1
|
Emperador S, Habbane M, López-Gallardo E, Del Rio A, Llobet L, Mateo J, Sanz-López AM, Fernández-García MJ, Sánchez-Tocino H, Benbunan-Ferreiro S, Calabuig-Goena M, Narvaez-Palazón C, Fernández-Vega B, González-Iglesias H, Urreizti R, Artuch R, Pacheu-Grau D, Bayona-Bafaluy P, Montoya J, Ruiz-Pesini E. Identification and characterization of a new pathologic mutation in a large Leber hereditary optic neuropathy pedigree. Orphanet J Rare Dis 2024; 19:148. [PMID: 38582886 PMCID: PMC10999093 DOI: 10.1186/s13023-024-03165-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 03/30/2024] [Indexed: 04/08/2024] Open
Abstract
BACKGROUND Most patients suffering from Leber hereditary optic neuropathy carry one of the three classic pathologic mutations, but not all individuals with these genetic alterations develop the disease. There are different risk factors that modify the penetrance of these mutations. The remaining patients carry one of a set of very rare genetic variants and, it appears that, some of the risk factors that modify the penetrance of the classical pathologic mutations may also affect the phenotype of these other rare mutations. RESULTS We describe a large family including 95 maternally related individuals, showing 30 patients with Leber hereditary optic neuropathy. The mutation responsible for the phenotype is a novel transition, m.3734A > G, in the mitochondrial gene encoding the ND1 subunit of respiratory complex I. Molecular-genetic, biochemical and cellular studies corroborate the pathogenicity of this genetic change. CONCLUSIONS With the study of this family, we confirm that, also for this very rare mutation, sex and age are important factors modifying penetrance. Moreover, this pedigree offers an excellent opportunity to search for other genetic or environmental factors that additionally contribute to modify penetrance.
Collapse
Affiliation(s)
- Sonia Emperador
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, 50009- and 50013, Zaragoza, Spain
- Instituto de Investigación Sanitaria (IIS) de Aragón, 50009, Zaragoza, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Mouna Habbane
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, 50009- and 50013, Zaragoza, Spain
- Laboratoire Biologie Et Santé, Faculté Des Sciences Ben M'Sick, Hassan II University of Casablanca, 20670, Casablanca, Morocco
| | - Ester López-Gallardo
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, 50009- and 50013, Zaragoza, Spain
- Instituto de Investigación Sanitaria (IIS) de Aragón, 50009, Zaragoza, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Alejandro Del Rio
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, 50009- and 50013, Zaragoza, Spain
| | - Laura Llobet
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, 50009- and 50013, Zaragoza, Spain
- Instituto de Investigación Sanitaria (IIS) de Aragón, 50009, Zaragoza, Spain
- Certest Biotec, 50840-San Mateo de Gállego, Zaragoza, Spain
| | - Javier Mateo
- Servicio de Oftalmología, Hospital Clínico Universitario Lozano Blesa, 50009, Zaragoza, Spain
| | - Ana María Sanz-López
- Servicio de Oftalmología, Hospital Universitario de Toledo, 45004, Toledo, Spain
| | | | | | - Sol Benbunan-Ferreiro
- Servicio de Oftalmología. Hospital Universitario Río Hortega, 47012, Valladolid, Spain
| | - María Calabuig-Goena
- Servicio de Oftalmología. Hospital Universitario Río Hortega, 47012, Valladolid, Spain
| | | | | | - Hector González-Iglesias
- Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), 33300-Villaviciosa, Asturias, Spain
| | - Roser Urreizti
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Departament de Bioquímica Clínica, Institut de Recerca Sant Joan de Déu, 08950, Barcelona, Spain
| | - Rafael Artuch
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Departament de Bioquímica Clínica, Institut de Recerca Sant Joan de Déu, 08950, Barcelona, Spain
| | - David Pacheu-Grau
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, 50009- and 50013, Zaragoza, Spain
- Instituto de Investigación Sanitaria (IIS) de Aragón, 50009, Zaragoza, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Pilar Bayona-Bafaluy
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, 50009- and 50013, Zaragoza, Spain
- Instituto de Investigación Sanitaria (IIS) de Aragón, 50009, Zaragoza, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, 50018, Zaragoza, Spain
| | - Julio Montoya
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, 50009- and 50013, Zaragoza, Spain.
- Instituto de Investigación Sanitaria (IIS) de Aragón, 50009, Zaragoza, Spain.
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain.
| | - Eduardo Ruiz-Pesini
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, 50009- and 50013, Zaragoza, Spain.
- Instituto de Investigación Sanitaria (IIS) de Aragón, 50009, Zaragoza, Spain.
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain.
| |
Collapse
|
2
|
Oxidative Stress in Antibiotic Toxic Optic Neuropathy Mimicking Acute LHON in a Patient with Exacerbation of Cystic Fibrosis. STRESSES 2023. [DOI: 10.3390/stresses3010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
The striking similarity of disc edema without leakage on fluorescein angiography, which is pathognomonic of Leber hereditary optic neuropathy (LHON), was present in a patient with cystic fibrosis with antibiotic toxic optic neuropathy. This similarity suggested the common effect of oxidative stress on retinal ganglion cells in inherited mitochondrial and antibiotic optic neuropathies. We present the case of a patient with advanced cystic fibrosis on chronic antibiotic treatment who experienced a rapid painless bilateral visual decline over a course of a few weeks. At examination, his corrected visual acuity was reduced to 0.3 in both eyes, with dyschromatopsia and central scotoma. The appearance of the fundus resembled the typical clinical features of acute LHON with hyperemic optic discs and tortuous vessels with no dye leakage from the optic discs on fluorescein angiography. Ganglion cell layer loss was seen on optic coherence tomography, with all findings pointing to LHON. Genetic testing did not reveal any LHON-specific mutations. After extended genetic testing, a heterozygous variant c.209C>T in the OPA3 gene on chromosome 19, g.46032648G>A, classified as a variant of unknown significance, was also found. After discontinuing antibiotics and general improvements in his health, surprisingly, his visual function completely improved. Later, he also received a bilateral lung transplant that further improved his general condition, and his vision remained normal. Excluding LHON, the transient optic neuropathy in our patient could be mainly due to antibiotic toxicity of linezolid and ciprofloxacin, which have been linked to mitochondrial dysfunction and advanced cystic fibrosis with hypoxic status. We suggest the possibility that patients with cystic fibrosis may be more prone to developing mitochondrial optic neuropathy, especially with additional risk factors such as chronic antibiotic therapy, which affect mitochondrial function, and can perhaps serve as a model for LHON.
Collapse
|
3
|
Abstract
PURPOSE OF REVIEW We review pathophysiology and clinical features of mitochondrial disorders manifesting with cardiomyopathy. RECENT FINDINGS Mechanistic studies have shed light into the underpinnings of mitochondrial disorders, providing novel insights into mitochondrial physiology and identifying new therapeutic targets. Mitochondrial disorders are a group of rare genetic diseases that are caused by mutations in mitochondrial DNA (mtDNA) or in nuclear genes that are essential to mitochondrial function. The clinical picture is extremely heterogeneous, the onset can occur at any age, and virtually, any organ or tissue can be involved. Since the heart relies primarily on mitochondrial oxidative metabolism to fuel contraction and relaxation, cardiac involvement is common in mitochondrial disorders and often represents a major determinant of their prognosis.
Collapse
Affiliation(s)
- Tudor-Alexandru Popoiu
- Department of Translational Research, Comprehensive Heart Failure Center, University Clinic Würzburg, Wurzburg, Germany
- "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Jan Dudek
- Department of Translational Research, Comprehensive Heart Failure Center, University Clinic Würzburg, Wurzburg, Germany
| | - Christoph Maack
- Department of Translational Research, Comprehensive Heart Failure Center, University Clinic Würzburg, Wurzburg, Germany
| | - Edoardo Bertero
- Department of Translational Research, Comprehensive Heart Failure Center, University Clinic Würzburg, Wurzburg, Germany.
- Department of Internal Medicine and Specialties (Di.M.I.), University of Genoa, Genoa, Italy.
| |
Collapse
|
4
|
Leber's Hereditary Optic Neuropathy with Mitochondrial DNA Mutation G11778A: A Systematic Literature Review and Meta-Analysis. BIOMED RESEARCH INTERNATIONAL 2023; 2023:1107866. [PMID: 36743514 PMCID: PMC9893526 DOI: 10.1155/2023/1107866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 01/26/2023]
Abstract
Background LHON is a progressive disease with early disease onset and male predominance, usually causing devastating visual loss to patients. These systematic review and meta-analysis are aimed at summarizing epidemiology, disease onset and progression, visual recovery, risk factors, and treatment options of Leber's hereditary optic neuropathy (LHON) with mitochondrial DNA mutation G11778A from current evidence. Methods The PubMed database was examined from its inception date to November 2021. Data from included studies were pooled with either a fixed-effects model or a random-effects model, depending on the results of heterogeneity tests. Sensitivity analysis was conducted to test the robustness of results. Results A total of 41 articles were included in the systematic review for qualitative analysis, and 34 articles were included for quantitative meta-analysis. The pooled estimate of proportion of G11778A mutation among the three primary mutations of mitochondrial DNA (G11778A, G3460A, and T14484C) for LHON was 73% (95% CI: 67% and 79%), and the LHON patients with G11778A mutation included the pooled male ratio estimate of 77% (76% and 79%), the pooled age estimate of 35.3 years (33.2 years and 37.3 years), the pooled onset age estimate of 22.1 years (19.7 years and 24.6 years), the pooled visual acuity estimate of 1.4 LogMAR (1.2 LogMAR and 1.6 LogMAR), and the pooled estimate of spontaneous visual recovery rate (in either 1 eye) of 20% (15% and 27%). Conclusions The G11778A mutation is a prevalent mitochondrial DNA mutation accounting for over half of LHON cases with three primary mutations. Spontaneous visual recovery is rare, and no effective treatment is currently available.
Collapse
|
5
|
Quigley C, Stephenson KAJ, Kenna P, Cassidy L. Optic Nerve Structural and Functional Changes in LHON-Affected and Asymptomatic Maternal Relatives: Association with H and HV Mitochondrial Haplogroups. Int J Mol Sci 2023; 24:ijms24021068. [PMID: 36674591 PMCID: PMC9864201 DOI: 10.3390/ijms24021068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/22/2022] [Accepted: 12/21/2022] [Indexed: 01/09/2023] Open
Abstract
Leber Hereditary Optic Neuropathy (LHON) affects a minority of carriers of causative mitochondrial DNA mutations. We investigated a cohort of patients with LHON, including m.11778G>A, m.3460G>A, m.14484T>C and DNAJC30 c.152A>G variants, and their asymptomatic maternal carrier relatives for additional potential associations with vision loss. We assessed visual acuity, optical coherence tomography (OCT) of the peripapillary retinal nerve fibre layer (RNFL), visually evoked potential including P-100 latency, and full mitochondrial genome sequencing. Comparison was made with a reference standard for OCT; European Descent, Heidelberg Engineering ©; and electrophysiology measurements with in-house normative ranges. RNFL was thinned overall in LHON patients (n = 12); median global RNFL −54 μm in the right eye (RE) and −50 μm in the left eye (LE) versus normal, and was found to be normal overall in asymptomatic carriers at +1 μm RE and −2 μm LE (n = 16). In four asymptomatic carriers there was RNFL thinning found either unilaterally or bilaterally; these cases were associated with isolated delay in P-100 latency (25%), delay and reduced visual acuity (50%), or reduced visual acuity without P-100 latency delay (25%). Optic nerve dysfunction was associated with mitochondrial haplogroup H and HV, versus non-H haplogroups, in the asymptomatic carriers (Fisher’s exact test, p = 0.05). Our findings suggest that optic nerve abnormalities may be identified in asymptomatic LHON mitochondrial mutation carriers, which may be associated with optic nerve dysfunction. For asymptomatic carriers these findings were associated with mitochondrial haplogroup H and HV.
Collapse
|
6
|
Abstract
Mitochondrial optic neuropathies have a leading role in the field of mitochondrial medicine ever since 1988, when the first mutation in mitochondrial DNA was associated with Leber's hereditary optic neuropathy (LHON). Autosomal dominant optic atrophy (DOA) was subsequently associated in 2000 with mutations in the nuclear DNA affecting the OPA1 gene. LHON and DOA are both characterized by selective neurodegeneration of retinal ganglion cells (RGCs) triggered by mitochondrial dysfunction. This is centered on respiratory complex I impairment in LHON and defective mitochondrial dynamics in OPA1-related DOA, leading to distinct clinical phenotypes. LHON is a subacute, rapid, severe loss of central vision involving both eyes within weeks or months, with age of onset between 15 and 35 years old. DOA is a more slowly progressive optic neuropathy, usually apparent in early childhood. LHON is characterized by marked incomplete penetrance and a clear male predilection. The introduction of next-generation sequencing has greatly expanded the genetic causes for other rare forms of mitochondrial optic neuropathies, including recessive and X-linked, further emphasizing the exquisite sensitivity of RGCs to compromised mitochondrial function. All forms of mitochondrial optic neuropathies, including LHON and DOA, can manifest either as pure optic atrophy or as a more severe multisystemic syndrome. Mitochondrial optic neuropathies are currently at the forefront of a number of therapeutic programs, including gene therapy, with idebenone being the only approved drug for a mitochondrial disorder.
Collapse
Affiliation(s)
- Valerio Carelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; IRCCS Istituto di Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy.
| | - Chiara La Morgia
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; IRCCS Istituto di Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Patrick Yu-Wai-Man
- John van Geest Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom; Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, United Kingdom; Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom; Institute of Ophthalmology, University College London, London, United Kingdom
| |
Collapse
|
7
|
Sathianvichitr K, Sigkaman B, Chirapapaisan N, Laowanapiban P, Padungkiatsagul T, Apinyawasisuk S, Witthayaweerasak J, Chuenkongkaew W. The epidemiology and mutation types of Leber's hereditary optic neuropathy in Thailand. Ann Med 2022; 54:1601-1607. [PMID: 35723074 PMCID: PMC9191831 DOI: 10.1080/07853890.2022.2082517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
PURPOSE Leber's hereditary optic neuropathy (LHON), the most common mitochondrial optic neuropathy, causes visual loss, especially in young adults. Due to the absence of epidemiological data in Southeast Asia, we aimed to determine Thai LHON patients' characteristics (demographic data, mutation types, and prognoses) as the first study in this region. METHODS This retrospective chart review enrolled all Thai LHON patients confirmed by three mitochondrial DNA mutations (G11778A, T14484C, and G3460A) between January 1997 and December 2016. Patients with more than one year of follow-up were included in a visual progression analysis. The Mann-Whitney U-test was applied to compare groups, and prognosis-associated factors were analysed with the generalized estimating equation. RESULTS In all, 229 patients were enrolled, with only nineteen females. Most mutations were of the G11778A type (91%), with T14484C accounting for the remainder. The age at onset of G11778A (21.9 years; interquartile range [IQR] 14.9, 33.5) was younger than that of T14484C (33.0 years; IQR 19.4, 37.5). Of 45 patients, the T14484C group demonstrated good vision recovery, whereas the G11778A group did not improve (difference in logMAR -0.7 and IQR -1.5, -0.2 versus logMAR 0.0 and IQR -0.3, 0.2, respectively; P value .001). The G11778A mutation, male, and older age were related to poor prognoses. CONCLUSIONS The leading mutation in Thai LHON patients is the G11778A missense, followed by T14484C, while G3460A was not detected. The vast majority of patients were young adult males. The G11778A mutation, older age, and male gender are associated with poor vision outcomes. Key messageThe G11778A missense mutation is the most common among Thai LHON patients, followed by T14484C, while G3460A was not found. The G11778A mutation, older age, and male gender are associated with poor vision outcomes.
Collapse
Affiliation(s)
- Kanchalika Sathianvichitr
- Department of Ophthalmology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Benjaporn Sigkaman
- Department of Ophthalmology, Bhumibol Adulyadej Hospital, Bangkok, Thailand
| | - Niphon Chirapapaisan
- Department of Ophthalmology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Poramaet Laowanapiban
- Ophthalmology Service, Mettapracharak (Wat Rai Khing) Hospital, Nakhon Pathom, Thailand
| | - Tanyatuth Padungkiatsagul
- Department of Ophthalmology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Supanut Apinyawasisuk
- Department of Ophthalmology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Ophthalmology Department, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | | | - Wanicha Chuenkongkaew
- Department of Ophthalmology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
8
|
|
9
|
Cheng HC, Chi SC, Liang CY, Yu JY, Wang AG. Candidate Modifier Genes for the Penetrance of Leber's Hereditary Optic Neuropathy. Int J Mol Sci 2022; 23:ijms231911891. [PMID: 36233195 PMCID: PMC9569928 DOI: 10.3390/ijms231911891] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
Leber’s hereditary optic neuropathy (LHON) is a maternally transmitted disease caused by mitochondria DNA (mtDNA) mutation. It is characterized by acute and subacute visual loss predominantly affecting young men. The mtDNA mutation is transmitted to all maternal lineages. However, only approximately 50% of men and 10% of women harboring a pathogenic mtDNA mutation develop optic neuropathy, reflecting both the incomplete penetrance and its unexplained male prevalence, where over 80% of patients are male. Nuclear modifier genes have been presumed to affect the penetrance of LHON. With conventional genetic methods, prior studies have failed to solve the underlying pathogenesis. Whole exome sequencing (WES) is a new molecular technique for sequencing the protein-coding region of all genes in a whole genome. We performed WES from five families with 17 members. These samples were divided into the proband group (probands with acute onset of LHON, n = 7) and control group (carriers including mother and relative carriers with mtDNSA 11778 mutation, without clinical manifestation of LHON, n = 10). Through whole exome analysis, we found that many mitochondria related (MT-related) nuclear genes have high percentage of variants in either the proband group or control group. The MT genes with a difference over 0.3 of mutation percentage between the proband and control groups include AK4, NSUN4, RDH13, COQ3, and FAHD1. In addition, the pathway analysis revealed that these genes were associated with cofactor metabolism pathways. Family-based analysis showed that several candidate MT genes including METAP1D (c.41G > T), ACACB (c.1029del), ME3 (c.972G > C), NIPSNAP3B (c.280G > C, c.476C > G), and NSUN4 (c.4A > G) were involved in the penetrance of LHON. A GWAS (genome wide association study) was performed, which found that ADGRG5 (Chr16:575620A:G), POLE4 (Chr2:7495872T:G), ERMAP (Chr1:4283044A:G), PIGR (Chr1:2069357C:T;2069358G:A), CDC42BPB (Chr14:102949A:G), PROK1 (Chr1:1104562A:G), BCAN (Chr 1:1566582C:T), and NES (Chr1:1566698A:G,1566705T:C, 1566707T:C) may be involved. The incomplete penetrance and male prevalence are still the major unexplained issues in LHON. Through whole exome analysis, we found several MT genes with a high percentage of variants were involved in a family-based analysis. Pathway analysis suggested a difference in the mutation burden of MT genes underlining the biosynthesis and metabolism pathways. In addition, the GWAS analysis also revealed several candidate nuclear modifier genes. The new technology of WES contributes to provide a highly efficient candidate gene screening function in molecular genetics.
Collapse
Affiliation(s)
- Hui-Chen Cheng
- Program in Molecular Medicine, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Department of Ophthalmology, Taipei Veterans General Hospital, 201 Sec. 2, Shih-Pai Rd., Taipei 11217, Taiwan
- Department of Ophthalmology, School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Department of Life Sciences and Institute of Genome Sciences, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Sheng-Chu Chi
- Department of Ophthalmology, Taipei Veterans General Hospital, 201 Sec. 2, Shih-Pai Rd., Taipei 11217, Taiwan
| | - Chiao-Ying Liang
- Department of Ophthalmology, Taichung Veterans General Hospital, Taichung 40705, Taiwan
| | - Jenn-Yah Yu
- Department of Life Sciences and Institute of Genome Sciences, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - An-Guor Wang
- Department of Ophthalmology, Taipei Veterans General Hospital, 201 Sec. 2, Shih-Pai Rd., Taipei 11217, Taiwan
- Department of Ophthalmology, School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Correspondence: ; Tel.: +886-2-2875-7325; Fax: +886-2-2876-1351
| |
Collapse
|
10
|
Arterial sheathing in Leber hereditary optic neuropathy. Am J Ophthalmol Case Rep 2022; 26:101431. [PMID: 35243167 PMCID: PMC8881369 DOI: 10.1016/j.ajoc.2022.101431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 11/30/2022] Open
Abstract
Purpose Presentation of a case of Leber hereditary optic neuropathy (LHON) with arterial sheathing eleven years after initial loss of vision. Observations A 46-year-old female was referred for re-evaluation of Leber hereditary optic neuropathy. She first noticed rapid painless loss of vision eleven years prior. Fundus imaging performed at that time did not demonstrate arterial sheathing. Genetic testing revealed the presence of the LHON 11778 G-A mitochondrial mutation. Laboratory values were within normal limits save for angiotensin-converting enzyme elevated to 69 U/L. Eleven years later, visual acuity was count fingers at 12 feet with complete loss of color vision. Funduscopic examination of the optic nerve revealed bilateral pallor, sheathing of the retinal arteries, diffuse vessel narrowing, and tortuous retinal vessels. Conclusions and Importance We present a case of LHON that demonstrates retinal arterial sheathing and possibly broadens the spectrum of LHON fundus findings. Fundus examination of patients with Leber hereditary optic neuropathy may reveal arterial sheathing. Arterial sheathing may appear in the chronic phase of Leber hereditary optic neuropathy. There are previous published cases of vascular sheathing in Leber hereditary optic neuropathy.
Collapse
|
11
|
Baj J, Forma A, Kobak J, Tyczyńska M, Dudek I, Maani A, Teresiński G, Buszewicz G, Januszewski J, Flieger J. Toxic and Nutritional Optic Neuropathies—An Updated Mini-Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19053092. [PMID: 35270784 PMCID: PMC8910489 DOI: 10.3390/ijerph19053092] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/27/2022] [Accepted: 03/03/2022] [Indexed: 12/20/2022]
Abstract
Optic neuropathies constitute a group of conditions with various etiologies and might be caused by different factors; we can distinguish the genetic and acquired causes of optic neuropathies. Even though the symptoms are not highly specific, this condition is primarily characterized by unilateral or bilateral vision loss with worsening color detection. The loss may be acute or gradual depending on the causation. In this article, we included a specification of toxic optic neuropathy (TON) mainly triggered by alcohol abuse and also the usage of other substances, including drugs or methanol, as well as intoxication by metals, organic solvents, or carbon dioxide. Nutritional deficiencies, vitamin absorption disorder, and anemia, which usually appear during excessive alcohol intake, and their effect on the etiology of the optic neuropathy have been likewise discussed.
Collapse
Affiliation(s)
- Jacek Baj
- Department of Human Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (J.B.); (A.M.)
| | - Alicja Forma
- Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (J.K.); (M.T.); (I.D.); (G.T.); (G.B.); (J.J.)
- Correspondence:
| | - Joanna Kobak
- Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (J.K.); (M.T.); (I.D.); (G.T.); (G.B.); (J.J.)
| | - Magdalena Tyczyńska
- Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (J.K.); (M.T.); (I.D.); (G.T.); (G.B.); (J.J.)
| | - Iga Dudek
- Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (J.K.); (M.T.); (I.D.); (G.T.); (G.B.); (J.J.)
| | - Amr Maani
- Department of Human Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (J.B.); (A.M.)
| | - Grzegorz Teresiński
- Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (J.K.); (M.T.); (I.D.); (G.T.); (G.B.); (J.J.)
| | - Grzegorz Buszewicz
- Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (J.K.); (M.T.); (I.D.); (G.T.); (G.B.); (J.J.)
| | - Jacek Januszewski
- Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (J.K.); (M.T.); (I.D.); (G.T.); (G.B.); (J.J.)
| | - Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland;
| |
Collapse
|
12
|
Establishing risk of vision loss in Leber hereditary optic neuropathy. Am J Hum Genet 2021; 108:2159-2170. [PMID: 34670133 PMCID: PMC8595929 DOI: 10.1016/j.ajhg.2021.09.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/27/2021] [Indexed: 11/24/2022] Open
Abstract
We conducted an updated epidemiological study of Leber hereditary optic neuropathy (LHON) in Australia by using registry data to establish the risk of vision loss among different LHON mutations, sex, age at onset, and mitochondrial haplogroup. We identified 96 genetically unrelated LHON pedigrees, including 56 unpublished pedigrees, and updated 40 previously known pedigrees, comprising 620 affected individuals and 4,948 asymptomatic carriers. The minimum prevalence of vision loss due to LHON in Australia in 2020 was one in 68,403 individuals. Although our data confirm some well-established features of LHON, the overall risk of vision loss among those with a LHON mutation was lower than reported previously-17.5% for males and 5.4% for females. Our findings confirm that women, older adults, and younger children are also at risk. Furthermore, we observed a higher incidence of vision loss in children of affected mothers as well as in children of unaffected women with at least one affected brother. Finally, we confirmed our previous report showing a generational fall in prevalence of vision loss among Australian men. Higher reported rates of vision loss in males with a LHON mutation are not supported by our work and other epidemiologic studies. Accurate knowledge of risk is essential for genetic counseling of individuals with LHON mutations. This knowledge could also inform the detection and validation of potential biomarkers and has implications for clinical trials of treatments aimed at preventing vision loss in LHON because an overestimated risk may lead to an underpowered study or a false claim of efficacy.
Collapse
|
13
|
Zhang XH, Xie Y, Xu QG, Cao K, Xu K, Jin ZB, Li Y, Wei SH. Mitochondrial Mutations in Ethambutol-Induced Optic Neuropathy. Front Cell Dev Biol 2021; 9:754676. [PMID: 34676220 PMCID: PMC8525703 DOI: 10.3389/fcell.2021.754676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/15/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Ethambutol-induced optic neuropathy (EON) is a well-recognized ocular complication in patients who take ethambutol as a tuberculosis treatment. The aim of the current study was to investigate the presence of mitochondrial mutations, including OPA1 and Leber's hereditary optic neuropathy (LHON)-mitochondrial DNA (mtDNA), in patients with EON and to determine their effect on clinical features of these patients. Methods: All 47 patients underwent clinical evaluations, including best-corrected visual acuity, fundus examination, and color fundus photography; 37 patients were then followed up over time. Molecular screening methods, including PCR-based sequencing of the OPA1 gene and LHON-mtDNA mutations, together with targeted exome sequencing, were used to detect mutations. Results: We detected 15 OPA1 mutations in 18 patients and two LHON-mtDNA mutations in four patients, for an overall mutation detection rate of 46.8%. The mean presentation age was significantly younger in the patients with the mitochondrial mutations (27.5 years) than in those without mutations (48 years). Fundus examination revealed a greater prevalence of optic disc hyperemia in the patients with mutations (70.5%) than without mutations (48%). Half of the patients with mutations and 91% of the patients without mutations had improved vision. After adjusting for confounders, the logistic regression revealed that the patients with optic disc pallor on the first visit (p = 0.004) or the patients with the mitochondrial mutations (p < 0.001) had a poorer vision prognosis. Conclusion: Our results indicated that carriers with OPA1 mutations might be more vulnerable for the toxicity of EMB to develop EON.
Collapse
Affiliation(s)
- Xiao-Hui Zhang
- Department of Ophthalmology, The Chinese People's Liberation Army General Hospital, The Chinese People's Liberation Army Medical School, Beijing, China.,Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yue Xie
- Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Quan-Gang Xu
- Department of Ophthalmology, The Chinese People's Liberation Army General Hospital, The Chinese People's Liberation Army Medical School, Beijing, China
| | - Kai Cao
- Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ke Xu
- Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Zi-Bing Jin
- Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yang Li
- Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Shi-Hui Wei
- Department of Ophthalmology, The Chinese People's Liberation Army General Hospital, The Chinese People's Liberation Army Medical School, Beijing, China
| |
Collapse
|
14
|
Zaslavsky K, Margolin EA. Leber's Hereditary Optic Neuropathy in Older Individuals Because of Increased Alcohol Consumption During the COVID-19 Pandemic. J Neuroophthalmol 2021; 41:316-320. [PMID: 34415266 DOI: 10.1097/wno.0000000000001333] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Leber's hereditary optic neuropathy (LHON) is a disorder affecting oxidative phosphorylation in mitochondria. A majority of affected patients are men of 15 to 35 years of age. Phenotypic penetrance of this condition is only 50% in man and 10% in women and increases if the cellular energy demands go up, with the most common risk factors being smoking and alcohol use. METHODS Review of clinical features of 3 patients who were diagnosed with LHON in their sixth decade of life after doubling their alcohol intake during the recent COVID-19 pandemic. RESULTS All 3 patients were older than the age of 50 when they developed severe sequential visual loss. All have at least doubled their alcohol intake for at least 4 weeks preceding visual loss, and 2 who were smokers increased the number of cigarettes consumed daily because of the stress and boredom during the lockdowns triggered by the pandemic. CONCLUSIONS Significant increase in substance abuse in the general population during the recent lockdowns to combat the COVID-19 pandemic is well documented. We report 3 patients older than the age of 50, one of them a woman, who developed severe bilateral visual loss due to LHON after doubling their alcohol consumption and increasing number of cigarettes smoked daily during the pandemic. Clinicians are reminded to consider LHON in the differential diagnosis when encountering older patients with bilateral sequential visual loss and to specifically inquire about alcohol use and cigarette smoking in these patients.
Collapse
Affiliation(s)
- Kirill Zaslavsky
- Departments of Ophthalmology and Vision Sciences (KZ, EM), University of Toronto, Toronto, Canada ; and Department of Medicine (EM), Division of Neurology, University of Toronto, Toronto, Canada
| | | |
Collapse
|
15
|
Vandeputte J, Van Heetvelde M, Van Cauwenbergh C, Seneca S, De Baere E, Leroy BP, De Zaeytijd J. Mild Leber hereditary optic neuropathy (LHON) in a Western European family due to the rare Asian m.14502T>C variant in the MT-ND6 gene. Ophthalmic Genet 2021; 42:440-445. [PMID: 33858285 DOI: 10.1080/13816810.2021.1913611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND Leber hereditary optic neuropathy (LHON) is a mitochondrial neurodegenerative disease. The majority (>90%) is related to three primary mitochondrial DNA (mtDNA) variants: ND1 m.3460G>A, ND4 m.11778G>A and ND6 m.14484T>C. The remaining 10% is associated with >40 secondary variants with variable penetrance and incidence between different ethnic backgrounds. MATERIALS AND METHODS Five sisters underwent an extensive ophthalmic workup including psychophysical, electrophysiological, multimodal brain imaging, biochemical testing and molecular screening. MT-ND6 protein modelling was performed. RESULTS A 23-year-old woman presented with acute central visual loss to counting fingers in the right eye. She developed a central visual field scotoma, severe color vision deficiencies and impaired pattern visual evoked responses. Progressive optic atrophy ensued. The left eye was unremarkable, except for borderline thinning of the temporal retinal nerve fiber layer. Alcohol use and passive smoking were noted. MtDNA analysis revealed a rare variant, m.14502T>C in MT-ND6, exclusively known to cause optic neuropathy in an Asian population. Three sisters of the proband, two of whom reported tobacco and alcohol abuse, had bilateral temporal optic disc pallor without functional impact. A fourth non-smoker sister had a completely normal eye exam. CONCLUSIONS The rare Asian m.14502T>C variant in the MT-ND6 gene was linked to a mild LHON phenotype in a Western European family. Penetrance in this family was likely triggered by alcohol and tobacco abuse. A full mtDNA sequencing is warranted in the case of high clinical suspicion of LHON when mutation analysis for the three common pathogenic variants is negative.
Collapse
Affiliation(s)
| | - Mattias Van Heetvelde
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Caroline Van Cauwenbergh
- Department of Ophthalmology, Ghent University Hospital, Ghent, Belgium.,Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium.,Department of Head & Skin, Ghent University, Ghent, Belgium
| | - Sara Seneca
- Center for Medical Genetics, UZ Brussel, Research Group Reproduction & Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Elfride De Baere
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Bart P Leroy
- Department of Ophthalmology, Ghent University Hospital, Ghent, Belgium.,Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium.,Department of Head & Skin, Ghent University, Ghent, Belgium.,Division of Ophthalmology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Center for Cellular & Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Julie De Zaeytijd
- Department of Ophthalmology, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
16
|
Engvall M, Kawasaki A, Carelli V, Wibom R, Bruhn H, Lesko N, Schober FA, Wredenberg A, Wedell A, Träisk F. Case Report: A Novel Mutation in the Mitochondrial MT-ND5 Gene Is Associated With Leber Hereditary Optic Neuropathy (LHON). Front Neurol 2021; 12:652590. [PMID: 33841319 PMCID: PMC8027302 DOI: 10.3389/fneur.2021.652590] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/02/2021] [Indexed: 11/13/2022] Open
Abstract
Leber hereditary optic neuropathy (LHON) is a mitochondrial disease causing severe bilateral visual loss, typically in young adults. The disorder is commonly caused by one of three primary point mutations in mitochondrial DNA, but a number of other rare mutations causing or associated with the clinical syndrome of LHON have been reported. The mutations in LHON are almost exclusively located in genes encoding subunits of complex I in the mitochondrial respiratory chain. Here we report two patients, a mother and her son, with the typical LHON phenotype. Genetic investigations for the three common mutations were negative, instead we found a new and previously unreported mutation in mitochondrial DNA. This homoplasmic mutation, m.13345G>A, is located in the MT-ND5 gene, encoding a core subunit in complex I in the mitochondrial respiratory chain. Investigation of the patients mitochondrial respiratory chain in muscle found a mild defect in the combined activity of complex I+III. In the literature six other mutations in the MT-ND5 gene have been associated with LHON and by this report a new putative mutation in the MT-ND5 can be added.
Collapse
Affiliation(s)
- Martin Engvall
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Aki Kawasaki
- Hopital Ophtalmique Jules Gonin, Fondation Asile des Aveugles, University of Lausanne, Lausanne, Switzerland
| | - Valerio Carelli
- Programma di Neurogenetica, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Rolf Wibom
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden.,Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Helene Bruhn
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden.,Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Nicole Lesko
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Florian A Schober
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Anna Wredenberg
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden.,Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Anna Wedell
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Frank Träisk
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Solna, Sweden.,Department of Neuro-Ophthalmology, St.Erik Eye Hospital, Solna, Sweden
| |
Collapse
|
17
|
A Typical Case Presentation with Spontaneous Visual Recovery in Patient Diagnosed with Leber Hereditary Optic Neuropathy due to Rare Point Mutation in MT-ND4 Gene ( m.11253T>C) and Literature Review. ACTA ACUST UNITED AC 2021; 57:medicina57030202. [PMID: 33652663 PMCID: PMC7996816 DOI: 10.3390/medicina57030202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 02/17/2021] [Accepted: 02/22/2021] [Indexed: 12/03/2022]
Abstract
Leber hereditary optic neuropathy (LHON) is one of the most common inherited mitochondrial optic neuropathies, caused by mitochondrial DNA (mtDNA) mutations. Three most common mutations, namely m.11778G>A, m.14484T>G and m.3460G>A, account for the majority of LHON cases. These mutations lead to mitochondrial respiratory chain complex I damage. Typically, LHON presents at the 15–35 years of age with male predominance. LHON is associated with severe, subacute, painless bilateral vision loss and account for one of the most common causes of legal blindness in young individuals. Spontaneous visual acuity recovery is rare and has been reported in patients harbouring m.14484T>C mutation. Up to date LHON treatment is limited. Idebenone has been approved by European Medicines Agency (EMA) to treat LHON. However better understanding of disease mechanisms and ongoing treatment trials are promising and brings hope for patients. In this article we report on a patient diagnosed with LHON harbouring rare m.11253T>C mutation in MT-ND4 gene, who experienced spontaneous visual recovery. In addition, we summarise clinical presentation, diagnostic features, and treatment.
Collapse
|
18
|
Botelho GIS, Salomão SR, Tengan CH, Karanjia R, Moura FV, Rocha DM, da Silva PBE, Fernandes AG, Watanabe SES, Sacai PY, Belfort R, Carelli V, Sadun AA, Berezovsky A. Impaired Ganglion Cell Function Objectively Assessed by the Photopic Negative Response in Affected and Asymptomatic Members From Brazilian Families With Leber's Hereditary Optic Neuropathy. Front Neurol 2021; 11:628014. [PMID: 33584522 PMCID: PMC7874135 DOI: 10.3389/fneur.2020.628014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/21/2020] [Indexed: 01/13/2023] Open
Abstract
Purpose: The photopic negative response (PhNR) is an electrophysiological method that provides retinal ganglion cell function assessment using full-field stimulation that does not require clear optics or refractive correction. The purpose of this study was to assess ganglion cell function by PhNR in affected and asymptomatic carriers from Brazilian families with LHON. Methods: Individuals either under suspicion or previously diagnosed with LHON and their family members were invited to participate in this cross-sectional study. Screening for the most frequent LHON mtDNA mutations was performed. Visual acuity, color discrimination, visual fields, pattern-reversal visual evoked potentials (PRVEP), full-field electroretinography and PhNR were tested. A control group of healthy subjects was included. Full-field ERG PhNR were recorded using red (640 nm) flashes at 1 cd.s/m2, on blue (470 nm) rod saturating background. PhNR amplitude (μV) was measured using baseline-to-trough (BT). Optical coherence tomography scans of both the retinal nerve fiber layer (RNFL) and ganglion cell complex (GCC) were measured. PhNR amplitudes among affected, carriers and controls were compared by Kruskal-Wallis test followed by post-hoc Dunn test. The associations between PhNR amplitude and OCT parameters were analyzed by Spearman rank correlation. Results: Participants were 24 LHON affected patients (23 males, mean age=30.5 ± 11.4 yrs) from 19 families with the following genotype: m.11778G>A [N = 15 (62%), 14 males]; m.14484T>C [N = 5 (21%), all males] and m.3460G>A [N = 4 (17%), all males] and 14 carriers [13 females, mean age: 43.2 ± 13.3 yrs; m.11778G>A (N = 11); m.3460G>A (N = 2) and m.14484T>C (N = 1)]. Controls were eight females and seven males (mean age: 32.6 ± 11.5 yrs). PhNR amplitudes were significantly reduced (p = 0.0001) in LHON affected (-5.96 ± 3.37 μV) compared to carriers (-16.53 ± 3.40 μV) and controls (-23.91 ± 4.83; p < 0.0001) and in carriers compared to controls (p = 0.01). A significant negative correlation was found between PhNR amplitude and total macular ganglion cell thickness (r = -0.62, p < 0.05). Severe abnormalities in color discrimination, visual fields and PRVEPs were found in affected and subclinical abnormalities in carriers. Conclusions: In this cohort of Brazilian families with LHON the photopic negative response was severely reduced in affected patients and mildly reduced in asymptomatic carriers suggesting possible subclinical abnormalities in the latter. These findings were similar among pathogenic mutations.
Collapse
Affiliation(s)
- Gabriel Izan Santos Botelho
- Departamento de Oftalmologia e Ciências Visuais, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Solange Rios Salomão
- Departamento de Oftalmologia e Ciências Visuais, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Célia Harumi Tengan
- Departamento de Neurologia e Neurocirurgia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Rustum Karanjia
- Doheny Eye Institute, University of California Los Angeles, Los Angeles, CA, United States.,Department of Ophthalmology, Doheny Eye Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States.,Ottawa Eye Institute, University of Ottawa, Ottawa, ON, Canada.,Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Felipo Victor Moura
- Departamento de Neurologia e Neurocirurgia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Daniel Martins Rocha
- Departamento de Oftalmologia e Ciências Visuais, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Paula Baptista Eliseo da Silva
- Departamento de Oftalmologia e Ciências Visuais, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Arthur Gustavo Fernandes
- Departamento de Oftalmologia e Ciências Visuais, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Sung Eun Song Watanabe
- Departamento de Oftalmologia e Ciências Visuais, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Paula Yuri Sacai
- Departamento de Oftalmologia e Ciências Visuais, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Rubens Belfort
- Departamento de Oftalmologia e Ciências Visuais, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil.,Instituto da Visão-IPEPO, São Paulo, Brazil
| | - Valerio Carelli
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna School of Medicine, Bologna, Italy
| | - Alfredo Arrigo Sadun
- Doheny Eye Institute, University of California Los Angeles, Los Angeles, CA, United States.,Department of Ophthalmology, Doheny Eye Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Adriana Berezovsky
- Departamento de Oftalmologia e Ciências Visuais, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
19
|
Amore G, Romagnoli M, Carbonelli M, Barboni P, Carelli V, La Morgia C. Therapeutic Options in Hereditary Optic Neuropathies. Drugs 2021; 81:57-86. [PMID: 33159657 PMCID: PMC7843467 DOI: 10.1007/s40265-020-01428-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Options for the effective treatment of hereditary optic neuropathies have been a long time coming. The successful launch of the antioxidant idebenone for Leber's Hereditary Optic Neuropathy (LHON), followed by its introduction into clinical practice across Europe, was an important step forward. Nevertheless, other options, especially for a variety of mitochondrial optic neuropathies such as dominant optic atrophy (DOA), are needed, and a number of pharmaceutical agents, acting on different molecular pathways, are currently under development. These include gene therapy, which has reached Phase III development for LHON, but is expected to be developed also for DOA, whilst most of the other agents (other antioxidants, anti-apoptotic drugs, activators of mitobiogenesis, etc.) are almost all at Phase II or at preclinical stage of research. Here, we review proposed target mechanisms, preclinical evidence, available clinical trials with primary endpoints and results, of a wide range of tested molecules, to give an overview of the field, also providing the landscape of future scenarios, including gene therapy, gene editing, and reproductive options to prevent transmission of mitochondrial DNA mutations.
Collapse
Affiliation(s)
- Giulia Amore
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Martina Romagnoli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Via Altura 3, 40139, Bologna, Italy
| | - Michele Carbonelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Via Altura 3, 40139, Bologna, Italy
| | | | - Valerio Carelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Via Altura 3, 40139, Bologna, Italy
| | - Chiara La Morgia
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Via Altura 3, 40139, Bologna, Italy.
| |
Collapse
|
20
|
Mitochondrial disorders and the eye. Surv Ophthalmol 2019; 65:294-311. [PMID: 31783046 DOI: 10.1016/j.survophthal.2019.11.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 11/16/2019] [Accepted: 11/18/2019] [Indexed: 01/27/2023]
Abstract
Mitochondria are cellular organelles that play a key role in energy metabolism and oxidative phosphorylation. Malfunctioning of mitochondria has been implicated as the cause of many disorders with variable inheritance, heterogeneity of systems involved, and varied phenotype. Metabolically active tissues are more likely to be affected, causing an anatomic and physiologic disconnect in the treating physicians' mind between presentation and underlying pathophysiology. We shall focus on disorders of mitochondrial metabolism relevant to an ophthalmologist. These disorders can affect all parts of the visual pathway (crystalline lens, extraocular muscles, retina, optic nerve, and retrochiasm). After the introduction reviewing mitochondrial structure and function, each disorder is reviewed in detail, including approaches to its diagnosis and most current management guidelines.
Collapse
|
21
|
Rickmann A, Wocker L, Damm LJ, Ivanescu C, Szurman P, Pérez Guerra N. LHON – Behandlungsoption trotz schlechtem Ausgangsvisus? Ophthalmologe 2019; 116:970-974. [DOI: 10.1007/s00347-019-0864-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Cardiovascular Manifestations of Mitochondrial Disease. BIOLOGY 2019; 8:biology8020034. [PMID: 31083569 PMCID: PMC6628328 DOI: 10.3390/biology8020034] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/13/2019] [Accepted: 04/22/2019] [Indexed: 02/06/2023]
Abstract
Genetic mitochondrial cardiomyopathies are uncommon causes of heart failure that may not be seen by most physicians. However, the prevalence of mitochondrial DNA mutations and somatic mutations affecting mitochondrial function are more common than previously thought. In this review, the pathogenesis of genetic mitochondrial disorders causing cardiovascular disease is reviewed. Treatment options are presently limited to mostly symptomatic support, but preclinical research is starting to reveal novel approaches that may lead to better and more targeted therapies in the future. With better understanding and clinician education, we hope to improve clinician recognition and diagnosis of these rare disorders in order to improve ongoing care of patients with these diseases and advance research towards discovering new therapeutic strategies to help treat these diseases.
Collapse
|
23
|
Moura-Coelho N, Pinto Proença R, Tavares Ferreira J, Cunha JP. Late-onset Leber's hereditary optic neuropathy: the role of environmental factors in hereditary diseases. BMJ Case Rep 2019; 12:12/3/e227977. [PMID: 30898963 DOI: 10.1136/bcr-2018-227977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Leber's hereditary optic neuropathy (LHON) is an optic neuropathy of mitochondrial inheritance, characterised by incomplete penetrance and variable expressivity. Typically, young male patients present with sequential, severe, rapidly progressive loss of central vision, with characteristic funduscopic findings. However, LHON may present at any age, in both genders, and fundus examination may be normal. Evidence has emerged to support the role of environmental factors in triggering LHON, by disrupting the normal mechanisms of mitochondrial function. We present two clinical cases of LHON of late onset, and provide a literature review on atypical cases of LHON and the role of environmental triggers.
Collapse
Affiliation(s)
- Nuno Moura-Coelho
- Ophthalmology, Centro Hospitalar Universitário Lisboa Central, Lisbon, Portugal.,NOVA Medical School
- Faculdade de Ciências Médicas - Universidade Nova de Lisboa (NMS
- FCM-UNL), Lisbon, Portugal
| | - Rita Pinto Proença
- Ophthalmology, Centro Hospitalar Universitário Lisboa Central, Lisbon, Portugal
| | - Joana Tavares Ferreira
- Ophthalmology, Centro Hospitalar Universitário Lisboa Central, Lisbon, Portugal.,NOVA Medical School
- Faculdade de Ciências Médicas - Universidade Nova de Lisboa (NMS
- FCM-UNL), Lisbon, Portugal
| | - João Paulo Cunha
- Ophthalmology, Centro Hospitalar Universitário Lisboa Central, Lisbon, Portugal.,NOVA Medical School
- Faculdade de Ciências Médicas - Universidade Nova de Lisboa (NMS
- FCM-UNL), Lisbon, Portugal
| |
Collapse
|
24
|
Yu JJ, Lee DH, Gallagher SP, Kenney MC, Boisvert CJ. Mitochondrial Impairment in Antibiotic Induced Toxic Optic Neuropathies. Curr Eye Res 2018; 43:1199-1204. [DOI: 10.1080/02713683.2018.1504086] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Jeffrey J. Yu
- Department of Ophthalmology, University of California, Irvine, CA, USA
| | - Daniel H. Lee
- Department of Ophthalmology, University of California, Irvine, CA, USA
| | - Shea P. Gallagher
- Department of Ophthalmology, University of California, Irvine, CA, USA
| | | | | |
Collapse
|
25
|
Kogachi K, Ter-Zakarian A, Asanad S, Sadun A, Karanjia R. Toxic medications in Leber's hereditary optic neuropathy. Mitochondrion 2018; 46:270-277. [PMID: 30081212 DOI: 10.1016/j.mito.2018.07.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/23/2018] [Accepted: 07/31/2018] [Indexed: 12/18/2022]
Abstract
Leber's hereditary optic neuropathy (LHON) is a maternally inherited mitochondrial disorder characterized by acute bilateral vision loss. The pathophysiology involves reactive oxygen species (ROS), which can be affected by medications. This article reviews the evidence for medications with demonstrated and theoretical effects on mitochondrial function, specifically in relation to increased ROS production. The data reviewed provides guidance when selecting medications for individuals with LHON mutations (carriers) and are susceptible to conversion to affected. However, as with all medications, the proven benefits of these therapies must be weighed against, in some cases, purely theoretical risks for this unique patient population.
Collapse
Affiliation(s)
- Kaitlin Kogachi
- Doheny Eye Institute, 1355 San Pablo Street, Los Angeles, CA 90033, USA.
| | - Anna Ter-Zakarian
- Doheny Eye Institute, 1355 San Pablo Street, Los Angeles, CA 90033, USA
| | - Samuel Asanad
- Doheny Eye Institute, 1355 San Pablo Street, Los Angeles, CA 90033, USA; Doheny Eye Center, Department of Ophthalmology, David Geffen School of Medicine at UCLA, 800 South Fairmount Avenue, Suite 215, Pasadena, CA 91105, USA
| | - Alfredo Sadun
- Doheny Eye Institute, 1355 San Pablo Street, Los Angeles, CA 90033, USA; Doheny Eye Center, Department of Ophthalmology, David Geffen School of Medicine at UCLA, 800 South Fairmount Avenue, Suite 215, Pasadena, CA 91105, USA
| | - Rustum Karanjia
- Doheny Eye Institute, 1355 San Pablo Street, Los Angeles, CA 90033, USA; Doheny Eye Center, Department of Ophthalmology, David Geffen School of Medicine at UCLA, 800 South Fairmount Avenue, Suite 215, Pasadena, CA 91105, USA; The Ottawa Eye Institute, University of Ottawa, 501 Smyth Rd, Ottawa, ON K1H 8M2, Canada; Ottawa Hospital Research Institute, 1053 Carling Avenue, Ottawa, ON K1Y 4E9, Canada
| |
Collapse
|
26
|
Clinical syndromes associated with mtDNA mutations: where we stand after 30 years. Essays Biochem 2018; 62:235-254. [DOI: 10.1042/ebc20170097] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 05/29/2018] [Accepted: 05/30/2018] [Indexed: 01/16/2023]
Abstract
The landmark year 1988 can be considered as the birthdate of mitochondrial medicine, when the first pathogenic mutations affecting mtDNA were associated with human diseases. Three decades later, the field still expands and we are not ‘scraping the bottom of the barrel’ yet. Despite the tremendous progress in terms of molecular characterization and genotype/phenotype correlations, for the vast majority of cases we still lack a deep understanding of the pathogenesis, good models to study, and effective therapeutic options. However, recent technological advances including somatic cell reprogramming to induced pluripotent stem cells (iPSCs), organoid technology, and tailored endonucleases provide unprecedented opportunities to fill these gaps, casting hope to soon cure the major primary mitochondrial phenotypes reviewed here. This group of rare diseases represents a key model for tackling the pathogenic mechanisms involving mitochondrial biology relevant to much more common disorders that affect our currently ageing population, such as diabetes and metabolic syndrome, neurodegenerative and inflammatory disorders, and cancer.
Collapse
|
27
|
International Consensus Statement on the Clinical and Therapeutic Management of Leber Hereditary Optic Neuropathy. J Neuroophthalmol 2017; 37:371-381. [PMID: 28991104 DOI: 10.1097/wno.0000000000000570] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Leber hereditary optic neuropathy (LHON) is currently estimated as the most frequent mitochondrial disease (1 in 27,000-45,000). Its molecular pathogenesis and natural history is now fairly well understood. LHON also is the first mitochondrial disease for which a treatment has been approved (idebenone-Raxone, Santhera Pharmaceuticals) by the European Medicine Agency, under exceptional circumstances because of the rarity and severity of the disease. However, what remains unclear includes the optimal target population, timing, dose, and frequency of administration of idebenone in LHON due to lack of accepted definitions, criteria, and general guidelines for the clinical management of LHON. To address these issues, a consensus conference with a panel of experts from Europe and North America was held in Milan, Italy, in 2016. The intent was to provide expert consensus statements for the clinical and therapeutic management of LHON based on the currently available evidence. We report the conclusions of this conference, providing the guidelines for clinical and therapeutic management of LHON.
Collapse
|
28
|
Oxidative Stress: Mechanistic Insights into Inherited Mitochondrial Disorders and Parkinson's Disease. J Clin Med 2017; 6:jcm6110100. [PMID: 29077060 PMCID: PMC5704117 DOI: 10.3390/jcm6110100] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 10/20/2017] [Accepted: 10/23/2017] [Indexed: 12/21/2022] Open
Abstract
Oxidative stress arises when cellular antioxidant defences become overwhelmed by a surplus generation of reactive oxygen species (ROS). Once this occurs, many cellular biomolecules such as DNA, lipids, and proteins become susceptible to free radical-induced oxidative damage, and this may consequently lead to cellular and ultimately tissue and organ dysfunction. Mitochondria, as well as being a source of ROS, are vulnerable to oxidative stress-induced damage with a number of key biomolecules being the target of oxidative damage by free radicals, including membrane phospholipids, respiratory chain complexes, proteins, and mitochondrial DNA (mt DNA). As a result, a deficit in cellular energy status may occur along with increased electron leakage and partial reduction of oxygen. This in turn may lead to a further increase in ROS production. Oxidative damage to certain mitochondrial biomolecules has been associated with, and implicated in the pathophysiology of a number of diseases. It is the purpose of this review to discuss the impact of such oxidative stress and subsequent damage by reviewing our current knowledge of the pathophysiology of several inherited mitochondrial disorders together with our understanding of perturbations observed in the more commonly acquired neurodegenerative disorders such as Parkinson’s disease (PD). Furthermore, the potential use and feasibility of antioxidant therapies as an adjunct to lower the accumulation of damaging oxidative species and hence slow disease progression will also be discussed.
Collapse
|
29
|
Pilz YL, Bass SJ, Sherman J. A Review of Mitochondrial Optic Neuropathies: From Inherited to Acquired Forms. JOURNAL OF OPTOMETRY 2017; 10:205-214. [PMID: 28040497 PMCID: PMC5595256 DOI: 10.1016/j.optom.2016.09.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/02/2016] [Accepted: 09/22/2016] [Indexed: 05/28/2023]
Abstract
In recent years, the term mitochondrial optic neuropathy (MON) has increasingly been used within the literature to describe a group of optic neuropathies that exhibit mitochondrial dysfunction in retinal ganglion cells (RGCs). Interestingly, MONs include genetic aetiologies, such as Leber hereditary optic neuropathy (LHON) and dominant optic atrophy (DOA), as well as acquired aetiologies resulting from drugs, nutritional deficiencies, and mixed aetiologies. Regardless of an inherited or acquired cause, patients exhibit the same clinical manifestations with selective loss of the RGCs due to mitochondrial dysfunction. Various novel therapies are being explored to reverse or limit damage to the RGCs. Here we review the pathophysiology, clinical manifestations, differential diagnosis, current treatment, and promising therapeutic targets of MON.
Collapse
MESH Headings
- DNA, Mitochondrial
- Diagnosis, Differential
- Humans
- Mitochondrial Diseases/diagnosis
- Mitochondrial Diseases/genetics
- Mitochondrial Diseases/physiopathology
- Mitochondrial Diseases/therapy
- Optic Atrophy, Autosomal Dominant/diagnosis
- Optic Atrophy, Autosomal Dominant/genetics
- Optic Atrophy, Autosomal Dominant/physiopathology
- Optic Atrophy, Autosomal Dominant/therapy
- Optic Atrophy, Hereditary, Leber/diagnosis
- Optic Atrophy, Hereditary, Leber/genetics
- Optic Atrophy, Hereditary, Leber/physiopathology
- Optic Atrophy, Hereditary, Leber/therapy
- Optic Nerve Diseases/diagnosis
- Optic Nerve Diseases/genetics
- Optic Nerve Diseases/physiopathology
- Optic Nerve Diseases/therapy
- Retinal Ganglion Cells/pathology
Collapse
Affiliation(s)
- Yasmine L Pilz
- State University New York, College of Optometry, New York, USA.
| | - Sherry J Bass
- State University New York, College of Optometry, New York, USA
| | - Jerome Sherman
- State University New York, College of Optometry, New York, USA
| |
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW Leber hereditary optic neuropathy (LHON) is the most common primary mitochondrial DNA (mtDNA) genetic disorder in the population. We address the clinical evolution of the disease, the secondary etiological factors that could contribute to visual loss, and the challenging task of developing effective treatments. RECENT FINDINGS LHON is characterized by a preclinical phase that reflects retinal ganglion cell (RGC) dysfunction before rapid visual deterioration ensues. Children can present atypically with slowly progressive visual loss or an insidious/subclinical onset that frequently results in considerable diagnostic delays. The LHON mtDNA mutation is not sufficient on its own to precipitate RGC loss and the current body of evidence supports a role for smoking and estrogen levels influencing disease conversion. Clinical trials are currently investigating the efficacy of adeno-associated viral vectors-based gene therapy approaches for patients carrying the m.11778G>A mutation. Mitochondrial replacement therapy is being developed as a reproductive option to prevent the maternal transmission of pathogenic mtDNA mutations. SUMMARY LHON is phenotypically more heterogeneous than previously considered and a complex interplay of genetic, environmental and hormonal factors modulates the risk of a LHON carrier losing vision. Advances in disease modelling, drug screening and genetic engineering offer promising avenues for therapeutic breakthroughs in LHON.
Collapse
|
31
|
Natural History of Conversion of Leber's Hereditary Optic Neuropathy. Ophthalmology 2017; 124:843-850. [DOI: 10.1016/j.ophtha.2017.01.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 01/03/2017] [Accepted: 01/03/2017] [Indexed: 01/29/2023] Open
|
32
|
Abstract
The report in 1988 that Leber Hereditary Optic Neuropathy (LHON) was the product of mitochondrial DNA (mtDNA) mutations provided the first demonstration of the clinical relevance of inherited mtDNA variation. From LHON studies, the medical importance was demonstrated for the mtDNA showing its coding for the most important energy genes, its maternal inheritance, its high mutation rate, its presence in hundreds to thousands of copies per cell, its quantitatively segregation of biallelic genotypes during both mitosis and meiosis, its preferential effect on the most energetic tissues including the eye and brain, its wide range of functional polymorphisms that predispose to common diseases, and its accumulation of mutations within somatic tissues providing the aging clock. These features of mtDNA genetics, in combination with the genetics of the 1-2000 nuclear DNA (nDNA) coded mitochondrial genes, is not only explaining the genetics of LHON but also providing a model for understanding the complexity of many common diseases. With the maturation of LHON biology and genetics, novel animal models for complex disease have been developed and new therapeutic targets and strategies envisioned, both pharmacological and genetic. Multiple somatic gene therapy approaches are being developed for LHON which are applicable to other mtDNA diseases. Moreover, the unique cytoplasmic genetics of the mtDNA has permitted the first successful human germline gene therapy via spindle nDNA transfer from mtDNA mutant oocytes to enucleated normal mtDNA oocytes. Such LHON lessons are actively being applied to common ophthalmological diseases like glaucoma and neurological diseases like Parkinsonism.
Collapse
|
33
|
Abstract
Leber hereditary optic neuropathy (LHON) was the first clinically characterized mitochondrial disorder. Since its first description in 1871, much has been discovered regarding the genetics and pathophysiology of the disease. This has enabled the development of in vitro cell and animal models that can be used to try to determine not only the effects of the genetic mutation upon the clinical phenotype but to also test potential novel therapies. Treatments for LHON have ranged from vitamins and minerals to immunosuppressants and, more recently, targeted gene therapy. This article reviews the pathophysiology and clinical features of LHON with a focus on translational research.
Collapse
Affiliation(s)
- Nailyn Rasool
- a Neuro-Ophthalmology Service, Massachusetts Eye and Ear Infirmary, Harvard Medical School , Boston , Massachusetts , USA
| | - Simmons Lessell
- a Neuro-Ophthalmology Service, Massachusetts Eye and Ear Infirmary, Harvard Medical School , Boston , Massachusetts , USA
| | - Dean M Cestari
- a Neuro-Ophthalmology Service, Massachusetts Eye and Ear Infirmary, Harvard Medical School , Boston , Massachusetts , USA
| |
Collapse
|
34
|
Giordano L, Deceglie S, d'Adamo P, Valentino ML, La Morgia C, Fracasso F, Roberti M, Cappellari M, Petrosillo G, Ciaravolo S, Parente D, Giordano C, Maresca A, Iommarini L, Del Dotto V, Ghelli AM, Salomao SR, Berezovsky A, Belfort R, Sadun AA, Carelli V, Loguercio Polosa P, Cantatore P. Cigarette toxicity triggers Leber's hereditary optic neuropathy by affecting mtDNA copy number, oxidative phosphorylation and ROS detoxification pathways. Cell Death Dis 2015; 6:e2021. [PMID: 26673666 PMCID: PMC4720897 DOI: 10.1038/cddis.2015.364] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/04/2015] [Accepted: 11/05/2015] [Indexed: 01/15/2023]
Abstract
Leber's hereditary optic neuropathy (LHON), the most frequent mitochondrial disease, is associated with mitochondrial DNA (mtDNA) point mutations affecting Complex I subunits, usually homoplasmic. This blinding disorder is characterized by incomplete penetrance, possibly related to several genetic modifying factors. We recently reported that increased mitochondrial biogenesis in unaffected mutation carriers is a compensatory mechanism, which reduces penetrance. Also, environmental factors such as cigarette smoking have been implicated as disease triggers. To investigate this issue further, we first assessed the relationship between cigarette smoke and mtDNA copy number in blood cells from large cohorts of LHON families, finding that smoking was significantly associated with the lowest mtDNA content in affected individuals. To unwrap the mechanism of tobacco toxicity in LHON, we exposed fibroblasts from affected individuals, unaffected mutation carriers and controls to cigarette smoke condensate (CSC). CSC decreased mtDNA copy number in all cells; moreover, it caused significant reduction of ATP level only in mutated cells including carriers. This implies that the bioenergetic compensation in carriers is hampered by exposure to smoke derivatives. We also observed that in untreated cells the level of carbonylated proteins was highest in affected individuals, whereas the level of several detoxifying enzymes was highest in carriers. Thus, carriers are particularly successful in reactive oxygen species (ROS) scavenging capacity. After CSC exposure, the amount of detoxifying enzymes increased in all cells, but carbonylated proteins increased only in LHON mutant cells, mostly from affected individuals. All considered, it appears that exposure to smoke derivatives has a more deleterious effect in affected individuals, whereas carriers are the most efficient in mitigating ROS rather than recovering bioenergetics. Therefore, the identification of genetic modifiers that modulate LHON penetrance must take into account also the exposure to environmental triggers such as tobacco smoke.
Collapse
MESH Headings
- DNA, Mitochondrial/genetics
- DNA, Mitochondrial/metabolism
- Female
- Humans
- Male
- Optic Atrophy, Hereditary, Leber/etiology
- Optic Atrophy, Hereditary, Leber/genetics
- Optic Atrophy, Hereditary, Leber/metabolism
- Optic Atrophy, Hereditary, Leber/pathology
- Oxidative Phosphorylation
- Reactive Oxygen Species/metabolism
- Smoking/adverse effects
- Smoking/genetics
- Smoking/metabolism
- Smoking/pathology
Collapse
Affiliation(s)
- L Giordano
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - S Deceglie
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - P d'Adamo
- Department of Reproductive Sciences, Medical Genetics, Development and Public Health, University of Trieste, Trieste, Italy
- IRCCS-Burlo Garofolo Children Hospital, Trieste, Italy
| | - M L Valentino
- IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Bologna, Italy
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), Neurology Unit, University of Bologna, Bologna, Italy
| | - C La Morgia
- IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Bologna, Italy
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), Neurology Unit, University of Bologna, Bologna, Italy
| | - F Fracasso
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - M Roberti
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - M Cappellari
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - G Petrosillo
- Institute of Biomembranes and Bioenergetics (IBBE) National Research Council (CNR), Bari, Italy
| | - S Ciaravolo
- Vectis s.r.l. Cava dei Tirreni (Salerno), Italy
| | - D Parente
- Vectis s.r.l. Cava dei Tirreni (Salerno), Italy
| | - C Giordano
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | - A Maresca
- IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Bologna, Italy
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), Neurology Unit, University of Bologna, Bologna, Italy
| | - L Iommarini
- IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Bologna, Italy
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), Neurology Unit, University of Bologna, Bologna, Italy
| | - V Del Dotto
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - A M Ghelli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - S R Salomao
- Department of Ophthalmology, and Visual Sciences, Paulista School of Medicine Federal University of Sao Paulo—UNIFESP, Sao Paulo, Brazil
| | - A Berezovsky
- Department of Ophthalmology, and Visual Sciences, Paulista School of Medicine Federal University of Sao Paulo—UNIFESP, Sao Paulo, Brazil
| | - R Belfort
- Department of Ophthalmology, and Visual Sciences, Paulista School of Medicine Federal University of Sao Paulo—UNIFESP, Sao Paulo, Brazil
| | - A A Sadun
- Doheny Eye Institute, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - V Carelli
- IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Bologna, Italy
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), Neurology Unit, University of Bologna, Bologna, Italy
| | - P Loguercio Polosa
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - P Cantatore
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
- Institute of Biomembranes and Bioenergetics (IBBE) National Research Council (CNR), Bari, Italy
| |
Collapse
|
35
|
Carelli V, d'Adamo P, Valentino ML, La Morgia C, Ross-Cisneros FN, Caporali L, Maresca A, Loguercio Polosa P, Barboni P, De Negri A, Sadun F, Karanjia R, Salomao SR, Berezovsky A, Chicani F, Moraes M, Moraes Filho M, Belfort R, Sadun AA. Parsing the differences in affected with LHON: genetic versus environmental triggers of disease conversion. Brain 2015; 139:e17. [PMID: 26657166 DOI: 10.1093/brain/awv339] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Valerio Carelli
- 1 IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, Bologna, Italy 2 Neurology Unit, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Pio d'Adamo
- 3 Medical Genetics, Department of Reproductive Sciences, Development and Public Health, University of Trieste, Trieste, Italy 4 IRCCS-Burlo Garofolo Children Hospital, Trieste, Italy
| | - Maria Lucia Valentino
- 1 IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, Bologna, Italy 2 Neurology Unit, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Chiara La Morgia
- 1 IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, Bologna, Italy 2 Neurology Unit, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | | | - Leonardo Caporali
- 1 IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, Bologna, Italy
| | - Alessandra Maresca
- 1 IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, Bologna, Italy 2 Neurology Unit, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Paola Loguercio Polosa
- 6 Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Piero Barboni
- 7 IRCCS Istituto Scientifico San Raffaele, Milan, Italy
| | | | | | - Rustum Karanjia
- 10 Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Solange R Salomao
- 11 Department of Ophthalmology, Federal University of Sao Paulo (UNIFESP) and IPEPO (Instituto da Visão), Sao Paulo, Brazil
| | - Adriana Berezovsky
- 11 Department of Ophthalmology, Federal University of Sao Paulo (UNIFESP) and IPEPO (Instituto da Visão), Sao Paulo, Brazil
| | - Filipe Chicani
- 11 Department of Ophthalmology, Federal University of Sao Paulo (UNIFESP) and IPEPO (Instituto da Visão), Sao Paulo, Brazil
| | | | | | - Rubens Belfort
- 11 Department of Ophthalmology, Federal University of Sao Paulo (UNIFESP) and IPEPO (Instituto da Visão), Sao Paulo, Brazil
| | - Alfredo A Sadun
- 5 Doheny Eye Institute, Los Angeles, CA, USA 10 Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| |
Collapse
|
36
|
Yu-Wai-Man P, Hudson G, Klopstock T, Chinnery PF. Reply: Parsing the differences in affected with LHON: genetic versus environmental triggers of disease conversion. Brain 2015; 139:e18. [PMID: 26657167 DOI: 10.1093/brain/awv340] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Patrick Yu-Wai-Man
- 1 Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK 2 Departments of Neurology and Ophthalmology, Royal Victoria Infirmary, Newcastle upon Tyne, NE1 4LP, UK
| | - Gavin Hudson
- 1 Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Thomas Klopstock
- 1 Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK 4 German Center for Neurodegenerative Diseases (DZNE), München, Germany 5 Munich Cluster for Systems Neurology (SyNergy), München, Germany
| | - Patrick F Chinnery
- 1 Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK 6 Medical Research Council Mitochondrial Biology Unit, Cambridge, UK 7 Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, UK
| |
Collapse
|
37
|
Abstract
Mitochondrial dysfunction underlies many human disorders, including those that affect the visual system. The retinal ganglion cells, whose axons form the optic nerve, are often damaged by mitochondrial-related diseases which result in blindness. Both mitochondrial DNA (mtDNA) and nuclear gene mutations impacting many different mitochondrial processes can result in optic nerve disease. Of particular importance are mutations that impair mitochondrial network dynamics (fusion and fission), oxidative phosphorylation (OXPHOS), and formation of iron-sulfur complexes. Current genetic knowledge can inform genetic counseling and suggest strategies for novel gene-based therapies. Identifying new optic neuropathy-causing genes and defining the role of current and novel genes in disease will be important steps toward the development of effective and potentially neuroprotective therapies.
Collapse
Affiliation(s)
- Janey L Wiggs
- Department of Ophthalmology, Harvard Medical School and Massachusetts Eye and Ear, Boston, Massachusetts 02114;
| |
Collapse
|
38
|
Pisano A, Preziuso C, Iommarini L, Perli E, Grazioli P, Campese AF, Maresca A, Montopoli M, Masuelli L, Sadun AA, d'Amati G, Carelli V, Ghelli A, Giordano C. Targeting estrogen receptor β as preventive therapeutic strategy for Leber's hereditary optic neuropathy. Hum Mol Genet 2015; 24:6921-31. [PMID: 26410888 DOI: 10.1093/hmg/ddv396] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 09/17/2015] [Indexed: 11/13/2022] Open
Abstract
Leber's hereditary optic neuropathy (LHON) is a maternally inherited blinding disease characterized by degeneration of retinal ganglion cells (RGCs) and consequent optic nerve atrophy. Peculiar features of LHON are incomplete penetrance and gender bias, with a marked male prevalence. Based on the different hormonal metabolism between genders, we proposed that estrogens play a protective role in females and showed that these hormones ameliorate mitochondrial dysfunction in LHON through the estrogen receptors (ERs). We also showed that ERβ localize to the mitochondria of RGCs. Thus, targeting ERβ may become a therapeutic strategy for LHON specifically aimed at avoiding or delaying the onset of disease in mutation carriers. Here, we tested the effects of ERβ targeting on LHON mitochondrial defective metabolism by treating LHON cybrid cells carrying the m.11778G>A mutation with a combination of natural estrogen-like compounds that bind ERβ with high selectivity. We demonstrated that these molecules improve cell viability by reducing apoptosis, inducing mitochondrial biogenesis and strongly reducing the levels of reactive oxygen species in LHON cells. These effects were abolished in cells with ERβ knockdown by silencing receptor expression or by using specific receptor antagonists. Our observations support the hypothesis that estrogen-like molecules may be useful in LHON prophylactic therapy. This is particularly important for lifelong disease prevention in unaffected LHON mutation carriers. Current strategies attempting to combat degeneration of RGCs during the acute phase of LHON have not been very effective. Implementing a different and preemptive approach with a low risk profile may be very helpful.
Collapse
Affiliation(s)
- Annalinda Pisano
- Department of Radiological, Oncological and Pathological Sciences
| | - Carmela Preziuso
- Department of Radiological, Oncological and Pathological Sciences
| | | | - Elena Perli
- Department of Radiological, Oncological and Pathological Sciences
| | | | | | - Alessandra Maresca
- Neurology Unit, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy, IRCCS Institute of Neurologic Science of Bologna, Bellaria Hospital, Bologna, Italy
| | - Monica Montopoli
- Department of Pharmacology and Anesthesiology, University of Padua, Padua, Italy and
| | - Laura Masuelli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Alfredo A Sadun
- Doheny Eye Institute, University of California Los Angeles, Los Angeles, USA
| | - Giulia d'Amati
- Department of Radiological, Oncological and Pathological Sciences
| | - Valerio Carelli
- Neurology Unit, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy, IRCCS Institute of Neurologic Science of Bologna, Bellaria Hospital, Bologna, Italy
| | - Anna Ghelli
- Department of Pharmacy and Biotechnology (FABIT),
| | - Carla Giordano
- Department of Radiological, Oncological and Pathological Sciences,
| |
Collapse
|
39
|
Grzybowski A, Zülsdorff M, Wilhelm H, Tonagel F. Toxic optic neuropathies: an updated review. Acta Ophthalmol 2015; 93:402-410. [PMID: 25159832 DOI: 10.1111/aos.12515] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 07/03/2014] [Indexed: 01/29/2023]
Abstract
Toxic optic neuropathy (TON) is caused by the damage to the optic nerve through different toxins, including drugs, metals, organic solvents, methanol and carbon dioxide. A similar clinical picture may also be caused by nutritional deficits, including B vitamins, folic acid and proteins with sulphur-containing amino acids. This review summarizes the present knowledge on disease-causing factors, clinical presentation, diagnostics and treatment in TON. It discusses in detail known and hypothesized relations between drugs, including tuberculostatic drugs, antimicrobial agents, antiepileptic drugs, antiarrhythmic drugs, disulfiram, halogenated hydroquinolones, antimetabolites, tamoxifen and phosphodiesterase type 5 inhibitors and optic neuropathy.
Collapse
Affiliation(s)
- Andrzej Grzybowski
- Department of Ophthalmology; Poznań City Hospital; Poznań Poland
- Departtment of Ophthalmology; University of Warmia and Mazury; Olsztyn Poland
| | | | - Helmut Wilhelm
- Centre for Ophthalmology; University of Tuebingen; Tuebingen Germany
| | - Felix Tonagel
- Centre for Ophthalmology; University of Tuebingen; Tuebingen Germany
| |
Collapse
|
40
|
Allen KF, Gaier ED, Wiggs JL. Genetics of Primary Inherited Disorders of the Optic Nerve: Clinical Applications. Cold Spring Harb Perspect Med 2015; 5:a017277. [PMID: 26134840 DOI: 10.1101/cshperspect.a017277] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Inherited disorders of the optic nerve significantly impact vision in children and adults. The optic nerve disorders most commonly encountered clinically are glaucoma and primary optic neuropathy including Leber's hereditary optic neuropathy (LHON) and autosomal dominant or Kjer's optic atrophy. Current knowledge of the genetics of optic neuropathy and glaucoma makes it possible to test for mutations in disease-causing genes allowing for presymptomatic testing and risk assessment, and recent advances have revealed important disease mechanisms that may suggest potential therapeutic targets. In this perspective, we describe the current approaches and limitations to genetic testing for these disorders and provide an update on the development of gene-based therapies.
Collapse
Affiliation(s)
- Keri F Allen
- Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts 02114
| | - Eric D Gaier
- Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts 02114
| | - Janey L Wiggs
- Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts 02114
| |
Collapse
|
41
|
|
42
|
Gene therapy for mitochondrial diseases: Leber Hereditary Optic Neuropathy as the first candidate for a clinical trial. C R Biol 2014; 337:193-206. [PMID: 24702846 DOI: 10.1016/j.crvi.2013.11.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 11/28/2013] [Indexed: 12/30/2022]
Abstract
Mitochondrial disorders cannot be ignored anymore in most medical disciplines; indeed their minimum estimated prevalence is superior to 1 in 5000 births. Despite the progress made in the last 25 years on the identification of gene mutations causing mitochondrial pathologies, only slow progress was made towards their effective treatments. Ocular involvement is a frequent feature in mitochondrial diseases and corresponds to severe and irreversible visual handicap due to retinal neuron loss and optic atrophy. Interestingly, three clinical trials for Leber Congenital Amaurosis due to RPE65 mutations are ongoing since 2007. Overall, the feasibility and safety of ocular Adeno-Associated Virus delivery in adult and younger patients and consistent visual function improvements have been demonstrated. The success of gene-replacement therapy for RPE65 opens the way for the development of similar approaches for a broad range of eye disorders, including those with mitochondrial etiology such as Leber Hereditary Optic Neuropathy (LHON).
Collapse
|
43
|
Selective retinal ganglion cell loss in familial dysautonomia. J Neurol 2014; 261:702-9. [PMID: 24487827 DOI: 10.1007/s00415-014-7258-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 01/15/2014] [Accepted: 01/17/2014] [Indexed: 10/25/2022]
Abstract
To define the retinal phenotype of subjects with familial dysautonomia (FD). A cross-sectional study was carried out in 90 subjects divided in three groups of 30 each (FD subjects, asymptomatic carriers and controls). The study was developed at the Dysautonomia Center, New York University Medical Center. All subjects underwent spectral domain optical coherence tomography (OCT) and full neuro-ophthalmic examinations. In a subset of affected subjects, visual evoked potentials and microperimetry were also obtained. We compared the retinal nerve fiber layer (RNFL) thickness from OCT between the three groups. OCT showed loss of the RNFL in all FD subjects predominantly in the maculopapillary region (63 % temporally, p < 0.0001; and 21 % nasally, p < 0.005). RNFL loss was greatest in older FD subjects and was associated with decreased visual acuity and color vision, central visual field defects, temporal optic nerve pallor, and delayed visual evoked potentials. Asymptomatic carriers of the FD gene mutation all had thinner RNFL (12 % globally, p < 0.005). OCT and clinical neuro-ophthalmological findings suggest that maculopapillary ganglion cells are primarily affected in FD subjects, leading to a specific optic nerve damage that closely resembles mitochondrial optic neuropathies. This raises the possibility that reduced IKAP levels may affect mitochondrial proteins and their function in the nervous system, particularly in the retina.
Collapse
|
44
|
Giordano C, Iommarini L, Giordano L, Maresca A, Pisano A, Valentino ML, Caporali L, Liguori R, Deceglie S, Roberti M, Fanelli F, Fracasso F, Ross-Cisneros FN, D’Adamo P, Hudson G, Pyle A, Yu-Wai-Man P, Chinnery PF, Zeviani M, Salomao SR, Berezovsky A, Belfort R, Ventura DF, Moraes M, Moraes Filho M, Barboni P, Sadun F, De Negri A, Sadun AA, Tancredi A, Mancini M, d’Amati G, Loguercio Polosa P, Cantatore P, Carelli V. Efficient mitochondrial biogenesis drives incomplete penetrance in Leber's hereditary optic neuropathy. Brain 2014; 137:335-53. [PMID: 24369379 PMCID: PMC3914475 DOI: 10.1093/brain/awt343] [Citation(s) in RCA: 200] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Revised: 09/06/2013] [Accepted: 10/21/2013] [Indexed: 12/16/2022] Open
Abstract
Leber's hereditary optic neuropathy is a maternally inherited blinding disease caused as a result of homoplasmic point mutations in complex I subunit genes of mitochondrial DNA. It is characterized by incomplete penetrance, as only some mutation carriers become affected. Thus, the mitochondrial DNA mutation is necessary but not sufficient to cause optic neuropathy. Environmental triggers and genetic modifying factors have been considered to explain its variable penetrance. We measured the mitochondrial DNA copy number and mitochondrial mass indicators in blood cells from affected and carrier individuals, screening three large pedigrees and 39 independently collected smaller families with Leber's hereditary optic neuropathy, as well as muscle biopsies and cells isolated by laser capturing from post-mortem specimens of retina and optic nerves, the latter being the disease targets. We show that unaffected mutation carriers have a significantly higher mitochondrial DNA copy number and mitochondrial mass compared with their affected relatives and control individuals. Comparative studies of fibroblasts from affected, carriers and controls, under different paradigms of metabolic demand, show that carriers display the highest capacity for activating mitochondrial biogenesis. Therefore we postulate that the increased mitochondrial biogenesis in carriers may overcome some of the pathogenic effect of mitochondrial DNA mutations. Screening of a few selected genetic variants in candidate genes involved in mitochondrial biogenesis failed to reveal any significant association. Our study provides a valuable mechanism to explain variability of penetrance in Leber's hereditary optic neuropathy and clues for high throughput genetic screening to identify the nuclear modifying gene(s), opening an avenue to develop predictive genetic tests on disease risk and therapeutic strategies.
Collapse
Affiliation(s)
- Carla Giordano
- 1 Department of Radiology, Oncology and Pathology, Sapienza, University of Rome, Rome, Italy
| | - Luisa Iommarini
- 2 Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Luca Giordano
- 3 Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Alessandra Maresca
- 2 Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
- 4 IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, Bologna, Italy
| | - Annalinda Pisano
- 1 Department of Radiology, Oncology and Pathology, Sapienza, University of Rome, Rome, Italy
| | - Maria Lucia Valentino
- 2 Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
- 4 IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, Bologna, Italy
| | - Leonardo Caporali
- 2 Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
- 4 IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, Bologna, Italy
| | - Rocco Liguori
- 2 Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
- 4 IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, Bologna, Italy
| | - Stefania Deceglie
- 3 Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Marina Roberti
- 3 Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Francesca Fanelli
- 3 Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Flavio Fracasso
- 3 Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Fred N. Ross-Cisneros
- 5 Departments of Ophthalmology and Neurosurgery, Keck School of Medicine at USC, Los Angeles, CA, USA
| | - Pio D’Adamo
- 6 Medical Genetics, Department of Reproductive Sciences, Development and Public Health
- 7 IRCCS-Burlo Garofolo Children Hospital, University of Trieste, Trieste, Italy
| | - Gavin Hudson
- 8 Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Angela Pyle
- 8 Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Patrick Yu-Wai-Man
- 8 Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Patrick F. Chinnery
- 8 Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Massimo Zeviani
- 9 Unit of Molecular Neurogenetics, Fondazione Istituto Neurologico “Carlo Besta” - IRCCS, Milano, Italy
- 10 MRC-Mitochondrial Biology Unit, Cambridge, UK
| | - Solange R. Salomao
- 11 Department of Ophthalmology, Federal University of Sao Paulo – UNIFESP, Sao Paulo, Brazil
| | - Adriana Berezovsky
- 11 Department of Ophthalmology, Federal University of Sao Paulo – UNIFESP, Sao Paulo, Brazil
| | - Rubens Belfort
- 11 Department of Ophthalmology, Federal University of Sao Paulo – UNIFESP, Sao Paulo, Brazil
| | - Dora Fix Ventura
- 12 Department of Experimental Psychology, Institute of Psychology, University of Sao Paulo, Sao Paulo, Brazil
| | - Milton Moraes
- 11 Department of Ophthalmology, Federal University of Sao Paulo – UNIFESP, Sao Paulo, Brazil
| | - Milton Moraes Filho
- 11 Department of Ophthalmology, Federal University of Sao Paulo – UNIFESP, Sao Paulo, Brazil
| | | | | | | | - Alfredo A. Sadun
- 5 Departments of Ophthalmology and Neurosurgery, Keck School of Medicine at USC, Los Angeles, CA, USA
| | - Andrea Tancredi
- 16 Dipartimento di Metodi e Modelli per l’Economia la Finanza e il Territorio, Sapienza, Università di Roma, Roma, Italy
| | - Massimiliano Mancini
- 1 Department of Radiology, Oncology and Pathology, Sapienza, University of Rome, Rome, Italy
- 17 Department of Molecular Medicine, Sapienza, University of Rome
| | - Giulia d’Amati
- 1 Department of Radiology, Oncology and Pathology, Sapienza, University of Rome, Rome, Italy
| | - Paola Loguercio Polosa
- 3 Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Palmiro Cantatore
- 3 Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Valerio Carelli
- 2 Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
- 4 IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, Bologna, Italy
| |
Collapse
|
45
|
Sadun AA, La Morgia C, Carelli V. Leber’s hereditary optic neuropathy: new quinone therapies change the paradigm. EXPERT REVIEW OF OPHTHALMOLOGY 2014. [DOI: 10.1586/eop.12.27] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
46
|
Optic nerve histopathology in a case of Wolfram Syndrome: A mitochondrial pattern of axonal loss. Mitochondrion 2013; 13:841-5. [DOI: 10.1016/j.mito.2013.05.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 05/29/2013] [Accepted: 05/30/2013] [Indexed: 11/19/2022]
|
47
|
Wallace DC, Chalkia D. Mitochondrial DNA genetics and the heteroplasmy conundrum in evolution and disease. Cold Spring Harb Perspect Biol 2013; 5:a021220. [PMID: 24186072 PMCID: PMC3809581 DOI: 10.1101/cshperspect.a021220] [Citation(s) in RCA: 446] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The unorthodox genetics of the mtDNA is providing new perspectives on the etiology of the common "complex" diseases. The maternally inherited mtDNA codes for essential energy genes, is present in thousands of copies per cell, and has a very high mutation rate. New mtDNA mutations arise among thousands of other mtDNAs. The mechanisms by which these "heteroplasmic" mtDNA mutations come to predominate in the female germline and somatic tissues is poorly understood, but essential for understanding the clinical variability of a range of diseases. Maternal inheritance and heteroplasmy also pose major challengers for the diagnosis and prevention of mtDNA disease.
Collapse
Affiliation(s)
- Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | | |
Collapse
|
48
|
Are we there yet? Is neuro-ophthalmology at the cusp of a paradigm shift? Lessons from leber hereditary optic neuropathy. J Neuroophthalmol 2013; 33:189-97. [PMID: 23681244 DOI: 10.1097/wno.0b013e31829343a0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
49
|
Sadun AA, La Morgia C, Carelli V. Mitochondrial optic neuropathies: our travels from bench to bedside and back again. Clin Exp Ophthalmol 2013; 41:702-12. [PMID: 23433229 DOI: 10.1111/ceo.12086] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 01/21/2013] [Indexed: 01/02/2023]
Abstract
The standard scientific method requires that you make an interesting observation, generate a hypothesis and then design an experiment to test the hypothesis. In ophthalmology, as in most fields of medicine, the observations and hypotheses tend to have more degrees of freedom, and the interpretation of experiments is also more complicated and often indeterminate. But sometimes it works out, going back and forth from bench to bedside to bench, in reiterative cycles. A successful example of alternating bench and bedside studies was presented (AAS) at the 2012 Alper Memorial given at the Washington Hospital Medical Center, illustrating a series of questions and investigations that pertain to mitochondrial optic neuropathies, beginning two decades ago, before the concept of mitochondrial optic neuropathies had much meaning. Basic science questions are often best answered by that extraordinary experiment of nature that we call clinical disease, and clinical questions are often best tested in the laboratory.
Collapse
Affiliation(s)
- Alfredo A Sadun
- Doheny Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | | | | |
Collapse
|
50
|
Abstract
The mitochondrial DNA (mtDNA) is a compact genome inherited through the maternal lineage. Mutations in mtDNA lead to many of the earliest identified syndromic mitochondrial diseases and display a diverse range of age of onset, symptoms, and outcomes-from isolated childhood onset vision or hearing loss to a multisystemic neurodegenerative disorder with strokes, neuropathy, ophthalmoparesis, and epilepsy beginning at any age. As a heterogeneous group, mitochondrial diseases represent one of the most common metabolic disorders in children and adults, frequently seen by both pediatric and adult specialists. Although the myriad of diseases can make diagnosis seems daunting, the need for extensive supportive care and treatment (the latter for at least a select few mitochondrial disorders) and a rapid and accurate recognition of these disorders is necessary. Here, we provide a review of the most common mitochondrial disease syndromes due to mtDNA mutations.
Collapse
Affiliation(s)
- Suzanne Debrosse
- Center for Human Genetics, University Hospitals, Case Medical Center, Cleveland, OH 44195, USA
| | | |
Collapse
|