of matrine and oxymatrine. However, these studies are fraught with uncertainties, putting the reliability and robustness into question. Another issue was that Sophora root extracts were usually tested instead of pure matrine and oxymatrine. The aim of this work was therefore to determine whether matrine and oxymatrine have potential for causing gene mutations. In a first step and to support a weight-of-evidence analysis, in silico predictions were performed to improve the database using expert and statistical systems by VEGA, Leadscope (Instem®), and Nexus (Lhasa Limited). Unfortunately, the confidence levels of the predictions were insufficient to either identify or exclude a mutagenic potential. Thus, in order to obtain reliable results, the bacterial reverse mutation assay (Ames test) was carried out in accordance with OECD Test Guideline 471. The test set included the plate incorporation and the preincubation assay. It was performed with five different bacterial strains in the presence or absence of metabolic activation. Neither matrine nor oxymatrine induced a significant increase in the number of revertants under any of the selected experimental conditions. Overall, it can be concluded that matrine and oxymatrine are unlikely to have a gene mutation potential. Any positive findings with Sophora extracts in the Ames test may be related to other components. Notably, the results also indicated a need to extend the application domain of respective (Q)SAR tools to secondary plant metabolites.
Collapse
Affiliation(s)
- Benjamin Christian Fischer
- German Federal Institute for Risk Assessment, Department Pesticides Safety, 10589 Berlin, Berlin, Germany
| | - Yemurai Musengi
- German Federal Institute for Risk Assessment, Department Pesticides Safety, 10589 Berlin, Berlin, Germany
| | - Jeannette König
- German Federal Institute for Risk Assessment, Department Pesticides Safety, 10589 Berlin, Berlin, Germany
| | - Benjamin Sachse
- German Federal Institute for Risk Assessment, Department Food Safety, 10589 Berlin, Berlin, Germany
| | - Stefanie Hessel-Pras
- German Federal Institute for Risk Assessment, Department Food Safety, 10589 Berlin, Berlin, Germany
| | - Bernd Schäfer
- German Federal Institute for Risk Assessment, Department Food Safety, 10589 Berlin, Berlin, Germany
| | - Carsten Kneuer
- German Federal Institute for Risk Assessment, Department Pesticides Safety, 10589 Berlin, Berlin, Germany
| | - Kristin Herrmann
- German Federal Institute for Risk Assessment, Department Pesticides Safety, 10589 Berlin, Berlin, Germany
| |
Collapse
|
6
|
Yang C, Rathman JF, Mostrag A, Ribeiro JV, Hobocienski B, Magdziarz T, Kulkarni S, Barton-Maclaren T. High Throughput Read-Across for Screening a Large Inventory of Related Structures by Balancing Artificial Intelligence/Machine Learning and Human Knowledge. Chem Res Toxicol 2023. [PMID: 37399585 DOI: 10.1021/acs.chemrestox.3c00062] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Read-across is an in silico method applied in chemical risk assessment for data-poor chemicals. The read-across outcomes for repeated-dose toxicity end points include the no-observed-adverse-effect level (NOAEL) and estimated uncertainty for a particular category of effects. We have previously developed a new paradigm for estimating NOAELs based on chemoinformatics analysis and experimental study qualities from selected analogues, not relying on quantitative structure-activity relationships (QSARs) or rule-based SAR systems, which are not well-suited to end points for which the underpinning data are weakly grounded in specific chemical-biological interactions. The central hypothesis of this approach is that similar compounds have similar toxicity profiles and, hence, similar NOAEL values. Analogue quality (AQ) quantifies the suitability of an analogue candidate for reading across to the target by considering similarity from structure, physicochemical, ADME (absorption, distribution, metabolism, excretion), and biological perspectives. Biological similarity is based on experimental data; assay vectors derived from aggregations of ToxCast/Tox21 data are used to derive machine learning (ML) hybrid rules that serve as biological fingerprints to capture target-analogue similarity relevant to specific effects of interest, for example, hormone receptors (ER/AR/THR). Once one or more analogues have been qualified for read-across, a decision theory approach is used to estimate confidence bounds for the NOAEL of the target. The confidence interval is dramatically narrowed when analogues are constrained to biologically related profiles. Although this read-across process works well for a single target with several analogues, it can become unmanageable when, for example, screening multiple targets (e.g., virtual screening library) or handling a parent compound having numerous metabolites. To this end, we have established a digitalized framework to enable the assessment of a large number of substances, while still allowing for human decisions for filtering and prioritization. This workflow was developed and validated through a use case of a large set of bisphenols and their metabolites.
Collapse
Affiliation(s)
| | - James F Rathman
- MN-AM, Columbus, Ohio 43215, United States
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | | | | | | | | | - Sunil Kulkarni
- Existing Substances Risk Assessment Bureau, Health Canada, Ottawa, ON K1A 0K9, Canada
| | - Tara Barton-Maclaren
- Existing Substances Risk Assessment Bureau, Health Canada, Ottawa, ON K1A 0K9, Canada
| |
Collapse
|
7
|
Lee SH, Kim J, Kim J, Park J, Park S, Kim KB, Lee BM, Kwon S. Current trends in read-across applications for chemical risk assessments and chemical registrations in the Republic of Korea. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2022; 25:393-404. [PMID: 36250612 DOI: 10.1080/10937404.2022.2133033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Read-across, an alternative approach for hazard assessment, has been widely adopted when in vivo data are unavailable for chemicals of interest. Read-across is enabled via in silico tools such as quantitative structure activity relationship (QSAR) modeling. In this study, the current status of structure activity relationship (SAR)-based read-across applications in the Republic of Korea (ROK) was examined considering both chemical risk assessments and chemical registrations from different sectors, including regulatory agencies, industry, and academia. From the regulatory perspective, the Ministry of Environment (MOE) established the Act on Registration and Evaluation of Chemicals (AREC) in 2019 to enable registrants to submit alternative data such as information from read-across instead of in vivo data to support hazard assessment and determine chemical-specific risks. Further, the Ministry of Food and Drug Safety (MFDS) began to consider read-across approaches for establishing acceptable intake (AI) limits of impurities occurring during pharmaceutical manufacturing processes under the ICH M7 guideline. Although read-across has its advantages, this approach also has limitations including (1) lack of standardized criteria for regulatory acceptance, (2) inconsistencies in the robustness of scientific evidence, and (3) deficiencies in the objective reliability of read-across data. The application and acceptance rate of read-across may vary among regulatory agencies. Therefore, sufficient data need to be prepared to verify the hypothesis that structural similarities might lead to similarities in properties of substances (between source and target chemicals) prior to adopting a read-across approach. In some cases, additional tests may be required during the registration process to clarify long-term effects on human health or the environment for certain substances that are data deficient. To improve the quality of read-across data for regulatory acceptance, cooperative efforts from regulatory agencies, academia, and industry are needed to minimize limitations of read-across applications.
Collapse
Affiliation(s)
- Sang Hee Lee
- Chemicals Registration & Evaluation Team, Risk Assessment Research Division, National Institute of Environmental Research, Ministry of Environment, Inchon, Republic of Korea
| | - Jongwoon Kim
- Chemical Safety Research Center, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Jinyong Kim
- Environment, Safety and Health DepartmentChemical Products and Biocides Safety Center, Korea Environmental Industry and Technology Institute (KEITI), Inchon, Republic of Korea
| | - Jaehyun Park
- Pharmaceutical Standardization Division, Drug Evaluation Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Osong Health Technology Administration Complex, Cheongju, Chungcheongbuk-do, Republic of Korea
| | | | - Kyu-Bong Kim
- College of Pharmacy, Dankook University, Chungnam 31116, Republic of Korea
| | - Byung-Mu Lee
- Division of Toxicology, College of Pharmacy, Sungkyunkwan University, Seobu-ro 2066, Suwon, Republic of Korea
| | - Seok Kwon
- Global Product Stewardship, Research & Development, Singapore Innovation Center, Procter & Gamble (P&G) International Operationsr, Singapore
| |
Collapse
|
8
|
Larras F, Charles S, Chaumot A, Pelosi C, Le Gall M, Mamy L, Beaudouin R. A critical review of effect modeling for ecological risk assessment of plant protection products. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:43448-43500. [PMID: 35391640 DOI: 10.1007/s11356-022-19111-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
A wide diversity of plant protection products (PPP) is used for crop protection leading to the contamination of soil, water, and air, which can have ecotoxicological impacts on living organisms. It is inconceivable to study the effects of each compound on each species from each compartment, experimental studies being time consuming and cost prohibitive, and animal testing having to be avoided. Therefore, numerous models are developed to assess PPP ecotoxicological effects. Our objective was to provide an overview of the modeling approaches enabling the assessment of PPP effects (including biopesticides) on the biota. Six categories of models were inventoried: (Q)SAR, DR and TKTD, population, multi-species, landscape, and mixture models. They were developed for various species (terrestrial and aquatic vertebrates and invertebrates, primary producers, micro-organisms) belonging to diverse environmental compartments, to address different goals (e.g., species sensitivity or PPP bioaccumulation assessment, ecosystem services protection). Among them, mechanistic models are increasingly recognized by EFSA for PPP regulatory risk assessment but, to date, remain not considered in notified guidance documents. The strengths and limits of the reviewed models are discussed together with improvement avenues (multigenerational effects, multiple biotic and abiotic stressors). This review also underlines a lack of model testing by means of field data and of sensitivity and uncertainty analyses. Accurate and robust modeling of PPP effects and other stressors on living organisms, from their application in the field to their functional consequences on the ecosystems at different scales of time and space, would help going toward a more sustainable management of the environment. Graphical Abstract Combination of the keyword lists composing the first bibliographic query. Columns were joined together with the logical operator AND. All keyword lists are available in Supplementary Information at https://doi.org/10.5281/zenodo.5775038 (Larras et al. 2021).
Collapse
Affiliation(s)
- Floriane Larras
- INRAE, Directorate for Collective Scientific Assessment, Foresight and Advanced Studies, Paris, 75338, France
| | - Sandrine Charles
- University of Lyon, University Lyon 1, CNRS UMR 5558, Laboratory of Biometry and Evolutionary Biology, Villeurbanne Cedex, 69622, France
| | - Arnaud Chaumot
- INRAE, UR RiverLy, Ecotoxicology laboratory, Villeurbanne, F-69625, France
| | - Céline Pelosi
- Avignon University, INRAE, UMR EMMAH, Avignon, 84000, France
| | - Morgane Le Gall
- Ifremer, Information Scientifique et Technique, Bibliothèque La Pérouse, Plouzané, 29280, France
| | - Laure Mamy
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, Thiverval-Grignon, 78850, France
| | - Rémy Beaudouin
- Ineris, Experimental Toxicology and Modelling Unit, UMR-I 02 SEBIO, Verneuil en Halatte, 65550, France.
| |
Collapse
|
9
|
Baderna D, Van Overmeire I, Lavado GJ, Gadaleta D, Mertens B. In Silico Methods for Chromosome Damage. Methods Mol Biol 2022; 2425:185-200. [PMID: 35188633 DOI: 10.1007/978-1-0716-1960-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Due to the link with serious adverse health effects, genotoxicity is an important toxicological endpoint in each regulatory setting with respect to human health, including for pharmaceuticals. To this extent, a compound potential to induce gene mutations as well as chromosome damage needs to be addressed. For chromosome damage, i.e., the induction of structural or numerical chromosome aberrations, several in vitro and in vivo test methods are available. In order to rapidly collect toxicological data without the need for test material, several in silico tools for chromosome damage have been developed over the last years. In this chapter, a battery of freely available in silico chromosome damage prediction tools for chromosome damage is applied on a dataset of pharmaceuticals. Examples of the different outcomes obtained with the in silico battery are provided and briefly discussed. Furthermore, results for coumarin are presented in more detail as a case study. Overall, it can be concluded that although they are in general less developed than those for mutagenicity, in silico tools for chromosome damage can provide valuable information, especially when combined in a battery.
Collapse
Affiliation(s)
- Diego Baderna
- Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Lombardia, Italy
| | | | - Giovanna J Lavado
- Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Lombardia, Italy
| | - Domenico Gadaleta
- Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Lombardia, Italy
| | - Birgit Mertens
- SD Chemical and Physical Health Risks, Sciensano, Brussels, Belgium.
- Department of Pharmaceutical Sciences, Universiteit Antwerpen, Wilrijk, Belgium.
| |
Collapse
|
10
|
Hernandez‐Jerez AF, Adriaanse P, Aldrich A, Berny P, Coja T, Duquesne S, Focks A, Marinovich M, Millet M, Pelkonen O, Pieper S, Tiktak A, Topping CJ, Widenfalk A, Wilks M, Wolterink G, Gundert‐Remy U, Louisse J, Rudaz S, Testai E, Lostia A, Dorne J, Parra Morte JM. Scientific Opinion of the Scientific Panel on Plant Protection Products and their Residues (PPR Panel) on testing and interpretation of comparative in vitro metabolism studies. EFSA J 2021; 19:e06970. [PMID: 34987623 PMCID: PMC8696562 DOI: 10.2903/j.efsa.2021.6970] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
EFSA asked the Panel on Plant Protection Products and their residues to deliver a Scientific Opinion on testing and interpretation of comparative in vitro metabolism studies for both new active substances and existing ones. The main aim of comparative in vitro metabolism studies of pesticide active substances is to evaluate whether all significant metabolites formed in the human in vitro test system, as a surrogate of the in vivo situation, are also present at comparable level in animal species tested in toxicological studies and, therefore, if their potential toxicity has been appropriately covered by animal studies. The studies may also help to decide which animal model, with regard to a particular compound, is the most relevant for humans. In the experimental strategy, primary hepatocytes in suspension or culture are recommended since hepatocytes are considered the most representative in vitro system for prediction of in vivo metabolites. The experimental design of 3 × 3 × 3 (concentrations, time points, technical replicates, on pooled hepatocytes) will maximise the chance to identify unique (UHM) and disproportionate (DHM) human metabolites. When DHM and UHM are being assessed, test item-related radioactivity recovery and metabolite profile are the most important parameters. Subsequently, structural characterisation of the assigned metabolites is performed with appropriate analytical techniques. In toxicological assessment of metabolites, the uncertainty factor approach is the first alternative to testing option, followed by new approach methodologies (QSAR, read-across, in vitro methods), and only if these fail, in vivo animal toxicity studies may be performed. Knowledge of in vitro metabolites in human and animal hepatocytes would enable toxicological evaluation of all metabolites of concern, and, furthermore, add useful pieces of information for detection and evaluation of metabolites in different matrices (crops, livestock, environment), improve biomonitoring efforts via better toxicokinetic understanding, and ultimately, develop regulatory schemes employing physiologically based or physiology-mimicking in silico and/or in vitro test systems to anticipate the exposure of humans to potentially hazardous substances in plant protection products.
Collapse
|
11
|
Tice RR, Bassan A, Amberg A, Anger LT, Beal MA, Bellion P, Benigni R, Birmingham J, Brigo A, Bringezu F, Ceriani L, Crooks I, Cross K, Elespuru R, Faulkner DM, Fortin MC, Fowler P, Frericks M, Gerets HHJ, Jahnke GD, Jones DR, Kruhlak NL, Lo Piparo E, Lopez-Belmonte J, Luniwal A, Luu A, Madia F, Manganelli S, Manickam B, Mestres J, Mihalchik-Burhans AL, Neilson L, Pandiri A, Pavan M, Rider CV, Rooney JP, Trejo-Martin A, Watanabe-Sailor KH, White AT, Woolley D, Myatt GJ. In Silico Approaches In Carcinogenicity Hazard Assessment: Current Status and Future Needs. COMPUTATIONAL TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 20. [PMID: 35368437 DOI: 10.1016/j.comtox.2021.100191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Historically, identifying carcinogens has relied primarily on tumor studies in rodents, which require enormous resources in both money and time. In silico models have been developed for predicting rodent carcinogens but have not yet found general regulatory acceptance, in part due to the lack of a generally accepted protocol for performing such an assessment as well as limitations in predictive performance and scope. There remains a need for additional, improved in silico carcinogenicity models, especially ones that are more human-relevant, for use in research and regulatory decision-making. As part of an international effort to develop in silico toxicological protocols, a consortium of toxicologists, computational scientists, and regulatory scientists across several industries and governmental agencies evaluated the extent to which in silico models exist for each of the recently defined 10 key characteristics (KCs) of carcinogens. This position paper summarizes the current status of in silico tools for the assessment of each KC and identifies the data gaps that need to be addressed before a comprehensive in silico carcinogenicity protocol can be developed for regulatory use.
Collapse
Affiliation(s)
- Raymond R Tice
- RTice Consulting, Hillsborough, North Carolina, 27278, USA
| | | | - Alexander Amberg
- Sanofi Preclinical Safety, Industriepark Höchst, 65926 Frankfurt, Germany
| | - Lennart T Anger
- Genentech, Inc., South San Francisco, California, 94080, USA
| | - Marc A Beal
- Healthy Environments and Consumer Safety Branch, Health Canada, Government of Canada, Ottawa, Ontario, Canada K1A 0K9
| | | | | | - Jeffrey Birmingham
- GlaxoSmithKline, David Jack Centre for R&D, Ware, Hertfordshire, SG12 0DP, United Kingdom
| | - Alessandro Brigo
- Roche Pharmaceutical Research & Early Development, Pharmaceutical Sciences, Roche Innovation, Center Basel, F. Hoffmann-La Roche Ltd, CH-4070, Basel, Switzerland
| | | | - Lidia Ceriani
- Humane Society International, 1000 Brussels, Belgium
| | - Ian Crooks
- British American Tobacco (Investments) Ltd, GR&D Centre, Southampton, SO15 8TL, United Kingdom
| | | | - Rosalie Elespuru
- Food and Drug Administration, Center for Devices and Radiological Health, Silver Spring, Maryland, 20993, USA
| | - David M Faulkner
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Marie C Fortin
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, 08855, USA
| | - Paul Fowler
- FSTox Consulting (Genetic Toxicology), Northamptonshire, United Kingdom
| | | | | | - Gloria D Jahnke
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, 27709, USA
| | | | - Naomi L Kruhlak
- Food and Drug Administration, Center for Drug Evaluation and Research, Silver Spring, Maryland, 20993, USA
| | - Elena Lo Piparo
- Chemical Food Safety Group, Nestlé Research, CH-1000 Lausanne 26, Switzerland
| | - Juan Lopez-Belmonte
- Cuts Ice Ltd Chemical Food Safety Group, Nestlé Research, CH-1000 Lausanne 26, Switzerland
| | - Amarjit Luniwal
- North American Science Associates (NAMSA) Inc., Minneapolis, Minnesota, 55426, USA
| | - Alice Luu
- Healthy Environments and Consumer Safety Branch, Health Canada, Government of Canada, Ottawa, Ontario, Canada K1A 0K9
| | - Federica Madia
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Serena Manganelli
- Chemical Food Safety Group, Nestlé Research, CH-1000 Lausanne 26, Switzerland
| | | | - Jordi Mestres
- IMIM Institut Hospital Del Mar d'Investigacions Mèdiques and Universitat Pompeu Fabra, Doctor Aiguader 88, Parc de Recerca Biomèdica, 08003 Barcelona, Spain; and Chemotargets SL, Baldiri Reixac 4, Parc Científic de Barcelona, 08028, Barcelona, Spain
| | | | - Louise Neilson
- Broughton Nicotine Services, Oak Tree House, Earby, Lancashire, BB18 6JZ United Kingdom
| | - Arun Pandiri
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, 27709, USA
| | | | - Cynthia V Rider
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, 27709, USA
| | - John P Rooney
- Integrated Laboratory Systems, LLC., Morrisville, North Carolina, 27560, USA
| | | | - Karen H Watanabe-Sailor
- School of Mathematical and Natural Sciences, Arizona State University, West Campus, Glendale, Arizona, 85306, USA
| | - Angela T White
- GlaxoSmithKline, David Jack Centre for R&D, Ware, Hertfordshire, SG12 0DP, United Kingdom
| | | | | |
Collapse
|
12
|
Benigni R. In silico assessment of genotoxicity. Combinations of sensitive structural alerts minimize false negative predictions for all genotoxicity endpoints and can single out chemicals for which experimentation can be avoided. Regul Toxicol Pharmacol 2021; 126:105042. [PMID: 34506881 DOI: 10.1016/j.yrtph.2021.105042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 08/27/2021] [Accepted: 09/03/2021] [Indexed: 11/15/2022]
Abstract
Genotoxicity assessment of chemicals has a crucial role in most regulations. Due to labor, time, cost, and animal welfare issues, attention is being given to (Q)SAR methods. A strategic application of alternative methods is to first use a sequence of conservative (very sensitive) (Q)SARs and/or in vitro models to arrive at the conclusion that no further testing is necessary for negatives, and to use mechanistically based, Weight-Of-Evidence approach to evaluate the chemicals showing positive results. The ICH M7 guideline to detect DNA-reactive impurities in drugs follows these lines (recommending solely (Q)SAR in step 1). However, ICH M7 focuses only on Ames test. Here a large database of more than 6000 chemicals positive in at least one endpoint (in vitro gene mutations or chromosomal aberrations, in vivo micronucleus, aneugenicity) were analyzed with structural alerts implemented in the OECD QSAR Toolbox, resulting in maximum 3% false negatives. These promising results indicate that it may be possible to extend the approach to the whole range of genotoxicity endpoints required by regulations. Since structural alerts may generate false positives, cautious follow-up of positives is recommended (with e.g., statistically based QSARs, read across of similar chemicals, expert judgement, and experimentation when necessary).
Collapse
|
13
|
Yang C, Cronin MTD, Arvidson KB, Bienfait B, Enoch SJ, Heldreth B, Hobocienski B, Muldoon-Jacobs K, Lan Y, Madden JC, Magdziarz T, Marusczyk J, Mostrag A, Nelms M, Neagu D, Przybylak K, Rathman JF, Park J, Richarz AN, Richard AM, Ribeiro JV, Sacher O, Schwab C, Vitcheva V, Volarath P, Worth AP. COSMOS next generation - A public knowledge base leveraging chemical and biological data to support the regulatory assessment of chemicals. COMPUTATIONAL TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 19:100175. [PMID: 34405124 PMCID: PMC8351204 DOI: 10.1016/j.comtox.2021.100175] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/19/2021] [Accepted: 05/27/2021] [Indexed: 11/19/2022]
Abstract
The COSMOS Database (DB) was originally established to provide reliable data for cosmetics-related chemicals within the COSMOS Project funded as part of the SEURAT-1 Research Initiative. The database has subsequently been maintained and developed further into COSMOS Next Generation (NG), a combination of database and in silico tools, essential components of a knowledge base. COSMOS DB provided a cosmetics inventory as well as other regulatory inventories, accompanied by assessment results and in vitro and in vivo toxicity data. In addition to data content curation, much effort was dedicated to data governance - data authorisation, characterisation of quality, documentation of meta information, and control of data use. Through this effort, COSMOS DB was able to merge and fuse data of various types from different sources. Building on the previous effort, the COSMOS Minimum Inclusion (MINIS) criteria for a toxicity database were further expanded to quantify the reliability of studies. COSMOS NG features multiple fingerprints for analysing structure similarity, and new tools to calculate molecular properties and screen chemicals with endpoint-related public profilers, such as DNA and protein binders, liver alerts and genotoxic alerts. The publicly available COSMOS NG enables users to compile information and execute analyses such as category formation and read-across. This paper provides a step-by-step guided workflow for a simple read-across case, starting from a target structure and culminating in an estimation of a NOAEL confidence interval. Given its strong technical foundation, inclusion of quality-reviewed data, and provision of tools designed to facilitate communication between users, COSMOS NG is a first step towards building a toxicological knowledge hub leveraging many public data systems for chemical safety evaluation. We continue to monitor the feedback from the user community at support@mn-am.com.
Collapse
Key Words
- AOP, Adverse Outcome Pathway
- Analogue selection
- CERES, Chemical Evaluation and Risk Estimation System
- CFSAN, Center for Food Safety and Applied Nutrition
- CMS-ID, COSMOS Identification Number
- COSMOS DB, COSMOS Database
- COSMOS MINIS, Minimum Inclusion Criteria of Studies in COSMOS DB
- COSMOS NG, COSMOS Next Generation
- CRADA, Cooperative Research and Development Agreement
- CosIng, Cosmetic Ingredient Database
- DART, Developmental & Reproductive Toxicity
- DB, Database
- DST, Dempster Shafer Theory
- Database
- ECHA, European Chemicals Agency
- EFSA, European Food Safety Authority
- Guided workflow
- HESS, Hazard Evaluation Support System
- HNEL, Highest No Effect Level
- HTS, High throughput screening
- ILSI, International Life Sciences Institute
- IUCLID, International Uniform Chemical Information Database
- Knowledge hub
- LEL, Lowest Effect Level
- LOAEL, Lowest Observed Adverse Effect Level
- LogP, Logarithm of the octanol:water partition coefficient
- NAM, New Approach Methodology
- NGRA, Next Generation Risk-Assessment
- NITE, National Institute of Technology and Evaluation (Japan)
- NOAEL, No Observed Adverse Effect Level
- NTP, National Toxicology Program
- OECD, Organisation for Economic Co-operation and Development
- OpenFoodTox, EFSA’s OpenFoodTox database
- PAFA, Priority-based Assessment of Food Additive database
- PK/TK, Pharmacokinetics/Toxicokinetics
- Public database
- QA, Quality Assurance
- QC, Quality Control
- REACH, Registration, Evaluation, Authorisation and Restriction of Chemicals
- SCC, Science Committee on Cosmetics (EU)
- SCCNFP, Scientific Committee of Cosmetic Products and Non-food Products intended for Consumers (EU)
- SCCP, Scientific Committee on Consumer Products (EU)
- SCCS, Scientific Committee on Consumer Safety (EU)
- Study reliability
- TTC, Threshold of Toxicological Concern
- ToxRefDB, Toxicity Reference Database
- Toxicity
- US EPA, United States Environmental Protection Agency
- US FDA, United States Food and Drug Administration
Collapse
Affiliation(s)
- C Yang
- MN-AM, Columbus, OH, USA
- MN-AM Nürnberg, Germany
| | - M T D Cronin
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, UK
| | | | | | - S J Enoch
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, UK
| | - B Heldreth
- Cosmetic Ingredient Review, Washington, DC, USA
| | | | | | - Y Lan
- University of Bradford, UK
| | - J C Madden
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, UK
| | | | | | | | - M Nelms
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, UK
| | | | - K Przybylak
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, UK
| | - J F Rathman
- MN-AM, Columbus, OH, USA
- The Ohio State University, Columbus OH, USA
| | | | - A-N Richarz
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, UK
| | | | | | | | | | - V Vitcheva
- MN-AM, Columbus, OH, USA
- MN-AM Nürnberg, Germany
| | | | - A P Worth
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| |
Collapse
|
14
|
Garcia de Lomana M, Morger A, Norinder U, Buesen R, Landsiedel R, Volkamer A, Kirchmair J, Mathea M. ChemBioSim: Enhancing Conformal Prediction of In Vivo Toxicity by Use of Predicted Bioactivities. J Chem Inf Model 2021; 61:3255-3272. [PMID: 34153183 PMCID: PMC8317154 DOI: 10.1021/acs.jcim.1c00451] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Indexed: 02/07/2023]
Abstract
Computational methods such as machine learning approaches have a strong track record of success in predicting the outcomes of in vitro assays. In contrast, their ability to predict in vivo endpoints is more limited due to the high number of parameters and processes that may influence the outcome. Recent studies have shown that the combination of chemical and biological data can yield better models for in vivo endpoints. The ChemBioSim approach presented in this work aims to enhance the performance of conformal prediction models for in vivo endpoints by combining chemical information with (predicted) bioactivity assay outcomes. Three in vivo toxicological endpoints, capturing genotoxic (MNT), hepatic (DILI), and cardiological (DICC) issues, were selected for this study due to their high relevance for the registration and authorization of new compounds. Since the sparsity of available biological assay data is challenging for predictive modeling, predicted bioactivity descriptors were introduced instead. Thus, a machine learning model for each of the 373 collected biological assays was trained and applied on the compounds of the in vivo toxicity data sets. Besides the chemical descriptors (molecular fingerprints and physicochemical properties), these predicted bioactivities served as descriptors for the models of the three in vivo endpoints. For this study, a workflow based on a conformal prediction framework (a method for confidence estimation) built on random forest models was developed. Furthermore, the most relevant chemical and bioactivity descriptors for each in vivo endpoint were preselected with lasso models. The incorporation of bioactivity descriptors increased the mean F1 scores of the MNT model from 0.61 to 0.70 and for the DICC model from 0.72 to 0.82 while the mean efficiencies increased by roughly 0.10 for both endpoints. In contrast, for the DILI endpoint, no significant improvement in model performance was observed. Besides pure performance improvements, an analysis of the most important bioactivity features allowed detection of novel and less intuitive relationships between the predicted biological assay outcomes used as descriptors and the in vivo endpoints. This study presents how the prediction of in vivo toxicity endpoints can be improved by the incorporation of biological information-which is not necessarily captured by chemical descriptors-in an automated workflow without the need for adding experimental workload for the generation of bioactivity descriptors as predicted outcomes of bioactivity assays were utilized. All bioactivity CP models for deriving the predicted bioactivities, as well as the in vivo toxicity CP models, can be freely downloaded from https://doi.org/10.5281/zenodo.4761225.
Collapse
Affiliation(s)
- Marina Garcia de Lomana
- BASF
SE, Ludwigshafen am Rhein 67063, Germany
- Department
of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, Vienna 1090, Austria
| | - Andrea Morger
- In Silico
Toxicology and Structural Bioinformatics, Institute of Physiology, Charité Universitätsmedizin Berlin, Charitéplatz
1, Berlin 10117, Germany
| | - Ulf Norinder
- MTM
Research Centre, School of Science and Technology, Örebro University, Örebro SE-70182, Sweden
| | | | | | - Andrea Volkamer
- In Silico
Toxicology and Structural Bioinformatics, Institute of Physiology, Charité Universitätsmedizin Berlin, Charitéplatz
1, Berlin 10117, Germany
| | - Johannes Kirchmair
- Department
of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, Vienna 1090, Austria
| | | |
Collapse
|
15
|
Tcheremenskaia O, Benigni R. Toward regulatory acceptance and improving the prediction confidence of in silico approaches: a case study of genotoxicity. Expert Opin Drug Metab Toxicol 2021; 17:987-1005. [PMID: 34078212 DOI: 10.1080/17425255.2021.1938540] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Genotoxicity is an imperative component of the human health safety assessment of chemicals. Its secure forecast is of the utmost importance for all health prevention strategies and regulations.Areas covered: We surveyed several types of alternative, animal-free approaches ((quantitative) structure-activity relationship (Q)SAR, read-across, Adverse Outcome Pathway, Integrated Approaches to Testing and Assessment) for genotoxicity prediction within the needs of regulatory frameworks, putting special emphasis on data quality and uncertainties issues.Expert opinion: (Q)SAR models and read-across approaches for in vitro bacterial mutagenicity have sufficient reliability for use in prioritization processes, and as support in regulatory decisions in combination with other types of evidence. (Q)SARs and read-across methodologies for other genotoxicity endpoints need further improvements and should be applied with caution. It appears that there is still large room for improvement of genotoxicity prediction methods. Availability of well-curated high-quality databases, covering a broader chemical space, is one of the most important needs. Integration of in silico predictions with expert knowledge, weight-of-evidence-based assessment, and mechanistic understanding of genotoxicity pathways are other key points to be addressed for the generation of more accurate and trustable results.
Collapse
Affiliation(s)
- Olga Tcheremenskaia
- Environmental and Health Department, Istituto Superiore Di Sanità (ISS), Rome, Italy, Rome, Italy
| | | |
Collapse
|
16
|
Aksenova NA, Tcheremenskaia O, Timashev PS, Solovieva AB. Computational prediction of photosensitizers’ toxicity. J PORPHYR PHTHALOCYA 2021. [DOI: 10.1142/s1088424621500334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The percentage of failures in late pharmaceutical development due to toxicity has increased dramatically over the last decade or so, resulting in increased demand for new methods to rapidly and reliably predict the toxicity of compounds. Today, computational toxicology can be used in every phase of drug discovery and development, from profiling large libraries early on, to predicting off-target effects in the mid-discovery phase, and to assess potential mutagenic impurities in development and degradants as part of life-cycle management. In this study, for the first time, in silico approaches were used to analyze the possible dark toxicity of photosensitive systems based on chlorin e6 and assessed possible toxicity of these compositions. By applying quantitative structure-activity relationship models (QSARs) and modeling adverse outcome pathways (AOPs), a potential toxic effect of water-soluble (chlorin e6 and chlorin e6 aminoamid) and hydrophobic (tetraphenylporphyrin) photosensitizers (PS) was predicted. Particularly, PSs’ protein binding ability, reactivity to form peptide adducts, glutathione conjugation, activity in dendritic cells, and gene expression activity in keratinocytes were explored. Using a metabolism simulator, possible PS metabolites were predicted and their potential toxicity was assessed as well. It was shown that all tested porphyrin PS and their predicted metabolites possess low activity in the mentioned processes and therefore are unable to cause significant adverse toxic effects under dark conditions.
Collapse
Affiliation(s)
- Nadezhda A. Aksenova
- N.N. Semenov Federal Research Center for Chemical Physics, 4 Kosygin st., Moscow, 119991, Russia
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 8-2 Trubetskaya st., Moscow, 119991, Russia
| | - Olga Tcheremenskaia
- Environment and Health department, Instituto Superiore di Sanita, 299 Viale Regina Elena, Rome, 00161, Italy
| | - Peter S. Timashev
- N.N. Semenov Federal Research Center for Chemical Physics, 4 Kosygin st., Moscow, 119991, Russia
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 8-2 Trubetskaya st., Moscow, 119991, Russia
- Chemistry Department, Lomonosov Moscow State University, Leninskiye Gory 13, Moscow 119991, Russia
| | - Anna B. Solovieva
- N.N. Semenov Federal Research Center for Chemical Physics, 4 Kosygin st., Moscow, 119991, Russia
| |
Collapse
|
17
|
Gilbert EPK, Edwin L. A Review on Prediction Models for Pesticide Use, Transmission, and Its Impacts. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 257:37-68. [PMID: 33932184 DOI: 10.1007/398_2020_64] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The lure of increased productivity and crop yield has caused the imprudent use of pesticides in great quantity that has unfavorably affected environmental health. Pesticides are chemicals intended for avoiding, eliminating, and mitigating any pests that affect the crop. Lack of awareness, improper management, and negligent disposal of pesticide containers have led to the permeation of pesticide residues into the food chain and other environmental pathways, leading to environmental degradation. Sufficient steps must be undertaken at various levels to monitor and ensure judicious use of pesticides. Development of prediction models for optimum use of pesticides, pesticide management, and their impact would be of great help in monitoring and controlling the ill effects of excessive use of pesticides. This paper aims to present an exhaustive review of the prediction models developed and modeling strategies used to optimize the use of pesticides.
Collapse
Affiliation(s)
- Edwin Prem Kumar Gilbert
- Department of Information Technology, Sri Krishna College of Engineering and Technology, Coimbatore, Tamil Nadu, India.
| | - Lydia Edwin
- Department of Mechatronics Engineering, Sri Krishna College of Engineering and Technology, Coimbatore, Tamil Nadu, India
| |
Collapse
|
18
|
Benigni R, Bassan A, Pavan M. In silico models for genotoxicity and drug regulation. Expert Opin Drug Metab Toxicol 2020; 16:651-662. [DOI: 10.1080/17425255.2020.1785428] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
19
|
Silano V, Barat Baviera JM, Bolognesi C, Chesson A, Cocconcelli PS, Crebelli R, Gott DM, Grob K, Lambré C, Lampi E, Mengelers M, Mortensen A, Steffensen I, Tlustos C, Van Loveren H, Vernis L, Zorn H, Benfenati E, Castle L, Di Consiglio E, Franz R, Hellwig N, Milana MR, Pfaff K, Civitella C, Lioupis A, Pizzo F, Rivière G. Review and priority setting for substances that are listed without a specific migration limit in Table 1 of Annex 1 of Regulation 10/2011 on plastic materials and articles intended to come into contact with food. EFSA J 2020; 18:e06124. [PMID: 32874315 PMCID: PMC7448095 DOI: 10.2903/j.efsa.2020.6124] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP) was requested by the European Commission to review the substances for which a Specific Migration Limit (SML) is not assigned in Regulation (EU) No 10/2011. These substances had been covered by the Generic SML of 60 mg/kg food, but with Regulation (EU) 2016/1416 it was removed, necessitating their re-examination. EFSA was requested to identify those substances requiring an SML to ensure the authorisation is sufficiently protective to health, grouping them in high, medium and low priority to serve as the basis for future re-evaluations of individual substances. The CEP Panel established a stepwise procedure. This took into account existing hazard assessments for each substance on carcinogenicity/mutagenicity/reprotoxicity (CMR), bioaccumulation and endocrine disruptor (ED) properties along with the use of in silico generated predictions on genotoxicity. Molecular weights and boiling points were considered with regard to their effect on potential consumer exposure. This prioritisation procedure was applied to a total of 451 substances, from which 78 substances were eliminated at the outset, as they had previously been evaluated by EFSA as food contact substances. For 89 substances, the Panel concluded that a migration limit should not be needed. These are in the lists 0 and 1 of the Scientific Committee for Food (SCF), defined as substances for which an Acceptable Daily Intake (ADI) does not need to be established, along with substances that are controlled by existing restrictions and/or generic limits. Of the remaining 284 substances, 179 were placed into the low priority group, 102 were placed into the medium priority group and 3 were placed into the high priority group, i.e. salicylic acid (FCM No 121), styrene (FCM No 193) and lauric acid, vinyl ester (FCM No 436).
Collapse
|