1
|
Andrews AC, Duffy S, Edgerly JS, Barber RP. Morphological transformation from fibers to sheets in embiopteran silk. Phys Rev E 2022; 106:014801. [PMID: 35974555 DOI: 10.1103/physreve.106.014801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Embioptera (webspinners) are insects that construct domiciles using silk produced from their front feet. This silk is the finest known with measured single fiber diameters in the 30-140 nm range. In the wild, some webspinner silk on trees is observed to have a clothlike or shiny sheetlike appearance. Both forms of silk shield the occupants from rain water effectively: presumably valuable in tropical environments. In this article we elucidate the mechanism by which silk fibers are transformed into these structures through interaction with water. We quantify the evaporation rates of single water droplets which have been suspended on unmodified as-spun silk for two Trinidadian arboreal species: Antipaluria urichi (Clothodidae) and Pararhagadochir trinitatis (Scelembiidae). These rates are compared to those of droplets suspended on rose petals due to similar wetting properties (both hydrophobicity and pinning). We observe that on sufficiently thick silk, droplet evaporation rates decrease with time. This behavior is a result of a thin soluble film developing on the drop surface that later becomes a solid residual film. Experimentally verified theoretical models are invoked to support the results.
Collapse
Affiliation(s)
- Aleimah C Andrews
- Department of Biology, Santa Clara University, Santa Clara, California 95053, USA
- Center for Nanostructures, Santa Clara University, Santa Clara, California 95053, USA
| | - Sean Duffy
- Center for Nanostructures, Santa Clara University, Santa Clara, California 95053, USA
- Department of Physics, Santa Clara University, Santa Clara, California 95053, USA
| | - Janice S Edgerly
- Department of Biology, Santa Clara University, Santa Clara, California 95053, USA
| | - Richard P Barber
- Center for Nanostructures, Santa Clara University, Santa Clara, California 95053, USA
- Department of Physics, Santa Clara University, Santa Clara, California 95053, USA
| |
Collapse
|
2
|
Edgerly JS. Dispersal Risks and Decisions Shape How Non-kin Groups Form in a Tropical Silk-Sharing Webspinner (Insecta: Embioptera). Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.727541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Relying on silk can promote sharing, especially when its presence means life and its absence, quick death. In the case of Embioptera, they construct silken tubes and coverings exposed on tree bark in humid and warm environments or in leaf litter and underground in dry habitats. These coverings protect occupants from rain and natural enemies. Of note, adult females are neotenous, wingless and must walk to disperse. Evidence is pulled together from two sources to explore mechanisms that promote the establishment of non-kin groups that typify the neotropical Antipaluria urichi (Clothodidae): (1) a review of relevant information from 40 years of research to identify potential drivers of the facultative colonial system and (2) experimental and observational data exploring how dispersal contributes to group formation. To determine risks of dispersal and decisions of where to settle, adult females were released into the field and their ability to survive in the face of likely predation was monitored. Additional captured dispersers were released onto bark containing silk galleries; their decision to join the silk or to settle was noted. An experiment tested which attributes of trees attract a disperser: vertical or horizontal boles in one test and small, medium, or large boles in another. While walking, experimentally released adult female dispersers experienced a risk of being killed of approximately 25%. Dispersers orient to large diameter trees and join silk of others if encountered. These results align with observations of natural colonies in that adults and late-stage nymphs join existing colonies of non-kin. Experiments further demonstrated that dispersing females orient to vertical and larger diameter tree-like objects, a behavior that matched the distribution of field colonies. The ultimate reason for the observed dispersion pattern is probably because large trees support more expansive epiphytic algae and lichens (the food for this species), although the impact of food resources on dispersion has not been tested. Finally, further research questions and other webspinner species (including parthenogenetic ones) that warrant a closer look are described. Given that this group of primitively social insects, with approximately 1,000 species known, has remained virtually unstudied, one hope is that this report can encourage more exploration.
Collapse
|
3
|
Harper JR, Sripada N, Kher P, Whittall JB, Edgerly JS. Interpreting nature's finest insect silks (Order Embioptera): hydropathy, interrupted repetitive motifs, and fiber-to-film transformation for two neotropical species. ZOOLOGY 2021; 146:125923. [PMID: 33901836 DOI: 10.1016/j.zool.2021.125923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 03/14/2021] [Accepted: 03/19/2021] [Indexed: 10/21/2022]
Abstract
Silks produced by webspinners (Order Embioptera) interact with water by transforming from fiber to film, which then becomes slippery and capable of shedding water. We chose to explore this mechanism by analyzing and comparing the silk protein transcripts of two species with overlapping distributions in Trinidad but from different taxonomic families. The transcript of one, Antipaluria urichi (Clothodidae), was partially characterized in 2009 providing a control for our methods to characterize a second species: Pararhagadochir trinitatis (Scelembiidae), a family that adds to the taxon sampling for this little known order of insects. Previous reports showed that embiopteran silk protein (dubbed Efibroin) consists of a protein core of repetitive motifs largely composed of glycine (Gly), serine (Ser), and alanine (Ala) and a highly conserved C-terminal region. Based on mRNA extracted from silk glands, Next Generation sequencing, and de novo assembly, P. trinitatis silk can be characterized by repetitive motifs of Gly-Ser followed periodically by Gly-Asparagine (Asn-an unusual amino acid for Efibroins) and by a lack of Ala which is otherwise common in Efibroins. The putative N-terminal domain, composed mostly of polar, charged and bulky amino acids, is ten amino acids long with cysteine in the 10th position-a feature likely related to stabilization of the silk fibers. The 29 amino acids of the C-terminus for P. trinitatis silk closely resemble that of other Efibroin sequences, which show 74% shared identity on average. Examination of hydropathicity of Efibroins of both P. trinitatis and An. urichi revealed that these proteins are largely hydrophilic despite having a thin lipid coating on each nano-fiber. We deduced that the hydrophilic quality differs for the two species: due to Ser and Asn for P. trinitatis silk and to previously undetected spacers in An. urichi silk. Spacers are known from some spider and silkworm silks but this is the first report of such for Embioptera. Analysis of hydropathicity revealed the largely hydrophilic quality of these silks and this feature likely explains why water causes the transformation from fiber to film. We compared spun silk to the transcript and detected not insignificant differences between the two measurements implying that as yet undetermined post-translational modifications of their silk may occur. In addition, we found evidence for codon bias in the nucleotides of the putative silk transcript for P. trinitatis, a feature also known for other embiopteran silk genes.
Collapse
Affiliation(s)
- J René Harper
- Department of Biology, 500 El Camino Real, Santa Clara University, Santa Clara, California, 95053, USA.
| | - Neeraja Sripada
- Department of Biology, 500 El Camino Real, Santa Clara University, Santa Clara, California, 95053, USA.
| | - Pooja Kher
- Department of Biology, 500 El Camino Real, Santa Clara University, Santa Clara, California, 95053, USA.
| | - Justen B Whittall
- Department of Biology, 500 El Camino Real, Santa Clara University, Santa Clara, California, 95053, USA.
| | - Janice S Edgerly
- Department of Biology, 500 El Camino Real, Santa Clara University, Santa Clara, California, 95053, USA.
| |
Collapse
|
4
|
Antibacterial Mechanism of Silkworm Seroins. Polymers (Basel) 2020; 12:polym12122985. [PMID: 33327635 PMCID: PMC7765120 DOI: 10.3390/polym12122985] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 12/16/2022] Open
Abstract
Seroin 1 and seroin 2 are abundant in silkworm cocoon silk and show strong antibacterial activities, and thus are thought to protect cocoon silk from damage by bacteria. In this study, we characterized the expression pattern of silkworm seroin 3, and found that seroin 3 is synthesized in the female ovary and secreted into egg to play its roles. After being infected, seroin 1, 2, and 3 were significantly up-regulated in the silkworm. We synthesized the full-length protein of seroin 1, 2, and 3 and their N/C-terminal domain (seroin-N/C), and compared the antimicrobial activities in vitro. All three seroins showed higher antibacterial activity against Gram-positive bacteria than against Gram-negative bacteria. Seroin 2 showed better antibacterial effect than seroin 1 and 3, whereas seroin 1/2/3-N was better than seroin 1/2/3-C. We found that seroin 2-C has stronger peptidoglycan binding ability than seroin 2-N per the ELISA test. The binding sites of seroin 2 with bacteria were blocked by peptidoglycan, which resulted in the loss of the antibacterial activity of seroin 2. Collectively, these findings suggest that seroin 1 and 2 play antibacterial roles in cocoon silk, whereas seroin 3 functions in the eggs. The three silkworm seroins have the same antibacterial mechanism, that is, binding to bacterial peptidoglycan by the C-terminal domain and inhibiting bacterial growth by the N-terminal domain.
Collapse
|
5
|
Büsse S, Büscher TH, Kelly ET, Heepe L, Edgerly JS, Gorb SN. Pressure-induced silk spinning mechanism in webspinners (Insecta: Embioptera). SOFT MATTER 2019; 15:9742-9750. [PMID: 31742303 DOI: 10.1039/c9sm01782h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The articulated appendages of arthropods are highly adaptable and potentially multifunctional, used for walking, swimming, feeding, prey capture, or other functions. Webspinners (Order Embioptera) are a paragon in this context. In contrast to other arthropods producing silk, they utilize their front feet for silk production. However, employing the same leg for alternative functions rather than for pure locomotion potentially imposes constraints and compromises. We here present morphological and experimental evidence for a "passive" pressure-induced silk spinning mechanism induced by external mechanical stimuli. Furthermore, we demonstrate that, as a consequence of the conflicting functions for their front feet, webspinners have evolved a unique style of walking that reduces the potentially problematic contact between silk ejectors and the substrate. Here we answer for the first time a long-term question within this enigmatic group of insects-how webspinners can use their front feet to spin their nanoscale silk. This knowledge may open the door for experimental studies on an artificial spinning process and for future utilization in applied fields of robotics or chemistry.
Collapse
Affiliation(s)
- Sebastian Büsse
- Functional Morphology and Biomechanics, Institute of Zoology, Kiel University, Kiel, Germany.
| | | | | | | | | | | |
Collapse
|
6
|
Stokes GY, DiCicco EN, Moore TJ, Cheng VC, Wheeler KY, Soghigian J, Barber RP, Edgerly JS. Structural and wetting properties of nature's finest silks (order Embioptera). ROYAL SOCIETY OPEN SCIENCE 2018; 5:180893. [PMID: 30839723 PMCID: PMC6170577 DOI: 10.1098/rsos.180893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/13/2018] [Indexed: 06/09/2023]
Abstract
Insects from the order Embioptera (webspinners) spin silk fibres which are less than 200 nm in diameter. In this work, we characterized and compared the diameters of single silk fibres from nine species-Antipaluria urichi, Pararhagadochir trinitatis, Saussurembia calypso, Diradius vandykei, Aposthonia ceylonica, Haploembia solieri, H. tarsalis, Oligotoma nigra and O. saundersii. Silk from seven of these species have not been previously quantified. Our studies cover five of the 10 named taxonomic families and represent about one third of the known taxonomic family-level diversity in the order Embioptera. Naturally spun silk varied in diameter from 43.6 ± 1.7 nm for D. vandykei to 122.4 ± 3.2 nm for An. urichi. Mean fibre diameter did not correlate with adult female body length. Fibre diameter is more similar in closely related species than in more distantly related species. Field observations indicated that silk appears shiny and smooth when exposed to rainwater. We therefore measured contact angles to learn more about interactions between silk and water. Higher contact angles were measured for silks with wider fibre diameter and higher quantity of hydrophobic amino acids. High static contact angles (ranging up to 122° ± 3° for An. urichi) indicated that silken sheets spun by four arboreal, webspinner species were hydrophobic. A second contact angle measurement made on a previously wetted patch of silk resulted in a lower contact angle (average difference was greater than 27°) for all four species. Our studies suggest that silk fibres which had been previously exposed to water exhibited irreversible changes in hydrophobicity and water adhesion properties. Our results are in alignment with the 'super-pinning' site hypothesis by Yarger and co-workers to describe the hydrophobic, yet water adhesive, properties exhibited by webspinner silk fibres. The physical and chemical insights gained here may inform the synthesis and development of smaller diameter silk fibres with unique water adhesion properties.
Collapse
Affiliation(s)
- Grace Y. Stokes
- Department of Chemistry & Biochemistry, Santa Clara University, 500 El Camino Real, Santa Clara, CA 95053, USA
| | - Evangelea N. DiCicco
- Department of Physics and Center for Nanostructures, Santa Clara University, 500 El Camino Real, Santa Clara, CA 95053, USA
| | - Trevor J. Moore
- Department of Chemistry & Biochemistry, Santa Clara University, 500 El Camino Real, Santa Clara, CA 95053, USA
| | - Vivian C. Cheng
- Department of Biology, Santa Clara University, 500 El Camino Real, Santa Clara, CA 95053, USA
| | - Kira Y. Wheeler
- Department of Physics and Center for Nanostructures, Santa Clara University, 500 El Camino Real, Santa Clara, CA 95053, USA
| | - John Soghigian
- Department of Environmental Sciences, The Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - Richard P. Barber
- Department of Physics and Center for Nanostructures, Santa Clara University, 500 El Camino Real, Santa Clara, CA 95053, USA
| | - Janice S. Edgerly
- Department of Biology, Santa Clara University, 500 El Camino Real, Santa Clara, CA 95053, USA
| |
Collapse
|
7
|
|
8
|
Laity PR, Holland C. The Rheology behind Stress-Induced Solidification in Native Silk Feedstocks. Int J Mol Sci 2016; 17:E1812. [PMID: 27801879 PMCID: PMC5133813 DOI: 10.3390/ijms17111812] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/21/2016] [Accepted: 10/25/2016] [Indexed: 01/24/2023] Open
Abstract
The mechanism by which native silk feedstocks are converted to solid fibres in nature has attracted much interest. To address this question, the present work used rheology to investigate the gelation of Bombyx mori native silk feedstock. Exceeding a critical shear stress appeared to be more important than shear rate, during flow-induced initiation. Compositional changes (salts, pH etc.,) were not required, although their possible role in vivo is not excluded. Moreover, after successful initiation, gel strength continued to increase over a considerable time under effectively quiescent conditions, without requiring further application of the initial stimulus. Gelation by elevated temperature or freezing was also observed. Prior to gelation, literature suggests that silk protein adopts a random coil configuration, which argued against the conventional explanation of gelation, based on hydrophilic and hydrophobic interactions. Instead, a new hypothesis is presented, based on entropically-driven loss of hydration, which appears to explain the apparently diverse methods by which silk feedstocks can be gelled.
Collapse
Affiliation(s)
- Peter R Laity
- Department of Materials Science and Engineering, The University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD, UK.
| | - Chris Holland
- Department of Materials Science and Engineering, The University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD, UK.
| |
Collapse
|
9
|
Laity PR, Holland C. Native Silk Feedstock as a Model Biopolymer: A Rheological Perspective. Biomacromolecules 2016; 17:2662-71. [PMID: 27315508 DOI: 10.1021/acs.biomac.6b00709] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Variability in silk's rheology is often regarded as an impediment to understanding or successfully copying the natural spinning process. We have previously reported such variability in unspun native silk extracted straight from the gland of the domesticated silkworm Bombyx mori and discounted classical explanations such as differences in molecular weight and concentration. We now report that variability in oscillatory measurements can be reduced onto a simple master-curve through normalizing with respect to the crossover. This remarkable result suggests that differences between silk feedstocks are rheologically simple and not as complex as originally thought. By comparison, solutions of poly(ethylene-oxide) and hydroxypropyl-methyl-cellulose showed similar normalization behavior; however, the resulting curves were broader than for silk, suggesting greater polydispersity in the (semi)synthetic materials. Thus, we conclude Nature may in fact produce polymer feedstocks that are more consistent than typical man-made counterparts as a model for future rheological investigations.
Collapse
Affiliation(s)
- Peter R Laity
- Department of Materials Science and Engineering, The University of Sheffield , Sir Robert Hadfield Building, Mappin Street, Sheffield, S1 3JD, United Kingdom
| | - Chris Holland
- Department of Materials Science and Engineering, The University of Sheffield , Sir Robert Hadfield Building, Mappin Street, Sheffield, S1 3JD, United Kingdom
| |
Collapse
|
10
|
McMillan D, Hohu K, Edgerly JS. Choreography of silk spinning by webspinners (Insecta: Embioptera) reflects lifestyle and hints at phylogeny. Biol J Linn Soc Lond 2016. [DOI: 10.1111/bij.12749] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- David McMillan
- Department of Biology; Santa Clara University; Santa Clara CA USA
| | - Kyle Hohu
- Department of Biology; Santa Clara University; Santa Clara CA USA
| | | |
Collapse
|
11
|
|
12
|
Addison JB, Popp TMO, Weber WS, Edgerly JS, Holland GP, Yarger JL. Structural characterization of nanofiber silk produced by embiopterans (webspinners). RSC Adv 2014; 4:41301-41313. [PMID: 25383190 DOI: 10.1039/c4ra07567f] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Embiopterans produce silken galleries and sheets using exceptionally fine silk fibers in which they live and breed. In this study, we use electron microscopy (EM), Fourier-transform infrared (FT-IR) spectroscopy, wide angle X-ray diffraction (WAXD) and solid-state nuclear magnetic resonance (ssNMR) techniques to elucidate the molecular level protein structure of webspinner (embiid) silks. Silks from two species Antipaluria urichi and Aposthonia ceylonica are studied in this work. Electron microscopy images show that the fibers are about 90-100 nm in diameter, making webspinner silks among the finest of all known animal silks. Structural studies reveal that the silk protein core is dominated by β-sheet structures, and that the protein core is coated with a hydrophobic alkane-rich surface coating. FTIR spectra of native embiid silk shows characteristic alkane CH2 stretchings near 2800-2900 cm-1, which decrease approximately 50% after washing the silk with 2 : 1 CHCl3 : MeOH. Furthermore, 13C ssNMR data shows a significant CH2 resonance that is strongly affected by the presence of water, supporting the idea that the silk fibers are coated with a hydrocarbon-rich layer. Such a layer is likely used to protect the colonies from rain. FTIR data also suggests that embiid silks are dominated by β-sheet secondary structures similar to spider and silkworm silk fibers. NMR data confirms the presence of β-sheet nanostructures dominated by serine-rich repetitive regions. A deconvolution of the serine Cβ NMR resonance reveals that approximately 70% of all seryl residues exist in a β-sheet structure. This is consistent with WAXD results that suggest webspinner silks are 70% crystalline, which is the highest crystalline fraction reported for any animal silks. The work presented here provides a molecular level structural picture of silk fibers produced by webspinners.
Collapse
Affiliation(s)
- J Bennett Addison
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604, USA
| | - Thomas M Osborn Popp
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604, USA
| | - Warner S Weber
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604, USA
| | - Janice S Edgerly
- Department of Biology, Santa Clara University, Santa Clara, CA, USA
| | - Gregory P Holland
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604, USA
| | - Jeffery L Yarger
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604, USA
| |
Collapse
|