1
|
Abd-Elhafeez HH, Massoud D, Mahmoud MS, Abdellah N, Salah AS, Mohamed NE, Sayed MAA, Shaalan M, Rutland CS, Abu-ELhamed AS, Soliman SA, Mustafa FEZA. Microstructural architecture of the bony scutes, spine, and rays of the bony fins in the common pleco (Hypostomus plecostomus). Int J Vet Sci Med 2024; 12:101-124. [PMID: 39239634 PMCID: PMC11376312 DOI: 10.1080/23144599.2024.2374201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 09/07/2024] Open
Abstract
Studying scute and fin morphology are advantageous approaches for phylogenetic identification and provide information on biological linkages and evolutionary history that are essential for deciphering the fossil record. Despite this, no prior research has precisely characterized the histological structures of scutes in the common pleco. Therefore, this research investigated the microstructure and organization of bone tissue within the dermal skeleton, including the scutes and fins, in the common pleco, using light microscopy, stereomicroscopy, and scanning electron microscopy. The dermal scutes were organized in a pentagonal shape with denticular coverage and were obliquely aligned with the caudal portion pointing dorsally. The dermal scutes consisted of three distinct portions: the central, preterminal, and terminal portions. Each portion comprised three layers: a superficial bony plate, a basal bony plate, and a mid-plate. Both the superficial and basal bony plates were composed of lamellar bone and lamellar zonal bone, whilst the mid-plate consisted of secondary osteons and woven bone. In the terminal portion, the superficial and basal bony plates became thinner. The pectoral fin consists of spines and rays composed of lepidotrichium (two symmetrical hemi-rays). The spine contained centrifugal and centripetal lamellar and trabecular bones. A centripetal fibrous bone was implanted between the lamellar bones. Besides being oriented in a V shape, the hemi-rays were also composed of thin centrifugal and centripetal lamellar bones and trabecular bones. A fibrous bone was identified between the centrifugal and centripetal bones. The trabecular bone and lamellar bone were made up of bone spicules.
Collapse
Affiliation(s)
- Hanan H Abd-Elhafeez
- Department of Cell and Tissues, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Diaa Massoud
- Department of Biology, College of Science, Jouf University, Sakaka, Saudi Arabia
- Department of Zoology, Faculty of Science, Fayoum University, Fayoum, Egypt
| | - Mohammed S Mahmoud
- Department of Zoology, Faculty of Science, Fayoum University, Fayoum, Egypt
| | - Nada Abdellah
- Department of Histology, Faculty of Veterinary Medicine, Sohag University, Sohag, Egypt
- Department of Histology and Anatomy, School of Veterinary Medicine, Badr University in Assiut, New Nasser City, Egypt
| | - Abdallah S Salah
- Institute of Aquaculture, University of Stirling, Stirling, UK
- Department of Aquaculture, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Nor-Elhoda Mohamed
- Faculty of Science, Biomedicine Branch, University of Science & Technology, Zewail, Egypt
| | | | - Mohamed Shaalan
- Department of Pathology, Faculty of Veterinary Medicine, Caio University, Giza, Egypt
- Polymer Institute, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Catrin S Rutland
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - Alaa Sayed Abu-ELhamed
- Department of Cell and Tissues, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
- Department of Respiratory Therapy, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Soha A Soliman
- Department of Histology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | | |
Collapse
|
2
|
Kuschke SG, Wyneken J, Miller D. Baseline Skin Microbiota of the Leatherback Sea Turtle. Microorganisms 2024; 12:925. [PMID: 38792755 PMCID: PMC11124050 DOI: 10.3390/microorganisms12050925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
The integumentary system of the leatherback sea turtle (Dermochelys coriacea) is the most visible and defining difference of the species, with its smooth and waxy carapace and finely scaled skin, distinguishing it from the other six sea turtle species. The skin is the body's largest organ and serves as a primary defense against the outside world and is thus essential to health. To date, we have begun to understand that the microorganisms located on the skin aid in these functions. However, many host-microbial interactions are not yet fully defined or understood. Prior to uncovering these crucial host-microbial interactions, we must first understand the communities of microorganisms present and how they differ through life-stage classes and across the body. Here, we present a comprehensive bacterial microbial profile on the skin of leatherbacks. Using next-generation sequencing (NGS), we identified the major groups of bacteria on the skin of neonates at emergence, neonates at 3-4 weeks of age (i.e., post-hatchlings), and nesting females. These data show that the predominant bacteria on the skin of the leatherback are different at each life-stage class sampled. This suggests that there is a shift in the microbial communities of the skin associated with life-stage class or even possibly age. We also found that different sample locations on the nesting female (i.e., carapace and front appendages = flipper) have significantly different communities of bacteria present. This is likely due to differences in the microhabitats of these anatomic locations and future studies should explore if this variation also holds true for neonates. These data define baseline skin microbiota on the leatherback and can serve as a foundation for additional work to broaden our understanding of the leatherbacks' host-microbial interactions, the impacts of environmental changes or stressors over time, and even the pathogenicity of disease processes.
Collapse
Affiliation(s)
- Samantha G. Kuschke
- Department of Biomedical and Diagnostic Services, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA;
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA;
- Center for Wildlife Health, University of Tennessee, Knoxville, TN 37996, USA
- One Health Initiative, University of Tennessee, Knoxville, TN 37996, USA
- Upwell, Monterey, CA 93940, USA
| | - Jeanette Wyneken
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA;
| | - Debra Miller
- Department of Biomedical and Diagnostic Services, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA;
- Center for Wildlife Health, University of Tennessee, Knoxville, TN 37996, USA
- One Health Initiative, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
3
|
Pochat-Cottilloux Y, Martin JE, Amiot R, Cubo J, de Buffrénil V. A survey of osteoderm histology and ornamentation among Crocodylomorpha: A new proxy to infer lifestyle? J Morphol 2023; 284:e21542. [PMID: 36533737 PMCID: PMC10108047 DOI: 10.1002/jmor.21542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022]
Abstract
Osteoderms of eight extant and extinct species of crocodylomorphs are studied histologically and morphologically. Most osteoderms display the typical "crocodilian" structure with a woven-fibered matrix surrounded by an upper and a lower parallel fibered matrix. The dorsal ornamentation of those specimens consists of a pit-and-ridge structure, with corresponding remodeling mechanisms. However, an osteoderm of Iberosuchus, studied here for the first time, differs in being nearly devoid of ornamentation; moreover, it shows strong bundles of straight Sharpey's fibers perpendicular to the surface in its lateral and dorsal walls, along with a rough plywood-like structure in its basal plate. This suggests that this osteoderm was more deeply anchored within the dermis than the other osteoderms studied hitherto. This peculiar structure might have been linked to a terrestrial ecology and a specific thermoregulation strategy. Some other notosuchians in our sample do not exhibit ornamentation on their osteoderms, as opposed to neosuchians. Considering current interpretations of osteoderm function(s) in crocodilians, our observations are discussed in reference to possible ecophysiological peculiarities of Notosuchia in general, and Iberosuchus in particular.
Collapse
Affiliation(s)
| | - Jeremy E Martin
- Univ Lyon, Univ Lyon 1, ENSL, CNRS, LGL-TPE, Villeurbanne, France
| | - Romain Amiot
- Univ Lyon, Univ Lyon 1, ENSL, CNRS, LGL-TPE, Villeurbanne, France
| | - Jorge Cubo
- Centre de Recherche en Paléontologie-Paris (CR2P), Sorbonne Université, Paris, France
| | - Vivian de Buffrénil
- Centre de Recherche en Paléontologie-Paris (CR2P), Sorbonne Université, Paris, France
| |
Collapse
|
4
|
Li M, Niu C, Chen Y. Diverse Response Pattern to Anoxia in Three Freshwater Turtle Species. BIOLOGY 2022; 12:biology12010050. [PMID: 36671743 PMCID: PMC9855657 DOI: 10.3390/biology12010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/01/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022]
Abstract
With increasing water eutrophication and global warming, anoxia and hypoxia are becoming more and more common in water environments. Most vertebrates have a limited tolerance to anoxia of only a few minutes, but some species, such as turtles, can survive for months being exposed to anoxia. Antioxidant defense systems may have a potential role in resisting anoxia stress in freshwater turtles. The three-keeled pond turtle Chinemys reevesii, the snapping turtle Chelydra serpentina and the soft-shelled turtle Pelodiscus sinensis are three popular aquaculture species and share similar habitats in China. While C. reevesii and C. serpentina are hard-shelled turtles with poor skin permeability, P. sinensis is soft-shelled turtle whose skin permeability is good. We examined the antioxidant defense responses in different tissues of the three turtle species under acute anoxia stress for 10 h and subsequently recovered for 24 h in order to reveal the response patterns of the antioxidant defense system of the three turtle species that differed in morphological structure and life history strategy. We found that the antioxidant response patterns to acute anoxia stress were tissue- and species-specific. The soft-shelled turtle was more sensitive to anoxia than the hard-shelled turtles. Under anoxia stress, the three species kept the activities of most antioxidant enzymes stable. C. reevesii and P. sinensis were highly dependent on vitamin C in antioxidant defense, while high activities of structural antioxidant enzymes were found in the tissues of C. serpentina. The above diverse patterns may be related with adaptive evolution of morphological structure and physiological functions of the three turtle species.
Collapse
|
5
|
Kou H, Hu J, Liu X, Zhao L, Zhang K, Pan X, Wang A, Miao Y, Lin L. Dietary protein improves flesh quality by enhancing antioxidant ability via the NF-E2-related factor 2/Kelch-like ECH-associated protein 1 signaling pathway in softshell turtle ( Pelodiscus sinensis). Front Nutr 2022; 9:1030583. [PMID: 36438722 PMCID: PMC9685656 DOI: 10.3389/fnut.2022.1030583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/11/2022] [Indexed: 08/13/2023] Open
Abstract
An 8-week feeding trial was performed to assess the influence of a gradient of protein levels (14.38-45.23%) on flesh quality, skin color, amino acid profile, collagen, antioxidant capability, and antioxidant-related signaling molecule expression of the softshell turtle (Pelodiscus sinensis). Hardness, gumminess, chewiness, and yellowness values in the plastron and carapace, along with collagen, superoxide dismutase, catalase, total antioxidant capacity, and glutathione peroxidase, all improved with elevating dietary protein up to 26.19%, after which they leveled off. Additionally, total amino acids, flavor amino acids, essential amino acids, and non-essential amino acids in the muscle, as well as the expression of copper/zinc superoxide dismutase, glutathione peroxidase, catalase, manganese superoxide dismutase, NF-E2-related factor 2 were all enhanced by increasing the dietary protein level but not changed by higher protein levels. When dietary protein levels were less than 26.19%, the mRNA expression of Kelch-like ECH-associated protein 1, malondialdehyde, and redness values in the carapace and plastron were reduced, as was the lightness values of the carapace, all of which plateaued at higher protein levels. Using catalase activity and malondialdehyde as the indicators and applying a broken-line analysis, the optimal dietary protein level for P. sinensis was inferred to be 26.07 and 26.06% protein, respectively. In summary, an optimal protein input improved turtle flesh quality by strengthening antioxidant capacity in muscle tissue and by regulating the expression of antioxidant-related enzymes via the Nrf2/keap1 signaling pathway.
Collapse
Affiliation(s)
- Hongyan Kou
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Junru Hu
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Key Laboratory of Animal Nutrition and Feed Science in South China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xueting Liu
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Lijuan Zhao
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Kai Zhang
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Xunbin Pan
- Key Laboratory of Ecology and Environment Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, China
| | - Anli Wang
- Key Laboratory of Ecology and Environment Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, China
| | - Yutao Miao
- Key Laboratory of Ecology and Environment Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, China
- Institute of Modern Aquaculture Science and Engineering, South China Normal University, Guangzhou, China
| | - Li Lin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|
6
|
Yenmiş M, Bayrakcı Y, Ayaz D. Skin structure, coloration, and habitat utilization in typical and melanistic morphs of the grass snake (Natrix natrix). Naturwissenschaften 2022; 109:22. [DOI: 10.1007/s00114-022-01794-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 02/14/2022] [Accepted: 03/21/2022] [Indexed: 10/18/2022]
|
7
|
Alibardi L. Development, structure, and protein composition of the corneous beak in turtles. Anat Rec (Hoboken) 2021; 304:2703-2725. [PMID: 33620157 DOI: 10.1002/ar.24604] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/06/2021] [Accepted: 01/24/2021] [Indexed: 01/28/2023]
Abstract
The beak or rhamphotheca in turtles is a horny lamina that replaces the teeth. Its origin, development, structure, and protein composition are here presented. At mid-development stages, the epidermis of the maxilla and mandible gives rise to placodes that enlarge and merge into laminae through an intense cell proliferation. In these expanding laminae, the epidermis gives rise to 5-8 layers of embryonic epidermis where coarse filaments accumulate for the initial keratinization of cells destined to be sloughed before hatching. Underneath the embryonic epidermis of the beak numerous layers of spindle-shaped beta-cells are produced while they are absent in other skin regions. Beta-cells contain hard corneous material and give rise to the corneous layer of the beak whose external layers desquamate due to wearing and mechanical abrasion. Beta-catenin is present in nuclei of proliferating keratinocytes of the germinal layer likely responding to a wnt signal, but also is part of the adhesive junctions located among beak keratinocytes. The thick corneous layer is made of mature corneocytes connected one to another along their irregular perimeter by an unknown cementing material and junctional remnants. Immunolabeling shows that the main components of the horny beak are Corneous Beta Proteins (CBPs) of 10-15 kDa which genes are located in the Epidermal Differentiation Complex (EDC) of the turtle genome. Specific CBPs, in addition to a lower amount of Intermediate Filament Keratins, accumulate in the horny beak. Compaction of the main proteins with other unknown, minor proteins give rise to the hard corneous material of the beak.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab Padova and Department of Biology, University of Bologna, Bologna, Italy
| |
Collapse
|
8
|
Yang J, Song W, Li C, Fang C, Zhang Y, Wang Q, Zhang M, Qian G. Comparative study of collagen distribution in the dermis of the embryonic carapace of soft- and hard-shelled cryptodiran turtles. J Morphol 2021; 282:543-552. [PMID: 33491791 DOI: 10.1002/jmor.21327] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 01/18/2021] [Accepted: 01/21/2021] [Indexed: 11/06/2022]
Abstract
Turtles are characterized by their typical carapace, which is primarily composed of corneous beta proteins in the horny part and collagen in the dermal part. The formation of the extracellular matrix in the dermis of the carapace in a hard-shelled and a soft-shelled turtle has been compared. The study examines carapace development, with an emphasis on collagen accumulation, in the soft-shelled turtle Pelodiscus sinensis and hard-shelled turtle Trachemys scripta elegans, using comparative morphological and embryological analyses. The histological results showed that collagen deposition in the turtle carapace increased as the embryos developed. However, significant differences were observed between the two turtle species at the developmental stages examined. The microstructure of the dermis of the carapace of P. sinensis showed light and dark banding of collagen bundles, with a higher overall collagen content, whereas the carapacial matrix of T. scripta was characterized by loosely packed and thinner collagenous fiber bundles with a lower percentage of type I collagen. Overall, the formation and distribution of collagen fibrils at specific developmental stages are different between the soft-and hard-shelled turtles. These results indicate that the pliable epidermis of the soft-shelled turtle is supported by a strong dermis that is regularly distributed with collagen and that it allows improved maneuvering, whereas a strong but inflexible epidermis as observed in case of hard-shelled turtles limits movement.
Collapse
Affiliation(s)
- Jie Yang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Wei Song
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Caiyan Li
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Chanlin Fang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Yuting Zhang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Qingqing Wang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | | | - Guoying Qian
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| |
Collapse
|
9
|
Torres-Sánchez M, Wilkinson M, Gower DJ, Creevey CJ, San Mauro D. Insights into the skin of caecilian amphibians from gene expression profiles. BMC Genomics 2020; 21:515. [PMID: 32718305 PMCID: PMC7385959 DOI: 10.1186/s12864-020-06881-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 07/03/2020] [Indexed: 12/13/2022] Open
Abstract
Background Gene expression profiles can provide insights into the molecular machinery behind tissue functions and, in turn, can further our understanding of environmental responses, and developmental and evolutionary processes. During vertebrate evolution, the skin has played a crucial role, displaying a wide diversity of essential functions. To unravel the molecular basis of skin specialisations and adaptations, we compared gene expression in the skin with eight other tissues in a phylogenetically and ecologically diverse species sample of one of the most neglected vertebrate groups, the caecilian amphibians (order Gymnophiona). Results The skin of the five studied caecilian species showed a distinct gene expression profile reflecting its developmental origin and showing similarities to other epithelial tissues. We identified 59 sequences with conserved enhanced expression in the skin that might be associated with caecilian dermal specialisations. Some of the up-regulated genes shared expression patterns with human skin and potentially are involved in skin functions across vertebrates. Variation trends in gene expression were detected between mid and posterior body skin suggesting different functions between body regions. Several candidate biologically active peptides were also annotated. Conclusions Our study provides the first atlas of differentially expressed sequences in caecilian tissues and a baseline to explore the molecular basis of the skin functions in caecilian amphibians, and more broadly in vertebrates.
Collapse
Affiliation(s)
- María Torres-Sánchez
- Department of Biodiversity, Ecology and Evolution, Complutense University of Madrid, 28040, Madrid, Spain. .,Present address: Department of Biology, University of Florida, Gainesville, Florida, 32611, USA.
| | - Mark Wilkinson
- Department of Life Sciences, The Natural History Museum, London, SW7 5BD, UK
| | - David J Gower
- Department of Life Sciences, The Natural History Museum, London, SW7 5BD, UK
| | - Christopher J Creevey
- Institute for Global Food Security, Queen's University Belfast, University Road, Belfast, Northern Ireland, BT7 1NN, UK
| | - Diego San Mauro
- Department of Biodiversity, Ecology and Evolution, Complutense University of Madrid, 28040, Madrid, Spain
| |
Collapse
|
10
|
Andrews RN, Dugan GO, Peiffer AM, Hawkins GA, Hanbury DB, Bourland JD, Hampson RE, Deadwyler SA, Cline JM. White Matter is the Predilection Site of Late-Delayed Radiation-Induced Brain Injury in Non-Human Primates. Radiat Res 2019; 191:217-231. [PMID: 30694733 PMCID: PMC6422025 DOI: 10.1667/rr15263.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fractionated whole-brain irradiation for the treatment of intracranial neoplasia causes progressive neurodegeneration and neuroinflammation. The long-term consequences of single-fraction high-dose irradiation to the brain are unknown. To assess the late effects of brain irradiation we compared transcriptomic gene expression profiles from nonhuman primates (NHP; rhesus macaques Macaca mulatta) receiving single-fraction total-body irradiation (TBI; n = 5, 6.75-8.05 Gy, 6-9 years prior to necropsy) to those receiving fractionated whole-brain irradiation (fWBI; n = 5, 40 Gy, 8 × 5 Gy fractions; 12 months prior to necropsy) and control comparators (n = 5). Gene expression profiles from the dorsolateral prefrontal cortex (DLPFC), hippocampus (HC) and deep white matter (WM; centrum semiovale) were compared. Stratified analyses by treatment and region revealed that radiation-induced transcriptomic alterations were most prominent in animals receiving fWBI, and primarily affected white matter in both TBI and fWBI groups. Unsupervised canonical and ontologic analysis revealed that TBI or fWBI animals demonstrated shared patterns of injury, including white matter neuroinflammation, increased expression of complement factors and T-cell activation. Both irradiated groups also showed evidence of impaired glutamatergic neurotransmission and signal transduction within white matter, but not within the dorsolateral prefrontal cortex or hippocampus. Signaling pathways and structural elements involved in extracellular matrix (ECM) deposition and remodeling were noted within the white matter of animals receiving fWBI, but not of those receiving TBI. These findings indicate that those animals receiving TBI are susceptible to neurological injury similar to that observed after fWBI, and these changes persist for years postirradiation. Transcriptomic profiling reaffirmed that macrophage/microglial-mediated neuroinflammation is present in radiation-induced brain injury (RIBI), and our data provide novel evidence that the complement system may contribute to the pathogenesis of RIBI. Finally, these data challenge the assumption that the hippocampus is the predilection site of injury in RIBI, and indicate that impaired glutamatergic neurotransmission may occur in white matter injury.
Collapse
Affiliation(s)
- Rachel N. Andrews
- Departments of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157
| | - Gregory O. Dugan
- Departments of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157
| | - Ann M. Peiffer
- Departments of Radiation Oncology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157
- Departments of Brain Tumor Center of Excellence, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157
| | - Gregory A. Hawkins
- Departments of Biochemistry, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157
- Departments of Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157
| | - David B. Hanbury
- Department of Psychology, Averett University, Danville, Virginia 24541
| | - J. Daniel Bourland
- Departments of Radiation Oncology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157
- Departments of Brain Tumor Center of Excellence, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157
| | - Robert E. Hampson
- Departments of Physiology and Pharmacology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157
| | - Samuel A. Deadwyler
- Departments of Physiology and Pharmacology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157
| | - J. Mark Cline
- Departments of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157
- Departments of Radiation Oncology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157
| |
Collapse
|
11
|
Escalona T, Weadick CJ, Antunes A. Adaptive Patterns of Mitogenome Evolution Are Associated with the Loss of Shell Scutes in Turtles. Mol Biol Evol 2017; 34:2522-2536. [PMID: 28591857 PMCID: PMC6298445 DOI: 10.1093/molbev/msx167] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The mitochondrial genome encodes several protein components of the oxidative phosphorylation (OXPHOS) pathway and is critical for aerobic respiration. These proteins have evolved adaptively in many taxa, but linking molecular-level patterns with higher-level attributes (e.g., morphology, physiology) remains a challenge. Turtles are a promising system for exploring mitochondrial genome evolution as different species face distinct respiratory challenges and employ multiple strategies for ensuring efficient respiration. One prominent adaptation to a highly aquatic lifestyle in turtles is the secondary loss of keratenized shell scutes (i.e., soft-shells), which is associated with enhanced swimming ability and, in some species, cutaneous respiration. We used codon models to examine patterns of selection on mitochondrial protein-coding genes along the three turtle lineages that independently evolved soft-shells. We found strong evidence for positive selection along the branches leading to the pig-nosed turtle (Carettochelys insculpta) and the softshells clade (Trionychidae), but only weak evidence for the leatherback (Dermochelys coriacea) branch. Positively selected sites were found to be particularly prevalent in OXPHOS Complex I proteins, especially subunit ND2, along both positively selected lineages, consistent with convergent adaptive evolution. Structural analysis showed that many of the identified sites are within key regions or near residues involved in proton transport, indicating that positive selection may have precipitated substantial changes in mitochondrial function. Overall, our study provides evidence that physiological challenges associated with adaptation to a highly aquatic lifestyle have shaped the evolution of the turtle mitochondrial genome in a lineage-specific manner.
Collapse
Affiliation(s)
- Tibisay Escalona
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Porto, Portugal.,Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Cameron J Weadick
- School of Life Science, Evolution, Behaviour and Environment Group, University of Sussex, Brighton, United Kingdom
| | - Agostinho Antunes
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Porto, Portugal.,Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| |
Collapse
|
12
|
Achrai B, Wagner HD. The turtle carapace as an optimized multi-scale biological composite armor – A review. J Mech Behav Biomed Mater 2017; 73:50-67. [DOI: 10.1016/j.jmbbm.2017.02.027] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 02/19/2017] [Accepted: 02/24/2017] [Indexed: 01/03/2023]
|
13
|
Vibrio cholerae Colonization of Soft-Shelled Turtles. Appl Environ Microbiol 2017; 83:AEM.00713-17. [PMID: 28600312 DOI: 10.1128/aem.00713-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 05/04/2017] [Indexed: 01/23/2023] Open
Abstract
Vibrio cholerae is an important human pathogen and environmental microflora species that can both propagate in the human intestine and proliferate in zooplankton and aquatic organisms. Cholera is transmitted through food and water. In recent years, outbreaks caused by V. cholerae-contaminated soft-shelled turtles, contaminated mainly with toxigenic serogroup O139, have been frequently reported, posing a new foodborne disease public health problem. In this study, the colonization by toxigenic V. cholerae on the body surfaces and intestines of soft-shelled turtles was explored. Preferred colonization sites on the turtle body surfaces, mainly the carapace and calipash of the dorsal side, were observed for the O139 and O1 strains. Intestinal colonization was also found. The colonization factors of V. cholerae played different roles in the colonization of the soft-shelled turtle's body surface and intestine. Mannose-sensitive hemagglutinin (MSHA) of V. cholerae was necessary for body surface colonization, but no roles were found for toxin-coregulated pili (TCP) or N-acetylglucosamine-binding protein A (GBPA). Both TCP and GBPA play important roles for colonization in the intestine, whereas the deletion of MSHA revealed only a minor colonization-promoting role for this factor. Our study demonstrated that V. cholerae can colonize the surfaces and the intestines of soft-shelled turtles and indicated that the soft-shelled turtles played a role in the transmission of cholera. In addition, this study showed that the soft-shelled turtle has potential value as an animal model in studies of the colonization and environmental adaption mechanisms of V. cholerae in aquatic organisms.IMPORTANCE Cholera is transmitted through water and food. Soft-shelled turtles contaminated with Vibrio cholerae (commonly the serogroup O139 strains) have caused many foodborne infections and outbreaks in recent years, and they have become a foodborne disease problem. Except for epidemiological investigations, no experimental studies have demonstrated the colonization by V. cholerae on soft-shelled turtles. The present studies will benefit our understanding of the interaction between V. cholerae and the soft-shelled turtle. We demonstrated the colonization by V. cholerae on the soft-shelled turtle's body surface and in the intestine and revealed the different roles of major V. cholerae factors for colonization on the body surface and in the intestine. Our work provides experimental evidence for the role of soft-shelled turtles in cholera transmission. In addition, this study also shows the possibility for the soft-shelled turtle to serve as a new animal model for studying the interaction between V. cholerae and aquatic hosts.
Collapse
|
14
|
Chen SM, Tseng KY, Huang CH. Fatty acid composition, sarcoplasmic reticular lipid oxidation, and immunity of hard clam (Meretrix lusoria) fed different dietary microalgae. FISH & SHELLFISH IMMUNOLOGY 2015; 45:141-145. [PMID: 25707599 DOI: 10.1016/j.fsi.2015.02.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 02/09/2015] [Accepted: 02/10/2015] [Indexed: 06/04/2023]
Abstract
Fatty acid profiles, activities of biomembrane lipid peroxidation, and immunity of a seawater clam (Meretrix lusoria) fed three species of dietary microalgae were investigated. Clams of a marketable size (25 g mean weight) were fed Tetraselmis chui, Chaetoceros muelleri, or Isochrysis galbana for 8 weeks. Fatty acids, particularly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), in the polar lipid fractions of clams reflected those of the dietary algae species. Clams fed with T. chui and C. muelleri contained higher proportion of non-methylene interrupted (NMI) fatty acids than those fed I. galbana. Proportion of DHA in lipids of the clams fed with I. galbana was the highest among test groups. The NADH-dependent sarcoplasmic reticular lipid peroxidation activity of clams fed I. galbana was significantly greater (p < 0.05) than that of clams fed T. chui or C. muelleri. The hemocyte adhesion capacity of clams fed C. muelleri or I. galbana was significantly higher (p < 0.05) than that of clams fed T. chui. No significant differences (p ≥ 0.05) in total hemocyte count, phenoloxidase activity, clearance efficiency hemocyte and phagocytosis were detected among clams fed different microalgae.
Collapse
Affiliation(s)
- Shu-Mei Chen
- National Chiayi University, Department of Aquatic Biosciences, 300 University Road, Chiayi 60004, Taiwan
| | - Kai-Yi Tseng
- National Chiayi University, Department of Aquatic Biosciences, 300 University Road, Chiayi 60004, Taiwan
| | - Chen-Huei Huang
- National Chiayi University, Department of Aquatic Biosciences, 300 University Road, Chiayi 60004, Taiwan.
| |
Collapse
|
15
|
van Doorn KL, Sivak JG, Vijayan MM. β-Keratin composition of the specialized spectacle scale of snakes and geckos. CAN J ZOOL 2014. [DOI: 10.1139/cjz-2013-0231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The eyes of snakes and most geckos are shielded beneath a layer of transparent skin (the “spectacle”), of which the outermost layer consists of an optically transparent scale. The characteristics of the spectacle scale that contribute to its transparency are not well understood but may conceivably be related to its biochemical composition. The composition of the spectacle scales of numerous snakes and two geckos was analyzed with particular focus on β-keratins, the hard proteins that form the outermost layer of squamate scales, to determine whether spectacle scales differ biochemically from other scales and whether they differ between species. Results indicate that the spectacle scale of snakes differs in the types of β-keratins it contains and that diversity in spectacle β-keratins occurs between species and bears a relationship with taxonomy, suggesting that optical transparency is not restricted to a few isoforms. Other findings include a greater β-keratin to α-keratin ratio in the embryonic spectacle of pythons compared with those from after hatch and a complete absence of β-keratin in gecko spectacle scales, an unusual characteristic for squamate integument. Expression of β-keratins in the spectacle has clearly evolved for needs specific to this specialized region of the integument.
Collapse
Affiliation(s)
- Kevin L.H. van Doorn
- School of Optometry and Vision Science and Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Jacob G. Sivak
- School of Optometry and Vision Science and Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Mathilakath M. Vijayan
- Department of Biological Sciences, University of Calgary, 2500 University Drive Northwest, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
16
|
Alibardi L. Immunolocalization of beta-proteins and alpha-keratin in the epidermis of the soft-shelled turtle explains the lack of formation of hard corneous material. ACTA ZOOL-STOCKHOLM 2014. [DOI: 10.1111/azo.12069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab and Department of Bigea; University of Bologna; via Selmi 3 40126 Bologna Italy
| |
Collapse
|
17
|
Alibardi L. Immunocytochemistry suggests that the prevalence of a sub-type of beta-proteins determines the hardness in the epidermis of the hard-shelled turtle. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2013; 322:54-63. [DOI: 10.1002/jez.b.22548] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Revised: 10/05/2013] [Accepted: 10/11/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab and Department of Biology; University of Bologna; Bologna Italy
| |
Collapse
|
18
|
Alibardi L. Ultrastructural immunolocalization of alpha-keratins and associated beta-proteins (beta-keratins) suggests a new interpretation on the process of hard and soft cornification in turtle epidermis. Micron 2013; 52-53:8-15. [DOI: 10.1016/j.micron.2013.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 07/03/2013] [Accepted: 07/06/2013] [Indexed: 10/26/2022]
|
19
|
Dalla Valle L, Michieli F, Benato F, Skobo T, Alibardi L. Molecular characterization of alpha-keratins in comparison to associated beta-proteins in soft-shelled and hard-shelled turtles produced during the process of epidermal differentiation. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2013; 320:428-41. [DOI: 10.1002/jez.b.22517] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 04/25/2013] [Accepted: 05/10/2013] [Indexed: 11/10/2022]
Affiliation(s)
- L. Dalla Valle
- Department of Biology; University of Padova; Padova; Italy
| | - F. Michieli
- Department of Biology; University of Padova; Padova; Italy
| | - F. Benato
- Department of Biology; University of Padova; Padova; Italy
| | - T. Skobo
- Department of Biology; University of Padova; Padova; Italy
| | - L. Alibardi
- Comparative Histolab and Department of Biology; University of Bologna; Bologna; Italy
| |
Collapse
|
20
|
BENATO F, DALLA VALLE L, SKOBO T, ALIBARDI L. Biomolecular Identification of Beta-Defensin-Like Peptides From the Skin of the Soft-Shelled TurtleApalone spinifera. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2013; 320:210-7. [DOI: 10.1002/jez.b.22495] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 02/07/2013] [Accepted: 02/09/2013] [Indexed: 12/22/2022]
Affiliation(s)
- F. BENATO
- Department of Biology; University of Padova; Padova; Italy
| | - L. DALLA VALLE
- Department of Biology; University of Padova; Padova; Italy
| | - T. SKOBO
- Department of Biology; University of Padova; Padova; Italy
| | - L. ALIBARDI
- Comparative Histolab and Department of Biology; University of Bologna; Bologna; Italy
| |
Collapse
|
21
|
Alibardi L. Granulocytes of reptilian sauropsids contain beta-defensin-like peptides: A comparative ultrastructural survey. J Morphol 2013; 274:877-86. [DOI: 10.1002/jmor.20143] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 01/23/2013] [Accepted: 01/24/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab and Dipartimento di Biologia; University of Bologna; Bologna; 40126; Italy
| |
Collapse
|
22
|
Alibardi L, Toni M. Cytochemical and molecular characteristics of the process of cornification during feather morphogenesis. ACTA ACUST UNITED AC 2008; 43:1-69. [DOI: 10.1016/j.proghi.2008.01.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2008] [Accepted: 01/21/2008] [Indexed: 10/22/2022]
|
23
|
Alibardi L, Toni M. Characterization of keratins and associated proteins involved in the corneification of crocodilian epidermis. Tissue Cell 2007; 39:311-23. [PMID: 17707449 DOI: 10.1016/j.tice.2007.06.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Revised: 06/12/2007] [Accepted: 06/14/2007] [Indexed: 11/15/2022]
Abstract
Crocodilian keratinocytes accumulate keratin and form a corneous cell envelope of which the composition is poorly known. The present immunological study characterizes the molecular weight, isoelectric point (pI) and the protein pattern of alpha- and beta-keratins in the epidermis of crocodilians. Some acidic alpha-keratins of 47-68 kDa are present. Cross-reactive bands for loricrin (70, 66, 55 kDa), sciellin (66, 55-57 kDa), and filaggrin-AE2-positive keratins (67, 55 kDa) are detected while caveolin is absent. These proteins may participate in the formation of the cornified cell membranes, especially in hinge regions among scales. Beta-keratins of 17-20 kDa and of prevalent basic pI (7.0-8.4) are also present. Acidic beta-keratins of 10-16 kDa are scarce and may represent altered forms of the original basic proteins. Crocodilian beta-keratins are not recognized by a lizard beta-keratin antibody (A68B), and by a turtle beta-keratin antibody (A685). This result indicates that these antibodies recognize specific epitopes in different reptiles. Conversely, crocodilian beta-keratins cross-react with the Beta-universal antibody indicating they share a specific 20 amino acid epitope with avian beta-keratins. Although crocodilian beta-keratins are larger proteins than those present in birds our results indicate presence of shared epitopes between avian and crocodilian beta-keratins which give good indication for the future determination of the sequence of these proteins.
Collapse
Affiliation(s)
- L Alibardi
- Dipartimento di Biologia, Sezione Anatomia, Comparata, via Selmi 3, 40126, University of Bologna, 40126 Bologna, Italy.
| | | |
Collapse
|
24
|
Toni M, Dalla Valle L, Alibardi L. Hard (Beta-)keratins in the epidermis of reptiles: composition, sequence, and molecular organization. J Proteome Res 2007; 6:3377-92. [PMID: 17705524 DOI: 10.1021/pr0702619] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Beta-keratins form the hard corneous material of reptilian scales. In the present review, the distribution and molecular characteristics of beta-keratins in reptiles are presented. In lepidosaurians immunoreactive, protein bands at 12-18 kDa are generally present with less frequent proteins at higher molecular weight. In chelonians, bands at 13-18 and 22-24 kDa are detected. In crocodilians, bands at 14-20 kDa and weaker bands at 30-32 kDa are seen. Protein bands above 25 kDa are probably polymerized beta-keratins or aggregates. Two-dimensional gel electrophoresis shows that beta-keratins are mainly basic and that acidic-neutral keratins may derive from post-translational modifications. Beta-keratins comprise glycine-proline-rich and cystein-proline-rich proteins of 13-19 kDa. Beta-keratin genes may or may not contain introns and are present in multiple copies with a linear organization as in avian beta-keratin genes. Despite amino acid differences toward N- and C-terminals all beta-keratins share high homology in their central, beta-folded region of 20 amino acids, indicated as core-box. This region is implicated in the formation of beta-keratin filaments of scales, claws, and feathers. The homology of the core-box suggests that these proteins evolved from a progenitor sequence present in the stem of reptiles. Beta-keratins have diversified in their amino acid sequences producing secondary (and tertiary) conformations that suited them for their mechanical role in scales. In birds, a small beta-keratin has allowed the formation of feathers. It is suggested that beta-keratins represent the reptilian counterpart of keratin associated or matrix proteins present in mammalian hairs, claws, and horns.
Collapse
Affiliation(s)
- Mattia Toni
- Dipartimento di Biologia evoluzionistica sperimentale, University of Bologna, Italy, and Dipartimento di Biologia, University of Padova, Italy
| | | | | |
Collapse
|
25
|
Alibardi L, Toni M. Cytochemical, biochemical and molecular aspects of the process of keratinization in the epidermis of reptilian scales. ACTA ACUST UNITED AC 2006; 40:73-134. [PMID: 16584938 DOI: 10.1016/j.proghi.2006.01.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The characteristics of scaled skin of reptiles is one of their main features that distinguish them from the other amniotes, birds and mammals. The different scale patterns observed in extant reptiles result from a long evolutive history that allowed each species to adapt to its specific environment. The present review deals with comparative aspects of epidermal keratinization in reptiles, chelonians (turtles and tortoises), lepidosaurian (lizards, snakes, sphenodontids), archosaurians (crocodilians). Initially the morphology and cytology of reptilian scales is outlined to show the diversity in the epidermis among different groups. The structural proteins (alpha-keratins and associated proteins), and enzymes utilized to form the corneous layer of the epidermis are presented. Aside cytokeratins (alpha-keratins), used for making the cytoskeleton, reptilian alpha-keratinocytes produce interkeratin (matrix) and corneous cell envelope proteins. Keratin bundles and degraded cell organelles constitute most of the corneous material of alpha-keratinocytes. Matrix, histidine-rich and sulfur-rich proteins are produced in the soft epidermis and accumulated in the cornified cell envelope. Main emphasis is given to the composition and to the evolution of the hard keratins (beta-keratins). Beta-keratins constitute the hard corneous material of scales. These small proteins are synthesized in beta-keratinocytes and are accumulated into small packets that rapidly merge into a compact corneous material and form densely cornified layers. Beta-keratins are smaller proteins (8-20 kDa) in comparison to alpha-keratins (40-70 kDa), and this size may determine their dense packing in corneocytes. Both glycine-sulfur-rich and glycine-proline-rich proteins have been so far sequenced in the corneous material of scales in few reptilian species. The latter keratins possess C- and N-amino terminal amino acid regions with sequence homology with those of mammalian hard keratins. Also, reptilian beta-keratins possess a central core with homology with avian scale/feather keratins. Multiple genes code for these proteins and their discovery and sequentiation is presently an active field of research. These initial findings however suggest that ancient reptiles already possessed some common genes that have later diversified to produce the specific keratin-associated proteins in their descendants: extant reptiles, birds and mammals. The evolution of these small proteins in lepidosaurians, chelonians and archosaurians represent the next step to understand the evolution of cornification in reptiles and derived amniotes (birds and mammals).
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Dipartimento di Biologia evoluzionistica sperimentale, via Selmi 3, University of Bologna, 40126 Bologna, Italy.
| | | |
Collapse
|
26
|
Alibardi L. Structural and Immunocytochemical Characterization of Keratinization in Vertebrate Epidermis and Epidermal Derivatives. INTERNATIONAL REVIEW OF CYTOLOGY 2006; 253:177-259. [PMID: 17098057 DOI: 10.1016/s0074-7696(06)53005-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review presents comparative aspects of epidermal keratinization in vertebrates, with emphasis on the evolution of the stratum corneum in land vertebrates. The epidermis of fish does not contain proteins connected with interkeratin matrix and corneous cell envelope formation. Mucus-like material glues loose keratin filaments. In amphibians a cell corneous envelope forms but matrix proteins, aside from mucus/glycoproteins, are scarce or absent. In reptiles, birds, and mammals specific proteins associated with keratin become relevant for the production of a resistant corneous layer. In reptiles some matrix, histidine-rich and sulfur-rich corneous cell envelope proteins are produced in the soft epidermis. In avian soft epidermis low levels of matrix and cornified proteins are present while lipids become abundant. In mammalian keratinocytes, interkeratin proteins, cornified cell envelope proteins, and transglutaminase are present. Topographically localized areas of dermal-epidermal interactions in amniote skin determine the formation of skin derivatives such as scales, feathers, and hairs. New types of keratin and associated proteins are produced in these derivatives. In reptiles and birds beta-keratins form the hard corneous material of scales, claws, beaks, and feathers. In mammals, small sulfur-rich and glycine-tyrosine-rich proteins form the corneous material of hairs, horns, hooves, and claws. Molecular studies on reptilian beta-keratins show they are glycine-rich proteins. They have C- and N-terminal amino acid regions homologous to those of mammalian proteins and a central core with homology to avian scale/feather keratins. These findings suggest that ancient reptiles already possessed some common genes that later diversified to produce some keratin-associated protein in extant reptiles and birds, and others in mammals. The evolution of these small proteins represents the more recent variation of the process of cornification in vertebrates.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Department of Experimental and Evolutionary Biology, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|