1
|
Bugiardini E, Nunes AM, Oliveira‐Santos A, Dagda M, Fontelonga TM, Barraza‐Flores P, Pittman AM, Morrow JM, Parton M, Houlden H, Elliott PM, Syrris P, Maas RP, Akhtar MM, Küsters B, Raaphorst J, Schouten M, Kamsteeg E, van Engelen B, Hanna MG, Phadke R, Lopes LR, Matthews E, Burkin DJ. Integrin α7 Mutations Are Associated With Adult-Onset Cardiac Dysfunction in Humans and Mice. J Am Heart Assoc 2022; 11:e026494. [PMID: 36444867 PMCID: PMC9851448 DOI: 10.1161/jaha.122.026494] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 11/02/2022] [Indexed: 11/30/2022]
Abstract
Background Integrin α7β1 is a major laminin receptor in skeletal and cardiac muscle. In skeletal muscle, integrin α7β1 plays an important role during muscle development and has been described as an important modifier of skeletal muscle diseases. The integrin α7β1 is also highly expressed in the heart, but its precise role in cardiac function is unknown. Mutations in the integrin α7 gene (ITGA7) have been reported in children with congenital myopathy. Methods and Results In this study, we described skeletal and cardiac muscle pathology in Itga7-/- mice and 5 patients from 2 unrelated families with ITGA7 mutations. Proband in family 1 presented a homozygous c.806_818del [p.S269fs] variant, and proband in family 2 was identified with 2 intron variants in the ITGA7 gene. The complete absence of the integrin α7 protein in muscle supports the ITGA7 mutations are pathogenic. We performed electrocardiography, echocardiography, or cardiac magnetic resonance imaging, and histological biopsy analyses in patients with ITGA7 deficiency and Itga7-/- mice. The patients exhibited cardiac dysrhythmia and dysfunction from the third decade of life and late-onset respiratory insufficiency, but with relatively mild limb muscle involvement. Mice demonstrated corresponding abnormalities in cardiac conduction and contraction as well as diaphragm muscle fibrosis. Conclusions Our data suggest that loss of integrin α7 causes a novel form of adult-onset cardiac dysfunction indicating a critical role for the integrin α7β1 in normal cardiac function and highlights the need for long-term cardiac monitoring in patients with ITGA7-related congenital myopathy.
Collapse
Affiliation(s)
- Enrico Bugiardini
- Queen Square Centre for Neuromuscular DiseasesQueen Square Institute of Neurology, UCL and National Hospital for Neurology and NeurosurgeryLondonUnited Kingdom
| | - Andreia M. Nunes
- Department of PharmacologyUniversity of Nevada Reno, School of Medicine, Center for Molecular MedicineRenoNV
| | - Ariany Oliveira‐Santos
- Department of PharmacologyUniversity of Nevada Reno, School of Medicine, Center for Molecular MedicineRenoNV
| | - Marisela Dagda
- Department of PharmacologyUniversity of Nevada Reno, School of Medicine, Center for Molecular MedicineRenoNV
| | - Tatiana M. Fontelonga
- Department of PharmacologyUniversity of Nevada Reno, School of Medicine, Center for Molecular MedicineRenoNV
| | - Pamela Barraza‐Flores
- Department of PharmacologyUniversity of Nevada Reno, School of Medicine, Center for Molecular MedicineRenoNV
| | - Alan M. Pittman
- Department of Neuromuscular DiseasesUCL Queen Square Institute of NeurologyLondonUnited Kingdom
- St George’sUniversity of LondonLondonUnited Kingdom
| | - Jasper M. Morrow
- Queen Square Centre for Neuromuscular DiseasesQueen Square Institute of Neurology, UCL and National Hospital for Neurology and NeurosurgeryLondonUnited Kingdom
| | - Matthew Parton
- Queen Square Centre for Neuromuscular DiseasesQueen Square Institute of Neurology, UCL and National Hospital for Neurology and NeurosurgeryLondonUnited Kingdom
| | - Henry Houlden
- Department of Neuromuscular DiseasesUCL Queen Square Institute of NeurologyLondonUnited Kingdom
| | - Perry M. Elliott
- Barts Heart Centre, Barts Health NHS TrustLondonUnited Kingdom
- Centre for Heart Muscle DiseaseInstitute of Cardiovascular Science, University College LondonLondonUnited Kingdom
| | - Petros Syrris
- Centre for Heart Muscle DiseaseInstitute of Cardiovascular Science, University College LondonLondonUnited Kingdom
| | - Roderick P. Maas
- Department of Neurology, Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
| | - Mohammed M. Akhtar
- Barts Heart Centre, Barts Health NHS TrustLondonUnited Kingdom
- Centre for Heart Muscle DiseaseInstitute of Cardiovascular Science, University College LondonLondonUnited Kingdom
| | - Benno Küsters
- Department of PathologyRadboud University Medical CenterNijmegenThe Netherlands
| | - Joost Raaphorst
- Department of Neurology, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam NeuroscienceAmsterdamThe Netherlands
| | - Meyke Schouten
- Department of Human GeneticsRadboud University Medical CenterNijmegenThe Netherlands
| | - Erik‐Jan Kamsteeg
- Department of Human GeneticsRadboud University Medical CenterNijmegenThe Netherlands
| | - Baziel van Engelen
- Department of Neurology, Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
| | - Michael G. Hanna
- Queen Square Centre for Neuromuscular DiseasesQueen Square Institute of Neurology, UCL and National Hospital for Neurology and NeurosurgeryLondonUnited Kingdom
| | - Rahul Phadke
- Division of NeuropathologyUCL Institute of NeurologyLondonUnited Kingdom
- Dubowitz Neuromuscular Centre, MRC Centre for Neuromuscular DiseasesUCL Great Ormond Street Institute of Child HealthLondonUnited Kingdom
| | - Luis R. Lopes
- Barts Heart Centre, Barts Health NHS TrustLondonUnited Kingdom
- Centre for Heart Muscle DiseaseInstitute of Cardiovascular Science, University College LondonLondonUnited Kingdom
| | - Emma Matthews
- The Atkinson Morley Neuromuscular Centre and Regional Neurosciences CentreSt George’s University Hospitals NHS Foundation TrustLondonUnited Kingdom
- Molecular and Clinical Sciences Research Institute, St George’s University of LondonLondonUnited Kingdom
| | - Dean J. Burkin
- Department of PharmacologyUniversity of Nevada Reno, School of Medicine, Center for Molecular MedicineRenoNV
| |
Collapse
|
2
|
Han S, Lim S, Yeo S. Association between Decreased ITGA7 Levels and Increased Muscle α-Synuclein in an MPTP-Induced Mouse Model of Parkinson's Disease. Int J Mol Sci 2022; 23:ijms23105646. [PMID: 35628462 PMCID: PMC9143933 DOI: 10.3390/ijms23105646] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 02/05/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by the loss of dopaminergic neurons in the substantia nigra (SN), reducing dopaminergic levels in the striatum and affecting motor control. Herein, we investigated the potential relationship between integrin α7 (ITGA7) and α-synuclein (α-syn) in the muscle of methyl-4-phenyl-1,2,3,6 tetrahydropyridine (MPTP)-induced mice and C2C12 cells. To characterize the pathology of PD, we examined the expression of tyrosine hydroxylase (TH) in the SN of the midbrain. Compared with the control group, MPTP-treated mice showed a significant decrease in TH expression in the SN, accompanied by a significant decrease in muscle ITGA7 expression. Compared with the control group, α-syn expression was increased in the MPTP group. Furthermore, the pattern of α-syn expression in the MPTP group was similar to the ITGA7 expression pattern in the control group (linear forms). To determine the relationship between ITGA7 and PD, we examined the expression of ITGA7 and α-syn after ITGA7 knockdown using siRNA in C2C12 cells. ITGA7 expression significantly decreased while α-syn expression significantly increased in siRNA-treated C2C12 cells. These results suggest that decreased ITGA7 muscle expression could increase α-syn expression. Moreover, α-syn accumulation, induced by decreased muscle ITGA7, might contribute to PD pathology.
Collapse
Affiliation(s)
- Sangeun Han
- Department of Meridian and Acupoint, College of Korean Medicine, Kyung Hee University, Seoul 02453, Korea;
| | - Sabina Lim
- Department of Meridian and Acupoint, College of Korean Medicine, Kyung Hee University, Seoul 02453, Korea;
- Correspondence: (S.L.); (S.Y.); Tel.: +82-962-0324 (S.L.); +82-33-738-7506 (S.Y.)
| | - Sujung Yeo
- Research Institute of Korean Medicine, Sang Ji University, Wonju 26339, Korea
- Correspondence: (S.L.); (S.Y.); Tel.: +82-962-0324 (S.L.); +82-33-738-7506 (S.Y.)
| |
Collapse
|
3
|
Dominici C, Richard S. Muscle stem cell polarity requires QKI-mediated alternative splicing of Integrin Alpha-7 (Itga7). Life Sci Alliance 2022; 5:5/5/e202101192. [PMID: 35165120 PMCID: PMC8860092 DOI: 10.26508/lsa.202101192] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 12/30/2022] Open
Abstract
The RNA-binding protein Quaking (QKI) is a post-transcriptional regulator of genes encoding polarity proteins in muscle stem cells. Loss of QKI in MuSCs results in reduced myogenic progenitors and a striking muscle regeneration defect. Muscle stem cells (MuSCs) have the ability to carry out the specialized function of cell polarization, which is required for the production of one repopulating cell and one myogenic progenitor cell with muscle regeneration capabilities. The mechanisms which regulate proteins involved in establishing MuSC polarity such as Dmd and Itga7 are currently not well understood. Herein, we define the RNA-binding protein Quaking (QKI) as a major regulator alternative splicing of key MuSC polarity factors including Dmd, Itga7, Mark2, and Numb. We generate a conditional QKI knockout mouse, and for the first time it is shown in vivo that deficiency of QKI in MuSCs results in reduced asymmetric cell divisions, leading to a loss of the myogenic progenitor cell population and striking muscle regeneration defects. Transcriptomic analysis of QKI-deficient MuSCs identifies QKI as a regulator of the splicing events which give rise to the mutually exclusive Itga7-X1 and -X2 isoforms. We observe increased X1 expression in QKI-deficient MuSCs and recapitulate this splicing event using antisense oligonucleotide directed against a quaking binding site within the Itga7 mRNA. Interestingly, recreating this single splicing event is detrimental to the polarization of Itga7 and Dmd proteins, and leads to a drastic reduction of the myogenic progenitor population, highlighting the significance of QKI-mediated alternative splicing of Itga7 in maintaining MuSC polarity. Altogether, these findings define a novel role for QKI as a post-transcriptional regulator of MuSC polarity.
Collapse
Affiliation(s)
- Claudia Dominici
- Segal Cancer Center, Lady Davis Institute for Medical Research and Gerald Bronfman Department of Oncology and Departments of Medicine, Human Genetics and Biochemistry, McGill University, Montréal, Québec, Canada
| | - Stéphane Richard
- Segal Cancer Center, Lady Davis Institute for Medical Research and Gerald Bronfman Department of Oncology and Departments of Medicine, Human Genetics and Biochemistry, McGill University, Montréal, Québec, Canada
| |
Collapse
|
4
|
Han S, Seo MH, Lim S, Yeo S. Decrease in ITGA7 Levels Is Associated with an Increase in α-Synuclein Levels in an MPTP-Induced Parkinson's Disease Mouse Model and SH-SY5Y Cells. Int J Mol Sci 2021; 22:ijms222312616. [PMID: 34884422 PMCID: PMC8657770 DOI: 10.3390/ijms222312616] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 12/19/2022] Open
Abstract
We investigated the potential association between integrin α7 (ITGA7) and alpha-synuclein (α-syn) in a methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson’s disease (PD) mouse model. Tyrosine hydroxylase (TH), ITGA7, and α-syn expression in the substantia nigra (SN) of the brain were observed to examine the pathological characteristics of PD. To determine the relationship between ITGA7 and PD, the expression of TH and α-syn was investigated after ITGA7 siRNA knockdown in SH-SY5Y cells. The ITGA7 microarray signal was decreased in the SN of the MPTP group, indicating reduced ITGA7 expression compared to that in the control. The expression patterns of ITGA7 in the control group and those of α-syn in the MPTP group were similar on immunohistochemical staining. Reduction in ITGA7 expression by ITGA7 siRNA administration induced a decrease in TH expression and an increase in α-syn expression in SH-SY5Y cells. The decreased expression of ITGA7 significantly decreased the expression of bcl2 and increased the bax/bcl2 ratio in SH-SY5Y cells. These results suggest that reduced ITGA7 expression may be related to increased α-syn expression and apoptosis of dopaminergic cells in an MPTP-induced PD mouse model. To the best of our knowledge, this is the first study to show an association between ITGA7 and PD.
Collapse
Affiliation(s)
- Sangeun Han
- Department of Meridian and Acupoint, College of Korean Medicine, Kyung Hee University, Seoul 02453, Korea;
| | - Min Hyung Seo
- Department of Meridian and Acupoint, College of Korean Medicine, Sang Ji University, Wonju 26339, Korea;
| | - Sabina Lim
- Department of Meridian and Acupoint, College of Korean Medicine, Kyung Hee University, Seoul 02453, Korea;
- Correspondence: (S.L.); (S.Y.); Tel.: +82-962-0324 (S.L.); +82-33-738-7506 (S.Y.)
| | - Sujung Yeo
- Department of Meridian and Acupoint, College of Korean Medicine, Sang Ji University, Wonju 26339, Korea;
- Research Institute of Korean Medicine, Sang Ji University, Wonju 26339, Korea
- Correspondence: (S.L.); (S.Y.); Tel.: +82-962-0324 (S.L.); +82-33-738-7506 (S.Y.)
| |
Collapse
|
5
|
Humanizing the mdx mouse model of DMD: the long and the short of it. NPJ Regen Med 2018; 3:4. [PMID: 29479480 PMCID: PMC5816599 DOI: 10.1038/s41536-018-0045-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 12/19/2017] [Accepted: 01/04/2018] [Indexed: 12/26/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a common fatal heritable myopathy, with cardiorespiratory failure occurring by the third decade of life. There is no specific treatment for DMD cardiomyopathy, in large part due to a lack of understanding of the mechanisms underlying the cardiac failure. Mdx mice, which have the same dystrophin mutation as human patients, are of limited use, as they do not develop early dilated cardiomyopathy as seen in patients. Here we summarize the usefulness of the various commonly used DMD mouse models, highlight a model with shortened telomeres like humans, and identify directions that warrant further investigation.
Collapse
|
6
|
|
7
|
Gawlik KI, Durbeej M. Deletion of integrin α7 subunit does not aggravate the phenotype of laminin α2 chain-deficient mice. Sci Rep 2015; 5:13916. [PMID: 26355035 PMCID: PMC4564817 DOI: 10.1038/srep13916] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 08/10/2015] [Indexed: 11/09/2022] Open
Abstract
Laminin-211 is a major constituent of the skeletal muscle basement membrane, exerting its biological functions by binding to cell surface receptors integrin α7β1 and dystroglycan (the latter is part of the dystrophin-glycoprotein complex). The importance of these molecules for normal muscle function is underscored by the fact that their respective deficiency leads to different forms of muscular dystrophy with different severity in humans and animal models. We recently demonstrated that laminin α2 chain and members of the dystrophin-glycoprotein complex have overlapping but non-redundant roles despite being part of the same adhesion complex. To analyse whether laminin-211 and integrin α7 subunit have non-redundant functions we generated mice deficient in laminin α2 chain and integrin α7 subunit (dy3K/itga7). We show that lack of both molecules did not exacerbate the severe phenotype of laminin α2-chain deficient animals. They displayed the same weight, survival and dystrophic pattern of muscle biopsy, with similar degree of inflammation and fibrosis. These data suggest that laminin-211 and integrin α7β1 have intersecting roles in skeletal muscle.
Collapse
Affiliation(s)
- Kinga I Gawlik
- Department of Experimental Medical Science, Muscle Biology Unit, Lund University, Sweden
| | - Madeleine Durbeej
- Department of Experimental Medical Science, Muscle Biology Unit, Lund University, Sweden
| |
Collapse
|
8
|
Lund DK, Cornelison DDW. Enter the matrix: shape, signal and superhighway. FEBS J 2013; 280:4089-99. [PMID: 23374506 DOI: 10.1111/febs.12171] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 01/25/2013] [Accepted: 01/28/2013] [Indexed: 12/20/2022]
Abstract
Mammalian skeletal muscle is notable for both its highly ordered biophysical structure and its regenerative capacity following trauma. Critical to both of these features is the specialized muscle extracellular matrix, comprising both the multiple concentric sheaths of connective tissue surrounding structural units from single myofibers to whole muscles and the dense interstitial matrix that occupies the space between them. Extracellular matrix-dependent interactions affect all activities of the resident muscle stem cell population (the satellite cells), from maintenance of quiescence and stem cell potential to the regulation of proliferation and differentiation. This review focuses on the role of the extracellular matrix in muscle regeneration, with a particular emphasis on regulation of satellite-cell activity.
Collapse
Affiliation(s)
- Dane K Lund
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | | |
Collapse
|
9
|
|
10
|
Mercuri E, Muntoni F. The ever-expanding spectrum of congenital muscular dystrophies. Ann Neurol 2012; 72:9-17. [PMID: 22829265 DOI: 10.1002/ana.23548] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
11
|
Charvet B, Ruggiero F, Le Guellec D. The development of the myotendinous junction. A review. Muscles Ligaments Tendons J 2012; 2:53-63. [PMID: 23738275 PMCID: PMC3666507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The myotendinous junction (MTJ) is a complex specialized region located at the muscle-tendon interface that represents the primary site of force transmission. Despite their different embryologic origins, muscle and tendon morphogenesis occurs in close spatial and temporal association. After muscle attachment, muscle and tendon constitute a dynamic and functional integrated unit that transduces muscle contraction force to the skeletal system. We review here the current understanding of MTJ formation describing changes during morphogenesis and focusing on the crosstalk between muscle and tendon cells that leads to the development of a functional MTJ. Molecules involved in the formation of the linkage, both at the tendon side and at the muscle side of the junction are described. Much of this knowledge comes from studies using different animal models such as mice, zebrafish and Drosophila where powerful methods for in vivo imaging and genetic manipulations can be used to enlighten this developmental process.
Collapse
Affiliation(s)
- Benjamin Charvet
- Institut de Génomique Fonctionnelle de Lyon, ENS de Lyon, UMR CNRS 5242, Université Lyon 1, France
| | - Florence Ruggiero
- Institut de Génomique Fonctionnelle de Lyon, ENS de Lyon, UMR CNRS 5242, Université Lyon 1, France
| | - Dominique Le Guellec
- Université Lyon 1; CNRS, FRE 3310; IFR128 Lyon Biosciences, Dysfonctionnement de l’Homéostasie Tissulaire et Ingénierie Thérapeutique, France
| |
Collapse
|
12
|
Expression of collagen VI α5 and α6 chains in human muscle and in Duchenne muscular dystrophy-related muscle fibrosis. Matrix Biol 2011; 31:187-96. [PMID: 22226732 PMCID: PMC3315014 DOI: 10.1016/j.matbio.2011.12.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 12/13/2011] [Accepted: 12/19/2011] [Indexed: 11/23/2022]
Abstract
Collagen VI is a major extracellular matrix (ECM) protein with a critical role in maintaining skeletal muscle functional integrity. Mutations in COL6A1, COL6A2 and COL6A3 genes cause Ullrich Congenital Muscular Dystrophy (UCMD), Bethlem Myopathy, and Myosclerosis. Moreover, Col6a1−/− mice and collagen VI deficient zebrafish display a myopathic phenotype. Recently, two additional collagen VI chains were identified in humans, the α5 and α6 chains, however their distribution patterns and functions in human skeletal muscle have not been thoroughly investigated yet. By means of immunofluorescence analysis, the α6 chain was detected in the endomysium and perimysium, while the α5 chain labeling was restricted to the myotendinous junctions. In normal muscle cultures, the α6 chain was present in traces in the ECM, while the α5 chain was not detected. In the absence of ascorbic acid, the α6 chain was mainly accumulated into the cytoplasm of a sub-set of desmin negative cells, likely of interstitial origin, which can be considered myofibroblasts as they expressed α-smooth muscle actin. TGF-β1 treatment, a pro-fibrotic factor which induces trans-differentiation of fibroblasts into myofibroblasts, increased the α6 chain deposition in the extracellular matrix after addition of ascorbic acid. In order to define the involvement of the α6 chain in muscle fibrosis we studied biopsies of patients affected by Duchenne Muscular Dystrophy (DMD). We found that the α6 chain was dramatically up-regulated in fibrotic areas where, in contrast, the α5 chain was undetectable. Our results show a restricted and differential distribution of the novel α6 and α5 chains in skeletal muscle when compared to the widely distributed, homologous α3 chain, suggesting that these new chains may play specific roles in specialized ECM structures. While the α5 chain may have a specialized function in tissue areas subjected to tensile stress, the α6 chain appears implicated in ECM remodeling during muscle fibrosis.
Collapse
|
13
|
Liu J, Milner DJ, Boppart MD, Ross RS, Kaufman SJ. β1D chain increases α7β1 integrin and laminin and protects against sarcolemmal damage in mdx mice. Hum Mol Genet 2011; 21:1592-603. [PMID: 22180459 DOI: 10.1093/hmg/ddr596] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The dystrophin-glycoprotein complex connects myofibers with extracellular matrix laminin. In Duchenne muscular dystrophy, this linkage system is absent and the integrity of muscle fibers is compromised. One potential therapy for addressing muscular dystrophy is to augment the amount of α7β1 integrin, the major laminin-binding integrin in skeletal muscle. Whereas transgenic over-expression of α7 chain may alleviate development of muscular dystrophy and extend the lifespan of severely dystrophic mdx/utrn(-/-) mice, further enhancing levels of α7 chain provided little additional membrane integrin and negligible additional improvement in mdx mice. We demonstrate here that normal levels of β1 chain limit formation of integrin heterodimer and that increasing β1D chain in mdx mice results in more functional integrin at the sarcolemma, more matrix laminin and decreased damage of muscle fibers. Moreover, increasing the amount of β1D chain in vitro enhances transcription of α7 integrin and α2 laminin genes and the amounts of these proteins. Thus manipulation of β1D integrin expression offers a novel approach to enhance integrin-mediated therapy for muscular dystrophy.
Collapse
Affiliation(s)
- Jianming Liu
- Department of Cell and Developmental Biology, University of Illinois, Urbana, IL 61801, USA
| | | | | | | | | |
Collapse
|
14
|
Rivier F, Mercier M, Hugon G, Mornet D, Echenne B. Distrofie muscolari congenite. Neurologia 2011. [DOI: 10.1016/s1634-7072(11)70572-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
15
|
|
16
|
Rhodes RH, Sharer LR. I-Z-I complexes in congenital myopathy. Muscle Nerve 2010; 41:715-23. [PMID: 20229580 DOI: 10.1002/mus.21575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A 3-month-old boy with hypotonia at birth succumbed to a congenital myopathy. The major finding in his muscle biopsy corresponded to I-Z-I complexes described previously in embryonic skeletal muscle. A few previous myopathy cases have described findings suggestive of I-Z-I-like complexes. A mutation affecting mononuclear myoblasts or early myotubes was suspected, although an acquired lesion could not be ruled out. The findings may also have been altered by secondary events in this unusual case.
Collapse
Affiliation(s)
- Roy H Rhodes
- Department of Pathology, MEB 212, Robert Wood Johnson Medical School-University of Medicine and Dentistry of New Jersey, 1 Robert Wood Johnson Place, New Brunswick, New Jersey 08901, USA.
| | | |
Collapse
|
17
|
Congenital Muscular Dystrophies: Toward Molecular Therapeutic Interventions. Curr Neurol Neurosci Rep 2010; 10:83-91. [DOI: 10.1007/s11910-010-0092-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
18
|
Tariq M, Khan MN, Ahmad W. Ectodermal dysplasia-cutaneous syndactyly syndrome maps to chromosome 7p21.1-p14.3. Hum Genet 2009; 125:421-9. [DOI: 10.1007/s00439-009-0640-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2008] [Accepted: 02/08/2009] [Indexed: 10/21/2022]
|
19
|
Compton AG, Albrecht DE, Seto JT, Cooper ST, Ilkovski B, Jones KJ, Challis D, Mowat D, Ranscht B, Bahlo M, Froehner SC, North KN. Mutations in contactin-1, a neural adhesion and neuromuscular junction protein, cause a familial form of lethal congenital myopathy. Am J Hum Genet 2008; 83:714-24. [PMID: 19026398 DOI: 10.1016/j.ajhg.2008.10.022] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Revised: 10/16/2008] [Accepted: 10/29/2008] [Indexed: 01/06/2023] Open
Abstract
We have previously reported a group of patients with congenital onset weakness associated with a deficiency of members of the syntrophin-alpha-dystrobrevin subcomplex and have demonstrated that loss of syntrophin and dystrobrevin from the sarcolemma of skeletal muscle can also be associated with denervation. Here, we have further studied four individuals from a consanguineous Egyptian family with a lethal congenital myopathy inherited in an autosomal-recessive fashion and characterized by a secondary loss of beta2-syntrophin and alpha-dystrobrevin from the muscle sarcolemma, central nervous system involvement, and fetal akinesia. We performed homozygosity mapping and candidate gene analysis and identified a mutation that segregates with disease within CNTN1, the gene encoding for the neural immunoglobulin family adhesion molecule, contactin-1. Contactin-1 transcripts were markedly decreased on gene-expression arrays of muscle from affected family members compared to controls. We demonstrate that contactin-1 is expressed at the neuromuscular junction (NMJ) in mice and man in addition to the previously documented expression in the central and peripheral nervous system. In patients with secondary dystroglycanopathies, we show that contactin-1 is abnormally localized to the sarcolemma instead of exclusively at the NMJ. The cntn1 null mouse presents with ataxia, progressive muscle weakness, and postnatal lethality, similar to the affected members in this family. We propose that loss of contactin-1 from the NMJ impairs communication or adhesion between nerve and muscle resulting in the severe myopathic phenotype. This disorder is part of the continuum in the clinical spectrum of congenital myopathies and congenital myasthenic syndromes.
Collapse
Affiliation(s)
- Alison G Compton
- Institute for Neuromuscular Research, The Children's Hospital at Westmead, NSW, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Boppart MD, Volker SE, Alexander N, Burkin DJ, Kaufman SJ. Exercise promotes alpha7 integrin gene transcription and protection of skeletal muscle. Am J Physiol Regul Integr Comp Physiol 2008; 295:R1623-30. [PMID: 18784336 DOI: 10.1152/ajpregu.00089.2008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The alpha7beta1 integrin is increased in skeletal muscle in response to injury-producing exercise, and transgenic overexpression of this integrin in mice protects against exercise-induced muscle damage. The present study investigates whether the increase in the alpha7beta1 integrin observed in wild-type mice in response to exercise is due to transcriptional regulation and examines whether mobilization of the integrin at the myotendinous junction (MTJ) is a key determinant in its protection against damage. A single bout of downhill running exercise selectively increased transcription of the alpha7 integrin gene in 5-wk-old wild-type mice 3 h postexercise, and an increased alpha7 chain was detected in muscle sarcolemma adjacent to tendinous tissue immediately following exercise. The alpha7B, but not alpha7A isoform, was found concentrated and colocalized with tenascin-C in muscle fibers lining the MTJ. To further validate the importance of the integrin in the protection against muscle damage following exercise, muscle injury was quantified in alpha7(-/-) mice. Muscle damage was extensive in alpha7(-/-) mice in response to both a single and repeated bouts of exercise and was largely restricted to areas of high MTJ concentration and high mechanical force near the Achilles tendon. These results suggest that exercise-induced muscle injury selectively increases transcription of the alpha7 integrin gene and promotes a rapid change in the alpha7beta integrin at the MTJ. These combined molecular and cellular alterations are likely responsible for integrin-mediated attenuation of exercise-induced muscle damage.
Collapse
Affiliation(s)
- Marni D Boppart
- Department of Kinesiology and Community Health, University of Illinois, Urbana, Illinois, USA
| | | | | | | | | |
Collapse
|
21
|
Peat RA, Gécz J, Fallon JR, Tarpey PS, Smith R, Futreal A, Stratton MR, Lamandé SR, Yang N, North KN. Exclusion of biglycan mutations in a cohort of patients with neuromuscular disorders. Neuromuscul Disord 2008; 18:606-9. [PMID: 18602826 PMCID: PMC2873833 DOI: 10.1016/j.nmd.2008.05.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2008] [Revised: 04/09/2008] [Accepted: 05/28/2008] [Indexed: 10/21/2022]
Abstract
Biglycan has been considered a good candidate for neuromuscular disease based on direct interactions with collagen VI and alpha-dystroglycan, both of which are linked with congenital muscular dystrophy (CMD). We screened 83 patients with CMD and other neuromuscular disorders and six controls for mutations and variations in the biglycan sequence. We identified a number of novel sequence variations. After family analysis and control screening we found that none of these polymorphisms were disease-causing mutations. Thus mutations in biglycan are not a common cause of neuromuscular disorders in our cohort.
Collapse
Affiliation(s)
- Rachel A Peat
- Institute for Neuromuscular Research, The Children's Hospital at Westmead, Sydney, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Gheyara AL, Vallejo-Illarramendi A, Zang K, Mei L, St-Arnaud R, Dedhar S, Reichardt LF. Deletion of integrin-linked kinase from skeletal muscles of mice resembles muscular dystrophy due to alpha 7 beta 1-integrin deficiency. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 171:1966-77. [PMID: 18055553 DOI: 10.2353/ajpath.2007.070555] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Integrin-linked kinase (Ilk) is a serine/threonine kinase and an adaptor protein that links integrins to the actin cytoskeleton and to a number of signaling pathways involved in integrin action. We hypothesized that Ilk may act as an important effector of integrins in skeletal muscle, where these receptors provide a critical link between the sarcolemma and the extracellular matrix. Using the cre/lox system, we deleted Ilk from skeletal muscles of mice. The resulting mutants developed a progressive muscular dystrophy with multiple degenerating and regenerating muscle fibers, increased central nuclei, and endomysial fibrosis. These defects were widespread but were most severe near myofascial junctions where Ilk mutants showed displacement of focal adhesion-related proteins, including vinculin, paxillin, focal adhesion kinase, dystrophin, and the alpha 7 beta 1D-integrin subunits. Distal ends of mutant muscle fibers appeared irregular, and there was restructuring of the actin cytoskeleton. These findings resemble those seen in humans and mice lacking the alpha 7-integrin subunit and suggest that Ilk may act as a cytoplasmic effector of alpha 7 beta1-integrin in the pathogenesis of these deficiencies.
Collapse
Affiliation(s)
- Ania L Gheyara
- Department of Pathology, University of California, San Francisco, San Francisco, California 94143, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Liu J, Burkin DJ, Kaufman SJ. Increasing alpha 7 beta 1-integrin promotes muscle cell proliferation, adhesion, and resistance to apoptosis without changing gene expression. Am J Physiol Cell Physiol 2007; 294:C627-40. [PMID: 18045857 DOI: 10.1152/ajpcell.00329.2007] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The dystrophin-glycoprotein complex maintains the integrity of skeletal muscle by associating laminin in the extracellular matrix with the actin cytoskeleton. Several human muscular dystrophies arise from defects in the components of this complex. The alpha(7)beta(1)-integrin also binds laminin and links the extracellular matrix with the cytoskeleton. Enhancement of alpha(7)-integrin levels alleviates pathology in mdx/utrn(-/-) mice, a model of Duchenne muscular dystrophy, and thus the integrin may functionally compensate for the absence of dystrophin. To test whether increasing alpha(7)-integrin levels affects transcription and cellular functions, we generated alpha(7)-integrin-inducible C2C12 cells and transgenic mice that overexpress the integrin in skeletal muscle. C2C12 myoblasts with elevated levels of integrin exhibited increased adhesion to laminin, faster proliferation when serum was limited, resistance to staurosporine-induced apoptosis, and normal differentiation. Transgenic expression of eightfold more integrin in skeletal muscle did not result in notable toxic effects in vivo. Moreover, high levels of alpha(7)-integrin in both myoblasts and in skeletal muscle did not disrupt global gene expression profiles. Thus increasing integrin levels can compensate for defects in the extracellular matrix and cytoskeleton linkage caused by compromises in the dystrophin-glycoprotein complex without triggering apparent overt negative side effects. These results support the use of integrin enhancement as a therapy for muscular dystrophy.
Collapse
Affiliation(s)
- Jianming Liu
- Department of Cell and Developmental Biology, University of Illinois, 601 S. Goodwin Ave., B107 Chemical and Life Sciences Laboratory, Urbana, IL 61801, USA
| | | | | |
Collapse
|
24
|
Petrini S, D'Amico A, Sale P, Lucarini L, Sabatelli P, Tessa A, Giusti B, Verardo M, Carrozzo R, Mattioli E, Scarpelli M, Chu ML, Pepe G, Russo MA, Bertini E. Ullrich myopathy phenotype with secondary ColVI defect identified by confocal imaging and electron microscopy analysis. Neuromuscul Disord 2007; 17:587-96. [PMID: 17588753 DOI: 10.1016/j.nmd.2007.04.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2007] [Revised: 04/01/2007] [Accepted: 04/22/2007] [Indexed: 11/22/2022]
Abstract
Ullrich congenital muscular dystrophy (UCMD) is clinically characterized by muscle weakness, proximal contractures and distal hyperlaxity and morphologically branded by absence or reduction of collagen VI (ColVI), in muscle and in cultured fibroblasts. The ColVI defect is generally related to COL6 genes mutations, however UCDM patients without COL6 mutations have been recently reported, suggesting genetic heterogeneity. We report comparative morphological findings between a UCMD patient harboring a homozygous COL6A2 mutation and a patient with a typical UCMD phenotype in which mutations in COL6 genes were excluded. The patient with no mutations in COL6 genes exhibited a partial ColVI defect, which was only detected close to the basal membrane of myofibers. We describe how confocal microscopy and rotary-shadowing electron microscopy may be useful to identify a secondary ColVI defect.
Collapse
Affiliation(s)
- Stefania Petrini
- Unit of Molecular Medicine, Department of Laboratory Medicine, Bambino Gesù Paediatric Hospital IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Mendell JR, Boué DR, Martin PT. The congenital muscular dystrophies: recent advances and molecular insights. Pediatr Dev Pathol 2006; 9:427-43. [PMID: 17163796 PMCID: PMC2855646 DOI: 10.2350/06-07-0127.1] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2006] [Accepted: 08/30/2006] [Indexed: 01/16/2023]
Abstract
Over the past decade, molecular understanding of the congenital muscular dystrophies (CMDs) has greatly expanded. The diseases can be classified into 3 major groups based on the affected genes and the location of their expressed protein: abnormalities of extracellular matrix proteins (LAMA2, COL6A1, COL6A2, COL6A3), abnormalities of membrane receptors for the extracellular matrix (fukutin, POMGnT1, POMT1, POMT2, FKRP, LARGE, and ITGA7), and abnormal endoplasmic reticulum protein (SEPN1). The diseases begin in the perinatal period or shortly thereafter. A specific diagnosis can be challenging because the muscle pathology is usually not distinctive. Immunostaining of muscle using a battery of antibodies can help define a disorder that will need confirmation by gene testing. In muscle diseases with overlapping pathological features, such as CMD, careful attention to the clinical clues (e.g., family history, central nervous system features) can help guide the battery of immunostains necessary to target an unequivocal diagnosis.
Collapse
Affiliation(s)
- Jerry R Mendell
- Department of Pediatrics, Columbus Children's Hospital and Research Institute and The Ohio State University, 700 Children's Drive, Columbus, OH 43205, USA.
| | | | | |
Collapse
|
26
|
Jethanandani P, Kramer RH. Alpha7 integrin expression is negatively regulated by deltaEF1 during skeletal myogenesis. J Biol Chem 2005; 280:36037-46. [PMID: 16129691 DOI: 10.1074/jbc.m508698200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Alpha7 integrin levels increase dramatically as myoblasts differentiate to myotubes. A negative regulatory element with putative sites for deltaEF1 is present in the alpha7 proximal promoter region. To define the role of deltaEF1 in regulating alpha7 integrin expression, we overexpressed deltaEF1 in C2C12 myoblasts. This resulted in a major down-regulation of alpha7 protein expression. Promoter assays revealed that C2C12 myoblasts transfected with deltaEF1 showed a decrease in activity of the 2.8-kb alpha7 promoter fragment, indicating regulation of alpha7 integrin at the transcriptional level. We have identified two E-box-like sites for deltaEF1 in the negative regulatory region. Mutation of these sites enhanced alpha7 promoter activity, indicating that these sites function in repression. MYOD, an activator of alpha7 integrin transcription, can compete with deltaEF1 for binding at these sites in gel shift assay. By using chromatin immunoprecipitation, we demonstrated a reciprocal binding of deltaEF1 and MYOD to this regulatory element depending on the stage of differentiation: deltaEF1 is preferentially bound in myoblasts to this region, whereas MYOD is bound in myotubes. The N-terminal region of deltaEF1 is necessary for alpha7 repression, and this region also binds the co-activator p300/CBP. Importantly, we found that the p300/CBP co-activator can overcome repression by deltaEF1, suggesting that deltaEF1 can titrate limiting amounts of this co-activator. These findings suggest that deltaEF1 has a role in suppressing integrin expression in myoblasts by displacing MYOD and competing for p300/CBP co-activator.
Collapse
Affiliation(s)
- Poonam Jethanandani
- Department of Cell and Tissue Biology, University of California, San Francisco, California 94143-0640, USA
| | | |
Collapse
|
27
|
Abstract
Most neuromuscular disorders display only non-specific myopathological features in routine histological preparations. However, a number of proteins, including sarcolemmal, sarcomeric, and nuclear proteins as well as enzymes with defects responsible for neuromuscular disorders, have been identified during the past two decades, allowing a more specific and firm diagnosis of muscle diseases. Identification of protein defects relies predominantly on immunohistochemical preparations and on Western blot analysis. While immunohistochemistry is very useful in identifying abnormal expression of primary protein abnormalities in recessive conditions, it is less helpful in detecting primary defects in dominantly inherited disorders. Abnormal immunohistochemical expression patterns can be confirmed by Western blot analysis which may also be informative in dominant disorders, although its role has yet to be established. Besides identification of specific protein defects, immunohistochemistry is also helpful in the differentiation of inflammatory myopathies by subtyping cellular infiltrates and demonstrating up-regulation of subtle immunological parameters such as cell adhesion molecules. The role of immunohistochemistry in denervating disorders, however, remains controversial in the absence of a reliable marker of muscle fibre denervation. Nevertheless, as well as the diagnostic value of immunocytochemical analysis it may also widen understanding of muscle fibre pathology as well as help in the development of therapeutic strategies.
Collapse
Affiliation(s)
- D S Tews
- Edinger-Institute of the Johann-Wolfgang Goethe-University, Frankfurt, Germany.
| | | |
Collapse
|
28
|
Ryckman LR, Krahwinkel DJ, Sims MH, Donnell RL, Moore PF, Shelton GD. Dysphagia as the primary clinical abnormality in two dogs with inflammatory myopathy. J Am Vet Med Assoc 2005; 226:1519-23, 1501. [PMID: 15882004 DOI: 10.2460/javma.2005.226.1519] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Two adult Boxers were evaluated because of chronic dysphagia of several years' duration. Serum creatine kinase activity was high in both dogs, but other hematologic or serum biochemical abnormalities were not detected. Esophagraphy revealed abnormalities of the cricopharyngeal phase of swallowing in both dogs, and electromyography of the pharyngeal and laryngeal muscles revealed complex repetitive discharges, positive sharp waves, and fibrillation potentials characteristic of primary myopathy or neuropathy. Because of the severity of their condition, both dogs were euthanatized. Histologically, mixed-cell infiltrates were seen in sections of the masseter and thyropharyngeal muscles. Results of indirect immunofluorescence staining for proteins associated with dystrophic myopathy were unremarkable, except for decreased staining for integrin alpha7. A diagnosis of chronic inflammatory myopathy was made. The clinical importance of reduced staining for integrin alpha7 could not be determined but was considered to be a result of the myopathy.
Collapse
Affiliation(s)
- L Rachael Ryckman
- Veterinary Teaching Hospital, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996-4566, USA
| | | | | | | | | | | |
Collapse
|
29
|
Burkin DJ, Wallace GQ, Milner DJ, Chaney EJ, Mulligan JA, Kaufman SJ. Transgenic expression of {alpha}7{beta}1 integrin maintains muscle integrity, increases regenerative capacity, promotes hypertrophy, and reduces cardiomyopathy in dystrophic mice. THE AMERICAN JOURNAL OF PATHOLOGY 2005; 166:253-63. [PMID: 15632017 PMCID: PMC1602287 DOI: 10.1016/s0002-9440(10)62249-3] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We previously reported that enhanced expression of the alpha7beta1 integrin ameliorates the development of muscular dystrophy and extends longevity in alpha7BX2-mdx/utr(-/-) transgenic mice (Burkin DJ, Wallace GQ, Nicol KJ, Kaufman DJ, Kaufman SJ: Enhanced expression of the alpha7beta1 integrin reduces muscular dystrophy and restores viability in dystrophic mice. We now report on the mechanism by which these mice were rescued by the integrin. As a result of increased integrin in alpha7BX2-mdx/utr(-/-) mice the structural integrity of the myotendinous and neuromuscular junctions are maintained. A twofold increase in satellite cells in alpha7BX2-mdx/utr(-/-) skeletal muscle was detected by immunofluorescence using the satellite cell marker c-met. These cells enhanced the regenerative capacity of muscle in the transgenic animals as determined by fusion of BrdUrd-labeled cells into muscle fibers. Increased integrin also leads to hypertrophy. Finally, transgenic expression of alpha7BX2 integrin chain in skeletal muscle secondarily reduces the development of cardiomyopathy, the ultimate cause of death in these animals. We believe this multiplicity of responses to increased alpha7beta1 integrin collectively inhibits the development of muscle disease and increases longevity in these mice.
Collapse
Affiliation(s)
- Dean J Burkin
- Department of Cell and Structural Biology, University of Illinois, B107 Chemical and Life Sciences Laboratory, 601 South Goodwin Ave., Urbana, IL 61801, USA
| | | | | | | | | | | |
Collapse
|
30
|
Greenberg SA, Walsh RJ. Molecular diagnosis of inheritable neuromuscular disorders. Part II: Application of genetic testing in neuromuscular disease. Muscle Nerve 2005; 31:431-51. [PMID: 15704143 DOI: 10.1002/mus.20279] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Molecular genetic advances have led to refinements in the classification of inherited neuromuscular disease, and to methods of molecular testing useful for diagnosis and management of selected patients. Testing should be performed as targeted studies, sometimes sequentially, but not as wasteful panels of multiple genetic tests performed simultaneously. Accurate diagnosis through molecular testing is available for the vast majority of patients with inherited neuropathies, resulting from mutations in three genes (PMP22, MPZ, and GJB1); the most common types of muscular dystrophies (Duchenne and Becker, facioscapulohumeral, and myotonic dystrophies); the inherited motor neuron disorders (spinal muscular atrophy, Kennedy's disease, and SOD1 related amyotrophic lateral sclerosis); and many other neuromuscular disorders. The role of potential multiple genetic influences on the development of acquired neuromuscular diseases is an increasingly active area of research.
Collapse
Affiliation(s)
- Steven A Greenberg
- Department of Neurology, Division of Neuromuscular Disease, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
31
|
Flintoff-Dye NL, Welser J, Rooney J, Scowen P, Tamowski S, Hatton W, Burkin DJ. Role for the α7β1 integrin in vascular development and integrity. Dev Dyn 2005; 234:11-21. [PMID: 16003770 DOI: 10.1002/dvdy.20462] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The alpha7beta1 integrin is a laminin receptor that has been implicated in muscle disease and the development of neuromuscular and myotendinous junctions. Studies have shown the alpha7beta1 integrin is also expressed in nonskeletal muscle tissues. To identify the expression pattern of the alpha7 integrin in these tissues during embryonic development, alpha7 integrin chain knockout mice were generated by a LacZ knockin strategy. In these mice, expression from the alpha7 promoter is reported by beta-galactosidase. From embryonic day (ED) 11.5 to ED14.5, beta-galactosidase was detected in the developing central and peripheral nervous systems and vasculature. The loss of the alpha7 integrin gene resulted in partial embryonic lethality. Several alpha7 null embryos were identified with cerebrovascular hemorrhages and showed reduced vascular smooth muscle cells and cerebral vascularization. The alpha7 null mice that survived to birth exhibited vascular smooth muscle defects, including hyperplasia and hypertrophy. In addition, altered expression of alpha5 and alpha6B integrin chains was detected in the cerebral arteries of alpha7 null mice, which may contribute to the vascular phenotype. Our results demonstrate for the first time that the alpha7beta1 integrin is important for the recruitment or survival of cerebral vascular smooth muscle cells and that this integrin plays an important role in vascular development and integrity.
Collapse
Affiliation(s)
- Nichole L Flintoff-Dye
- Department of Pharmacology, University of Nevada, Manville Health Science Building, Reno, 89557, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Muntoni F, Voit T. The congenital muscular dystrophies in 2004: a century of exciting progress. Neuromuscul Disord 2004; 14:635-49. [PMID: 15351421 DOI: 10.1016/j.nmd.2004.06.009] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2004] [Revised: 06/07/2004] [Accepted: 06/08/2004] [Indexed: 11/24/2022]
Abstract
The congenital muscular dystrophies are a heterogeneous group of inherited disorders. The clinical features range from severe and often early fatal disorders to relatively mild conditions compatible with survival into adult life. The recent advances in the genetic basis of congenital muscular dystrophies have allowed to significantly improve our understanding of their pathogenesis and clinical diversity. These advances have also allowed to classify these forms according to a combination of clinical features and primary biochemical defects. In this review we present how the congenital muscular dystrophies field has evolved over the last decade from a clinical and genetic point of view.
Collapse
Affiliation(s)
- Francesco Muntoni
- Department of Paediatrics and Neonatal, Dubowitz Neuromuscular Unit, Imperial College School of Medicine, Hammersmith Hospital Campus, Du Cane Road, London W12 ONN, UK.
| | | |
Collapse
|
33
|
Abstract
As our understanding of integrins as multifunctional adhesion and signaling molecules has grown, so has their recognition as potential therapeutic targets in human diseases. Leukocyte integrins are of particular interest in this regard, as they are key molecules in immune-mediated and inflammatory processes and are thus critically involved in diverse clinical disorders, ranging from asthma to atherosclerosis. Antagonists that interfere with integrin-dependent leukocyte trafficking and/or post-trafficking events have shown efficacy in multiple preclinical models, but these have not always predicted success in subsequent clinical trials (e.g., ischemia-reperfusion disorders and transplantation). However, recent successes of integrin antagonists in psoriasis, inflammatory bowel disease, and multiple sclerosis demonstrate the tremendous potential of antiadhesion therapy directed at leukocyte integrins. This article will review the role of the leukocyte integrins in the inflammatory process, approaches to targeting leukocyte integrins and their ligands, and the results of completed clinical trials.
Collapse
Affiliation(s)
- Karyn Yonekawa
- Division of Nephrology, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
34
|
Abstract
Affecting 1-3% of the population, mental retardation (MR) poses significant challenges for clinicians and scientists. Understanding the biology of MR is complicated by the extraordinary heterogeneity of genetic MR disorders. Detailed analyses of >1000 Online Mendelian Inheritance in Man (OMIM) database entries and literature searches through September 2003 revealed 282 molecularly identified MR genes. We estimate that hundreds more MR genes remain to be identified. A novel test, in which we distributed unmapped MR disorders proportionately across the autosomes, failed to eliminate the well-known X-chromosome overrepresentation of MR genes and candidate genes. This evidence argues against ascertainment bias as the main cause of the skewed distribution. On the basis of a synthesis of clinical and laboratory data, we developed a biological functions classification scheme for MR genes. Metabolic pathways, signaling pathways, and transcription are the most common functions, but numerous other aspects of neuronal and glial biology are controlled by MR genes as well. Using protein sequence and domain-organization comparisons, we found a striking conservation of MR genes and genetic pathways across the approximately 700 million years that separate Homo sapiens and Drosophila melanogaster. Eighty-seven percent have one or more fruit fly homologs and 76% have at least one candidate functional ortholog. We propose that D. melanogaster can be used in a systematic manner to study MR and possibly to develop bioassays for therapeutic drug discovery. We selected 42 Drosophila orthologs as most likely to reveal molecular and cellular mechanisms of nervous system development or plasticity relevant to MR.
Collapse
Affiliation(s)
- Jennifer K Inlow
- Arizona Research Laboratories Division of Neurobiology, University of Arizona, Tucson 85721-0077, USA
| | | |
Collapse
|
35
|
Koch M, Schulze J, Hansen U, Ashwodt T, Keene DR, Brunken WJ, Burgeson RE, Bruckner P, Bruckner-Tuderman L. A novel marker of tissue junctions, collagen XXII. J Biol Chem 2004; 279:22514-21. [PMID: 15016833 PMCID: PMC2925840 DOI: 10.1074/jbc.m400536200] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Here we describe a novel specific component of tissue junctions, collagen XXII. It was first identified by screening an EST data base and subsequently expressed as a recombinant protein and characterized as an authentic tissue component. The COL22A1 gene on human chromosome 8q24.2 encodes a collagen that structurally belongs to the FACIT protein family (fibril-associated collagens with interrupted triple helices). Collagen XXII exhibits a striking restricted localization at tissue junctions such as the myotendinous junction in skeletal and heart muscle, the articular cartilage-synovial fluid junction, or the border between the anagen hair follicle and the dermis in the skin. It is deposited in the basement membrane zone of the myotendinous junction and the hair follicle and associated with the extrafibrillar matrix in cartilage. In situ hybridization of myotendinous junctions revealed that muscle cells produce collagen XXII, and functional tests demonstrated that collagen XXII acts as a cell adhesion ligand for skin epithelial cells and fibroblasts. This novel gene product, collagen XXII, is the first specific extracellular matrix protein present only at tissue junctions.
Collapse
Affiliation(s)
- Manuel Koch
- Center for Biochemistry, Medical Faculty University of Cologne, 50931 Cologne, Germany
| | - Joerg Schulze
- Center for Biochemistry, Medical Faculty University of Cologne, 50931 Cologne, Germany
| | - Uwe Hansen
- Department of Biochemistry, University of Muenster, 48129 Münster, Germany
| | - Todd Ashwodt
- Cutaneous Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Charlestown, Massachusetts 02129
| | | | - William J. Brunken
- Anatomy and Cell Biology, Departments of Neuroscience, and Ophthalmology, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Robert E. Burgeson
- Cutaneous Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Charlestown, Massachusetts 02129
| | - Peter Bruckner
- Department of Biochemistry, University of Muenster, 48129 Münster, Germany
| | - Leena Bruckner-Tuderman
- Department of Dermatology, University of Freiburg, 79104 Freiburg, Germany
- To whom correspondence should be addressed: Dept. of Dermatology, University of Freiburg, Hauptstrasse 7, 79104 Freiburg, Germany. Tel.: 49-7612706716; Fax: 49-7612706936;
| |
Collapse
|
36
|
Abstract
Abstract
Affecting 1-3% of the population, mental retardation (MR) poses significant challenges for clinicians and scientists. Understanding the biology of MR is complicated by the extraordinary heterogeneity of genetic MR disorders. Detailed analyses of >1000 Online Mendelian Inheritance in Man (OMIM) database entries and literature searches through September 2003 revealed 282 molecularly identified MR genes. We estimate that hundreds more MR genes remain to be identified. A novel test, in which we distributed unmapped MR disorders proportionately across the autosomes, failed to eliminate the well-known X-chromosome overrepresentation of MR genes and candidate genes. This evidence argues against ascertainment bias as the main cause of the skewed distribution. On the basis of a synthesis of clinical and laboratory data, we developed a biological functions classification scheme for MR genes. Metabolic pathways, signaling pathways, and transcription are the most common functions, but numerous other aspects of neuronal and glial biology are controlled by MR genes as well. Using protein sequence and domain-organization comparisons, we found a striking conservation of MR genes and genetic pathways across the ∼700 million years that separate Homo sapiens and Drosophila melanogaster. Eighty-seven percent have one or more fruit fly homologs and 76% have at least one candidate functional ortholog. We propose that D. melanogaster can be used in a systematic manner to study MR and possibly to develop bioassays for therapeutic drug discovery. We selected 42 Drosophila orthologs as most likely to reveal molecular and cellular mechanisms of nervous system development or plasticity relevant to MR.
Collapse
Affiliation(s)
- Jennifer K Inlow
- Arizona Research Laboratories Division of Neurobiology, University of Arizona, Tucson, Arizona 85721-0077
| | - Linda L Restifo
- Arizona Research Laboratories Division of Neurobiology, University of Arizona, Tucson, Arizona 85721-0077
- Department of Neurology, University of Arizona, Tucson, Arizona 85721-0077
- Genetics Graduate Interdisciplinary Program, University of Arizona, Tucson, Arizona 85721-0077
| |
Collapse
|
37
|
Xiao J, Jethanandani P, Ziober BL, Kramer RH. Regulation of α7 Integrin Expression during Muscle Differentiation. J Biol Chem 2003; 278:49780-8. [PMID: 14525975 DOI: 10.1074/jbc.m308542200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Expression of the laminin-binding alpha7 integrin is tightly regulated during myogenic differentiation, reflecting required functions that range from cell motility to formation of stable myotendinous junctions. However, the exact mechanism controlling alpha7 expression in a tissue- and differentiation-specific manner is poorly understood. This report provides evidence that alpha7 gene expression during muscle differentiation is regulated by the c-Myc transcription factor. In myoblasts, alpha7 is expressed at basal levels, but following conversion to myotubes the expression of the integrin is strongly elevated. The increased alpha7 mRNA and protein levels following myogenic differentiation are inversely correlated with c-Myc expression. Transfection of myoblasts with the c-Myc transcription factor down-regulated alpha7 expression, whereas overexpression of Madmyc, a dominant-negative c-Myc chimera, induced elevated alpha7 expression. Functional analysis with site-specific deletions identified a specific double E-box sequence in the upstream promoter region (-2.0 to -2.6 kb) that is responsible for c-Myc-induced suppression of alpha7 expression. DNA-protein binding assays and supershift analysis revealed that c-Myc forms a complex with this double E-box sequence. Our results suggest that the interaction of c-Myc with this promoter region is an important regulatory element controlling alpha7 integrin expression during muscle development and myotendinous junction formation.
Collapse
MESH Headings
- Animals
- Antigens, CD/biosynthesis
- Antigens, CD/genetics
- Base Sequence
- Blotting, Southern
- Blotting, Western
- Cell Differentiation
- Cell Line
- Cell Line, Tumor
- Cell Movement
- Chloramphenicol O-Acetyltransferase/metabolism
- DNA/metabolism
- Down-Regulation
- Gene Deletion
- Gene Expression Regulation
- Humans
- Integrin alpha Chains/biosynthesis
- Integrin alpha Chains/genetics
- Mice
- Models, Genetic
- Molecular Sequence Data
- Muscles/metabolism
- Plasmids/metabolism
- Promoter Regions, Genetic
- Protein Binding
- Protein Structure, Tertiary
- Proto-Oncogene Proteins c-myc/metabolism
- RNA, Messenger/metabolism
- Sequence Homology, Nucleic Acid
- Time Factors
- Transfection
Collapse
Affiliation(s)
- Jianqiao Xiao
- Departments of Stomatology and Anatomy, University of California at San Francisco, San Francisco, California 94143-0422, USA
| | | | | | | |
Collapse
|
38
|
Li J, Rao H, Burkin D, Kaufman SJ, Wu C. The muscle integrin binding protein (MIBP) interacts with alpha7beta1 integrin and regulates cell adhesion and laminin matrix deposition. Dev Biol 2003; 261:209-19. [PMID: 12941630 DOI: 10.1016/s0012-1606(03)00304-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Integrins are alphabeta transmembrane receptors that function in key cellular processes, including cell adhesion, differentiation, and extracellular matrix deposition through interactions with extracellular, membrane, and cytoplasmic proteins. We previously identified and cloned a muscle beta1 integrin cytoplasmic binding protein termed MIBP and found that the expression level of MIBP is critical in the decision-making process of terminal myogenic differentiation. We report here that MIBP interacts with the alpha7beta1 integrin but not the alpha5beta1 integrin in C2C12 myoblasts, suggesting an important role of integrin alpha chains in the regulation of the beta1-MIBP interaction. Furthermore, consistent with its selective binding activity toward the alpha7beta1 laminin receptor, we have found that overexpression of MIBP in C2C12 myoblasts resulted in a significant reduction of cell adhesion to laminin and inhibition of laminin matrix deposition. By contrast, neither cell adhesion to fibronectin nor fibronectin matrix deposition was significantly altered in cells overexpressing MIBP. Finally, we show that both the protein level and tyrosine phosphorylation of paxillin, a key signaling molecule involved in the cellular control of myogenic differentiation, are increased by MIBP. These results suggest that MIBP functions in the control of myogenic differentiation by regulating alpha7beta1 integrin-mediated cell interactions with laminin matrix and intracellular signaling through paxillin.
Collapse
Affiliation(s)
- Ji Li
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | | | |
Collapse
|
39
|
Yeh MG, Ziober BL, Liu B, Lipkina G, Vizirianakis IS, Kramer RH. The beta1 cytoplasmic domain regulates the laminin-binding specificity of the alpha7X1 integrin. Mol Biol Cell 2003; 14:3507-18. [PMID: 12972542 PMCID: PMC196545 DOI: 10.1091/mbc.e02-12-0824] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
During muscle development, the laminin-specific alpha7 integrin is alternatively spliced in the putative ligand-binding domain to yield either the alpha7X1 or the alpha7X2 variant. The relative level of alpha7X1 and alpha7X2 is developmentally regulated. Similarly, the partner beta1 integrin cytoplasmic domain is converted from the beta1A to the beta1D splice variant. To determine whether beta1D modulates the activity of the alpha7 receptor, cells were transfected with alpha7X1 and beta1D cDNA. alpha7X1 coupled with beta1A failed to adhere to laminin-1, whereas cotransfectants expressing alpha7X1 and beta1D showed strong adhesion. Interestingly, alpha7X1 complexed with beta1A and beta1D displayed the same level of poor adhesion to laminin-2/4 or strong adhesion to laminin-10/11. These findings indicate that alpha7 function is regulated not only by X1/X2 in its extracellular domain but also by beta1 cytoplasmic splice variants. It is likely that expression of beta1D alters alpha7X1 binding to laminin isoforms by a process related to ligand affinity modulation. Functional regulation of alpha7beta1 by developmentally regulated splicing events may be important during myogenic differentiation and repair because the integrin mediates adhesion, motility, and cell survival.
Collapse
Affiliation(s)
- Ming-Guang Yeh
- Department of Stomatology, University of California at San Francisco, San Francisco, CA 94143-0512, USA
| | | | | | | | | | | |
Collapse
|
40
|
Abstract
Cell adhesion and migration are essential for embryonic development, tissue regeneration, and immune defence. The physical link between the extracellular substrate and the actin cytoskeleton is mediated by receptors of the integrin family and a large set of adaptor proteins. During cell migration this physical link is dynamically modified, allowing the cell to sense and adapt to the microenvironment. This includes the formation of integrin clusters at the cell front, their stabilization in the cell body and subsequent disassembly of these clusters at the rear of the cell. The modulation of the adhesion strength of the cell to the substrate is regulated by the affinity switch of integrin molecules and increased avidity through clustering of integrins. Here we explain how integrins mediate cell migration and how genetic defects of integrins and their adaptors lead to cellular dysfunction and generate pathological situations.
Collapse
Affiliation(s)
- Bernhard Wehrle-Haller
- Department of Pathology, Centre Médical Universitaire, 1 Rue Michel-Servet, 1211 Geneva 4, Switzerland.
| | | |
Collapse
|
41
|
Affiliation(s)
- Ulrike Mayer
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, University of Manchester, M13 9PT Manchester, United Kingdom.
| |
Collapse
|