1
|
Yamada H. Spatial sorting caused by downstream dispersal: implication for morphological evolution in isolated populations of fat minnow inhabiting small streams flowing through terraced rice paddies. J Evol Biol 2024; 37:1194-1204. [PMID: 39233607 DOI: 10.1093/jeb/voae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/23/2024] [Accepted: 09/04/2024] [Indexed: 09/06/2024]
Abstract
The evolutionary forces arising from differential dispersal are known as "spatial sorting," distinguishing them from natural selection arising from differential survival or differential reproductive success. Spatial sorting is often considered to be transient because it is offset by the return of dispersers in many cases. However, in riverine systems, spatial sorting by downstream dispersal can be cumulative in habitats upstream of migration barriers such as weirs or falls, which can block the return of the dispersers. Terraced rice paddies are often found on steep mountain slopes in Japan and often incorporate small streams with numerous migration barriers. This study investigated the morphological features of fat minnow, Rhynchocypris oxycephalus jouyi (Cyprinidae), inhabiting above-barrier habitats of the small streams flowing through flood-prone terraced rice paddies and examined their function via a mark-recapture experiment. Although this study did not reveal a consistent pattern across all local populations, some above-barrier populations were characterized by individuals with a thinner caudal peduncle, thinner body, and longer ventral caudal fin lobes than those in neighbouring mainstream populations. A mark-recapture experiment during minor flooding showed that a thinner caudal peduncle and deeper body helped fat minnow avoid downstream dispersal and ascend a small step, and suggested that a longer ventral caudal fin lobe was important for ascending. These results suggest that the caudal morphologies of some above-barrier populations avoid or reduce the risk of downstream dispersal, supporting the idea that spatial sorting shapes functional traits, enhancing the spatial persistence of individuals in upstream habitats.
Collapse
Affiliation(s)
- Hiroyuki Yamada
- Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime, Japan
| |
Collapse
|
2
|
Sun X, Yu M, Tang Q, Sun Y. Assessing the Ecological Conversion Efficiency of Chub Mackerel, Somber japonicus, in Wild Conditions Based on an In Situ Enriched Simulation Method. Animals (Basel) 2023; 13:3159. [PMID: 37893883 PMCID: PMC10603723 DOI: 10.3390/ani13203159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/12/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
Understanding the ecological conversion efficiency of a fish species can be used to estimate the potential impact of the marine food web and accordingly provides scientific advice to ecosystem-based fishery management. However, only laboratory experiments may limit the accuracy of determining this index. In this study, food ingestion and ecological conversion efficiency of wild chub mackerel (Somber japonicus), a typical marine pelagic fish, were determined with gastric evacuation method in laboratory and in situ enriched simulation conditions. Additionally, the effect of temperature and body weight on ecological conversion efficiency was further estimated based on the 2D interpolation method. The results showed that, at 25.1 °C, the ecological conversion efficiency determined in-lab (35.31%) was significantly higher than in situ (23.85%). Moreover, the interpolation model estimated that with an increase in temperature (10-27 °C), the ecological conversion efficiency initially decreased, followed by an increase when the temperature reached 18 °C, but the ecological conversion efficiency generally decreased against the body weight at each temperature. The findings of this study enhanced the understanding of the energy budget of chub mackerel and also provided an efficient method for the determination of wild fishes that are difficult to sample in situ and domesticate in the laboratory.
Collapse
Affiliation(s)
- Xin Sun
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources of Ministry of Agriculture, Yellow Sea Fisheries Research Institute, CAFS, 106 Nanjing Road, Qingdao 266071, China
| | - Miao Yu
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources of Ministry of Agriculture, Yellow Sea Fisheries Research Institute, CAFS, 106 Nanjing Road, Qingdao 266071, China
| | - Qisheng Tang
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources of Ministry of Agriculture, Yellow Sea Fisheries Research Institute, CAFS, 106 Nanjing Road, Qingdao 266071, China
| | - Yao Sun
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources of Ministry of Agriculture, Yellow Sea Fisheries Research Institute, CAFS, 106 Nanjing Road, Qingdao 266071, China
| |
Collapse
|
3
|
Kimball DS, Minicozzi MR, Gibb AC. The fast and the tendinous? Locomotor modifications of the caudal peduncle in Gila spp. from the American Southwest. ZOOLOGY 2021; 146:125924. [PMID: 33962259 DOI: 10.1016/j.zool.2021.125924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/01/2022]
Abstract
In the American Southwest, the fishes within the genus Gila evolved in an environment with seasonal rainstorms that caused stochastic flooding. Some species within this genus, such as bonytail (Gila elegans), possess locomotor morphologies that are similar to those seen in high-performance swimmers such as tuna and lamnid sharks. These shared features include a shallow caudal peduncle, lunate tail, and mechanisms to transmit force from the anterior musculature to the tail fin. We compared the skeletal anatomy of the caudal region of bonytail to roundtail chub (Gila robusta) and humpback chub (Gila cypha) to determine which vertebral elements have been modified to create a shallow peduncle. We also tested the tensile strength of the red (slow oxidative) axial muscle by performing a standard stress test. If the muscle can withstand a large load, this suggests it may play a tendon-like role in transmitting force from the anterior muscle to the hypural plate of the tail. Lastly, we measured the collagen content of the red axial muscle (visualized using serial sections and Masson's trichrome stain) to determine if increased tensile strength is associated with increased collagen content. We found bonytail caudal peduncles are characterized by acute vertebral spines and have red axial muscle that can resist tearing under tension. Roundtail chub peduncles are characterized by relatively more obtuse angles and the red muscle tears easily under tension. Humpback chub possess an intermediate morphology, with relatively obtuse vertebral spine angles and the red muscle can resist tearing under tension. Bonytail have increased collagen content in posterior red axial muscle compared to the anterior musculature also suggesting a tendon-like role of the posterior red muscle. In combination with previous studies of swimming performance, our findings suggest that the axial musculature of bonytail may play a role in transmitting force directly to the shallow peduncle in a manner similar to that of the great lateral tendon of scombrids.
Collapse
Affiliation(s)
- Daniel S Kimball
- Department of Biological Sciences, 617 S. Beaver St., Flagstaff, AZ, 86011, United States
| | - Michael R Minicozzi
- Department of Biological Sciences, 242 Trafton Science Center South, Mankato, MN, 56001, United States.
| | - Alice C Gibb
- Department of Biological Sciences, 617 S. Beaver St., Flagstaff, AZ, 86011, United States
| |
Collapse
|
4
|
Moran CJ, O'Neill M, Gibb AC. Integrating Studies of Anatomy, Physiology, and Behavior into Conservation Strategies for the Imperiled Cyprinid Fishes of the Southwestern United States. Integr Comp Biol 2020; 60:487-496. [PMID: 32396610 DOI: 10.1093/icb/icaa031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Over the last 100 years, fishes native to the Southwestern United States have faced a myriad of biotic and abiotic pressures which has resulted in most being federally listed as endangered or threatened. Most notably, water diversions and the introduction of non-native fishes have been the primary culprits in causing the downfall of native fish populations. We describe how recent studies of morphology, physiology, and behavior yield insights into the failed (occasionally successful) management of this vanishing biota. We describe how understanding locomotor morphologies, physiologies, and behaviors unique to Southwestern native fishes can be used to create habitats that favor native fishes. Additionally, through realizing differences in morphologies and behaviors between native and non-native fishes, we describe how understanding predator-prey interactions might render greater survivorship of native fishes when stocked into the wild from repatriation programs. Understanding fundamental form-function relationships is imperative for managers to make educated decisions on how to best recover species of concern in the Southwestern United States and worldwide.
Collapse
Affiliation(s)
- Clinton J Moran
- The Citadel Biology Department, 171 Moultrie St., Charleston, SC 29409, USA
| | - Matthew O'Neill
- Coconino National Forest, 1824 S. Thompson St., Flagstaff, AZ 86001, USA
| | - Alice C Gibb
- Department of Biology, Northern Arizona University, 1899 S. San Francisco St., Flagstaff, AZ 86011, USA
| |
Collapse
|
5
|
Bressman NR, Armbruster JW, Lujan NK, Udoh I, Ashley‐Ross MA. Evolutionary optimization of an anatomical suction cup: Lip collagen content and its correlation with flow and substrate in Neotropical suckermouth catfishes (Loricarioidei). J Morphol 2020; 281:676-687. [DOI: 10.1002/jmor.21136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/13/2020] [Accepted: 04/19/2020] [Indexed: 02/05/2023]
Affiliation(s)
- Noah R. Bressman
- Department of Biology Wake Forest University Winston‐Salem North Carolina USA
| | | | - Nathan K. Lujan
- Department of Ichthyology American Museum of Natural History, New York New York USA
| | - Imoh Udoh
- Department of Biology Wake Forest University Winston‐Salem North Carolina USA
| | | |
Collapse
|
6
|
Minicozzi M, Kimball D, Finden A, Friedman S, Gibb AC. Are Extreme Anatomical Modifications Required for Fish to Move Effectively on Land? Comparative Anatomy of the Posterior Axial Skeleton in the Cyprinodontiformes. Anat Rec (Hoboken) 2019; 303:53-64. [DOI: 10.1002/ar.24117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 07/13/2018] [Accepted: 07/20/2018] [Indexed: 11/06/2022]
Affiliation(s)
| | - Daniel Kimball
- Department of Biology Northern Arizona University Flagstaff Arizona
| | - Alex Finden
- Department of Biology Northern Arizona University Flagstaff Arizona
| | - Sarah Friedman
- Department of Evolution and Ecology University of California Davis California
| | - Alice C. Gibb
- Department of Biology Northern Arizona University Flagstaff Arizona
| |
Collapse
|
7
|
Jimenez YE, Camp AL, Grindall JD, Brainerd EL. Axial morphology and 3D neurocranial kinematics in suction-feeding fishes. Biol Open 2018; 7:7/9/bio036335. [PMID: 30237249 PMCID: PMC6176947 DOI: 10.1242/bio.036335] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many suction-feeding fish use neurocranial elevation to expand the buccal cavity for suction feeding, a motion necessarily accompanied by the dorsal flexion of joints in the axial skeleton. How much dorsal flexion the axial skeleton accommodates and where that dorsal flexion occurs may vary with axial skeletal morphology, body shape and the kinematics of neurocranial elevation. We measured three-dimensional neurocranial kinematics in three species with distinct body forms: laterally compressed Embiotoca lateralis, fusiform Micropterus salmoides, and dorsoventrally compressed Leptocottus armatus The area just caudal to the neurocranium occupied by bone was 42±1.5%, 36±1.8% and 22±5.5% (mean±s.e.m.; N=3, 6, 4) in the three species, respectively, and the epaxial depth also decreased from E. lateralis to L. armatus Maximum neurocranial elevation for each species was 11, 24 and 37°, respectively, consistent with a hypothesis that aspects of axial morphology and body shape may constrain neurocranial elevation. Mean axis of rotation position for neurocranial elevation in E. lateralis, M. salmoides and L. armatus was near the first, third and fifth intervertebral joints, respectively, leading to the hypothesis of a similar relationship with the number of intervertebral joints that flex. Although future work must test these hypotheses, our results suggest the relationships merit further inquiry.
Collapse
Affiliation(s)
- Yordano E Jimenez
- Department of Ecology and Evolutionary Biology, Brown University, 80 Waterman Street, Providence, RI 02912, USA .,Friday Harbor Laboratories, University of Washington, 620 University Road, Friday Harbor, WA 98250, USA
| | - Ariel L Camp
- Department of Ecology and Evolutionary Biology, Brown University, 80 Waterman Street, Providence, RI 02912, USA
| | - Jonathan D Grindall
- Friday Harbor Laboratories, University of Washington, 620 University Road, Friday Harbor, WA 98250, USA.,School of Aquatic and Fishery Sciences, University of Washington, 1122 Boat Street, Seattle, WA 98105, USA
| | - Elizabeth L Brainerd
- Department of Ecology and Evolutionary Biology, Brown University, 80 Waterman Street, Providence, RI 02912, USA.,Friday Harbor Laboratories, University of Washington, 620 University Road, Friday Harbor, WA 98250, USA
| |
Collapse
|
8
|
Moran CJ, Gerry SP, O'Neill MW, Rzucidlo CL, Gibb AC. Behavioral and physiological adaptations to high-flow velocities in chubs ( Gila spp.) native to Southwestern USA. ACTA ACUST UNITED AC 2018; 221:jeb.158972. [PMID: 29622666 DOI: 10.1242/jeb.158972] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 04/01/2018] [Indexed: 11/20/2022]
Abstract
Morphological streamlining is often associated with physiological advantages for steady swimming in fishes. Though most commonly studied in pelagic fishes, streamlining also occurs in fishes that occupy high-flow environments. Before the installation of dams and water diversions, bonytail (Cyprinidae, Gila elegans), a fish endemic to the Colorado River (USA), regularly experienced massive, seasonal flooding events. Individuals of G. elegans display morphological characteristics that may facilitate swimming in high-flow conditions, including a narrow caudal peduncle and a high aspect ratio caudal fin. We tested the hypothesis that these features improve sustained swimming performance in bonytail by comparing locomotor performance in G. elegans with that of the closely related roundtail chub (Gila robusta) and two non-native species, rainbow trout (Oncorhynchus mykiss) and smallmouth bass (Micropterus dolomieu), using a Brett-style respirometer and locomotor step-tests. Gila elegans had the lowest estimated drag coefficient and the highest sustained swimming speeds relative to the other three species. There were no detectible differences in locomotor energetics during steady swimming among the four species. When challenged by high-velocity water flows, the second native species examined in this study, G. robusta, exploited the boundary effects in the flow tank by pitching forward and bracing the pelvic and pectoral fins against the acrylic tank bottom to 'hold station'. Because G. robusta can station hold to prevent being swept downstream during high flows and G. elegans can maintain swimming speeds greater than those of smallmouth bass and rainbow trout with comparable metabolic costs, we suggest that management agencies could use artificial flooding events to wash non-native competitors downstream and out of the Colorado River habitat.
Collapse
Affiliation(s)
- Clinton J Moran
- Department of Biology, Fairfield University, 1073 N. Benson Rd, Fairfield, CT 06824, USA
| | - Shannon P Gerry
- Department of Biology, Fairfield University, 1073 N. Benson Rd, Fairfield, CT 06824, USA
| | - Matthew W O'Neill
- US Forest Service, Coconino National Forest, 1824 S. Thompson St, Flagstaff, AZ 86001, USA
| | - Caroline L Rzucidlo
- Department of Biology, Fairfield University, 1073 N. Benson Rd, Fairfield, CT 06824, USA
| | - Alice C Gibb
- Department of Biological Sciences, Northern Arizona University, 617 S. Beaver St, Flagstaff, AZ 86011, USA
| |
Collapse
|