1
|
Bogner W, Otazo R, Henning A. Accelerated MR spectroscopic imaging-a review of current and emerging techniques. NMR IN BIOMEDICINE 2021; 34:e4314. [PMID: 32399974 PMCID: PMC8244067 DOI: 10.1002/nbm.4314] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/24/2020] [Accepted: 03/30/2020] [Indexed: 05/14/2023]
Abstract
Over more than 30 years in vivo MR spectroscopic imaging (MRSI) has undergone an enormous evolution from theoretical concepts in the early 1980s to the robust imaging technique that it is today. The development of both fast and efficient sampling and reconstruction techniques has played a fundamental role in this process. State-of-the-art MRSI has grown from a slow purely phase-encoded acquisition technique to a method that today combines the benefits of different acceleration techniques. These include shortening of repetition times, spatial-spectral encoding, undersampling of k-space and time domain, and use of spatial-spectral prior knowledge in the reconstruction. In this way in vivo MRSI has considerably advanced in terms of spatial coverage, spatial resolution, acquisition speed, artifact suppression, number of detectable metabolites and quantification precision. Acceleration not only has been the enabling factor in high-resolution whole-brain 1 H-MRSI, but today is also common in non-proton MRSI (31 P, 2 H and 13 C) and applied in many different organs. In this process, MRSI techniques had to constantly adapt, but have also benefitted from the significant increase of magnetic field strength boosting the signal-to-noise ratio along with high gradient fidelity and high-density receive arrays. In combination with recent trends in image reconstruction and much improved computation power, these advances led to a number of novel developments with respect to MRSI acceleration. Today MRSI allows for non-invasive and non-ionizing mapping of the spatial distribution of various metabolites' tissue concentrations in animals or humans, is applied for clinical diagnostics and has been established as an important tool for neuro-scientific and metabolism research. This review highlights the developments of the last five years and puts them into the context of earlier MRSI acceleration techniques. In addition to 1 H-MRSI it also includes other relevant nuclei and is not limited to certain body regions or specific applications.
Collapse
Affiliation(s)
- Wolfgang Bogner
- High‐Field MR Center, Department of Biomedical Imaging and Image‐Guided TherapyMedical University of ViennaViennaAustria
| | - Ricardo Otazo
- Department of Medical PhysicsMemorial Sloan Kettering Cancer CenterNew York, New YorkUSA
| | - Anke Henning
- Max Planck Institute for Biological CyberneticsTübingenGermany
- Advanced Imaging Research Center, UT Southwestern Medical CenterDallasTexasUSA
| |
Collapse
|
2
|
Christa M, Weng AM, Geier B, Wörmann C, Scheffler A, Lehmann L, Oberberger J, Kraus BJ, Hahner S, Störk S, Klink T, Bauer WR, Hammer F, Köstler H. Increased myocardial sodium signal intensity in Conn's syndrome detected by 23Na magnetic resonance imaging. Eur Heart J Cardiovasc Imaging 2019; 20:263-270. [PMID: 30307545 PMCID: PMC6383057 DOI: 10.1093/ehjci/jey134] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/11/2018] [Accepted: 08/29/2018] [Indexed: 11/12/2022] Open
Abstract
AIMS Sodium intake has been linked to left ventricular hypertrophy independently of blood pressure, but the underlying mechanisms remain unclear. Primary hyperaldosteronism (PHA), a condition characterized by tissue sodium overload due to aldosterone excess, causes accelerated left ventricular hypertrophy compared to blood pressure matched patients with essential hypertension. We therefore hypothesized that the myocardium constitutes a novel site capable of sodium storage explaining the missing link between sodium and left ventricular hypertrophy. METHODS AND RESULTS Using 23Na magnetic resonance imaging, we investigated relative sodium signal intensities (rSSI) in the heart, calf muscle, and skin in 8 PHA patients (6 male, median age 55 years) and 12 normotensive healthy controls (HC) (8 male, median age 61 years). PHA patients had a higher mean systolic 24 h ambulatory blood pressure [152 (140; 163) vs. 125 (122; 130) mmHg, P < 0.001] and higher left ventricular mass index [71.0 (63.5; 106.8) vs. 55.0 (50.3; 66.8) g/m2, P = 0.037] than HC. Compared to HC, PHA patients exhibited significantly higher rSSI in the myocardium [0.31 (0.26; 0.34) vs. 0.24 (0.20; 0.27); P = 0.007], calf muscle [0.19 (0.16; 0.22) vs. 0.14 (0.13; 0.15); P = 0.001] and skin [0.28 (0.25; 0.33) vs. 0.19 (0.17; 0.26); P = 0.014], reflecting a difference of +27%, +38%, and +39%, respectively. Treatment of PHA resulted in significant reductions of the rSSI in the myocardium, calf muscle and skin by -13%, -27%, and -29%, respectively. CONCLUSION Myocardial tissue rSSI is increased in PHA patients and treatment of aldosterone excess effectively reduces rSSI, thus establishing the myocardium as a novel site of sodium storage in addition to skeletal muscle and skin.
Collapse
Affiliation(s)
- Martin Christa
- Comprehensive Heart Failure Center, University of Würzburg, Würzburg, Germany.,Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Andreas M Weng
- Department of Diagnostic and Interventional Radiology, University of Würzburg, Würzburg, Germany
| | - Bettina Geier
- Comprehensive Heart Failure Center, University of Würzburg, Würzburg, Germany
| | - Caroline Wörmann
- Comprehensive Heart Failure Center, University of Würzburg, Würzburg, Germany
| | - Anne Scheffler
- Institute of Pharmacy and Food Chemistry, Chair of Food Chemistry, University of Würzburg, Würzburg, Germany
| | - Leane Lehmann
- Institute of Pharmacy and Food Chemistry, Chair of Food Chemistry, University of Würzburg, Würzburg, Germany
| | - Johannes Oberberger
- Comprehensive Heart Failure Center, University of Würzburg, Würzburg, Germany.,Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Bettina J Kraus
- Comprehensive Heart Failure Center, University of Würzburg, Würzburg, Germany.,Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Stefanie Hahner
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Stefan Störk
- Comprehensive Heart Failure Center, University of Würzburg, Würzburg, Germany.,Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Thorsten Klink
- Department of Diagnostic and Interventional Radiology, University of Würzburg, Würzburg, Germany
| | - Wolfgang R Bauer
- Comprehensive Heart Failure Center, University of Würzburg, Würzburg, Germany.,Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Fabian Hammer
- Comprehensive Heart Failure Center, University of Würzburg, Würzburg, Germany.,Department of Internal Medicine, University Greifswald, Greifswald, Germany
| | - Herbert Köstler
- Comprehensive Heart Failure Center, University of Würzburg, Würzburg, Germany.,Department of Diagnostic and Interventional Radiology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
3
|
Lee P, Adany P, Choi IY. Imaging based magnetic resonance spectroscopy (MRS) localization for quantitative neurochemical analysis and cerebral metabolism studies. Anal Biochem 2017; 529:40-47. [PMID: 28082217 DOI: 10.1016/j.ab.2017.01.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 12/10/2016] [Accepted: 01/08/2017] [Indexed: 11/15/2022]
Abstract
Accurate quantitative metabolic imaging of the brain presents significant challenges due to the complexity and heterogeneity of its structures and compositions with distinct compartmentations of brain tissue types (e.g., gray and white matter). The brain is compartmentalized into various regions based on their unique functions and locations. In vivo magnetic resonance spectroscopy (MRS) techniques allow non-invasive measurements of neurochemicals in either single voxel or multiple voxels, yet the spatial resolution and detection sensitivity of MRS are significantly lower compared with MRI. A fundamentally different approach, namely spectral localization by imaging (SLIM) provides a new framework that overcomes major limitations of conventional MRS techniques. Conventional MRS allows only rectangular voxel shapes that do not conform to the shapes of brain structures or lesions, while SLIM allows compartments with arbitrary shapes. However, the restrictive assumption proposed in the original concept of SLIM, i.e., compartmental homogeneity, led to spectral localization errors, which have limited its broad applications. This review focuses on the recent technical frontiers of image-based MRS localization techniques that overcome the limitations of SLIM through the development and implementation of various new strategies, including incorporation of magnetic field inhomogeneity corrections, the use of multiple receiver coils, and prospective optimization of data acquisition.
Collapse
Affiliation(s)
- Phil Lee
- Hoglund Brain Imaging Center, University of Kansas Medical Center, Kansas City, KS 66160, USA; Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | - Peter Adany
- Hoglund Brain Imaging Center, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - In-Young Choi
- Hoglund Brain Imaging Center, University of Kansas Medical Center, Kansas City, KS 66160, USA; Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA; Department of Neurology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|