Zhong L, Furne JK, Levitt MD. An extract of black, green, and mulberry teas causes malabsorption of carbohydrate but not of triacylglycerol in healthy volunteers.
Am J Clin Nutr 2006;
84:551-5. [PMID:
16960168 DOI:
10.1093/ajcn/84.3.551]
[Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND
In vitro studies suggest that extracts of black, green, and mulberry teas could interfere with carbohydrate and triacylglycerol absorption via their ability to inhibit alpha-amylase, alpha-glucosidase, sodium-glucose transporters, and pancreatic lipase.
OBJECTIVE
We measured breath hydrogen and 13CO2 to investigate the ability of an extract of black, green, and mulberry tea leaves to induce malabsorption of carbohydrate and triacylglycerol in healthy volunteers.
DESIGN
In a crossover design, healthy adult volunteers randomly ingested test meals with a placebo beverage or a preparation containing an extract of black (0.1 g), green (0.1 g), and mulberry (1.0 g) teas. One test meal contained 50 g carbohydrate as white rice, 10 g butter, and 0.2 g [13C]triolein, and the beverages contained 10 g sucrose. The calorie content of the second test meal consisted entirely of lipid (30 g olive oil and 0.2 g [13C]triolein). Breath-hydrogen and 13CO2 concentrations were assessed hourly for 8 h, and symptoms were rated on a linear scale.
RESULTS
With the carbohydrate-containing meal, the tea extract resulted in a highly significant increase in breath-hydrogen concentrations, which indicated appreciable carbohydrate malabsorption. A comparison of hydrogen excretion after the carbohydrate-containing meal with that after the nonabsorbable disaccharide lactulose suggested that the tea extract induced malabsorption of 25% of the carbohydrate. The tea extract did not cause triacylglycerol malabsorption or any significant increase in symptoms.
CONCLUSION
This study provides the basis for additional experiments to determine whether the tea extract has clinical utility for the treatment of obesity or diabetes.
Collapse