1
|
Boukoumba FM, Lekana-Douki JB, Matsiegui PB, Moukodoum DN, Adegnika AA, Oyegue-Liabagui SL. High prevalence of genotypes associated with sulfadoxine/pyrimethamine resistance in the rural area of Fougamou, Gabon. J Glob Antimicrob Resist 2021; 25:181-186. [PMID: 33774217 DOI: 10.1016/j.jgar.2021.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/08/2020] [Accepted: 03/04/2021] [Indexed: 10/21/2022] Open
Abstract
OBJECTIVES Pregnancy-associated malaria (PAM) is a complex form of malaria. To prevent PAM, several African countries have adopted intermittent preventive treatment with sulfadoxine/pyrimethamine (IPT-SP). However, resistance to SP has been reported, associated with mutations in the genes Plasmodium falciparum dihydropteroate synthase (Pfdhps) and P. falciparum dihydrofolate reductase (Pfdhfr). The aim of this study was to investigate the prevalence of mutations in Pfdhfr and Pfdhps in P. falciparum isolates from rural areas of Gabon. METHODS A cross-sectional survey of febrile patients (n = 202) who consulted Fougamou Health Center between February-May 2016 was performed. DNA was extracted from patient samples and the Pfdhfr and Pfdhps genes were genotyped using PCR-RFLP. Statistical analyses were performed. RESULTS The malaria prevalence in febrile patients included in the study was 60.4% (122/202). The main parasite species was P. falciparum (96.7%; 118/122), followed by Plasmodium malariae (3.3%; 4/122). Genotypes on codons 16, 51, 59 and 108 of Pfdhfr were highly mutated (>96%). In Pfdhps, codons 436, 437, 540 and 613 also expressed high mutation rates. The prevalence of triple mutations of Pfdhfr VIRNI and AIRNI was 12.1% and 84.5%, respectively. The prevalence of mutant haplotypes of Pfdhps SGEA, SGKA and AGEA was 37.9%, 25.9% and 12.1%, respectively. The prevalence of quadruple mutants IRN-A and IRN-G was 20.0% and 93.1%, respectively, whereas quintuple mutants were found at 57.8% (IRN-GE) and 5.0% (IRN-AE). CONCLUSION Our data show a high prevalence of genotypes associated with SP resistance. Clinical trials to investigate the efficacy of IPT-SP are much needed.
Collapse
Affiliation(s)
- Fleuramie Mirembou Boukoumba
- Unit of Evolution, Epidemiology and Parasitic Resistances (UNEEREP), Centre International de Recherches Médicales de Franceville (CIRMF), B.P. 769 Franceville, Gabon; Centre de Recherches Médicales de la Ngounié (CRMN), B.P. 133 Fougamou, Gabon; Ecole Doctoral Régionale D'Afrique Centrale en Infectiologie Tropicale, B.P. 876, Franceville, Gabon
| | - Jean Bernard Lekana-Douki
- Unit of Evolution, Epidemiology and Parasitic Resistances (UNEEREP), Centre International de Recherches Médicales de Franceville (CIRMF), B.P. 769 Franceville, Gabon; Département de Parasitologie-Mycologie Médecine Tropicale, Faculté de Médecine, Université des Sciences de la Santé, B.P. 4009, Libreville, Gabon.
| | | | - Damiella Nancy Moukodoum
- Unit of Evolution, Epidemiology and Parasitic Resistances (UNEEREP), Centre International de Recherches Médicales de Franceville (CIRMF), B.P. 769 Franceville, Gabon
| | - Ayola Akim Adegnika
- Centre de Recherches Médicale de Lambarené (CERMEL), B.P. 242, Lambarené, Gabon. Institut für Tropenmedizin, Universität Tübingen, Tübingen, Germany; Department of Parasitology, Leiden University Medical Center, Leiden, the Netherlands; German Center for Infection Research, Tübingen, Germany
| | | |
Collapse
|
2
|
Koumba Lengongo JV, Ndiaye YD, Tshibola Mbuyi ML, Ndong Ngomo JM, Ndiaye D, Bouyou Akotet MK, Mawili-Mboumba DP. Increased Frequency of Pfdhps A581G Mutation in Plasmodium falciparum Isolates from Gabonese HIV-Infected Individuals. Malar Res Treat 2019; 2019:9523259. [PMID: 31210925 PMCID: PMC6532279 DOI: 10.1155/2019/9523259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 04/08/2019] [Accepted: 04/14/2019] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Studying malaria parasites cross resistance to sulfadoxine-pyrimethamine (SP) and trimethoprim-sulfamethoxazole (cotrimoxazole, CTX) is necessary in areas coendemic for malaria and HIV. Polymorphism and frequency of drug resistance molecular markers, Pfdhfr and Pfdhps genes have been assessed in Plasmodium falciparum isolates from HIV-infected adults, in Gabon. MATERIEL AND METHODS A cross-sectional study was conducted in three HIV care and treatment centers, at Libreville, the capital city of Gabon and at Oyem and Koulamoutou, two rural cities between March 2015 and June 2016. P. falciparum-infected HIV adults were selected. Analysis of Pfdhfr and Pfdhps genes was performed using high resolution melting (HRM) technique. RESULTS Pfdhps A581G mutation was found in 23.5% (8/34) of the isolates. Triple Pfdhfr mutation (51I-59R-108N) was predominant (29.4%; n=10) while 17.6% (n=6) of the isolates carried a quadruple mutation (Pfdhfr 51I-59R-108N + Pfdhps 437G; Pfdhfr 51I-108N + Pfdhps 437G-Pfdhps581G; Pfdhfr 51I-59R-108N + Pfdhps 581G). Highly resistant genotype was detected in around 10% (n=3) of the isolates. The quintuple mutation (triple Pfdhfr 51I-59R-108N and double Pfdhps437-581) was only found in isolates from two patients who did not use CTX. The most frequent haplotypes were those with a single mutation (NCNIAKA) (36%) and a quadruple mutation (NCIIGKG, NRIIGKA, and NRIIAKG). Mixed unknown genotypes were found at codon 164 in three isolates. Mixed genotypes were more frequent at codons 51 (23.5%; n=8) and 59 (20.5%; n=7) (p<0.01). CONCLUSION Pfdhps A581G mutation as well as new combination of quintuple mutations is found for the first time in isolates from HIV-infected patients in Gabon in comparison to a previous study. The detection of these genotypes at a nonnegligible frequency underlines the need of a regular surveillance of antifolates drug resistance.
Collapse
Affiliation(s)
| | - Yaye Dié Ndiaye
- Laboratory of Parasitology Mycology, Aristide le Dantec Hospital, Faculty of Medicine and Pharmacy, Cheikh Anta Diop University, 5005 Dakar, Senegal
- The International Centers of Excellence for Malaria Research (ICEMR) Program, Dakar, Senegal
| | - Marie Louise Tshibola Mbuyi
- Department of Parasitology Mycology, Faculty of Medicine, Université des Sciences de la Santé, Libreville BP4009, Gabon
| | - Jacques Mari Ndong Ngomo
- Department of Parasitology Mycology, Faculty of Medicine, Université des Sciences de la Santé, Libreville BP4009, Gabon
| | - Daouda Ndiaye
- Laboratory of Parasitology Mycology, Aristide le Dantec Hospital, Faculty of Medicine and Pharmacy, Cheikh Anta Diop University, 5005 Dakar, Senegal
- The International Centers of Excellence for Malaria Research (ICEMR) Program, Dakar, Senegal
| | - Marielle Karine Bouyou Akotet
- Department of Parasitology Mycology, Faculty of Medicine, Université des Sciences de la Santé, Libreville BP4009, Gabon
| | | |
Collapse
|
3
|
Voumbo-Matoumona DF, Akiana J, Madamet M, Kouna LC, Lekana-Douki JB, Pradines B. High prevalence of Plasmodium falciparum antimalarial drug resistance markers in isolates from asymptomatic patients from the Republic of the Congo between 2010 and 2015. J Glob Antimicrob Resist 2018; 14:277-283. [PMID: 30121345 DOI: 10.1016/j.jgar.2018.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES This study investigated the prevalence of haplotypes of the Pfdhps, Pfdhfr, Pfcrt, Pfmdr1 and PfK13 resistance markers in isolates from asymptomatic patients from the Republic of the Congo following implementation of artemisinin based-combination therapy (ACT). METHODS Peripheral blood was collected from asymptomatic children in 2010 and 2015 from Brazzaville in the south and in 2013 in the north of the Congo. Genotypes of Pfmdr1, Pfcrt, Pfdhps, Pfdhfr and PfK13 were assessed by PCR. RESULTS Children from 2010 were younger than those from 2015 (mean age 5.38 years vs. 8.67 years; P=0.003). The main Pfcrt haplotype was the wild-type CVMNK (84.85%) in 2010, whereas the mutant CVIET (61.64%) predominated in 2015 (P<0.001). In the north, 45.00% of samples were CVMNK and 10.00% were CVIET. Other samples harboured new haplotypes in the country or mixed alleles. No significant difference in Pfmdr1 haplotypes was observed in 2010 and 2015 and the main haplotypes were NYD and NFD (30.56% vs. 28.57% and 61.11% vs. 42.86% for 2010 and 2015, respectively). In the south, the Pfdhps haplotypes observed were AAKAA, AGKAA, SGKAA and SGEGA (87.50% vs. 0%, 12.50% vs. 33.33%, 0% vs. 33.33% and 0% vs. 33.33% for 2010 and 2015, respectively). For Pfdhfr, the IRNI haplotype was most prevalent (85.71% for 2010, 87.50% for 2013 and 100% for 2015). No PfK13 mutations were found. CONCLUSIONS Monitoring the efficacy of ACT and intermittent preventive treatment with sulfadoxine-pyrimethamine is necessary to ensure an epidemiological survey of asymptomatic malaria.
Collapse
Affiliation(s)
- Dominique Fatima Voumbo-Matoumona
- Unité d'Evolution, Epidémiologie et Résistances Parasitaires (UNEEREP), Centre International de Recherche Médicales de Franceville, BP 769 Franceville, Gabon; Unité Parasitologie et Entomologie, Département des Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France; Ecole Doctorale Régionale d'Afrique Centrale en Infectiologie Tropicale, BP 876 Franceville, Gabon
| | - Jean Akiana
- Départements des Masters/Licences, Parcours-Types des Sciences Biologiques, Faculté des Sciences et Techniques, Université Marien Ngouabi, BP 69, Brazzaville, Congo; Direction de la Médecine Préventive et des Essais Cliniques, Laboratoire National de Santé Publique, BP 120 Brazzaville, Congo
| | - Marylin Madamet
- Unité Parasitologie et Entomologie, Département des Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France; Aix-Marseille Univ., IRD, AP-HM, SSA, VITROME, IHU Méditerranée Infection, Marseille, France; Centre National de Référence du Paludisme, Marseille, France
| | - Lady Charlène Kouna
- Unité d'Evolution, Epidémiologie et Résistances Parasitaires (UNEEREP), Centre International de Recherche Médicales de Franceville, BP 769 Franceville, Gabon
| | - Jean Bernard Lekana-Douki
- Unité d'Evolution, Epidémiologie et Résistances Parasitaires (UNEEREP), Centre International de Recherche Médicales de Franceville, BP 769 Franceville, Gabon; Département de Parasitologie Mycologie et de Médecine Tropicale, Université des Science de la Santé, BP 4005 Libreville, Gabon
| | - Bruno Pradines
- Unité Parasitologie et Entomologie, Département des Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France; Aix-Marseille Univ., IRD, AP-HM, SSA, VITROME, IHU Méditerranée Infection, Marseille, France; Centre National de Référence du Paludisme, Marseille, France.
| |
Collapse
|
4
|
Increased Prevalence of Mutant Allele Pfdhps 437G and Pfdhfr Triple Mutation in Plasmodium falciparum Isolates from a Rural Area of Gabon, Three Years after the Change of Malaria Treatment Policy. Malar Res Treat 2016; 2016:9694372. [PMID: 27190671 PMCID: PMC4852121 DOI: 10.1155/2016/9694372] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 01/22/2016] [Accepted: 02/16/2016] [Indexed: 11/19/2022] Open
Abstract
In Gabon, sulfadoxine-pyrimethamine (SP) is recommended for intermittent preventive treatment during pregnancy (IPTp-SP) and for uncomplicated malaria treatment through ACTs drug. P. falciparum strains resistant to SP are frequent in areas where this drug is highly used and is associated with the occurrence of mutations on Plasmodium falciparum dihydrofolate reductase (Pfdhfr) and dihydropteroate synthetase (Pfdhps) genes. The aim of the study was to compare the proportion of mutations on Pfdhfr and Pfdhps genes in isolates collected at Oyem in northern Gabon, in 2005 at the time of IPTp-SP introduction and three years later. Point mutations were analyzed by nested PCR-RFLP method. Among 91 isolates, more than 90% carried Pfdhfr 108N and Pfdhfr 59R alleles. Frequencies of Pfdhfr 51I (98%) and Pfdhps 437G (67.7%) mutant alleles were higher in 2008. Mutations at codons 164, 540, and 581 were not detected. The proportion of the triple Pfdhfr mutation and quadruple mutation including A437G was high: 91.9% in 2008 and 64.8% in 2008, respectively. The present study highlights an elevated frequency of Pfdhfr and Pfdhps mutant alleles, although quintuple mutations were not found in north Gabon. These data suggest the need of a continuous monitoring of SP resistance in Gabon.
Collapse
|
5
|
Mendes C, Salgueiro P, Gonzalez V, Berzosa P, Benito A, do Rosário VE, de Sousa B, Cano J, Arez AP. Genetic diversity and signatures of selection of drug resistance in Plasmodium populations from both human and mosquito hosts in continental Equatorial Guinea. Malar J 2013; 12:114. [PMID: 23537170 PMCID: PMC3621214 DOI: 10.1186/1475-2875-12-114] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 03/15/2013] [Indexed: 11/17/2022] Open
Abstract
Background In Plasmodium, the high level of genetic diversity and the interactions established by co-infecting parasite populations within the same host may be a source of selection on pathogen virulence and drug resistance. As different patterns have already been described in humans and mosquitoes, parasite diversity and population structure should be studied in both hosts to properly assess their effects on infection and transmission dynamics. This study aimed to characterize the circulating populations of Plasmodium spp and Plasmodium falciparum from a combined set of human blood and mosquito samples gathered in mainland Equatorial Guinea. Further, the origin and evolution of anti-malarial resistance in this area, where malaria remains a major public health problem were traced. Methods Plasmodium species infecting humans and mosquitoes were identified by nested-PCR of chelex-extracted DNA from dried blood spot samples and mosquitoes. Analysis of Pfmsp2 gene, anti-malarial-resistance associated genes, Pfdhps, Pfdhfr, Pfcrt and Pfmdr1, neutral microsatellites (STR) loci and Pfdhfr and Pfdhps flanking STR was undertaken to evaluate P. falciparum diversity. Results Prevalence of infection remains high in mainland Equatorial Guinea. No differences in parasite formula or significant genetic differentiation were seen in the parasite populations in both human and mosquito samples. Point mutations in all genes associated with anti-malarial resistance were highly prevalent. A high prevalence was observed for the Pfdhfr triple mutant in particular, associated with pyrimethamine resistance. Analysis of Pfdhps and Pfdhfr flanking STR revealed a decrease in the genetic diversity. This finding along with multiple independent introductions of Pfdhps mutant haplotypes suggest a soft selective sweep and an increased differentiation at Pfdhfr flanking microsatellites hints a model of positive directional selection for this gene. Conclusions Chloroquine is no longer recommended for malaria treatment in Equatorial Guinea but sulphadoxine-pyrimethamine (SP) remains in use in combination with artesunate and is the only drug recommended in preventive chemotherapy in pregnancy. The high prevalence of point mutations in Pfdhfr and Pfdhps points to the danger of an eventual reduction in the efficacy of SP combined therapy in P. falciparum populations in Equatorial Guinea and to the essential continuous monitoring of these two genes.
Collapse
Affiliation(s)
- Cristina Mendes
- Centro de Malária e outras Doenças Tropicais, Unidade de Parasitologia Médica, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisboa, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Abdul-Ghani R, Farag HF, Allam AF. Sulfadoxine-pyrimethamine resistance in Plasmodium falciparum: a zoomed image at the molecular level within a geographic context. Acta Trop 2013; 125:163-90. [PMID: 23131424 DOI: 10.1016/j.actatropica.2012.10.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 10/25/2012] [Accepted: 10/26/2012] [Indexed: 10/27/2022]
Abstract
Antimalarial chemotherapy is one of the main pillars in the prevention and control of malaria. Following widespread resistance of Plasmodium falciparum to chloroquine, sulfadoxine-pyrimethamine came to the scene as an alternative to the cheap and well-tolerated chloroquine. However, widespread resistance to sulfadoxine-pyrimethamine has been documented. In vivo efficacy tests are the gold standard for assessing drug resistance and treatment failure. However, they have many disadvantages, such as influence of host immunity and drug pharmacokinetics. In vitro tests of antimalarial drug efficacy also have many technical difficulties. Molecular markers of resistance have emerged as epidemiologic tools to investigate antimalarial drug resistance even before becoming clinically evident. Mutations in P. falciparum dihydrofolate reductase and dihydrofolate synthase have been extensively studied as molecular markers for resistance to pyrimethamine and sulfadoxine, respectively. This review highlights the resistance of P. falciparum at the molecular level presenting both supporting and opposing studies on the utility of molecular markers.
Collapse
|
7
|
Mharakurwa S, Kumwenda T, Mkulama MAP, Musapa M, Chishimba S, Shiff CJ, Sullivan DJ, Thuma PE, Liu K, Agre P. Malaria antifolate resistance with contrasting Plasmodium falciparum dihydrofolate reductase (DHFR) polymorphisms in humans and Anopheles mosquitoes. Proc Natl Acad Sci U S A 2011; 108:18796-801. [PMID: 22065788 PMCID: PMC3219121 DOI: 10.1073/pnas.1116162108] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Surveillance for drug-resistant parasites in human blood is a major effort in malaria control. Here we report contrasting antifolate resistance polymorphisms in Plasmodium falciparum when parasites in human blood were compared with parasites in Anopheles vector mosquitoes from sleeping huts in rural Zambia. DNA encoding P. falciparum dihydrofolate reductase (EC 1.5.1.3) was amplified by PCR with allele-specific restriction enzyme digestions. Markedly prevalent pyrimethamine-resistant mutants were evident in human P. falciparum infections--S108N (>90%), with N51I, C59R, and 108N+51I+59R triple mutants (30-80%). This resistance level may be from selection pressure due to decades of sulfadoxine/pyrimethamine use in the region. In contrast, cycloguanil-resistant mutants were detected in very low frequency in parasites from human blood samples-S108T (13%), with A16V and 108T+16V double mutants (∼4%). Surprisingly, pyrimethamine-resistant mutants were of very low prevalence (2-12%) in the midguts of Anopheles arabiensis vector mosquitoes, but cycloguanil-resistant mutants were highly prevalent-S108T (90%), with A16V and the 108T+16V double mutant (49-57%). Structural analysis of the dihydrofolate reductase by in silico modeling revealed a key difference in the enzyme within the NADPH binding pocket, predicting the S108N enzyme to have reduced stability but the S108T enzyme to have increased stability. We conclude that P. falciparum can bear highly host-specific drug-resistant polymorphisms, most likely reflecting different selective pressures found in humans and mosquitoes. Thus, it may be useful to sample both human and mosquito vector infections to accurately ascertain the epidemiological status of drug-resistant alleles.
Collapse
Affiliation(s)
- Sungano Mharakurwa
- The Malaria Institute at Macha, Choma, Zambia; and
- Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
| | | | | | | | | | - Clive J. Shiff
- Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
| | - David J. Sullivan
- Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
| | - Philip E. Thuma
- The Malaria Institute at Macha, Choma, Zambia; and
- Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
| | - Kun Liu
- Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
| | - Peter Agre
- Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
| |
Collapse
|
8
|
Mombo-Ngoma G, Oyakhirome S, Ord R, Gabor JJ, Greutélaers KC, Profanter K, Greutélaers B, Kurth F, Lell B, Kun JFJ, Issifou S, Roper C, Kremsner PG, Grobusch MP. High prevalence of dhfr triple mutant and correlation with high rates of sulphadoxine-pyrimethamine treatment failures in vivo in Gabonese children. Malar J 2011; 10:123. [PMID: 21569596 PMCID: PMC3112455 DOI: 10.1186/1475-2875-10-123] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 05/14/2011] [Indexed: 11/17/2022] Open
Abstract
Background Drug resistance contributes to the global malaria burden. Plasmodium falciparum dihydrofolate reductase (dhfr) and dihydropteroate synthase (dhps) polymorphisms confer resistance to sulphadoxine-pyrimethamine (SP). Methods The study assessed the frequency of SP resistance-conferring polymorphisms in Plasmodium falciparum-positive samples from two clinical studies in Lambaréné. Their role on treatment responses and transmission potential was studied in an efficacy open-label clinical trial with a 28-day follow-up in 29 children under five with uncomplicated malaria. Results SP was well tolerated by all subjects in vivo. Three subjects were excluded from per-protocol analysis. PCR-corrected, 12/26 (46%) achieved an adequate clinical and parasitological response, 13/26 (50%) were late parasitological failures, while 1/26 (4%) had an early treatment failure, resulting in early trial discontinuation. Of 106 isolates, 98 (92%) carried the triple mutant dhfr haplotype. Three point mutations were found in dhps in a variety of haplotypic configurations. The 437G + 540E double mutant allele was found for the first time in Gabon. Conclusions There is a high prevalence of dhfr triple mutant with some dhps point mutations in Gabon, in line with treatment failures observed, and molecular markers of SP resistance should be closely monitored. Trial Registration ClinicalTrials.gov: NCT00453856
Collapse
|
9
|
Nantulya FN, Kengeya-Kayondo JF, Ogundahunsi OAT. Research Themes and Advances in Malaria Research Capacity Made by the Multilateral Initiative on Malaria. Am J Trop Med Hyg 2007. [DOI: 10.4269/ajtmh.77.6.suppl.303] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Florence N. Nantulya
- Special Program for Research and Training in Tropical Diseases, World Health Organization, Geneva, Switzerland; Chemin du Joran, Nyon, Switzerland
| | - Jane F. Kengeya-Kayondo
- Special Program for Research and Training in Tropical Diseases, World Health Organization, Geneva, Switzerland; Chemin du Joran, Nyon, Switzerland
| | - Olumide A. T. Ogundahunsi
- Special Program for Research and Training in Tropical Diseases, World Health Organization, Geneva, Switzerland; Chemin du Joran, Nyon, Switzerland
| |
Collapse
|
10
|
Ahmed A, Bararia D, Vinayak S, Yameen M, Biswas S, Dev V, Kumar A, Ansari MA, Sharma YD. Plasmodium falciparum isolates in India exhibit a progressive increase in mutations associated with sulfadoxine-pyrimethamine resistance. Antimicrob Agents Chemother 2004; 48:879-89. [PMID: 14982779 PMCID: PMC353157 DOI: 10.1128/aac.48.3.879-889.2004] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The combination of sulfadoxine-pyrimethamine (SP) is used as a second line of therapy for the treatment of uncomplicated chloroquine-resistant Plasmodium falciparum malaria. Resistance to SP arises due to certain point mutations in the genes for the dihydrofolate reductase (DHFR) and dihydropteroate synthetase (DHPS) enzymes of the parasite. We have analyzed these mutations in 312 field isolates of P. falciparum collected from different parts of India to assess the effects of drug pressure. The rate of mutation in the gene for DHFR was found to be higher than that in the gene for DHPS, although the latter had mutations in more alleles. There was a temporal rise in the number of isolates with double dhfr mutations and single dhps mutations, resulting in an increased total number of mutations in the loci for DHFR and DHPS combined over a 5-year period. During these 5 years, the number of isolates with drug-sensitive genotypes decreased and the number of isolates with drug-resistant genotypes (double DHFR mutations and a single DHPS mutation) increased significantly. The number of isolates with the triple mutations in each of the genes for the two enzymes (for a total of six mutations), however, remained very low, coinciding with the very low rate of SP treatment failure in the country. There was a regional bias in the mutation rate, as isolates from the northeastern region (the state of Assam) showed higher rates of mutation and more complex genotypes than isolates from the other regions. It was concluded that even though SP is prescribed as a second line of treatment in India, the mutations associated with SP resistance continue to be progressively increasing.
Collapse
Affiliation(s)
- Anwar Ahmed
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi 110029. Malaria Research Centre, 22 Sham Nath Marg, New Delhi 110054, India
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Kofoed PE, Alfrangis M, Poulsen A, Rodrigues A, Gjedde SB, Rønn A, Rombo L. Genetic markers of resistance to pyrimethamine and sulfonamides in Plasmodium falciparum parasites compared with the resistance patterns in isolates of Escherichia coli from the same children in Guinea-Bissau. Trop Med Int Health 2004; 9:171-7. [PMID: 14728622 DOI: 10.1046/j.1365-3156.2003.01164.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The antifolate drugs sulphadoxine and pyrimethamine are used for treatment of chloroquine-resistant Plasmodium falciparum in Africa. Resistance to pyrimethamine has been associated with point mutations in the dhfr-gene and resistance to sulphadoxine with mutations in the dhps-gene. There is concern that the use of the antifolates trimethoprim and sulphamethoxazole for treatment of other infectious diseases will result in the selection of malaria parasites with mutations in these genes. In Guinea-Bissau, where sulfonamide and trimethoprim-containing drugs have been used extensively, we decided to assess the prevalence of mutations in the dhfr-and dhps-gene in P. falciparum isolated from children suffering from acute malaria and to assess the resistance patterns to trimethoprim/sulphamethoxazole in Escherichia coli isolated from the same patients. A thick film and a blood sample for polymerase chain reaction (PCR) were obtained from 100 children attending the Bandim Health Centre in Bissau with symptoms compatible with malaria. Furthermore, a stool sample was collected from the same children and cultured for E. coli. Of the cultured E. coli, 67% were resistant both to sulfonamides and trimethoprim, 4% to sulfonamides alone, 3% to trimethoprim alone while 26% were fully sensitive to both drugs. PCR was successfully performed in 97 blood samples. Of these, 41% had triple mutations at the dhfr-gene (at codons 51, 59 and 108), and 15% had triple mutations plus mutation at codon 437 in the dhps-gene. Only 45% harboured the wild-type dhfr-gene. Thus both bacterial resistance and mutations in the parasitic genes were common, but not linked in the individual child. As sulphadoxine-pyrimethamine has only been used as a second line treatment for chloroquine resistant malaria in Guinea-Bissau for a few years, it is worrying to find a high prevalence of mutations in the parasitic genes coding for resistance to these drugs. Therefore, restricting the use of sulphadoxine-pyrimethamine for the treatment of chloroquine resistant malaria might not be sufficient to prevent the development of resistance in the parasites as long as antifolate drugs are used extensively.
Collapse
|
12
|
Issifou S, Rogier C, Adjagba-Olakpo M, Chabi-Worou N, Ntoumi F. Complexity and genetic diversity of Plasmodium falciparum infections in young children living in urban areas of Central and West Africa. Parasitol Res 2003; 90:423-8. [PMID: 12759745 DOI: 10.1007/s00436-003-0854-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2002] [Accepted: 01/29/2003] [Indexed: 10/26/2022]
Abstract
A site-based characterization of Plasmodium falciparum infections in children living in two malaria hyperendemic urban areas from West and Central Africa was undertaken. A total of 58 and 46 children with either asymptomatic infections or uncomplicated (symptomatic) malaria were recruited in Gabon and Benin, respectively. Parasite density, hematological factors, the genetic diversity of P. falciparum merozoite surface protein 2 (msp2) and the complexity of infections (mean number of P. falciparum genotypes per infected child) were used for this characterization. Gabonese children with uncomplicated malaria presented a higher mean axillary temperature (39.2 vs 38.6, P=0.004) and a higher geometric mean parasite density (30,538 vs 18,921, P<0.001) associated with a significantly lower hemoglobin level ( P<0.01). A higher degree of msp2 polymorphism and the complexity of P. falciparum infections were also observed in children from Gabon ( P<0.05). With a similar level of malaria transmission in both urban sites, these results suggest an impact of malaria control interventions on the dynamics of concurrent P. falciparum infections.
Collapse
Affiliation(s)
- Saadou Issifou
- Centre Régional pour le Développement et la Santé (CREDESA/SSP), Cotonou, Benin
| | | | | | | | | |
Collapse
|
13
|
Wongsrichanalai C, Pickard AL, Wernsdorfer WH, Meshnick SR. Epidemiology of drug-resistant malaria. THE LANCET. INFECTIOUS DISEASES 2002; 2:209-18. [PMID: 11937421 DOI: 10.1016/s1473-3099(02)00239-6] [Citation(s) in RCA: 527] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Since the first reports of chloroquine-resistant falciparum malaria in southeast Asia and South America almost half a century ago, drug-resistant malaria has posed a major problem in malaria control. By the late 1980s, resistance to sulfadoxine-pyrimethamine and to mefloquine was also prevalent on the Thai-Cambodian and Thai-Myanmar (Thai-Burmese) borders, rendering them established multidrug-resistant (MDR) areas. Chloroquine resistance spread across Africa during the 1980s, and severe resistance is especially found in east Africa. As a result, more than ten African countries have switched their first-line drug to sulfadoxine-pyrimethamine. Of great concern is the fact that the efficacy of this drug in Africa is progressively deteriorating, especially in foci in east Africa, which are classified as emerging MDR areas. Urgent efforts are needed to lengthen the lifespan of sulfadoxine-pyrimethamine and to identify effective, affordable, alternative antimalarial regimens. Molecular markers for antimalarial resistance have been identified, including pfcrt polymorphisms associated with chloroquine resistance and dhfr and dhps polymorphisms associated with sulfadoxine-pyrimethamine resistance. Polymorphisms in pfmdr1 may also be associated with resistance to chloroquine, mefloquine, quinine, and artemisinin. Use of such genetic information for the early detection of resistance foci and future monitoring of drug-resistant malaria is a potentially useful epidemiological tool, in conjunction with the conventional in-vivo and in-vitro drug-sensitivity assessments. This review describes the various features of drug resistance in Plasmodium falciparum, including its determinants, current status in diverse geographical areas, molecular markers, and their implications.
Collapse
|